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Abstract

Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of uncertainties during
both optimization and decision making processes. They have been applied to solve a variety of real-world
applications in science and engineering. Bayesian approximation and ensemble learning techniques are two
of the most widely-used types of uncertainty quantification (UQ) methods. In this regard, researchers
have proposed different UQ methods and examined their performance in a variety of applications such as
computer vision (e.g., self-driving cars and object detection), image processing (e.g., image restoration),
medical image analysis (e.g., medical image classification and segmentation), natural language processing
(e.g., text classification, social media texts and recidivism risk-scoring), bioinformatics, etc. This study
reviews recent advances in UQ methods used in deep learning, investigates the application of these methods
in reinforcement learning, and highlights the fundamental research challenges and directions associated with
the UQ field.

Keywords: Artificial intelligence, Uncertainty quantification, Deep learning, Machine learning, Bayesian
statistics, Ensemble learning.

1. Introduction

Everyday scenarios deal with uncertainties in a variety fields, from investment opportunities and medical
diagnoses to sports games and weather forecasting, and in all cases, with the objective to make decisions based
on collected observations and uncertain-domain knowledge. Models developed using machine learning and
deep learning are widely used for all types of inference and decision making, meaning that it is increasingly
important to evaluate the reliability and efficacy of artificial intelligence (AI) systems before they could be
applied in practice [1], since the predictions made by such models are subject to noise and model inference
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errors [2]. It is thus highly desirable to represent uncertainty in a trustworthy manner in any AI-based system.
The principles of uncertainty play an important role in AI settings such as concrete learning algorithms [3]
and active learning (AL) [4, 5].

Sources of uncertainty arise when the test and training data are mismatched, and data uncertainty
occurs because of class overlap or due to the presence of noise in the data [6]; however, estimating knowledge
uncertainty is significantly more difficult than estimating data uncertainty [7]. There are two main sources
of uncertainty, aleatoric and epistemic uncertainty [8] (see Fig. 1).

Epistemic

Aleatoric

Fig. 1: A schematic view of the main differences between aleatoric and epistemic uncertainty.

The irreducible uncertainty in data that gives rise to uncertainty in predictions is aleatoric uncertainty
(also known as data uncertainty). This type of uncertainty is not a property of the model, but rather is an
inherent property of the data distribution, and hence, it is irreducible. In contrast, epistemic uncertainty
(also known as knowledge uncertainty) occurs due to inadequate knowledge. One can define models to answer
different questions in model-based prediction. For data-rich problems, there may be massive collections of
data that are information poor [10]. In such cases, AI-based methods can be used to define the efficient
models that characterize the emergent features of the data. Very often, these data are incomplete, noisy,
discordant or multimodal [2].

Uncertainty quantification (UQ) currently underpins many critical decisions, and predictions made with-
out UQ are usually not trustworthy and accurate. To understand the deep learning (DL) [11, 12] process
life cycle, we need to comprehend the role of UQ in DL. DL models start with a collection of the most
comprehensive and potentially relevant datasets available for the decision making process. The DL scenario
is then designed to meet some performance goals to select the most appropriate DL architecture, and then a
model is trained based on the data. The iterative training process optimizes different learning parameters,
which are adjusted until the network provides a satisfactory level of performance.

There are several uncertainties that need to be quantified in the steps involved:

(i) the selection and collection of the training data,

(ii) the completeness and accuracy of the training data,

(iii) an understanding of the DL (or traditional machine learning) model with performance bounds and
limitations, and

(iv) uncertainties corresponding to the performance of the model based on operational data [13].

Next, data-driven approaches, particularly those similar to DL, pose at least four overlapping challenges:

(i) an absence of theory,

(ii) an absence of causal models,

(iii) sensitivity to imperfect data, and

(iv) computational costs.
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Data Output

(a) Monte Carlo (MC) dropout

Data Output

(b) Bootstrap model

Data Output

(c) Gaussian mixture model (GMM)

Fig. 2: Schematic view of three different uncertainty models with the related network architectures, reproduced based on [9].

Uncertainty estimation and quantification have been studied extensively in DL and traditional machine
learning, and a schematic comparison of the three different uncertainty models [9] (MC dropout, the Boot-
strap model and the GMM) is provided in Fig. 2. In addition, two graphical representations of uncertainty-
aware models (BNN and OoD) are illustrated in Fig. 3. In what follows, we provide a brief summary of
recent studies that examine the effectiveness of methods of dealing with uncertainties.

1.1. Research Objectives and Outline

In the era of big data, ML and DL, intelligent use of various raw data has great potential to benefit a wide
variety of areas. However, UQ in different ML and DL methods can significantly increase the reliability of
their results. Ning et al. [15] summarized and classified the main contributions of the data-driven optimization
paradigm under uncertainty. This paper reviewed data-driven optimization only. In another study, Kabir et
al. [16] reviewed neural network-based UQ. The authors focused on probabilistic forecasting and prediction
intervals (PIs) as they are among most widely used techniques in the literature for UQ.

We note that, from 2010 to 2020 (end of June), more than 2500 papers on UQ in AI were published
in various fields (e.g., computer vision, image processing, medical image analysis, signal processing, and
natural language processing). On the one hand, we ignore a large number of papers due to a lack of
adequate connection with the subject of our review. On the other hand, although many papers that we
reviewed have been published in related conferences and journals, many papers were found on open-access
repositories as electronic preprints (i.e., arXiv), and we reviewed them due to their high quality and full
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Fig. 3: A graphical representation of two different uncertainty-aware (UA) models, reproduced based on [14].

relevance to the subject. We aimed to cover most of the related articles in this review paper. This review
can therefore serve as a comprehensive guide to the reader in navigating this fast-growing research field.

Unlike previous review papers in the field of UQ, this study reviews most recent articles published on
quantifying uncertainty in AI (ML and DL) using different approaches. In addition, we are keen to discover
how UQ can impact real cases and address uncertainty in AI to help obtain reliable results. Moreover,
finding important conversations on existing methods is an excellent way to reveal paths to future research.
In this regard, this review paper can provide more input to future researchers working on UQ in ML and
DL. We investigate more recent studies in the domain of UQ applied to ML and DL methods. Therefore, we
summarize few existing studies on UQ in ML and DL. It is worth mentioning that the main purpose of this
study is not to compare the performance of the different UQ methods proposed because these methods are
introduced for different data and specific tasks. For this reason, we argue that comparing the performance
of all methods is beyond the scope of this study. For this reason, this study mainly focuses on important
areas including DL, ML and reinforcement learning (RL). Hence, the main contributions of this study are
as follows:

• To the best of our knowledge, this is the first comprehensive review paper regarding UQ methods used
in ML and DL methods, which is valuable for researchers in this domain.

• A comprehensive review of newly proposed UQ methods is provided.

• The main categories of important applications of UQ methods are also listed.

• The main research gaps of UQ methods are pointed out.

• Some solid future research directions are discussed.

2. Preliminaries

In this section, we explain the structure of feedforward neural networks (NNs) and Bayesian modeling to
discuss uncertainty in detail.

2.1. Feedforward Neural Networks

In this section, the structure of a single-hidden-layer neural network (NN) [17] is explained, and this can
be extended to multiple layers. Suppose x is a D-dimensional input vector; we use a linear map W1 and
bias b to transform x into a row vector with Q elements, i.e., W1x + b. Next, a nonlinear transfer function
σ(.), such as the rectified linear unit (ReLU), can be applied to obtain the output of the hidden layer. Then,
another linear function W2 can be used to map the hidden layer to the output:

ŷ = σ(xW1 + b)W2. (1)
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For classification, to compute the probability of X belonging to a label c in the set {1, ..., C}, the normal-
ized score is obtained by passing the model output ŷ through a softmax function p̂d = exp(ŷd)/(

∑
d′ exp(ŷd′)).

Then, softmax loss is used:

EW1,W2,b(X,Y ) = − 1

N

N∑

i=1

log(p̂i,ci), (2)

where X = (x1, ..., xN ) and Y = (y1, ..., yN ) are the inputs and their corresponding outputs, respectively.
For regression, the Euclidean loss can be used:

EW1,W2,b(X,Y ) =
1

2N

N∑

i=1

‖yi − ŷ‖2. (3)

2.2. Uncertainty Modeling

As mentioned above, there are two main types of uncertainty: epistemic (model uncertainty) and aleatoric
(data uncertainty) [18]. Aleatoric uncertainty has two types: homoscedastic and heteroscedastic [19].

Predictive uncertainty (PU) consists of two parts, (i) epistemic uncertainty (EU) and (ii) aleatoric un-
certainty (AU), and it can be written as the sum of these two parts:

PU = EU +AU. (4)

Epistemic uncertainty can be formulated as a probability distribution over the model parameters. Let
Dtr = {X,Y } = {(xi, yi)}Ni=1 denote a training dataset with inputs xi ∈ <D and their corresponding classes
yi ∈ {1, ..., C}, where C represents the number of classes. The aim is to optimize the parameters, i.e., ω, of
a function y = fω(x) that can produce the desired output. To achieve this, the Bayesian approach defines a
model likelihood, i.e., p(y|x, ω). For classification, softmax likelihood can be used:

p(y = c|x, ω) =
exp(fωc (x))∑
c′ exp(fωc′(x))

. (5)

and Gaussian likelihood can be assumed for regression:

p(y|x, ω) = N (y; fω(x), τ−1I), (6)

where τ represents the model precision.
The posterior distribution, i.e., p(ω|x, y), for a given dataset Dtr over ω obtained by applying Bayes’

theorem can be written as follows:

p(ω|X,Y ) =
p(Y |X,ω)p(ω))

p(Y |X)
. (7)

For a given test sample x∗, a class label with regard to p(ω|X,Y ) can be predicted:

p(y∗|x∗, X, Y ) =

∫
p(y∗|x∗, ω)p(ω|X,Y )dω. (8)

This process is called inference or marginalization. However, p(ω|X,Y ) cannot be computed analytically
but can be approximated by variational parameters, i.e., qθ(ω). The aim is to approximate a distribution
that is close to the posterior distribution obtained by the model. As such, the Kullback-Leibler (KL) [20]
divergence needs to be minimized with regard to θ. The level of similarity among two distributions can be
measured as follows:

KL(qθ(ω)‖p(ω|X,Y )) =

∫
qθ(ω) log

qθ(ω)

p(ω|X,Y )
dω. (9)
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The predictive distribution can be approximated by minimizing the KL divergence, as follows:

p(y∗|x∗, X, Y ) ≈
∫
p(y∗|x∗, ω)q∗θ(ω)dω =: q∗θ(y∗, x∗), (10)

where q∗θ(ω) indicates the optimized objective.
KL divergence minimization can also be rearranged into the evidence lower bound (ELBO) maximiza-

tion [21]:

LV I(θ) :=

∫
qθ(ω) log p(Y |X,ω)dω −KL(qθ(ω)‖p(ω)), (11)

where qθ(ω) can describe the data well by maximizing the first term and can approach the prior as closely as
possible by minimizing the second term. This process is called variational inference (VI). Dropout VI is one
of the most common approaches and has been widely used to approximate inference in complex models [22].
The minimization objective is as follows [23]:

L(θ, p) = − 1

N

N∑

i=1

log p(yi|xi, ω) +
1− p
2N
‖θ‖2, (12)

where N and p represent the number of samples and the dropout probability, respectively.
To obtain the data-dependent uncertainty, the precision τ in (6) can be formulated as a function of

the data. One approach to obtaining the epistemic uncertainty is to mix two functions—the predictive
mean, i.e., fθ(x), and the model precision, i.e., gθ(x)—and the likelihood function can then be written as
yi = N (fθ(x), gθ(x)−1). A prior distribution is placed on the weights of the model, and then the amount of
change in the weights for the given data samples is computed. The Euclidian distance loss function (3) can
be adapted as follows:

EW1,W2,b :=

1

2
(y − fW1,W2,b(x))gW1,W2,b(x)(y − fW1,W2,b(x))T − 1

2
log det gW1,W2,b +

D

2
log 2π

= − logN (fθ(x), gθ(x)−1). (13)

The predictive variance can be obtained as follows:

V̂ ar[x∗] :=
1

T

T∑

t=1

gω̃t(x)I + f ω̃t(x∗)T f ω̃t(x∗)− Ẽ[y∗]T Ẽ[y∗] −→
T→∞

V arq∗θ (y∗|x∗)[y
∗]. (14)

3. Uncertainty Quantification Using Bayesian Techniques

Despite the success of standard DL methods in solving various real-word problems, they cannot provide
information about the reliability of their predictions. To address this issue, Bayesian deep learning (BDL) and
Bayesian NNs (BNNs) [24, 25, 26, 27, 28, 29, 30, 31] can be used to interpret the model parameters. BNNs
and BDL are robust to overfitting problems and can be trained on both small and large (big) datasets [32].

3.1. Monte Carlo (MC) Dropout

As stated earlier, it is difficult to compute an exact posterior inference, but it can be approximated.
In this regard, Monte Carlo (MC) [33] is an effective method. However, it is a slow and computationally
expensive method when integrated into a deep architecture. To combat this, MC dropout was introduced;
it uses dropout [34] as a regularization term to compute the prediction uncertainty [35]. Dropout is an
effective technique that has been widely used to solve overfitting problems in deep NNs (DNNs). During the
training process, dropout randomly drops some units of the NN to prevent excessive co-tuning. Assume an
NN with L layers, where Wl, bl and Kl denote the weight matrices, bias vectors and dimensions of the lth
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(a) Baseline neural network (b) Bernoulli DropConnec (c) Gaussian DropConnect

(d) Bernoulli Dropout (e) Gaussian Dropout (f) Spike-and-Slab Dropout

Fig. 4: A graphical representation of several visualizations of variational distributions on a simple NN, which is reproduced
based on [36].

layer, respectively. The output of the NN and the target class of the ith input xi (i = 1, ..., N) are indicated
by ŷi and yi, respectively. The objective function using L2 regularization can be written as:

Ldropout :=
1

N

N∑

i=1

E(yi, ŷi) + λ

L∑

l=1

(‖Wi‖22 + ‖bi‖22). (15)

Dropout samples binary variables for each input data value and every network unit in each layer (except
the output layer), with a probability of pi for the ith layer; if its value is 0, the unit i is dropped for a given
input data value. The same values are used in the backward pass to update the parameters. Fig. 4 shows
several visualizations of variational distributions on a simple NN [36].

Several studies have used MC dropout [37] to estimate the UQ. Wang et al. [38] analyzed epistemic
and aleatoric uncertainty for deep convolutional NN (CNN)-based medical image segmentation problems
at both pixel and structure levels. They augmented the input image during the test phase to estimate
the transformation uncertainty. Specifically, MC sampling was used to estimate the distribution of the
output segmentation. Liu et al. [39] proposed a unified model using SGD to approximate both epistemic
and aleatoric uncertainty for CNNs in the presence of universal adversarial perturbations. The epistemic
uncertainty was estimated by applying MC dropout with Bernoulli distribution at the output of the neurons.
In addition, they introduced texture bias to better approximate the aleatoric uncertainty. Nasir et al. [40]
used MC dropout to estimate four types of uncertainties, including the variance of MC samples, predictive
entropy, and mutual information (MI), in a 3D CNN to segment lesions from MRI sequences.

In [41], two dropout methods, i.e., elementwise Bernoulli dropout [34] and spatial Bernoulli dropout [42],
were implemented to compute the model uncertainty in BNNs for end-to-end autonomous vehicle control.
McClure and Kriegeskorte [36] expressed that the sampling of weights using Bernoulli or Gaussian dropout
can lead to a more accurate depiction of uncertainty than the sampling of units. However, according to the
outcomes obtained in [36], it can be argued that using either Bernoulli or Gaussian dropout can improve the
classification accuracy of a CNN. Based on these findings, a novel model (called spike-and-slab sampling)
was proposed by combining Bernoulli and Gaussian dropout.

Do et al. [61] modified U-Net [62], which is a CNN-based deep model, to segment myocardial arterial
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Fig. 5: A general view demonstrating the application of the semi-supervised UA-MT framework to LA segmentation, which is
reproduced based on [43].

Table 1: A summary of studies that applied the original MC dropout to approximate uncertainty along with their applications
(sorted by year).

Study Year Method Application Code

Kendal et al. [44] 2015 SegNet [45] semantic segmentation
√

Leibig et al. [46] 2017 CNN diabetic retinopathy
√

Choi et al. [47] 2017 mixture density network (MDN) [48] regression ×
Jung et al. [49] 2018 full-resolution ResNet [50] brain tumor segmentation ×
Wickstrom et al. [51] 2018 FCN [52] and SehNet [45] polyps segmentation ×
Jungo et al. [53] 2018 FCN brain tumor segmentation ×
Vandal et al. [54] 2018 Variational LSTM predict flight delays ×
Devries and Taylor [55] 2018 CNN medical image segmentation ×
Tousignant et al. [56] 2019 CNN MRI images ×
Norouzi et al. [57] 2019 FCN MRI images segmentation ×
Roy et al. [58] 2019 Bayesian FCNN brain images (MRI) segmentation

√

Filos et al. [59] 2019 CNN diabetic retinopathy
√

Harper and Southern [60] 2020 RNN and CNN emotion prediction ×

spin labeling and estimate uncertainty. Specifically, batch normalization and dropout are added after each
convolutional layer and resolution scale, respectively. Later, Teye et al. [63] proposed MC batch normalization
(MCBN), which can be used to estimate the uncertainty of networks with batch normalization. They showed
that batch normalization can be considered an approximate Bayesian model. Yu et al. [43] proposed a semi-
supervised model to segment the left atrium from 3D MR images. This model consists of two modules,
the teacher and student, and they are used in a UA framework called the UA self-ensembling mean teacher
(UA-MT) model (see Fig. 5). As such, the student model learns from the teacher model by minimizing the
segmentation and consistency losses of the labeled samples and targets of the teacher model, respectively.
In addition, the UA framework based on MC dropout was designed to help the student model learn a better
model by using uncertainty information obtained from the teacher model. Table 1 lists studies that directly
applied MC dropout to approximate uncertainty along with their applications.

3.1.1. Comparison of MC Dropout with Other UQ Methods

Recently, several studies have been conducted to compare different UQ methods. For example, Foong
et al. [65] empirically and theoretically studied MC dropout and mean-field Gaussian VI. They found that
both models can express uncertainty well in shallow BNNs. However, mean-field Gaussian VI could not
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Fig. 6: Graphical implementations of different SG-MCMC models, which are reproduced based on [64].

approximate the posterior well in estimating uncertainty for deep BNNs. Ng et al. [66] compared MC dropout
with BBB using U-Net [62] as a base classifier. Siddhant et al. [67] empirically studied various DAL models
for natural language processing (NLP). During prediction, they applied dropout to CNNs and recurrent
NNs (RNNs) to estimate the uncertainty. Hubschneider et al. [9] compared MC dropout with a bootstrap
ensembling-based method and a Gaussian mixture for the task of vehicle control. In addition, Mukhoti [68]
applied MC dropout in several models to estimate uncertainty in regression problems. Kennamer et al. [69]
empirically studied MC dropout under astronomical observing conditions.

3.2. Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) [70] is another effective method that has been used to approximate
inference. It starts by taking a randomly drawn value z0 from the distribution q(z0) or q(z0|x). Then, it
applies a stochastic transition to z0, as follows:

Zt ∼ q(zt|zt−1, x). (16)

This transition operator is chosen and repeated T times, and the outcome, which is a random variable,
converges in the distribution to the exact posterior. Salakhutdinov et al. [71] used MCMC to approximate
a predictive distribution of the rating values of movies. Despite the success of conventional MCMC, the
sufficient number of iterations is unknown. In addition, MCMC requires much time to converge to a desired
distribution [33]. Several studies have been conducted to overcome these shortcomings. For example, Sal-
imans et al. [72] expanded the space to a set of auxiliary random variables and interpreted the stochastic
Markov chain as a variational approximation.

Stochastic gradient MCMC (SG-MCMC) [73, 74] was proposed to train DNNs. It needs to estimate only
the gradient on small sets of mini-batches. In addition, SG-MCMC can converge to the true posterior by
decreasing the step size [75, 76]. Gong et al. [77] combined amortized inference with SG-MCMC to increase
the generalization ability of the model. Li et al. [64] proposed an accelerating SG-MCMC to improve
the speed of the conventional SG-MCMC (see Fig. 6 for implementations of different SG-MCMC models).
However, within a short time, SG-MCMC suffers from a bounded estimation error [78], and it loses the
surface when applied to multilayer networks [79]. In this regard, Zhang et al. [80] developed a cyclical SG-
MCMC (cSG-MCMC) to compute the posterior over the weights of NNs. Specifically, a cyclical step size
was used instead of a decreasing one. A large step size allows the sampler to make large moves, while a small
step size encourages the sampler to explore local modes.

Although SG-MCMC reduces the computational complexity by using a small subset, i.e., a mini-batch,
of the dataset at each iteration to update the model parameters, these small subsets of data add noise to
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Fig. 7: A summary of various VI methods for BDL, which is reproduced based on [89]. Note that Weight sharing (Mean−
field assumption + dramatic reduction) is added based on the method proposed in [89].

the model and consequently increase the uncertainty of the system. To address this issue, Luo et al. [81]
introduced a sampling method called thermostat-assisted continuously tempered Hamiltonian Monte Carlo,
which is an extended version of conventional Hamiltonian MC (HMC) [82]. Note that HMC is an MCMC
method [83]. Specifically, they used Nosé-Hoover thermostats [84, 85] to handle the noise generated by the
mini-batch datasets. Later, dropout HMC (D-HMC) [83] was proposed for uncertainty estimation, and it
was compared with SG-MCMC [73] and SGLD [86].

In addition, MCMC was integrated into generative-based methods to approximate posteriors. For exam-
ple, in [87], MCMC was applied to stochastic object models, which were learned by generative adversarial
networks (GANs), to approximate the ideal observer. In [88], a visual tracking system based on a variational
autoencoder (VAE) MCMC (VAE-MCMC) was proposed.

3.3. Variational Inference (VI)

Variational inference (VI) is an approximation method that learns the posterior distribution over BNN
weights. VI-based methods consider the Bayesian inference problem as an optimization problem that is used
by the SGD to train DNNs. Fig. 7 summarizes various VI methods for BNNs [89].

For BNNs, VI-based methods aim to approximate posterior distributions over the weights of the NN. To
achieve this, the loss can be defined as follows:

L(Φ) ≈ 1

2|D|

|D|∑

i=1

LR(y(i), x(i)) +
1

|D|KL(qφ(w)‖p(w)), (17)

where |D| indicates the number of samples, and

LR(y, x) = − log(τ̂x)T 1 + ‖
√
τ̂x � (y − µ̂x)‖2 (18)

µ̂x = µ̂(x,wµ); w ∼ qφ(w) (19)

τ̂x = τ̂(x,wr). (20)

where � and 1 represent the element-wise product and a vector filled with ones, respectively. Eq. (17) can
be used to compute (10).

Posch et al. [90] defined the variational distribution using a product of Gaussian distributions along with
diagonal covariance matrices. For each network layer, a posterior uncertainty of the network parameter was
represented. Later, in [91], the diagonal covariance matrices were replaced with the traditional ones to
allow the network parameters to correlate with each other. Inspired by transfer learning and empirical Bayes
(EB) [92], MOPED [93] used deterministic weights, which were derived from a pretrained DNN with the
same architecture, to select meaningful prior distributions over the weight space. Later, in [94], an approach
based on parametric EB was integrated into MOPED for mean-field VI in Bayesian DNNs (BDNNs), and
it used a fully factorized Gaussian distribution to model the weights. In addition, a real-world case study,
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Fig. 8: The general architecture of the deeper linear mean-field network with three or more mean-field weight layers, which is
reproduced based on [103].

i.e., diabetic retinopathy diagnosis, was used to evaluate the method. Subedar et al. [95] proposed an
uncertainty-aware framework based on multimodal Bayesian fusion for activity recognition. They scaled a
BDNN to a deeper structure by combining deterministic and variational layers. Marino et al. [96] proposed
a stochastic modeling-based approach to model uncertainty. Specifically, a deep BNN (DBNN) was used to
perform stochastic learning for the system. A variational BNN [97], which is a generative-based model, was
proposed to predict the superconducting transition temperature. Specifically, VI was adapted to compute
the distribution in the latent space for the model.

Louizos and Welling [98] adopted stochastic gradient VI [99] to compute the posterior distributions over
the weights of NNs. Hubin and Storvik [100] proposed a stochastic VI method that jointly considers both
model and parameter uncertainties in BNNs, and they introduced latent binary variables to include or exclude
certain weights of the model. Liu et al. [101] integrated VI into a spatial–temporal NN to approximate the
posterior parameter distribution of the network and estimate the probability of the prediction. Ryu et al. [102]
integrated a graph convolutional network (GCN) into the Bayesian framework to learn representations and
predict molecular properties. Swiatkowski et al. [89] empirically studied Gaussian mean-field VI. They
decomposed the variational parameters into a low-rank factorization to obtain a more compact approximation
and improved the signal-to-noise ratio (SNR) of the stochastic gradient (SG) in estimating the lower bound
of the variation. Franquhar et al. [103] used mean-field VI to better train deep models. They argued that
a deeper linear mean-field network can provide an analogous distribution of the function space to that of
shallowly full-covariance networks. A schematic view of the proposed approach is shown in Fig. 8.

3.4. Bayesian Active Learning (BAL)

AL methods aim to learn from unlabeled samples by querying an oracle [104]. Defining the right ac-
quisition function, i.e., the condition under which a sample is most informative for the model, is the main
challenge for AL-based methods. Although existing AL frameworks have shown promising results in a variety
of tasks, they lack scalability to high-dimensional data [105]. In this regard, Bayesian approaches can be
integrated into the DL structure to represent uncertainty and then combined with a deep AL acquisition
function to probe for uncertain samples in the oracle.

Deep Bayesian AL (DBAL) [106] combines an AL framework with Bayesian DL to deal with high-
dimensional data problems, i.e., image data. DBAL uses batch acquisition to select the n samples with the
highest Bayesian AL by disagreement (BALD) [107] score. Model priors from empirical Bayes (MOPED) [108]
uses BALD to evaluate uncertainty. In addition, MC dropout has been applied to estimate model uncertainty.
Later, Krisch et al. [109] proposed BatchBALD, which uses a greedy algorithm to select a batch in linear
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Fig. 9: Bayesian generative active deep learning (ACGAN stands for the auxiliary-classifier GAN), which is reproduced based
on [121].

time, reducing the runtime. They modeled uncertainty by leveraging Bayesian AL (BAL) using dropout
sampling. In [110], two types of uncertainty measures, namely, entropy and BALD [107], were compared.
ActiveHARNet [111], which is an AL-based framework for human action recognition, modeled uncertainty by
linking BNNs with GP using dropout. To achieve this, dropout was applied before each fully connected layer
to estimate the mean and variance of the BNN. DeepBASS [112], i.e., a deep AL semisupervised learning
method, is an expectation-maximization-based [113] technique paired with an AL component. It applies MC
dropout to estimate uncertainty.

Scandalea et al. [114] proposed a framework based on the U-Net structure for deep AL to segment
biomedical images and used an uncertainty measure obtained by MC dropout to suggest samples to be
annotated. Specifically, uncertainty was defined based on the standard deviation (STD) of the posterior
probabilities of the MC samples. Zheng et al. [115] varied the number of Bayesian layers and their positions
to estimate uncertainty through AL on the MNIST dataset. The outcome indicated that a few Bayesian
layers near the output layer are enough to fully estimate the uncertainty of the model.

Inspired by [116], Bayesian batch AL [117], which selects a batch of samples at each AL iteration to
perform posterior inference over the model parameters, was proposed for large-scale problems. Active user
training [118], which is a BAL-based crowdsourcing model, was proposed to address high-dimensional and
complex classification problems. In addition, the Bayesian inference method proposed in [119] was used to
consider the uncertainty of the confusion matrix of the annotators.

Several generative-based AL frameworks have been introduced. In [120], a semi-supervised Bayesian AL
model, which is a deep generative-based model that uses BNNs to obtain the discriminative component,
was developed. Tran et al. [121] proposed Bayesian-based generative deep AL (BGADL) (Fig. 9) for image
classification problems. They first used the concept of DBAL to select the most informative samples, and then
VAE-ACGAN was applied to generate new samples based on the selected ones. Akbari et al. [122] proposed
a unified BDL framework to quantify both aleatoric and epistemic uncertainty for activity recognition. They
used an unsupervised DL model to extract features from the time series, and then their posterior distributions
were learned through a VAE model. Finally, dropout [35] was applied after each dense layer and test phase
for the randomness of the model weights and samples from the approximate posterior, respectively.

3.5. Bayes by Backprop (BBB)

The process of learning a probability distribution using the weights of NNs plays a significant role in
obtaining better prediction results. Blundell et al. [123] proposed a novel yet efficient algorithm named
Bayes by Backprop (BBB) to quantify the uncertainty of these weights. The proposed BBB minimizes the
compression cost, which is known as the variational free energy (VFE) or the (expected) lower bound of the
marginal likelihood. To do this, they defined a cost function as follows:

F (D, θ) = KL[q(w|θ)‖P (w)]− Eq(w,θ)[logP (D|w)]. (21)
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Fig. 10: Bayesian RNNs (BRNNs); the image is reproduced based on the model proposed by Fortunato et al. [124].

The BBB algorithm uses the unbiased gradient estimates of the cost function in (21) to learn a distribution
over the weights of NNs. In another work, Fortunato et al. [124] proposed a new Bayesian RNN (BRNN)
using the BBB algorithm. To improve the BBB algorithm, they used a simple adaptation of truncated
backpropagation throughout time. The proposed BRNN model is shown in Fig. 10.

Ebrahimi et al. [125] proposed an uncertainty-guided continual approach with BNNs (called the uncertainty
guided continual learning (CL) technique with BNNs (UCB)). CL enables learning a variety of new tasks
while incorporating previously learned ones. The proposed UCB exploits the predicted uncertainty of the
posterior distribution to formulate the modification of “important” parameters both by setting a hard thresh-
old as well as in a soft way. Recognizing different actions in videos not only requires big data but is also
a time-consuming process. To address this issue, de la Riva and Mettes [126] proposed a Bayesian-based
deep learning method (Bayesian 3D ConvNet) to analyze a small number of videos. In this regard, BBB was
extended for use by 3D CNNs and then employed to deal with uncertainty over the convolution weights in
the proposed model. To this end, a Gaussian distribution was applied to approximate the correct posterior
in the proposed 3D convolution layers using the mean and STD as follows:





θ = (µ, α),

σ2 = α.µ2,

qθ(wijhwt|D) = N (µijhwt, αijhwtµ
2
ijhwt),

(22)

where i represents the input, j is the output, h is the filter height, w is the filter width and t is the time
dimension. In another work, Ng et al. [66] compared the performance of two well-known uncertainty methods
(MC dropout and BBB) in medical image segmentation (cardiac MRI) on a U-Net model. The results showed
that MC dropout and BBB had similar performances in medical image segmentation tasks.

3.6. Variational Autoencoders

An autoencoder is a variant of DL that consists of two components: (i) an encoder and (ii) a decoder.
The encoder aims to map high-dimensional input samples x to a low-dimensional latent variable z, while the
decoder reproduces the original samples x using the latent variable z. The latent variables are compelled to
conform a given prior distribution P (z). Variational autoencoders (VAEs) [99] are effective methods to model
the posterior. They cast learning representations for high-dimensional distributions as a VI problem [128].
A probabilistic model Pθ(x) of sample x in a data space with a latent variable z in a latent space can be
written as follows:

pθ(x) =

∫

z

pθ(x|z)p(z). (23)

VI can be used to model the evidence lower bound log pθ(x) as follows:

log pθ(x) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(x)), (24)
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Fig. 11: Pairwise supervised hashing-Bernoulli VAE (PSHBVAE), which is adopted from [127].

where qφ(z|x) and pθ(x|z) are the encoder and decoder models, respectively, and φ and θ indicate their
parameters.
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Fig. 12: A schematic view of the VAE model proposed by Edupuganti et al., which is reproduced based on [129].

Zamani et al. [127] developed a discrete VAE framework with Bernoulli latent variables as binary hashing
code (Fig.11). The stochastic gradient was exploited to learn the model. They proposed a pairwise supervised
hashing (PSH) framework to derive better hashing codes. PSH maximizes the ELBO with weighted KL
regularization to learn more informative binary codes, and it adapts a pairwise loss function to reward
within-class similarity and between-class dissimilarity to minimize the distances among the hashing codes of
samples from the same class and vice versa.

Bohm et al. [130] studied UQ for linear inverse problems using VAEs. Specifically, a vanilla VAE with
a mean-field Gaussian posterior was trained on uncorrupted samples under the ELBO. In addition, the
EL2O method [131] was adopted to approximate the posterior. Edupuganti et al. [129] studied UQ tasks in
magnetic resonance image recovery (see Fig. 12). To this end, a VAE-GAN, which is a probabilistic recovery
scheme, was developed to map low-quality images to high-quality ones. The VAE-GAN consisted of a VAE
and a multilayer CNN as the generator and discriminator, respectively. In addition, Stein’s unbiased risk
estimator (SURE) was leveraged as a proxy to predict error and estimate the uncertainty of the model.
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Fig. 13: A general view of U-Net and VUNet which are reproduced based on [132].

In [132], a framework based on variational U-Net [133] architecture was proposed for UQ tasks in reservoir
simulations. Both a simple U-Net and variational U-Net (VUNet) are illustrated in Fig. 13. Cosmo
VAE [134], which is a VAE based on DL, i.e., U-Net, was proposed to restore missing observations in the
cosmic microwave background (CMB) map. As such, variational Bayes approximation was used to determine
the ELBO of the likelihood of the reconstructed image. Mehrasa et al. [135] proposed the action point process
VAE (APP VAE) for action sequences. APP VAE consists of two LSTMs to estimate the prior and posterior
distributions. Sato et al. [136] proposed a VAE-based UA for anomaly detection. They used MC sampling
to estimate the posterior.

Since VAEs are not stochastic processes, they are limited to encoding finite-dimensional priors. To address
this limitation, Mishra et al. [137] developed the prior encoding VAE, i.e., πVAE. Inspired by the Gaussian
process [138], πVAE is a stochastic process that learns a distribution over functions. To achieve this, the
πVAE encoder first transforms the locations to a high-dimensional space and then uses a linear mapping to
link the feature space to the outputs. The πVAE encoder aims to recreate a linear mapping from a lower-
dimensional probabilistic embedding. Finally, the recreated mapping is used to obtain the reconstruction
of the outputs. Guo et al. [139] used a VAE to deal with data uncertainty under a just-in-time learning
framework. A Gaussian distribution was employed to describe the latent space features variablewise, and
then KL divergence was used to ensure that the selected samples were the most relevant to a new sample.
Daxberger et al. [140] tried to detect OoD samples during the test phase. To this end, an unsupervised,
probabilistic framework was developed based on a Bayesian VAE. In addition, they estimated the posterior
over the decoder parameters by applying SG-MCMC.

3.7. Laplacian Approximations

Laplacian approximations (LAs) are popular UQ methods that are used to estimate Bayesian infer-
ences [141]. They build a Gaussian distribution around the true posterior using a Taylor expansion around
the MAP, θ∗, as follows:

p(θ|D) ≈ p(θ∗) exp{−1

2
(θ − θ∗)′H|θ∗(θ − θ∗)}, (25)

where H|θ = Oθp(y|θ)Oθp(y|θ)′ indicates the Hessian of the likelihood estimated at the MAP estimate. Ritter
et al. [142] introduced a scalable LA (SLA) approach for different NNs. They proposed the model, then
compared it with other well-known methods such as dropout and a diagonal LA for uncertainty estimation
in networks. Additional studies have been performed on LA, such as [143, 144, 145, 146]. For example, Shinde
et al. [143], with the help of conditional random fields (CRFs) on top of BNNs, could determine contextual
information and carry out semisupervised learning. Then, the authors compared the performance of LA
with a variant of MC dropout. Shinde et al., in another study [144], evaluated the performance of LA on
an autonomous driving application (the KITTI dataset was used). Their findings showed that uncertainty
can be meaningful; however, they encouraged conducting more experimental evaluations on this point. In
another study, Lee et al. [145] used an LA-based inference engine for natural parameters and information
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in the form of a Gaussian distribution. The authors managed to scale LA on the ImageNet dataset by
spending considerable time tuning the hyperparameters so that they could make a meaningful comparison.
Finally, Humt et al. [146] applied existing BO techniques to tune the hyperparameters of LA. The outcomes
indicated that the proposed BO approach required fewer iterations than random search.

3.8. Uncertainty Quantification in Reinforcement Learning

Uncertainty plays a key role in estimating the method’s performance in various fields (e.g. in RL [147]).
Different UQ methods in RL have been widely-investigated in the literature [148]. Lee et al. [149] formulated
the model uncertainty problem as a Bayes-adaptive Markov decision process (BAMDP). The general BAMDP
is defined by a tuple 〈S, Φ, A, T, R, P0, γ〉, where S represents the underlying MDP’s observable state space,
Φ indicates the latent space, A represents the action space, T is the parameterized transition and R is the
reward function. Let b0 be an initial belief; a Bayes filter updates the posterior as follows:

b′(φ′|s, b, a′, s′) = η
∑

φ∈Φ

b(φ)T (s, φ, a′, s′, φ′) (26)

Batch Policy 

Optimization

𝜃𝑖+1𝑎𝑡
Policy  𝜋𝜃𝑖

World 𝜙𝑡
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Fig. 14: A general view of BPO which is reproduced based on [149].

Then, the Bayesian policy optimization (BPO) method (see Fig. 14) is applied to the POMDPs as a
Bayes filter to compute the belief b of the hidden state as follows:

b′(s′) = ψ(b, a′, o′) = η
∑

s∈S
b(s)T (s, a′, s′)Z(s, a′, o′) (27)

In another work, O’Donoghue et al. [150] proposed the uncertainty Bellman equation (UBE) to quantify
uncertainty. The authors used a Bellman-based equation that propagated the uncertainty (here, variance)
relationship of the posterior distribution of the Bayesian model. Kahn et al. [151] presented a new UA
model for a learning algorithm to control a mobile robot. A review of past studies in RL shows that different
Bayesian approaches have been used for handling parameter uncertainty [152]. Bayesian RL was thoroughly
reviewed by Ghavamzadeh et al. [152] in 2015. Due to page limitation, we do not discuss here the application
of UQ to RL, but we summarize some of the recent studies here.

Kahn et al. [151] used both bootstrapping and dropout methods to estimate uncertainty in NNs and then
used them in a UA collision prediction model. In addition to Bayesian statistical methods, ensemble methods
have been used to quantify uncertainty in RL [153]. In this regard, Tschantz et al. [153] applied an ensemble
of different point-estimate parameters θ = {θ0, ..., θB} that were trained on various batches of a dataset
D and then maintained and treated by the posterior distribution p(θ|D). The ensemble method helped to
capture both aleatoric and epistemic uncertainty. There are other UQ techniques used in RL; however, we
are not able to discuss all of them in detail in this work for various reasons, such as page restrictions and
the breadth of the article. Table 2 summarizes different UQ methods used in a variety of RL subjects.
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Table 2: Further information on some UQ methods used in RL.

Study Year Application Goal/Objective UQ method Co

Kalweit and Boedecker
[154]

2017 Continuous Deep RL (CDRL) Minimizing real-world interac-
tion

Model-assisted Bootstrapped Deep
Deterministic Policy Gradient (MA-
BDDPG)

×

Tegho et al. [155] 2018 Dialogue management context Dialogue policy optimisation BBB propagation deep Q-networks
(BBQN)

×

Riquelme et al. [156] 2018 Approximating the posterior
sampling

Balancing both exploration and
exploitation in different com-
plex domains

Deep Bayesian Bandits Showdown us-
ing Thompson sampling

√

Riquelme et al. [156] 2018 Approximating the posterior
sampling

Balancing both exploration and
exploitation in different com-
plex domains

Deep Bayesian Bandits Showdown us-
ing Thompson sampling

√

Janz et al. [157] 2019 Temporal difference learning Posterior sampling for RL
(PSRL)

Successor Uncertainties (SU)
√

Shen and How [158] 2019 Discriminating potential
threats

Stochastic belief space policy Soft-Q learning ×

Benatan and Pyzer-Knapp
[159]

2019 Safe RL (SRL) The weights in RNN using mean
and variance weights

Probabilistic Backpropagation (PBP) ×

Huang et al. [160] 2019 Model-based RL (MRL) Better decision and improve
performance

Bootstrapped model-based RL (BMRL) ×

Eriksson and Dimitrakakis
[161]

2019 Risk measures and leveraging
preferences

Risk-Sensitive RL (RSRL) Epistemic Risk Sensitive Policy Gradi-
ent (EPPG)

×

Lötjens et al. [162] 2019 SRL UA navigation Ensemble of MC dropout (EMCD) and
Bootstrapping

×

Clements et al. [163] 2019 Designing risk-sensitive algo-
rithm

Disentangling aleatoric and
epistemic uncertainties

Combination of distributional RL
(DRL) and Approximate Bayesian
computation (ABC) methods with NNs

√

Metelli et al. [164] 2019 Temporal difference learning Balancing exploration and ex-
ploitation

WQL: Wasserstein Q-Learning
√

D’Eramo et al. [165] 2019 Drive exploration Multi-Armed Bandit (MAB) Bootstrapped deep Q-network with TS
(BDQNTS)

×

Tschantz et al. [166] 2020 Model-based RL Exploration and exploitation Scaling active inference ×

Lee et al. [167] 2020 Multi-agent RL Lack of entirely accurate knowl-
edge of each agent in the model

robust Markov game ×

Ramakrishnan et al. [168] 2020 Blind spot detection Mismatch between training and
execution environments

Safe sim-to-real transfer ×

4. Ensemble Techniques

Deep NNs (DNNs) have been effectively employed in a wide variety of machine learning tasks and have
achieved state-of-the-art (SOTA) performance in different domains such as bioinformatics, NLP, speech
recognition and computer vision [169, 170]. In supervised learning benchmarks, NNs yielded competitive
accuracy but poor predictive uncertainty quantification. Hence, they are inclined to generate overconfident
predictions. Incorrect overconfident predictions can be harmful; therefore, it is important to handle UQ in
a proper manner in real-world applications [171]. As empirical evidence of uncertainty estimates are not
available in general, the quality of predictive uncertainty evaluation is a challenging task. Two evaluation
measures, calibration and domain shift, are applied, which are usually inspired by the practical applications
of NNs. Calibration measures the discrepancy between long-run frequencies and subjective forecasts. The
second notion concerns the generalization of predictive uncertainty to a domain shift that estimates whether
the network knows what it knows. An ensemble of models enhances the predictive performance. However, it
is not evident why and when an ensemble of NNs can generate good uncertainty estimates. Bayesian model
averaging (BMA) believes that the true model lies within the hypothesis class of the prior and executes soft
model selection to locate the single best model within the hypothesis class. In contrast, ensembles combine
models to discover more powerful models; ensembles can be anticipated to be better when the true model
does not lie within the hypothesis class.

The authors of [172] devised the maximize overall diversity (MOD) model to estimate ensemble-based un-
certainty by taking into account the diversity in ensemble predictions across possible future inputs. Gustafs-
son et al. [173] presented an evaluation approach for measuring uncertainty estimations to investigate ro-
bustness in the computer vision domain.

Chua et al. [174] devised a novel method called probabilistic ensembles with trajectory sampling that
integrated sampling-based uncertainty propagation with a UA deep network dynamics approach. The au-
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thors of [169] demonstrated that prevailing calibration error estimators were unreliable in the small data
regime and hence proposed a kernel density-based estimator for calibration performance evaluation and
proved its consistency and unbiasedness. Liu et al. [175] presented a Bayesian nonparametric ensemble
method that enhanced an ensemble model that augmented a model’s distribution functions using Bayesian
nonparametric machinery and a prediction mechanism. In another study, the researchers [176] exploited the
challenges associated with attaining uncertainty estimations for structured predictions and presented base-
lines for sequence-level out-of-domain input detection, sequence-level prediction rejection and token-level
error detection utilizing ensembles.

Ensembles involve memory and computational cost, which is not acceptable in many applications [177].
There has been noteworthy work done on the distillation of an ensemble into a single model. Such approaches
achieved comparable accuracy using ensembles and mitigated the computational costs. In the posterior
distribution p(θ|D), the uncertainty of a model is captured. Let us consider the posterior of a sampled

ensemble of models {P (y|x?,θ(m))}Mm=1 as follows [177]:

{P (y|x?,θ(m))}Mm=1 → {P (y|π(m))}Mm=1, π
m = f(x?;θ(m)),θ(m) ∼ p(θ|D), (28)

where a test value x∗ is input and π represents the parameters of a categorical distribution [P (y = w1), ..., P (y =
wk)]T . By taking into account the expectation with respect to the model posterior, predictive posterior or
expected predictive distribution, a test input x∗ is acquired. Then we have:

P (y|x?, D) = Ep(θ|D)[P (y|x?,θ)]. (29)

Different estimates of data uncertainty are demonstrated by each of the models P (y|x?,θ(m)). The
‘disagreement’ or the level of spread of an ensemble sampled from the posterior is due to the uncertainty
in the predictions as a result of model uncertainty. Let us consider an ensemble {P (y|x?,θ(m))}Mm=1 that
yields the expected set of behaviors; the entropy of the expected distribution P (y|x?, D) can be utilized as an
estimate of the total uncertainty in the prediction. Measures of the spread or ‘disagreement’ of the ensemble
such as MI can be used to assess the uncertainty in the predictions due to knowledge uncertainty as follows:

MI[y,θ|x?, D]︸ ︷︷ ︸
Knowledge Uncertainty

= H[Ep(θ|D)[P (y|x?,θ)]]
︸ ︷︷ ︸

Total Uncertainty

− Ep(θ|D)[H[P (y|x?,θ)]]
︸ ︷︷ ︸
Expected Data Uncertainty

. (30)

The total uncertainty can be decomposed into the expected data uncertainty and knowledge uncertainty
via MI formulation. If the model is uncertain, both in out-of-domain areas and regions of severe class overlap,
the entropy of the total uncertainty or predictive posterior is high. If the models disagree, the difference of
the expected entropy and the entropy of the predictive posterior of the individual models will be nonzero.
For example, the MI will be low and the expected and predictive posterior entropy will be similar, and each
member of the ensemble will demonstrate a high-entropy distribution in regions of class overlap. In such
scenarios, data uncertainty dominates total uncertainty. The predictive posterior is nearly uniform while
the expected entropy of each model may be low; this is the result of diverse distributions over classes as
a result of out-of-domain inputs. In this region of input space, knowledge uncertainty is high because the
model’s understanding of the data is low. In ensemble distribution distillation, the aim is to capture not
only the diversity but also the mean of the ensemble. An ensemble can be observed as a set of samples from
an implicit distribution of the output distributions:

{P (y|x?,θ(m))}Mm=1 → {P (y|π(m))}Mm=1, π
(m) ∼ p(π|x?,D). (31)

Prior networks, a new class model, were proposed to explicitly parameterize a conditional distribution
over output distributions p(π|x?, φ̂) utilizing a single NN parameterized by a point estimate of the model

parameters φ̂. An ensemble can be emulated effectively by a prior network and hence show the same measure
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of uncertainty. By parameterizing the Dirichlet distribution, the prior network p(π|x?, φ̂) represents a dis-
tribution over categorical output distributions. The ensembling performance is measured by an uncertainty
estimation. DL ensembles produce benchmark results in uncertainty estimation.

Different sources of model uncertainty can be addressed by incorporating one of the presented ensemble
techniques to obtain the Bayesian nonparametric ensemble (BNE) model devised by Liu et al. [175]. Bayesian
nonparametric machinery was utilized to augment distribution functions and predict a model with a BNE.
The BNE measures the uncertainty patterns in the data distribution and decomposes the uncertainty into
discrete components that are due to error and noise. The model yielded precise uncertainty estimates
from observational noise and demonstrated its utility with respect to model bias detection and uncertainty
decomposition for an ensemble method used in prediction. The predictive mean of a BNE can be expressed
as follows [175]:

E(y|X,ω, δ,G) =

K∑

k=1

fk(X)ωk + δ(X)︸ ︷︷ ︸
Due to δ

+

∫

y∈†

[
Φ((y|X,µ)−G[Φ((y|X,µ]

]
dy

︸ ︷︷ ︸
Due to G

. (32)

The predictive mean for the full BNE is composed of three sections:

1. The predictive mean of the original ensemble is
∑K
k=1 fk(X)ωk;

2. The BNE’s direct correction to the prediction function is represented by the term δ; and

3. The BNE’s indirect correction to the prediction derived from the relaxation of the Gaussian as-

sumption in the model cumulative distribution function is represented by the term

∫ [
Φ((y|X,µ) −

G[Φ((y|X,µ]

]
dy. In addition, two error correction terms Dδ(y|X) and DG(y|X) are presented.

To denote the BNE’s predictive uncertainty estimation, the term Φε,ω is used, which is the predictive
cumulative distribution function of the original ensemble (i.e., including the variance σ2

ε and mean
∑
k fkωk).

The BNE’s predictive interval is represented as [175]:

Uq(y|X,ω, δ,G) =

[
Φ−1
ε,ω

(
G−1(1− q

2
|X)

)
+ δ(x),Φ−1

ε,ω

(
G−1(1 +

q

2
|X)

)
+ δ(x)

]
. (33)

Comparing the above equation to the predictive interval of the original ensemble

[
Φ−1
ε,ω

(
G−1(1− q

2 |X)

)
,

Φ−1
ε,ω

(
G−1(1 + q

2 |X)

)]
, it can be observed that the residual process δ adjusts the locations of the BNE

predictive interval endpoints while G calibrates the spread of the predictive interval.
Finally, Wen et al. [178] designed an ensemble method, called BatchEnsemble, whose memory and com-

putational costs are considerably lower than those of typical ensembles. BatchEnsemble achieves this by
denoting each weight matrix as the Hadamard product of a shared weight among all ensemble members
and considering a rank-one matrix for each ensemble member. BatchEnsemble is not only parallelizable
across devices, where one device trains one ensemble member, but also parallelizable within a device, where
multiple ensemble members are updated concurrently for a given mini-batch.

As an important part of ensemble techniques, loss functions play a significant role of having a good
performance by different ensemble techniques. In other words, choosing the appropriate loss function can
dramatically improve results. We summarise the most important loss functions applied for UQ in Table A.1
in the Appendix.

4.1. Deep Ensemble

Deep ensemble (DE) is another powerful method for measuring uncertainty that has been used extensively
in many real-world applications [179]. To achieve good learning results, the data distributions in the testing
datasets should be as close as in the training datasets. In many situations, the distributions of the test
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Fig. 15: A schematic view of TTA for ensembling techniques, which is reproduced based on [181].

datasets are unknown, especially in cases of uncertainty prediction problems. Hence, it is difficult for
traditional learning models to yield competitive performance. Some researchers have applied MCMC and
BNNs that relied on the prior distributions of datasets to solve uncertainty prediction problems [172]. When
these approaches are employed in large networks, it becomes computationally expensive. Model ensembling
is an effective technique that can be used to enhance the predictive performance of supervised learners.
DEs are applied to obtain better predictions on the test data and produce model uncertainty estimates
when the learners are provided with OoD data. The success of the ensembles depends on the variance
reduction generated by combining predictions that are prone to several types of errors individually. Hence,
the improvement in the predictions is achieved by utilizing a large ensemble with numerous base models,
and such ensembles also generate distributional estimates of model uncertainty.

McDermott and Wikle [180] proposed a DE echo state network model for spatiotemporal forecasting in
uncertainty quantification. Hu et al. [179] proposed a model called margin-based Pareto DE pruning utilizing
a DE network that yielded competitive uncertainty estimations with elevated confidence of the prediction
interval coverage probability and a small value of the prediction interval width. The authors of [181] exploited
in-domain uncertainty, examined the standards for its quantification and revealed the pitfalls of prevailing
matrices. They presented the DE equivalent score (DEE) and demonstrated how an ensemble of only a few
trained networks can be equivalent to many refined ensembling methods with respect to test performance. For
one ensemble, they proposed test-time augmentation (TTA) to improve the performance of different ensemble
learning techniques (see Fig. 15). There have been other studies on TTA for quantifying uncertainties, such
as [182, 38, 183, 184].

Wilson and Izmailov [185] showed how DE models can provide a better approximation of the Bayesian
model average in DL than standard Bayesian methods (such as BBB). In other words, they believed that
DEs can be considered a Bayesian approach. Moreover, the authors discussed the importance of multi-basin
marginalization (by applying a new procedure called MultiSWAG) for epistemic uncertainty representation,
robustness to data corruption and ultimately performance. They also showed that it can entirely eliminate
double descent behavior. They analyzed priors over functions P (f) when induced by Gaussian priors over
different parameters of NNs. Based on this procedure, they could show that the proposed process has several
significant properties, such as the following:

1. A valuable induced correlation function for a wide variety of images;

2. An impressive ability to generate beneficial features;

3. Excellent support for structured datasets versus corrupted datasets through marginal likelihood;

4. A significant performance improvement over standard training.

The obtained outcomes showed how probability UQ in DL can help provide a prescription for model con-
struction that eliminates the ambiguous generalization properties of DNNs, such as having the capacity to
fit images with random classes (labels), double descent, and overparametrization.

However, DEs [186] are a simple approach that presents independent samples in various modes of loss
setting. Under a fixed test-time computed budget, DEs can be regarded as a powerful baseline for judging the
performance of other ensembling methods. It is a challenging task to compare the performance of ensembling
methods. Different values of matrices are achieved by different models on different datasets. Interpretability
is lacking for the values of matrices, as performance gains are compared with dataset- and model-specific
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baselines. Hence, Ashukha et al. [181] proposed DDE with the aim of introducing interpretability and a
perspective that applies DEs to compute the performance of other ensembling methods. The DDE score
aims to answer the question: what size of DE demonstrates the same performance as a specific ensembling
technique? The DDE score is based on calibrated log-likelihood (CLL). DDE is defined for an ensembling
technique (m), and the lower and upper bounds are depicted as follows [181]:

DEEm(k) = min{l ∈ R, l ≥ 1|CLLmeanDE (l) ≥ CLLmeanm (k)}, (34)

DEEupper/lowerm (k) = min{l ∈ R, l ≥ 1|CLLmeanDE (l)∓ CLLstdDE(l) ≥ CLLmeanm (k)}, (35)

where the mean and standard deviation of the calibrated log-likelihood yielded by an ensembling technique

m with l samples is denoted as CLL
mean/std
m (l). They measured CLLstdDE(l) and CLLmeanDE (l) for natural

numbers l ∈ N>0, and linear interpolation was applied to define them for real values l ≥ 1. They de-
picted DDEm(k) for different numbers of samples k for different methods m with upper and lower bounds
DEEupperm (k) and DEElowerm (k).

A DE echo state network (D-EESN) model with two versions for spatiotemporal forecasting and the as-
sociated uncertainty measurement was presented in [180]. The first framework applies a bootstrap ensemble
approach, and the second was devised within a hierarchical Bayesian framework. Multiple levels of uncertain-
ties and non-Gaussian data types were accommodated by the general hierarchical Bayesian approach. The
authors of [180] broadened some of the deep ESN technique constituents presented by Antonelo et al. [187]
and Ma et al. [188] to fit within a spatiotemporal ensemble approach in the D-EESN model to contain this
kind of structure. As in the previous section, we summarize a few loss functions of DEs in Table A.2 in the
Appendix.

4.2. Deep Ensemble Bayesian/Bayesian Deep Ensemble

The expressive power of various ensemble techniques such as DE Bayesian (DEB)/Bayesian DE (BDE) is
shown extensively in the literature. However, traditional learning techniques suffered from several drawbacks
and limitations, as listed in [189]. To overcome these limitations, Fersini et al. [189] utilized the ensemble
learning approach to mitigate the noise sensitivity related to language ambiguity, and more accurate predic-
tions of polarity could be estimated. The proposed ensemble method employed Bayesian model averaging,
where both the reliability and uncertainty of each single model were considered. The study [190] presented
one alteration to the prevailing approximate Bayesian inference method by regularizing the parameters re-
lated to values derived from a distribution that could be set equal to the prior. The analysis of the process
suggested that the recovered posterior was centered correctly but leaned toward an overestimated correla-
tion and underestimated marginal variance. To obtain uncertainty estimates, one of the most promising
frameworks is Deep BAL (DBAL) with MC dropout.

Pop et al. [186] argued that in VI methods, the mode collapse phenomenon was responsible for the
overconfident predictions of DBAL methods. They devised DE-BAL, which addressed the mode collapse
issue and improved the MC dropout method. In another study, Pop et al. [191] proposed a novel AL technique
especially for DNNs. The statistical properties and expressive power of model ensembles were employed to
enhance the SOTA deep BAL technique that suffered from the mode collapse problem. In another work,
Pearce et al. [192] proposed a new ensemble of NNs, an approximate Bayesian ensembling approach called
“anchoredensembling”. The proposed approach regularized the parameters regarding values attracted from
a distribution.

4.3. Uncertainty in Dirichlet Deep Networks

Tsiligkaridis [193] devised a new technique, information-aware Dirichlet networks, that learned an explicit
Dirichlet prior distribution on predictive distributions by lessening a bound on the probable maximum
norm of the prediction error and penalizing information related to incorrect results. Enhanced uncertainty
estimation was achieved by deriving the properties of the new cost function. To detect adversarial examples
and estimate out-of-distribution and within-distribution uncertainty, the method of Tsiligkaridis [193] showed
better performance than many SOTA NNs. The standard approach is to train deterministic neural nets to
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Fig. 16: A single block diagram for searching the space in the architecture, which is reproduced based on [195].

reduce prediction loss. The resulting model remains ignorant to the prediction confidence. Orthogonally to
BNNs, which indirectly infer the uncertainty of predictions through weight uncertainties, Sensoy et al. [194]
presented explicit modeling of the same challenge using the theory of subjective logic. Sensoy et al. treated
the predictions of an NN as subjective opinions and introduced a novel loss function that collects the
evidence leading to these opinions by using a deterministic NN by applying a Dirichlet distribution to the
class probabilities. The analysis carried out by Sensoy et al. emphasizes the peculiarities of their novel loss
function, which enhances uncertainty estimation.

5. Further Studies of UQ Methods

In this section, we discuss few other UQ methods used in machine and deep learning algorithms to
estimate uncertainty. In this regard, we present a summary of the proposed methods but not the theoretical
parts. Due to the page limitation and large number of references, we are not able to review all the details of
the methods. For this reason, readers can find more details of each method in the references if needed.

OoD is a common error that appears in machine and deep learning systems when the training data have
different distributions. To address this issue, Ardywibowo et al. [195] introduced a new UA architecture
called Neural Architecture Distribution Search (NADS). The proposed NADS finds an appropriate
distribution of different architectures that perform significantly well on a specified task. A single block
diagram for searching the space in the architecture is presented in Fig. 16.

Unlike previous architecture design methods, NADS enables the recognition of common blocks among
all UA architectures. On the other hand, the cost functions for an uncertainty-oriented NN are not always
convergent. Moreover, an optimized prediction interval (PI) is not always generated by converged NNs.
The convergence of training is uncertain, and the NNs are not customizable for such cost functions. To
construct the optimal PIs, Kabir et al. [196] presented a smooth customizable cost function to develop the
optimal PIs to construct NNs. The PI coverage probability (PICP), PI failure distances and optimized
average width of PIs were computed to lessen the variation in the quality of PIs, increase the convergence
probability and speed up the training. They tested their method on electricity demand and wind power
generation data. In the case of non-Bayesian deep neural classification, uncertainty estimation methods
introduced biased estimates for instances whose predictions are highly accurate. They argued that this
limitation occurred because of the dynamics of training with SGD-like optimizers and that it possessed
similar characteristics, such as overfitting. Geifman et al. [197] proposed an uncertainty estimation method
that computed the uncertainty of highly confident points by utilizing snapshots of the trained model before
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their approximations were jittered. The proposed algorithm outperformed all well-known techniques. In
another work, Tagasovska et al. [198] proposed single-model estimates for DNNs of epistemic and aleatoric
uncertainty. They suggested a loss function called simultaneous quantile regression (SQR) to obtain the
conditional quantiles of a target variable to assess aleatoric uncertainty. Well-calibrated prediction intervals
could be derived by using these quantiles. They devised orthonormal certificates (OCs), a collection of
non-constant functions that mapped training samples to zero to estimate epistemic uncertainty. The OoD
examples were mapped by these certificates to nonzero values.

Van Amersfoort et al. [199, 200] presented a method to find and reject distribution data points for training
a deterministic deep model with a single forward pass at test time. They exploited the ideas of RBF networks
to devise deterministic UQ (DUQ), which is presented in Fig. 17. They scaled the training in this method
with a centroid updating scheme and a new loss function. Their method could detect OoD data consistently
by utilizing a gradient penalty to track changes in the input. Their method was able to enhance DEs and
scaled well to huge databases.

Tagasovska et al. [201] demonstrated frequentist estimates of epistemic and aleatoric uncertainty for
DNNs. They proposed a loss function, simultaneous quantile regression, to estimate all the conditional
quantiles of a given target variable in case of aleatoric uncertainty. Well-calibrated prediction intervals
could be measured by using these quantiles. They proposed a collection of non-trivial diverse functions
that mapped all training samples to zero and doubled as training certificates for the estimation of epistemic
uncertainty. The certificates signaled high epistemic uncertainty by mapping OoD examples to nonzero
values. By using Bayesian deep networks, it is possible to know what DNNs do not know in domains where
safety is a major concern. Flawed decisions may lead to severe penalties in many domains such as autonomous
driving, security and medical diagnosis. Traditional approaches are incapable of scaling to complex large
neural networks. Mobiny et al. [202] proposed an approach imposing a Bernoulli distribution on the model
weights to approximate Bayesian inference for DNNs. Their framework, called MC-DropConnect, represented
model uncertainty through small alterations in the model structure or computed cost. They validated their
technique on various datasets and architectures for semantic segmentation and classification tasks. They
also introduced a novel uncertainty quantification metric. Their experimental results showed considerable
enhancements in uncertainty estimation and prediction accuracy compared to prior approaches.

Uncertainty measures are crucial estimating tools in the machine learning domain that can evaluate
the similarity and dependence between two feature subsets and can be utilized to verify the importance
of features in clustering and classification algorithms. There are few uncertainty measurement tools that
estimate a feature subset, including rough entropy, information entropy, roughness, and accuracy, in classical
rough sets. These measures are not appropriate for real-valued datasets and are relevant to discrete-valued
information systems. Chen et al. [203] proposed the neighborhood rough set model. In their approach, each
object is related to a neighborhood subset, dubbed a neighborhood granule. Different uncertainty measures
for neighborhood granules were introduced: information granularity, neighborhood entropy, information
quantity, and neighborhood accuracy. Furthermore, they confirmed that these measures of uncertainty
ensure monotonicity, invariance and non-negativity. In neighborhood systems, their experimental results
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and theoretical analysis demonstrated that information granularity, neighborhood entropy and information
quantity performed better than the neighborhood accuracy measure. On the other hand, reliable and accurate
machine learning systems depend on techniques for reasoning under uncertainty. UQ is provided by a
framework using Bayesian methods. However, Bayesian uncertainty estimations are often imprecise because
of the use of approximate inference and model misspecification. Kuleshov et al. [204] devised a simple method
for calibrating any regression algorithm; it was guaranteed to provide calibrated uncertainty estimates that
have enough data when used on probabilistic and Bayesian models. They assessed their technique on
recurrent, feedforward NNs and Bayesian linear regression, and they located the outputs of well-calibrated
credible intervals while enhancing the performance on model-based RL and time series forecasting tasks.

Gradient-based optimization techniques have showed efficacy in learning overparameterized and complex
NNs from non-convex objectives. Nevertheless, generalization to DNNs, the induced training dynamics, and
the specific theoretical relationships between gradient-based optimization methods are still unclear. Rudner
et al. [205] examined the training dynamics of overparameterized NNs under natural gradient descent. They
demonstrated that the discrepancy between functions obtained from nonlinearized and linearized natural
gradient descent is smaller than that of standard gradient descent. They showed empirically that there was
no need to formulate a limit argument about the width of the neural network layers, as the discrepancy
was small for overparameterized neural networks. Finally, they demonstrated that the discrepancy was
small on a set of regression benchmark problems, and their theoretical results were steady, with an empirical
discrepancy between the functions obtained from nonlinearized and linearized natural gradient descent. Patro
et al. [206] devised gradient-based certainty estimates with visual attention maps. They resolved visual
question answering tasks. The gradients for the estimates were enhanced by incorporating probabilistic
deep learning techniques. There are two key advantages to this method: 1. the enhancement in obtaining
the certainty estimates correlated better with misclassified samples, and 2. the SOTA results obtained
by improving the attention maps correlated with human attention regions. The enhanced attention maps
consistently improved different techniques for visual question answering. Improved certainty estimates and
explanations of deep learning techniques could be achieved through the presented method. They provided
empirical results on all benchmarks for the visual question answering task and compared them with those of
standard techniques.

BNNs have been used as a solution for NN predictions, but it is still an open challenge to specify their
priors. An independent normal prior in the weight space leads to weak constraints on the function posterior,
which permit it to generalize in unanticipated ways on inputs outside of the training distribution. Hafner
et al. [14] presented noise contrastive priors (NCPs) to estimate consistent uncertainty. The prime goal was
to train the model for data points outside of the training distribution to output an elevated uncertainty.
The NCPs relied on input priors that included noise in the inputs of the current mini-batch and an output
prior that was an extensive distribution set for these inputs. The NCPs restricted overfitting outside of the
training distribution and produced convenient uncertainty estimates for AL. BNNs with latent variables are
flexible and scalable probabilistic models. They can record complex noise patterns in the data by using latent
variables, and uncertainty is accounted for by network weights. Depeweg et al. [207] exhibited decomposition
and divided uncertainty into aleatoric and epistemic types for decision support systems. This enabled them
to detect informative points for AL of functions with bimodal and heteroscedastic noise. They further
described a new risk-sensitive condition to recognize policies for RL that balanced noise aversion, model bias
and the expected cost by applying decomposition.

Uncertainty modeling in DNNs is an open problem despite advancements in the area. BNNs, where
the prior over the network weights is a design choice, are a powerful solution. Frequently, a normal or
other distribution supports sparsity. The prior is agnostic to the generative process of the input data. This
may lead to unwarranted generalization for out-of-distribution tested data. Rohekar et al. [208] suggested a
confounder for the relation between the discriminative function and the input data given the target label.
They proposed modeling the confounder by sharing neural connectivity patterns between discriminative and
generative networks. Hence, a novel deep architecture was framed, where networks were coupled into a
compact hierarchy and sampled from the posterior of local causal structures (see Fig. 18).

They showed that sampling networks from the hierarchy, an efficient technique, was proportional to their
posteriors and that different types of uncertainties could be estimated. It is a challenging job to learn unbiased
models from imbalanced datasets. The generalization of learned boundaries to novel test examples is hindered
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Fig. 18: A causal view demonstrating the main assumptions made by Rohekar et al. [208] (this figure is reproduced based on
the reference).

by concentrated representation in the classification space for rare classes. Khan et al. [209] showed that the
difficulty level of individual samples and the rarity of classes had direct correlations with Bayesian uncertainty
estimates. They presented a new approach for uncertainty-based class imbalance learning that exploited
two insights: 1. In rare (uncertain) classes, the classification boundaries should be broadened to avoid
overfitting and improve its generalization; and 2. a sample’s uncertainty is defined by a multivariate Gaussian
distribution with a covariance matrix and a mean vector that models each sample. Individual samples and
their distributions in the feature space should be addressed with the learned boundaries. Class and sample
uncertainty information was used to obtain generalizable classification techniques and robust features. They
formulated a loss function for max-margin learning based on a Bayesian uncertainty measure. Their technique
exhibited key performance enhancements on six benchmark databases for skin lesion detection, digit and
object classification, attribute prediction and face verification.

NNs do not measure uncertainty meaningfully, as they tend to be overconfident on incorrectly labeled,
noisy or unseen data. Variational approximations such as multiplicative normalizing flows and BBB are
utilized by BDL to overcome this limitation. However, current methods have shortcomings regarding scala-
bility and flexibility. Pawlowski et al. [210] proposed the novel technique of variational approximation, termed
Bayes by hypernet (BbH), which deduced hypernetworks as implicit distributions. It naturally scaled to deep
learning architectures and utilized neural networks to model arbitrarily complex distributions. Their method
was robust against adversarial attacks and yielded competitive accuracies. On the other hand, although a
significant increase in prediction accuracy resulted for deep learning models, it was accompanied by an in-
crease in the cost of rendering predictions. Wang et al. [211] speculated that for many real-world inputs,
deep learning models created recently tend to “overthink” on simple inputs. They proposed the I Don’t
Know (IDK) prediction cascade approach to create a set of pretrained models systematically without a loss
in prediction accuracy to speed up inference. They introduced two search-based techniques for producing
a new cost-aware objective as well as cascades. Their IDK cascade approach can be adopted in a model
without further model retraining. They tested its efficacy on a variety of benchmarks.

Yang et al. [212] proposed a deep learning approach for propagating and quantifying uncertainty in models
inspired by the nonlinear differential equations utilized by physics-informed neural networks. Probabilistic
representations for the system states were produced by latent variable models, while physical laws described
by partial differential equations were satisfied by constraining their predictions. An adversarial inference
method for training them on data was also proposed. A regularization approach for efficiently training
deep generative models was provided by such physics-informed constraints. Surrogates of physical models
were given, in which there was usually little training of datasets and the cost of data acquisition was high.
The outputs of physical systems were characterized by the framework due to noise in their observations or
randomness in their inputs, which bypassed the need for sampling costly experiments or numerical simulators.
They proved the efficacy of their method via a series of examples that demonstrated uncertainty propagation
in nonlinear conservation laws and the detection of constitutive laws. For autonomous driving, 3D scene
flow estimation techniques generate 3D motion for a scene and 3D geometry. Brickwedde et al. [213] devised
a new monocular 3D scene flow estimation technique, dubbed Mono-SF, that assessed both the motion
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of a scene and the 3D structure by integrating single-view depth information and multiview geometry. A
CNN algorithm termed ProbDepthNet was devised for combining single-view depth in a statistical manner.
The new recalibration technique of ProbDepthNet was presented for regression problems to guarantee well-
calibrated distributions. The ProbDepthNet design and Mono-SF method proved their efficacy in comparison
to the SOTA approaches.

Mixup is a DNN training technique in which extra samples are produced during training by convexly
integrating random pairs of images and their labels. The method has demonstrated its effectiveness in im-
proving image classification performance. Thulasidasan et al. [214] investigated the predictive uncertainty
and calibration of models trained with mixup. They revealed that DNNs trained with mixup were notably
better calibrated than those trained by typical techniques. They tested their technique in large datasets
and observed that it was less likely to yield overconfident predictions using random noise and OoD data.
Label smoothing in mixup-trained DNNs played a crucial role in enhancing calibration. They concluded that
training with hard labels caused overconfidence in neural networks. The transparency, fairness and reliability
of the methods can be improved by explaining black-box machine learning models. Model robustness and
user trust raised concerns, as the explanations of these models exhibited considerable uncertainty. Zhang et
al. [215] illustrated three sources of uncertainty, viz., variation in the explained model credibility, variation
with sampling proximity and randomness in the sampling procedure across different data points, by con-
centrating on a specific local explanation technique called local interpretable model-agnostic explanations
(LIME). Even black-box models with high accuracy yielded uncertainty. They tested uncertainty with the
LIME technique on two publicly available datasets and synthetic data.

For even small adversarial perturbations, the employment of DNNs in safety-critical environments is
rigorously restricted. Sheikholeslami et al. [216] devised a randomized approach to identify such perturbations
that dealt with minimum uncertainty metrics by sampling from the hidden layers during the DNN inference
period. Adversarial corrupted inputs were identified by the sampling probabilities. Any pretrained DNN,
with no additional training, could be exploited by a new detector of adversaries. The output uncertainty of
the DNN, from the perspectives of the BNNs, could be quantified by choosing the units to sample per hidden
layer, where layerwise components denoted the overall uncertainty. Low-complexity approximate solvers
were obtained by simplifying the objective function. These approximations associated SOTA randomized
adversarial detectors with the new approach in addition to delivering meaningful insights. Moreover, the
consistency loss between various predictions under random perturbations is the basis of an effective strategy
in semisupervised learning. In a successful student model, the teachers’ pseudo-labels must have good
quality; otherwise, the learning process will suffer. However, the prevailing models do not evaluate the
quality of the teachers’ pseudo-labels. Li et al. [217] presented a new certainty-driven consistency loss (CCL)
that employed the predictive uncertainty information in the consistency loss to teach students from reliable
targets dynamically. They devised two strategies, i.e., temperature CCL and filtering CCL, to either pay less
attention to the uncertain data or filter out uncertain predictions in the consistency regularization. They
termed it FT-CCL by integrating the two strategies to enhance the consistency learning approach. FT-CCL
demonstrated robustness to noisy labels and enhancement on a semisupervised learning task. They presented
a new mutual learning technique in which one student was detached from its teacher and gained additional
knowledge with another student’s teacher.

Englesson et al. [218] introduced a modified knowledge distillation method to achieve computationally
competent uncertainty estimates with deep networks. They tried to obtain competitive uncertainty estimates
for both out-of- and in-distribution samples. Their major contributions were as follows: 1. adapting and
demonstrating the regularization effect of distillation, 2. presenting a new target teacher distribution, 3.
enhancing OoD uncertainty estimates by a simple augmentation method, and 4. executing a broad set of
experiments to shed light on the distillation method. On the other hand, well-calibrated uncertainty and
accurate fully predictive distributions are provided by Bayesian inference. The high dimensionality of the
parameter space limits the scaling of Bayesian inference methods to DNNs. Izmailov et al. [28] designed low-
dimensional subspaces of parameter space that comprised diverse sets of high-performing approaches. They
applied VI and elliptical slice sampling in the subspaces. Their method yielded well-calibrated predictive
uncertainty and accurate predictions for both image classification and regression by exploiting Bayesian
model averaging over the induced posterior in the subspaces.

Csáji et al. [219] introduced a data-driven strategy for uncertainty quantification of models based on kernel
techniques. This method needed a few mild regularities in the computation of noise instead of distributional
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assumptions such as dealing with exponential families or GPs. The uncertainty of the model could be
estimated by perturbing the residuals in the gradient of the objective function. They devised an algorithm to
make the model distribution-free and non-asymptotically guaranteed and to provide exact confidence regions
for the noise-free and ideal depiction of the functions that they estimated. Regarding symmetric noise and
the usual convex quadratic problems, the regions were star convex centered on a specified small estimate, and
ellipsoidal outer approximations were also efficiently executed. On the other hand, the uncertainty estimates
could be measured during the pretraining process. Hendrycks et al. [220] demonstrated that pretraining
enhanced the uncertainty estimates and model robustness, although it might not improve the classification
metrics. They showed the key gains from pretraining by performing empirical experiments on confidence
calibration, OoD detection, class imbalance, label corruption and adversarial examples. Their adversarial
pretraining method demonstrated approximately 10% enhancement over existing methods in adversarial
robustness. Pretraining without task-specific techniques highlighted the need for pretraining and surpassed
the SOTA performance when examining future techniques for uncertainty and robustness.

Trustworthy confidence estimates are required from predictive models in high-risk domains. Rigid vari-
ational distributions utilized for tractable inference that err on the side of overconfidence suffer from deep
latent variable models. Veeling et al. [221] devised stochastic quantized activation distributions (SQUAD),
which executes a tractable yet flexible distribution over discretized latent variables. The presented tech-
nique is sample efficient, self-normalizing and scalable. Their method yielded predictive uncertainty of high
quality, learned interesting nonlinearities, and fully used the flexible distribution. Multitask learning (MTL)
is another domain in which the impact of the importance of uncertainty methods can be considered. For
example, MTL demonstrated its efficacy for MR-only radiotherapy planning, as it can jointly automate the
contour of organs at risk - a segmentation task – and simulate a synthetic CT (synCT) scan - a regression
task - from MRI scans. Bragman et al. [222] suggested utilizing a probabilistic deep learning technique to
estimate parameter and intrinsic uncertainty. Parameter uncertainty was estimated through approximate
Bayesian inference, while intrinsic uncertainty was modeled using a heteroscedastic noise technique. This
led to an approach for uncertainty measurement overprediction of the tasks and the data-driven adaptation
of task losses on a voxelwise basis. This method demonstrated competitive performance in the segmentation
and regression of prostate cancer scans.

As a matter of fact, Gaussian Processes (GP) [223] is a powerful technique used for quantifying uncer-
tainty. However, it is a complex task to form a Gaussian approximation to a posterior distribution even in the
context of uncertainty estimation in huge deep learning models. In such scenarios, the prevailing techniques
generally lead to a diagonal approximation of the covariance matrix in spite of executing low-uncertainty es-
timates with these matrices. Mishkin et al. [224] designed a novel stochastic, low-rank, approximate natural
gradient (SLANG) technique for VI in huge deep models to address this issue. Their technique computed
a “diagonal plus low-rank” structure based on the backpropagated gradients of the network log-likelihood.
Their findings indicate that the proposed technique shapes the Gaussian approximation to the posterior
distribution. In fact, the safety of AI systems can be enhanced by estimating the uncertainty in predictions.
Such uncertainties arise due to a distributional mismatch between the training and test data distributions,
irreducible data uncertainty and uncertainty in the model parameters. Malinin et al. [225] devised a novel
framework for predictive uncertainty dubbed prior networks (PNs), which model distributional uncertainty
explicitly. This was achieved by parameterizing a prior distribution over predictive distributions. Their
work aimed at determining uncertainty in classification and scrutinized PNs on the tasks of recognizing OoD
samples and identifying misclassifications on the CIFAR-10 and MNIST datasets. The empirical results in-
dicated that PNs, unlike non-Bayesian methods, could successfully discriminate between distributional and
data uncertainty.

It has been observed in recent research findings that CNN models for image classification show overlap-
ping adversarial vulnerabilities. Adversarial training eradicates the vulnerability in a single model by forcing
it to learn robust features. This process is rigid and suffers from substantial loss on clean data accuracy.
Alternatively, ensemble techniques have been presented to induce submodels with diverse outputs against
a transfer adversarial example. Only a minor clean accuracy drop is perceived in this process. However,
earlier ensemble training techniques are not efficient in inducing such diversity and are thus unproductive
in reaching robust ensembles. Yang et al. [226] devised DVERGE, which segregated the adversarial vul-
nerability of each submodel by distilling non-robust features and diversified the adversarial vulnerability to
induce diverse outputs against a transfer attack. The new diversity metric and training procedure permitted
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DVERGE to yield higher robustness against transfer attacks. Moreover, epistemic uncertainty is the part
of out-of-sample prediction error that is due to the absence of knowledge of the learner. Earlier works fo-
cused on model variance, whereas Jain et al. [227] introduced a principled approach for estimating epistemic
uncertainty by learning to predict the generalization error and subtracting an estimate of aleatoric uncer-
tainty, i.e., intrinsic unpredictability. The estimator of epistemic uncertainty included the effect of model
bias and could be utilized in nonstationary learning environments arising in reinforcement learning or active
learning. In addition to showcasing these properties of direct epistemic uncertainty prediction (DEUP), they
showed its benefits against prevailing techniques for uncertainty estimation on downstream tasks, including
reinforcement learning and sequential model optimization.
A few more studies have studied the importance of UQ methods in different research domains. For example,
Daxberger et al. [228] presented inference performed over only a small subset of the model parameters while
keeping all others as point estimates. This enabled the utilization of expressive posterior approximations
that were intractable in the full model. They devised, in particular, a scalable and practical Bayesian deep
learning technique that trained a point estimate and then inferred a full covariance Gaussian posterior ap-
proximation over a subnetwork. It should be noted that restrictive approximations are needed for scaling
Bayesian inference to the large parameter spaces of DNNs. Additionally, graph NNs (GNNs) do not usually
consider the various types of uncertainties associated with class probabilities to mitigate risk that increases
misclassification under uncertainty in real life. Zhao et al. [229] presented a subjective Bayesian deep learning
approach dealing with different types of uncertainties for classification predictions by leveraging the learning
and powerful modeling capabilities of GNNs. They considered the predictions of a subjective Bayesian GNN
(S-BGNN) to be the nodes’ multinomial subjective opinions in a graph based on Dirichlet distributions,
where each belief mass was a belief probability of a class. By gathering evidence from the given labels of
training nodes, the S-BGNN model was devised for predicting the probabilities of each class and discover-
ing out-of-distribution data. Finally, neural processes (NPs) established variational approximate models for
stochastic processes with promising properties in UQ and computational efficiency. These processes utilized
neural networks with latent variable inputs to induce predictive distributions. Although target-specific local
variation may sometimes be vital, the expressiveness of vanilla NPs is inadequate, as they apply only a global
latent variable. To address this issue, Wang et al. [230] exploited NPs systematically and proposed a novel
variant of NP modeling that they dubbed the doubly stochastic variational neural process (DSVNP). Their
model integrated the local latent variables and global latent variable for prediction.
Investigation of uncertainty in non-Bayesian NN models is another important research topic. For this reason,
Amini et al. [231] presented a technique for training non-Bayesian neural networks to compute a continu-
ous target as well as its associated evidence to learn both the epistemic and aleatoric uncertainty. They
achieved this by placing evidential priors over the original Gaussian likelihood function and training the
neural networks to infer the hyperparameters of the evidential distribution. Their method accomplished
scalable and efficient uncertainty learning, as their method did not depend on OoD examples or sampling
during inference for training. Moreover, the error prediction methods using auxiliary regression models
have also been used for error prediction in the literature. Predicting the errors that may occur and the
reliably evaluating model confidence in deep learning are vital elements of demonstrating safety for model
deployment. Tsiligkaridis [232] first showcased that uncertainty-aware deep Dirichlet neural networks de-
livered enhanced separation between the confidence of incorrect and correct predictions in the true class
probability (TCP) metric. Second, as the true class was not known at the test time, a novel criterion was
introduced for learning the true class probability by matching the prediction confidence scores while tak-
ing TCP and imbalance constraints into account for obtaining correct predictions and failures. In another
study, Corbiere et al. [233] expressed that the confidence of DDNs and the prediction of their failures are
of key importance for the practical application of these methods. In this regard, the authors showed that
the TCP (TrueClassProbability) is more suitable than the MCP (MaximumClassProbability) for failure
prediction in deep learning. For instance, in their model: Rd × Y → R, and:

(x, y∗)→ P (Y = y∗|w, x), (36)

where xi ∈ Rd represents a d-dimensional feature and y∗i ∈ Y = {1, ...,K} is its correct class. Then, they
introduced a new normalized type of TCP confidence criterion, which is as follows:
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TCP r(x, y∗) =
P (Y = y∗|w, x)

P (Y = ŷ|w, x)
. (37)

A general view of the model proposed in [233] is illustrated in Fig. 19.

ConvNet Classifier 

ConfidNet

ℒconf

ℒCE

y∗

ොc

P(Y|w, x)
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x

Input

Fixed during confidence training Classification model

Confidence model

Fig. 19: A schematic view of the TCP model, which is reproduced based on [233].

More information on further UQ methods can be found in Tables B.3 and B.4 in the Appendix.

5.1. Deep Gaussian Processes

Deep Gaussian processes (DGPs) [234, 235, 236, 237, 238, 239, 240] are effective multilayer decision
making models that can accurately model uncertainty. They represent a multilayer hierarchy of Gaussian
processes (GPs) [241, 242]. A GP is a nonparametric type of Bayesian model that encodes the similarity
between samples using a kernel function. It represents distributions over the latent variables with respect
to the input samples as a Gaussian distribution fx ∼ GP(m(x), k(x, x′)). Then, the output y is distributed
based on a likelihood function y|fx ∼ h(fx). However, conventional GPs cannot effectively scale to large
datasets. To address this issue, inducing samples can be used. As such, the following variational lower bound
can be optimized:

log p(Y ) ≥
∑

y,x∈Y,X
Eq(fx)[log p(y|fx)]−KL(q(fZ)‖p(fZ)), (38)

where Z and q(fx) are the location of the inducing samples and the approximated variation with respect to
the distribution of fx, respectively.

Oh et al. [243] proposed hedged instance embedding (HIB), which hedges the position of each sample in
the embedding space, to model the uncertainty when the input sample is ambiguous. As such, the probability
of two samples matching was extended to stochastic embedding, and MC sampling was used to approximate
it. Specifically, a mixture of C Gaussians was used to represent the uncertainty. Havasi et al. [244] applied
SGHMC into DGPs to approximate the posterior distribution. They introduced moving window MC ex-
pectation maximization to obtain the maximum likelihood to deal with the problem of optimizing a large
number of parameters in DGPs. Maddox et al. [245] used stochastic weight averaging (SWA) [246] to build a
Gaussian-based model to approximate the true posterior. Later, they proposed SWA-G [247], SWA-Gaussian,
to model Bayesian averaging and estimate uncertainty. Most weight perturbation-based algorithms suffer
from the high variance of gradient estimation due to sharing the same perturbations among all samples in a
mini-batch. To alleviate this problem, flipout [248] was proposed. Flipout samples the pseudo-independent
weight perturbations for each input to decorrelate the gradient within a mini-batch. It is able to reduce the
variance and computational time in training NNs with multiplicative Gaussian perturbations. Despite the
success of DNNs in dealing with complex and high-dimensional image data, they are not robust to adversarial
examples [249]. Bradshaw et al. [250] proposed a hybrid model of GP and DNNs (GPDNNs) to deal with
the uncertainty caused by adversarial examples (see Fig. 20).
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Fig. 20: A general Gaussian-based DNN model proposed by Bradshaw et al. [250], which is reproduced based on the given
reference.

Choi et al. [251] proposed a Gaussian-based model to predict the localization uncertainty in YOLOv3 [252].
To this end, they applied a single Gaussian model to the bbox coordinates of the detection layer. Specifically,
the coordinates of each bbox were modeled as the mean (µ) and variance (

∑
) to predict the uncertainty

of the bbox. Khan et al. [253] proposed a natural gradient-based algorithm for Gaussian mean-field VI. A
Gaussian distribution with diagonal covariances was used to estimate the probability. The proposed algo-
rithm was implemented by the Adam optimizer. To achieve this, the network weights were perturbed during
gradient evaluation. In addition, they used a vector to adapt the learning rate to estimate uncertainty.

Sun et al. [254] considered the structural information of the model weights. They used the matrix variate
Gaussian (MVG) [255] distribution to model structured correlations in the weights of DNNs and introduced
a reparametrization for the MVG posterior to make posterior inference feasible. The resulting MVG model
was applied to a probabilistic BP framework to estimate the posterior inference. Louizos and Welling [256]
used an MVG distribution to estimate the weight posterior uncertainty. They treated the weight matrix as a
whole rather than treating each component of the weight matrix independently. As mentioned earlier, GPs
have been widely used for UQ in deep learning methods. Van der Wilk et al. [257], Blomqvist et al. [258],
Tran et al. [259], Dutordoir et al. [260] and Shi et al. [261] introduced convolutional structure into GP.

In another work, Atanov et al. [262] introduced a probabilistic model and showed that the batch nor-
malization (BN) approach can maximize the lower bound of its related marginalized log-likelihood. Since
inference was computationally inefficient, they proposed stochastic BN (SBN) for approximating the ap-
propriate inference procedure as an uncertainty estimation method. Moreover, induced noise is generally
employed to capture uncertainty, determine overfitting and slightly improve performance via test-time aver-
aging, whereas ordinary stochastic neural networks typically depend on the expected values of their weights
to formulate predictions. Neklyudov et al. [263] proposed a different kind of stochastic layer called a variance
layer. It is parameterized by its variance, and each weight of a variance layer obeys a zero-mean distribution.
This implies that each object is denoted by a zero-mean distribution in the space of the activations. They
demonstrated that these layers present a strong defense against adversarial attacks and could serve as a
crucial exploration tool in reinforcement learning tasks.

5.2. Uncertainty Quantification in the Traditional Machine Learning Domain Using Ensemble Techniques

It is worth noting that UQ in traditional machine learning algorithms has been studied extensively using
different ensemble techniques and a few more UQ methods (e.g., please see [264]) or other UQ methods
in classification problems [265] in the literature. However, due to page limitations, we only summarize
some of the ensemble techniques (as UQ methods) used in the traditional machine learning domain. For
example, Tzelepis et al. [264] proposed a maximum margin classifier to deal with uncertainty in input data.
The proposed model was applied to classification tasks using the support vector machine (SVM) algorithm
with multidimensional Gaussian distributions. The proposed model, named SVM with Gaussian sample
uncertainty (SVM-GSU), is illustrated in Fig. 21:

In another work, Pereira et al. [266] examined various techniques for transforming classifiers into uncer-
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Fig. 21: A schematic view of SVM-GSU which is reproduced based on [264].

tainty methods whereby predictions are harmonized with probability estimates through their uncertainty.
They applied various uncertainty methods: Venn-ABERS predictors, conformal predictors, Platt scaling
and isotonic regression. Partalas et al. [267] presented a novel measure called uncertainty-weighted accuracy
(UWA) for ensemble pruning through directed hill climbing that addressed the uncertainty of the current
ensemble decision. The experimental results demonstrated that the new measure for pruning a heteroge-
neous ensemble had significantly enhanced accuracy compared to that of baseline methods and other SOTA
measures. Peterson et al. [268] exploited different types of errors that might creep into atomistic machine
learning and addressed how uncertainty analysis validated machine learning predictions. They applied a
bootstrap ensemble of neural network-based calculators and showed that the width of the ensemble can
represent an approximation of the uncertainty.

6. Applications

In this section, we discuss a few of the most important applications of different UQ techniques used in
machine and deep learning methods. In this regard, we first summarize the application of UQ techniques in
image processing and computer vision followed by medical image analysis. Then, we show how UQ techniques
have been applied to NLP, and some additional (further) applications.

6.1. Image Processing and Computer Vision

Currently, deep learning algorithms are being widely used to map high-dimensional data to output ar-
rays; however, these mappings can be inaccurate in many cases, such as when two African Americans
were incorrectly identified as gorillas in an image classification system [269], which led to racial discrimina-
tion [270]. Therefore, it is important to take uncertainty into account when predictions are made by deep
learning-based computer vision algorithms. A number of studies have addressed uncertainty in deep learning
algorithms for various applications during the years 2016 to 2020, including but not limited to image/video
retrieval [271, 272], depth estimation [273, 274], object detection [275, 276, 277], semantic segmentation and
scene understanding [278, 279, 280, 281, 10], optical flow estimation and motion prediction [282, 283, 284],
human pose estimation and pedestrian localization [285, 286, 287], person reidentification and face recogni-
tion [288, 289, 290], camera relocalization [291], and avoiding adversarial attacks [292, 293].

In fact, most research studies in deep learning applications concentrate on prediction accuracy. Unlike
these studies, untangling the complexity of various DNNs and addressing uncertainty for a variety of computer
vision tasks has attracted significant interest [294]. There has still been a good record in using BNNs and MC
dropout for uncertainty estimation in deep learning architectures. Nine studies have reported MC dropout
as the most effective UQ technique [10, 44, 270, 282, 284, 286, 291, 293, 295], which is applicable to various
deep learning architectures. Kendall et al showed that the uncertainty of their Bayesian convolutional neural
network model came from the appearance and pose dissimilarity of images to the training set and could
be used to estimate the model’s relocalization uncertainty, which improved localization accuracy on a large
outdoor dataset [291]. The same authors developed a measure of model uncertainty by MC sampling with
dropout and enhanced the semantic segmentation performance compared to that of the SOTA methods in
2016 [44]. Eldesokey et al. [296] proposed a UA model for CNNs and tested it on the KITTI dataset. The
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proposed model identified the disturbed measurements of the input data after learning an input confidence
estimator by a self-supervised procedure using normalized CNNs (NCNNs).

Indeed, epistemic uncertainty estimation is a challenging problem, and while several scalable techniques
have appeared lately, no widespread assessment has been carried out in a real-world setting. Gustafsson et
al. [297] devised a comprehensive assessment framework for scalable epistemic uncertainty estimation tech-
niques in deep learning. Their framework tested for the robustness needed in real-world computer vision
applications. They also utilized their framework to conclusively and extensively compare two scalable tech-
niques: MC dropout and ensembling. Postels et al. [281] proposed a sampling-free method for estimating
the epistemic uncertainty of a neural network. Epistemic uncertainty is crucial in safety-critical applications,
since it denotes the reliability of predictions using new data. Their prime contribution was the approximation
of the epistemic uncertainty estimated by these techniques, which did not necessitate sampling, thus remark-
ably reducing the computational overhead. They used their method in volumetric visual tasks to showcase
the advantages of their techniques in terms of computational overhead as well as uncertainty estimates.

Cai et al. [298] worked on the hand segmentation generalization issue without using segmentation labels in
the target domain. They designed a Bayesian CNN-based model adaptation approach for hand segmentation,
which devised and considered two vital factors: 1) general information about hand shapes shared across
domains and 2) prediction uncertainty when the model is used in a new domain. Accordingly, they introduced
an iterative self-training strategy for hand segmentation in a novel domain, which was directed by the
model uncertainty approximated by a Bayesian CNN. However, Bayesian techniques have not been exploited
extensively for 3D modalities such as the point clouds often utilized for autonomous systems and robots.
Bhandary et al. [299] examined three uncertainty quantification techniques, viz., MC-DropConnect, MC
dropout and DE, on the DarkNet21Seg 3D semantic segmentation model and analyzed the impact of different
parameters such as drop probability values on task performance, the number of models in ensembles and
forward passes and the uncertainty estimate quality. They demonstrated that DEs generated better results
than other methods in terms of uncertainty metrics and performance.

Weakly supervised semantic segmentation using image-level labels is accomplished by acquiring object
response maps. However, the prevailing techniques only depend on the classifier that can result in a response
map attending to discriminative object regions, as the network does not require seeing the complete object in
order to optimize the classification loss. Chang et al. [300] introduced a principled and end-to-end trainable
approach to let the network pay attention to other parts of the object while generating a more uniform and
complete response map. They specifically proposed a mixup data augmentation strategy for the classification
network and devised two uncertainty regularization terms to better cooperate with the mixup scheme. More
information regarding different UQ methods applied in computer vision and image processing tasks is given
in Table C.5 in the Appendix.

6.1.1. Uncertainty in Semantic Segmentation

Semantic segmentation is an important computer vision and image processing task that assigns semantic
labels from various predefined classes by considering all pixels of any input image [301]. Indeed, semantic
segmentation techniques can generally be divided into two main categories: (1) those that obtain accurate
results with slow inference, and (2) those that perform real-time inference by sacrificing performance for
speed [301]. Measuring and quantifying uncertainty in semantic segmentation plays a significant role in
having trustworthy outcomes. Regarding this point, a broad range of UQ methods have been used widely
in semantic segmentation in the literature [278, 279, 301, 302]. To cover this important research domain, we
briefly summarize the more recent studies on semantic segmentation with the application of UQ methods.

Deep learning has gained much attention for semantic segmentation in particular, with BDL utilized
to obtain uncertainty maps from deep models when predicting semantic classes. A BDL method requires
new metrics to examine whether it produces better uncertainty estimates than other methods. Mukhoti
and Gal [10] introduced three novel metrics to evaluate BDL models devised specifically for the task of
semantic segmentation. They modified DeepLab-v3+ and created its Bayesian counterpart using concrete
dropout and MC dropout as inference techniques. They compared and tested these two inference methods
on the Cityscapes dataset using their proposed metrics. In another study, DeVries and Taylor [55] estimated
uncertainty to showcase two significant outputs in deep learning-based segmentation. The first one generated
spatial uncertainty maps, from which a clinician could observe why and where the system failed. The other
quantified an image-level prediction of failure, which was helpful for separating precise cases and removing
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them from automated pipelines.
Zheng and Yang [303] focused on the unsupervised domain adaptation of transferring knowledge from the

source domain to the target domain in the context of semantic segmentation. The pseudo-labels of the target-
domain data are usually predicted by a model trained on the source domain. The generated labels comprise
incorrect predictions due to the discrepancy between the test domain and training domain. To address
this issue, the authors estimated the prediction uncertainty during training to fix pseudo-label learning
for unsupervised semantic segmentation adaptation. The uncertainty of the prediction and the semantic
segmentation prediction were estimated from the input image. On the other hand, many adversarial-based
unsupervised domain adaptation (UDA) methods suffer from high-instability training and have to carefully
tune the optimization procedure. Some nonadversarial UDA techniques exploit consistency regularization
on the target predictions of a student model and a teacher model under various perturbations, where the
teacher shares the same architecture as the student and is updated by the exponential moving average of
the student. However, these models undergo negative transfer resulting from either an unreasonable teacher
model or an error-prone discriminator network. Zhou et al. [304] presented an uncertainty-aware consistency
regularization technique for cross-domain semantic segmentation. More reliable and meaningful knowledge
from the teacher model could be transferred to the student model by employing the latent uncertainty
information of the target samples.

The training of different deep learning-based image segmentation models needs a considerable amount of
manual annotations. To mitigate this problem, Ravanbakhsh et al. [305] introduced a technique based on
a conditional generative adversarial network (cGAN) that approached segmentation in a human-in-the-loop
manner with semisupervised setup. More specifically, they applied a discriminator to detect unreliable slices
for which expert annotation was needed and utilized the generator in the GAN to synthesize segmentations
on unlabeled data for which the model was confident. The reliability of predictions is of greatest interest in
the semantic segmentation of street scenes with neural networks. On the other hand, the evaluation of NNs
by means of uncertainty is a typical measure to prevent safety problems. As video streams are available in
applications such as automated driving, Maag et al. [306] proposed a time-dynamic framework to examine
uncertainties and evaluate the prediction quality of neural networks. They tracked segments over time and
collected aggregated metrics for each segment, thus obtaining a series of metrics with which they assessed
the prediction quality. In Table 3, we summarize a few more UQ methods used in semantic segmentation.

Table 3: Further information on some UQ methods used in semantic segmentation.

Study Year Data source Method UQ method Cod

Postels et al. [281] 2019 Synthetic data and UCI regression
datasets

Bayesian SegNet OUR (our approximation)
√

Ge et al. [307] 2018 Pascal VOC 2007 and Pascal VOC 2012 CNN Pixel Labeling with Uncer-
tainty

×

Blum et al. [308] 2019 FS Static, FS Web, and FS Lost &
Found

Learned Embedding Density NLL (minimizing the negative
loglikelihood)

×

Rottmann and Marius et
al. [309]

2019 Cityscapes DeepLabv3+ MobilenetV2 Softmax outputs
√

Hochgeschwender et
al. [299]

2020 DarkNet21Seg BNN DEs ×

Chang et al. [300] 2020 PASCAL VOC 2012 Mixup-CAM Uncertainty regularization ×

Hu et al. [310] 2020 ADE20K and Pascal-Context ResNet-50 Bayesian uncertainty estima-
tion

×

Xie et al. [311] 2020 CamVid and Cityscapes DeepLabv3+ MobilenetV2 DEAL (Difficulty-awarE Active
Learning)

×

Siddiqui et al. [312] 2020 SceneNet-RGBD, ScanNet, and Matter-
port3D

ViewAL Viewpoint Entropy
√

6.2. Medical Applications

Automated analysis of medical images came into existence as soon as it was possible to load and scan
medical images into a computer [313]. At the outset, from the 1970s to the 1990s, medical image analysis
was performed with the sequential application of low-level pixel processing (region growing, edge and line
detector filters) and mathematical modeling (fitting lines, ellipses and circles) to build compound rule-based
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systems that carried out particular tasks. This is analogous to the expert systems with many if-then-else
statements that were popular in artificial intelligence in the same period. At the end of the 1990s, supervised
methods, where training samples are used to develop a system, gradually became more popular in medical
image analysis. Examples include active shape models, atlases, the concept of feature extraction and the use
of statistical classifiers. This machine learning approach is still very popular and forms the foundation for
various booming commercially available medical image analysis systems. Hence, there is a shift from systems
that are devised entirely by humans to systems that are trained by computers utilizing example data from
which feature vectors are derived. Computer algorithms establish the optimal decision boundary in a high-
dimensional feature space. Both the monetary and ethical costs of erroneous predictions can be noteworthy
in medicine, and the complexity of this issue leads to progressively more complex models. Although DL
methods have achieved outstanding performance in medical image analysis, most of them have not been
employed in highly automated disease monitoring systems due to the lack of reliability of the model [314].
For example, Dusenberry et al. [315] studied the role of model uncertainty strategies in the medical domain.
They demonstrated that population-level metrics, such as calibration error, log-likelihood, AUC-ROC and
AUC-PR, did not capture model uncertainty, and this was shown by applying RNN ensembles and different
BRNNs. They showed that RNNs with only Bayesian embeddings could be a better way to address model
uncertainty than ensembles. They further demonstrated that RNNs with only Bayesian embeddings yielded
better results in model uncertainty than ensembles.

Well-annotated medical data is extremely expensive for conducting medical image segmentation. How-
ever, unlabeled data are a very appropriate solution that can be used in both semisupervised and unsupervised
learning domains. As discussed earlier, Xia et al. [316] introduced the UMCT model as a semisupervised
framework and tested it on various medical image datasets. They extended the Dice loss for uncertainty-
weighted label fusion (ULF) as follows:

LDice =
1

D
ΣDd=0

2ΣNi=1y
d
i ŷ
d
i

ΣNi=1(ydi )2 + ΣNi=1(ŷdi )2
. (39)

According to the obtained results, the proposed UMCT method outperformed the other applied methods
on the same datasets. As a result, it was concluded that having a proper uncertainty method can assist in
obtaining better medical image analysis performance.

Blood oxygen saturation (sO2) measurement by optical imaging oximetry offers insight into local tissue
metabolism and functions. Traditional methods for quantifying sO2 suffer from uncertainties due to varia-
tions in the experimental conditions, systemic spectral bias, light spectral bias, tissue geometry and biological
variability. Liu et al. [317] devised deep spectral learning (DSL), a novel data-driven approach to obtaining
oximetry that was robust to experimental variation and facilitated uncertainty quantification for each sO2

prediction. The predictions calculated by DSL were highly adaptive to depth-dependent backscattering spec-
tra as well as to experimental variability. The DSL-predicted sO2 demonstrated notably lower mean-square
errors than the traditional least-squares fitting method. Inherent ambiguities cause many real-world vision
problems. It is difficult to access, for example, which region contains cancerous tissue from a CT scan in
clinical applications. Kohl et al. [318] devised a generative segmentation model based on the combination
of a U-Net with a conditional VAE that is capable of generating a large number of plausible hypotheses.
They exhibited it on a Cityscapes segmentation task and a lung abnormality segmentation task approach to
regenerate all the possible segmentation variants as well as the frequency with which they outperformed the
existing methods.

In another work, Araújo et al. [319] proposed an uncertainty-aware deep learning model (which was
named DR—GRADUATE) for grading diabetic retinopathy (DR) using eye fundus images. To this end,
they introduced a new Gaussian sampling technique on a multiple-instance learning (MIL) framework and
used the proposed system as a second-opinion DR diagnostic system. UQ methods have also been used in
the prostate cancer domain. Karimi et al. [320] studied prostate cancer using ultrasound images. In this
regard, they proposed a robust and accurate deep learning (CNN) segmentation model. Moreover, due to
the importance of uncertainty in medical image analysis, they computed the uncertainty as follows:

Q = 1− p̄2 − (1− p̄)2, (40)
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where p̄ is the average of the applied probability maps. The results confirmed that adding uncertainty
resulted in having better prostate cancer segmentation outcomes. As discussed above, the MC dropout
demonstrated impressive performance in quantifying uncertainty in deep learning methods. Combalia et
al. [321] applied MC dropout in DNNs for UQ in dermoscopic (skin lesion) image classification. Their results
indicated that using different uncertainty metrics was an appropriate solution in exploring difficult and OoD
samples.

Cardiovascular disease detection by machine and deep learning is another research topic for the application
of UQ methods. 2D echocardiography is a widely used imaging modality for cardiovascular diseases. Deep
learning techniques have been widely used in 2D echocardiography for structural and functional assessment
and automated view classification. Most of the models do not estimate uncertainty in this regard, which
is crucial. Dahal et al. [322] compared three ensemble-based uncertainty techniques utilizing four different
metrics to achieve insight into uncertainty modeling for left ventricular segmentation from ultrasound (US)
images. They further showed how uncertainty estimation could be utilized to reject inferior-quality images
and hence enhance the segmentation results.

Registration is a basic task in medical image analysis that can be used in numerous tasks including
motion analysis, multimodal image alignment, intra-operative tracking and image segmentation. Zhu et
al. [323] proposed a neural registration framework (NeurReg) with hybrid loss of displacement fields and data
similarity, which considerably enhanced the existing SOTA methods of registration. They simulated different
transformations with a registration simulator that created fixed-image and displacement field ground truth
for training. They devised three segmentation frameworks based on the proposed registration framework:
1) MTL with atlas-based segmentation as an intermediate feature, 2) joint learning of both registration
and segmentation tasks, and 3) atlas-based segmentation. Different probable ailments can be detected
by accurate and automatic segmentation of anatomical structures in medical images. Bian et al. [324]
introduced an uncertainty-aware domain alignment approach to address the domain shift issue in the cross-
domain unsupervised domain adaptation (UDA) task. Domain shift is an issue related to the performance
of the segmentation of various deep neural networks, and segmentation tasks may deteriorate several devices
or modalities due to the notable dissimilarity across domains. In this regard, they specifically devised an
uncertainty estimation and segmentation module (UESM) to attain the uncertainty map estimation. Then,
they proposed a new uncertainty-aware cross entropy (UCE) loss to leverage the uncertainty information to
enhance the performance of segmentation on extremely uncertain regions. The optimal target samples were
selected through uncertainty guidance by an uncertainty-aware self- training (UST) method to further boost
performance in the UDA task.

Kohl et al. [325] devised a segmentation network with a conditional variational autoencoder (cVAE),
termed hierarchical probabilistic U-Net, that applied a hierarchical latent space decomposition. They demon-
strated that their model formulation permitted reconstruction and sampling of segments with high fidelity
while providing the flexibility to learn complex structured distributions across scales. Their model automat-
ically split an inductive bias that they estimated to be useful in structured output prediction tasks beyond
segmentation. In another work, Yin et al. [326] stated that uncertainty related to the fractional flow reserve
(FFR) of coronary artery disease in a few properties such as anatomical and physiological properties is
common. For this reason, they proposed a predictive probabilistic model for FFR using the BO approach.
The outcomes clearly acknowledge the importance of dealing with uncertainty in the diagnosis of CAD.
Li et al. [327] exploited uncertainty calibration within an AL framework for medical image segmentation.
Uncertainty estimation is specifically crucial in a data-driven AL setting, where the goal is to attain definite
accuracy with the least labeling effort. The model learns to choose the most enlightening unlabeled samples
for annotation derived from its estimated uncertainty. Different acquisition strategies and uncertainty esti-
mation techniques were explored. They argued that choosing regions to annotate instead of full images led
to better-calibrated models.

It should be noted that UQ methods have been broadly used for medical image analysis. However, these
methods have also been applied to analyze other types of medical data, including ECG [328], electroocu-
logram (EOG) [329], and EEG [330] signals as well as medical report information. Strodthoff et al. [328]
investigated the performance of different CNNs for the prediction of age and gender to signal quality as-
sessment considering uncertainty. In another study, Stoean et al. [329] used MC dropout with the DL
method to automatically detect spinocerebellar ataxia type 2 in saccadic cases obtained from EOG data.
The results showed the effectiveness of MC dropout for quantifying uncertainty. Moreover, Koulouri and
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Rimpiläinen [330] proposed a model to quantify uncertainty using the Bayesian approximation error for fo-
cal source imaging and simultaneous skull conductivity. We provide further information about UQ methods
applied in different medical application tasks in Table C.6 in the Appendix.

6.3. Natural Language Processing and Text Mining

In this part of the review, we briefly summarize some studies that have been conducted on UQ in the
domain of NLP. It should be noted that we do not give the details of the methods due to page limitations.
For this reason, we strongly recommend the reader to refer to the main sources if more information on
the proposed UQ methods is needed. NLP focuses on understanding, analyzing and generating languages
that humans utilize naturally [331]. In recent years, significant and practical real-world problems have been
addressed, and large-scale systems have also been deployed in this research domain. Novel machine and deep
learning approaches such as continuous space methods and DNNs have inferred language patterns from huge
real-world data and have made accurate predictions about new data. One noteworthy challenge is to describe
a language in a form that can be effectively processed by a learning system. NLP is an interdisciplinary field
between linguistics and artificial intelligence [332]. One of the most broadly studied areas of NLP is text
mining (TM), which collects vital information from free (unstructured) text. In this way, new knowledge
can be extracted from a huge amount of text. However, the acquisition of reliable information from text is
not straightforward because of the human linguistic ability to speak about nonexistent and unrealistic things
or events. There are some propositions whose truth values cannot be unambiguously determined, as these
propositions are uncertain, and they may be false in some possible worlds but true in others.

Uncertainty is a significant linguistic occurrence that is pertinent in many fields of language processing. In
the most general case, it can be termed a lack of information, as the reader or listener is uncertain regarding
a piece of information. Hence, uncertain propositions are those whose reliability or truth value cannot be
determined due to a lack of information. Distinguishing between uncertain and factual (i.e., true and false)
propositions is of prime importance in both natural language processing and linguistics applications. It is
essential to recognize linguistic cues of uncertainty since the target and source language may differ in their
frameworks of expressing uncertainty in machine translation. In clinical document classification, medical
reports can be grouped depending on whether the patient probably suffers, does not suffer or suffers from an
ailment. There are several different NLP applications that aim to investigate uncertainty in natural language
texts in a couple of domains (e.g., news or biomedical texts). Most of these approaches use annotated
databases for assessment. Various uncertainty corpora, such as the CoNLL-2010 Shared Task, FactBank,
Genia and BioScope corpora, have been produced in recent years. Comparison of these corpora is not possible
because of the lack of unified annotation principles. The prevailing uncertainty detectors are difficult to
apply across domains, and novel resource creation for each domain is costly and time consuming. A high-
dimensional hidden layer and a large dictionary size make training the RNN language model (RNN-LM) an
ill-posed problem. Chien et al. [331] proposed a Bayesian approach to regularize the RNN-LM and utilized it
for continuous speech recognition. The uncertainty of the estimated model parameters that was represented
by a Gaussian prior was compensated for by penalizing the overly complicated RNN-LM. The Gaussian
hyperparameter was estimated by maximizing the marginal likelihood, and regularized parameters were
computed with reference to a maximum a posteriori criterion that was utilized to construct the regularized
model. A small set of salient outer products were selected to derive the Bayesian RNN-LM (BRNN-LM)
by developing a rapid approximation to a Hessian matrix. Clinical named entity recognition (NER) is one
of the basic tasks for deriving clinical NLP systems. Domain experts are required for annotating a large
amount of samples to achieve good performance with a machine learning (ML) system. This is an expensive
exercise. A sample selection technique called AL aims to mitigate the annotation cost. Chen et al. [333]
introduced and examined both novel and existing AL techniques for a clinical NER task to recognize medical
treatments, problems and laboratory tests from clinical notes. They simulated AL experiments by applying
different novel and prevailing algorithms in three categories, including baseline sampling, diversity-based, and
uncertainty-based techniques. Based on the number of sentences vs. the learning curves of the F-measure,
uncertainty sampling performed better than all its counterparts in terms of the area under the learning curve
(ALC). Most diversity-based techniques yielded better performance than random sampling in ALC.

In another work, Kong et al. [334] introduced a novel theoretical perspective on data noising in RNN
language models. They demonstrated that variants of data noising were instances of Bayesian RNNs with a
particular variational distribution. They presented natural extensions of data noising under the variational
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framework and a more principled method to apply during prediction by utilizing this insight. They de-
vised an elementwise variational smoothing technique and variational smoothing with tied input and output
embedding matrices. Their model was empirically tested on two language modeling datasets and exhibited
superior performance to that of the prevailing data noising techniques. Factuality is a major concern in many
domains, especially in social media, where informal texts are abundant. Existing methods in social media are
dependent on lexical cues, where phrases are either omitted from a sentence or are expressed in substandard
form. Han et al. [335] introduced ANFU, an attention-based neural framework for uncertainty identification
on social media texts. ANFU incorporated a CNN to capture the most vital semantics and attention-based
long short-term memory (LSTM) networks to represent the semantics of words. Experiments were performed
on four benchmark datasets (2 English + 2 Chinese). Their proposed ANFU method performed better than
any SOTA techniques in terms of the F1 score using four social media datasets. Zhang et al. [336] demon-
strated that a huge deep learning model could utilize dropout VI to predict price movements from limit order
books (LOBs), a data source with pricing and trading movements. To increase profit by avoiding needless
trades and position sizing, uncertainty information extracted from posterior predictive distributions could be
applied. Their experimental results showed that Bayesian techniques enhanced the predictive performance,
as stochastic regularizers and uncertainty information could be utilized in trading. In another work, the
authors of [337] designed a measure of uncertainty for long sequences of discrete random variables related
to the words in the output sentence. This measure took account of epistemic uncertainty, similar to the MI
applied for single discrete random variables such as in classification. Their uncertainty measures addressed a
major intractability in the raw application of prevailing methods to long sentences. They utilized Europarl
and WMT 13 for German-English translation tasks to train a Transformer model with dropout.

Machine translation is a popular topic in neural sequence-to-sequence models. A lack of diversity is ob-
served in the final translations, and performance degradation is reported with large beams. The study [338]
tried to uncover the extrinsic uncertainty caused by noisy training data and related this to some of the
concerns associated with the inherent uncertainty of the task due to the existence of numerous valid trans-
lations for a single source sentence. They proposed metrics and tools to examine how uncertainty in the
data was recorded by the model distribution and the effects of searching techniques in translation. They also
presented tools for examining model calibration and some limitations of the current models that could be
addressed by it. Accordingly, model calibration in classification was evaluated by Vaicenavicius et al. [339].

The authors of [340] designed a module for rapid experimentation with NN uncertainty and dubbed it
Bayesian layers. NN libraries with drop-in replacements for common layers were extended by it. These layers
recorded activations (“stochastic output layers”), pre-activation units (dropout), uncertainty overweight
(BNNs) or the function itself (GP). They fused a 5-billion parameter “Bayesian Transformer” on 512 TPUv2
cores to determine uncertainty in a Bayesian dynamics and machine translation model for model-oriented
planning. Bayesian layers could be utilized for probabilistic programming with stochastic processes used in
the Edward2 language. On the other hand, the complexity of machine learning models poses uncontrolled
risks, and the lack of control and knowledge of the internals of each component led to unavoidable effects,
such as difficulty in auditability and a lack of transparency. Mena et al. [341] presented a wrapper that,
given a black-box model, augmented its output prediction with an assessment of uncertainty. A decision
rejection mechanism was employed to decrease the uncertainty or risk. They advocated for a rejection
system based on the resulting uncertainty measure that discarded more uncertain predictions and selected
more confident predictions; this improved the trustability of the system. They empirically showcased their
method in simulated sentiment analysis framework for different domains.

Reliable UQ is a primary step towards devising accountable, transparent, and explainable artificial in-
telligence systems, and BDL plays a crucial role in such quantification. Xiao et al. [342] presented new
strategies for examining data uncertainties and the benefits of characterizing models for NLP tasks. They
utilized recurrent and CNN models to experiment empirically on language modeling, named entity recogni-
tion, and sentiment analysis to demonstrate that explicitly modeling uncertainties not only improved model
performance but is also essential for computing output confidence levels in different NLP tasks. More studies
have been conducted on the impact of Bayesian methods in improving the results of deep learning methods
in NLP. The authors of [124] investigated a variational Bayes scheme for RNNs. First, they demonstrated
that good-quality uncertainty estimates and superior regularization could be adapted by using truncated
backpropagation with an additional computational cost during training and reducing the number of param-
eters by 80%. Second, they illustrated that the performance of Bayesian RNNs could be enhanced further
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by employing a new kind of posterior approximation. The current batch statistics could be sharpened by
incorporating local gradient information into the approximate posterior. This technique could be utilized
broadly in training BNNs. They empirically showed that Bayesian RNNs performed better on an image
captioning task and a language modeling benchmark than traditional RNNs. The authors of [343] proposed
an intelligent framework to enhance en-route flight safety by trajectory prediction, where a Bayesian ap-
proach was utilized for model prediction uncertainty. Four steps were employed. In the first step, many raw
messages were processed with a distributed computing engine, Apache Spark, to derive trajectory informa-
tion efficiently. Two deep learning models were then trained to predict the flight trajectory from different
perspectives. The deep learning models were blended together to create multi-fidelity prediction in the third
step. Then, the multi-fidelity technique was expanded to multiple flights to examine safety based on the ver-
tical and horizontal separation distance between two flights. The blended models showed promising results
in en-route safety and flight trajectory prediction. Instead, a unified, widespread approach is needed that
can be adapted to a particular need of each domain without much effort, and language independence in the
model would also be preferable. Due to the large number of studies, we avoid explaining them in details.
However, we provide a table in the Appendix that includes a summary of the most important UQ methods
applied in the NLP domain (Table C.7).

6.4. Further Applications

In this section, we summarize more applications of various UQ methods. This section aims to cover a
few of the most important recent studies.

As mentioned in previous sections, BDL deals with both epistemic and aleatoric uncertainty in predictions
and has been successful in different domains such as climate change. Vandal et al. [344] devised a discrete-
continuous BDL technique with lognormal and Gaussian likelihoods for uncertainty quantification. They
presented a superresolution-based DL model dubbed “DeepSD” for statistical downscaling (SD) in climate
that was utilized in predictions that followed a highly skewed distribution. Their discrete-continuous models
performed better than a Gaussian distribution with respect to uncertainty calibration and predictive accu-
racy. In fact, traditional artificial neural networks (ANNs) lack the ability to model uncertainty and hence
are not suitable for long-term planning tasks. Long-term ANN estimations deviate from the real behavior of
the system due to approximation errors and process noise. In another work, Nalisnick et al. [345] presented
two structured priors—automatic depth determination (ADD) and joint automatic relevance determination
(ARD)-ADD—to permit Bayesian reasoning about a neural network’s depth. The implementation led to
higher runtime costs and little extra memory for BBB. Future work includes the use of structured variational
approximations, comparison with other VI strategies and experiments on larger datasets.

New challenges arise in prevailing pixel-based prediction techniques with the advancement of remote
sensing imagery. Although deep learning methods achieved a breakthrough in semantic segmentation of
high-resolution images, most methods yield predictions with poor boundaries. Bischke et al. [346] proposed
novel cascaded multitask loss for preserving semantic segmentation boundaries in satellite imagery. Their
method outperformed the SOTA techniques by 8.3% without an additional postprocessing step. However, in
autonomous driving, object detection plays a crucial role. Localizing objects and recognizing objects perfectly
is infeasible due to incomplete data and sensor noise. Hence, the uncertainty associated with the predictions
should be computed by the detector. Meyer et al. [347] devised a method that enhanced the learning of
a probability distribution by taking into account potential noise in the ground-truth labeled data. Their
method enhanced not only the object detection performance but also the accuracy of the learned distribu-
tion. RNNs have been applied to forecast increasingly complicated systems. Although the RNN literature is
highly developed and expansive, UQ is often not taken into account. If it is considered, then the uncertainty
is also usually quantified without the utilization of a rigorous approach. McDermott et al. [348] proposed a
Bayesian RNN model for nonlinear spatiotemporal forecasting while quantifying uncertainty in a more for-
mal framework. The unique nature of nonlinear spatiotemporal data was accommodated by modifying the
basic RNN. They tested their model with two nonlinear spatiotemporal forecasting frameworks and a Lorenz
simulation. On the other hand, RNN language models (RNNLMs) have proven their superiority in several
different tasks including speech recognition. Learning the appropriate representation of contexts for word
prediction can be achieved through the hidden layers of RNNLMs. Fixed hidden vectors and deterministic
model parameters in conventional RNNLMs have limitations in modeling uncertainty over hidden represen-
tations. Yu et al. [349] presented a comparative study of hidden and parametric representation uncertainty
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modeling techniques based on variational RNNLMs and Bayesian gates, respectively, that was examined on
gated recurrent unit (GRU) and LSTM language models. Performance improvements were observed over
conventional RNNLMs with their model in terms of the word error rate and perplexity.

Predictive accuracy in black-box turbulence models is enhanced by tuning Reynolds-averaged Stokes
(RANS) simulations and applying machine learning algorithms. Geneva et al. [350] presented a new data-
driven approach to provide probabilistic bounds for fluid quantities and enhanced RANS predictions. The
anisotropic tensor component of Reynolds stress was predicted by using an invariant BDNN. The Stein
variational gradient descent algorithm was applied to train the model. Based on the proposed method,
the associated probabilistic bounds and prediction enhancement of the data-driven model were addressed.
Following the research for dealing with uncertainty, we came across a study of Feng et al. [351] that pro-
posed a novel extreme learning machine (ELM) termed rough ELM (RELM). RELM utilized rough sets to
divide data into a lower approximation set and upper approximation set, and these sets were used to train
lower approximation neurons and upper approximation neurons. RELM showed a comparable accuracy and
repeatability in most classification tasks. In another study, Walmsley et al. [352] applied a Bayesian CNN
and a new generative model of Galaxy Zoo volunteer responses to infer posteriors for the visual morphology
of galaxies. The probability of each possible label could be predicted by using a Bayesian CNN to learn
from galaxy images with uncertain labels. Their posteriors were reliable for practical use, as they were well
calibrated. They utilized a BALD AL strategy applying their posteriors to request volunteer responses for
a subset of galaxies. They demonstrated that training their Bayesian CNNs utilizing AL, they needed up to
35-60% fewer labeled galaxies, instead relying on morphological features.

The distribution of states at execution time may differ from the distribution observed during training,
and this makes learning a policy utilizing only observational data a challenging task. Henaff et al. [353]
introduced the idea of training a policy by unrolling a learned model of environment dynamics over multiple
time steps while explicitly penalizing on the basis of two costs: the original cost the policy sought to optimize
and an uncertainty cost that represented its divergence from the states it was trained on. They examined
their strategy utilizing a huge observational dataset of driving behavior recorded from traffic cameras. In
drug discovery, as another application of UQ methods, it is a challenge to predict the physical properties
and bioactivity of small molecules. Zhang et al. [354] used Bayesian semi-supervised graph convolutional
neural networks to achieve UQ and AL. Sampling from a posterior distribution was applied in this Bayesian
approach, which estimates uncertainty in a statistically principled way. Semi-supervised learning untangled
regression and representation learning, allowing the model to start AL from small training data and keeping
uncertainty estimates accurate with a low data limit. Their method highlighted the promise of BDL in
chemistry.

According to the literature, it is obvious that machine learning has the potential to give valuable assistance
in clinical decision making, especially in the intensive care unit (ICU) of a hospital. Traditional machine
learning models do not take into account uncertainty in predictions. Ruhe et al. [355] showed how predictive
uncertainty and Bayesian modeling could be utilized to recognize out-of-domain examples and reduce the risk
of faulty predictions. They utilized BNNs to predict the risk of mortality of ICU patients. Their empirical
results showed that uncertainty could be used to detect out-of-domain patients and avoid probable errors.
Many machine learning techniques need human supervision to yield optimal performance. The quality of
manual annotations is essentially limited in methods such as DensePose. Neverova et al. [356] addressed the
issue by augmenting neural network predictors with the ability to output a distribution over labels, thus
introspectively and explicitly capturing the aleatoric uncertainty in the annotations. New SOTA accuracy
on the benchmark could be achieved by having a better understanding of uncertainty and hence solving the
original DensePose task more accurately. The uncertainty estimates produced by multiple models could be
used in fusing predictions in a better way to ensemble models that could enhance accuracy further.

As mentioned earlier, uncertainty estimates in RL tasks and large vision models can be obtained via
dropout. A grid search over the dropout probabilities is essential — this is impossible with RL and a
prohibitive operation with large models. Gal et al. [357] devised a novel dropout variant that attained better
performance and improved the calibrated uncertainties. They used a continuous relaxation of dropout’s
discrete masks that was based on recent advancements in BDL. They analyzed their variant on several tasks
and provided insights into usual practice in areas where larger dropout probabilities are often utilized in
deeper model layers.

Mobile robots for indoor use depend on 2D laser scanners for navigation, localization and mapping.
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These sensors are unable to measure the full occupancy of complex objects and cannot detect transparent
surfaces. These estimates are prone to uncertainty, making the evaluation of confidence a significant issue for
autonomous navigation and mapping. Verdoja et al. [358] proposed a solution to the problem using CNNs,
as another application of UQ methods. They demonstrated that uncertainty regarding obstacle distances
was, however, better modeled with a Laplacian distribution. They created maps based on DNN uncertainty
models. Their algorithm was used to create a map that included information on obstacle distance estimates
while taking account of the level of uncertainty in each estimate. Traditional high-dimensional data reduction
methods such as projection pursuit regression (PPR), reduced rank regression (RRR), partial least squares
(PLS), and principal component analysis (PCA) are all shallow learners. Polson et al. [359] examined DL
counterparts that exploited multiple deep layers of data reduction and provided predictive performance
gains. Dropout regularization and SGD training optimization provided variable selection and estimation.
They illustrated their technique by providing an analysis of international bookings on Airbnb.

Energy (e.g., electricity markets) is another common domain for the application of different UQ methods
with machine and deep learning. Successful participation in liberalized electricity markets can be achieved
by forecasting accurate day-ahead energy prices. Brusaferri et al. [360] presented a new approach based on
BDL strategies for probabilistic energy price forecast. Scalability to a complex network was guaranteed by
executing a specific training method. They examined their system on two day-ahead markets characterized by
different behaviors. The robust performance of the system was achieved by providing forecast uncertainty
indications in out-of-sample conditions. Moreover, class imbalance in remote sensing poses a challenge
for land cover mapping, where small objects get less attention in yielding better accuracy. Uncertainty
quantification on pixel levels using CNNs is another issue in remote sensing. Kampffmeyer et al. [361]
devised a deep CNN in remote sensing images for land cover mapping primarily aiming at urban areas.
Their method aimed to achieve good accuracy for small objects. They applied recent technologies for UQ
in the domain of remote sensing. This method yielded an overall classification accuracy of 87%. On the
other hand, accurately predicting the net load arising from distributed photovoltaic (PV) generation is a
great challenge. Sun et al. [362] presented a new probabilistic day-ahead net load forecasting technique to
capture both aleatoric uncertainty and epistemic uncertainty utilizing BDL. The performance of aggregated
net load forecasting was improved by considering residential rooftop PV outputs as the input features, and
it exploited clustering in subprofiles. The proposed scheme proved its efficacy with high PV visibility and
subprofile clustering.

Different UQ methods have also been applied to recommender systems, or recommendation systems.
For example, Zeldes et al. [363] proposed a new recommendation system named Deep Density Networks
(DDN), which combined content-based DL methods with a collaborative scheme to estimate uncertainty and
determine a robust model. Sun et al. [364] introduced a multi-aspect user interest model based on uncertainty
theory and sentiment analysis for recommendation systems, called MAUI (multi-aspect user-interest). The
proposed model was tested on five products obtained from three e-commerce websites. Uncertainty theory
was used to estimate the similarity of all user opinions. Moreover, Jasberg and Sizov [365] showed that
Bayesian brain theory can use the same models as Bayesian recommender systems. The impacts of these
theories are discussed in cases such as neural noise, decision making, and determining user preferences. The
obtained outcomes support integrating cognitive neuroscience into different intelligent systems to further
improve the prediction of a wide variety of human behaviors.

7. Discussion

We reviewed most UQ studies on machine and deep learning methods and briefly discussed their methods
in the previous sections. In what follows, we discuss the main advantages and disadvantages of the main UQ
methods. Moreover, we discuss several important literature gaps and open issues blocking the development
of UQ methods. Now, we briefly discuss the main advantages and disadvantages of a few UQ methods.
Table 4 lists the most important advantages and disadvantages of several well-known UQ methods in the
literature.

7.1. Literature Gaps and Open Issues

In what follows, we list the most important gaps and open issues that should be addressed in the near
future (see 7.1.1). Furthermore, we list a few future research directions for further studies, and the most
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Table 4: Advantages and disadvantages of UQ methods.

Method Advantage Disadvantage

Bayesian

MC

(1) No need to change the model training
process,

(2) Low training complexity,
(3) Easy to implement.

(1) Not very reliable for OoD data,
(2) Needs multiple samplings during

inference.

MCMC

(1) Computationally more intensive
compared to VI,

(2) Asymptotically guarantees of producing
exact samples.

(1) Very slow,
(2) Fail to find poor convergence,

(3) High MC error.

VI

(1) Very fast (faster than MCMC),
(2) Benefiting from stochastic optimization

methods,
(3) Suited to big datasets.

(1) Heavily depend on the starting
point,

(2) Very complicated calculations.

BAL

(1) Able to learn from small amounts
of data,

(2) Able to add samples with high
classification uncertainty to training.

(1) Lack of scalability to high-
dimensional data,

(2) Difficult to quantify loss functions.

BBB

(1) Returning the posterior over
the weights,

(2) Allowing more complicated prior
distributions.

(1) Requiring extra sweep over
KL trade-off coefficients,

(2) More parameters to train
(approximately two times).

VAE
(1) Easy to optimize its loss,

(2) Mapping an input sample in the
original data to latent factors.

(1) Collapse in latent space,
(2) Difficult to interpret the code,
(3) Low quality of the generated

sample images.

Ensemble
DE

(1) Robust prediction,
(2) Can be considered as base learners,
(3) Limiting the dispensable sensitivity

of particular training data,
(4) Robust uncertainty estimates.

(1) More resource consuming,
(2) Time consuming,

(3) Weak performance on smaller
problems.

DEB
or

BDE

(1) Can perform batter than DEs
in OoD settings,

(2) Emulating the analytic posterior predictive.

(1) Weaker than standard DEs
in not detrimental confident predictions,

(2) Lazy learning procedure.
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important gaps and open issues as well as future application directions (see 7.1.2) are discussed below. Finally,
we briefly discuss the lack of data and code availability in the literature, particularly in the application of
UQ methods (see 7.2).

7.1.1. General Gaps

In this subsection, the main general research gaps and open issues are discussed. The most important
literature gaps and open issues in the application of UQ methods are listed.

• This review shows that most of the proposed UQ methods are presented for supervised learning meth-
ods, followed by unsupervised. However, we note that there are fewer studies on semisupervised
learning methods. We believe that this is an important gap in the domain of UQ that could be filled
in the future.

• Our findings reveal that most UQ methods by far have been proposed for different types of NNs,
especially DL methods. However, there are many other methods in the field of ML for which uncertainty
has either not been investigated or has been superficially discussed. The probable reason for this is
that DL methods have been among the best (SOTA) methods in various fields (e.g., computer vision,
medical image analysis, NLP, time series analysis, signal processing). However, as a matter of fact, it
can be claimed that different types of traditional ML methods have significantly good performance in
the analysis of small data, whereas DL is almost incapable of performing this task.

• Fusion-based methods (e.g., multimodal Bayesian fusion [95], multilevel fusion [366], image fusion [367],
data fusion [368]) have shown great ability to optimize different machine and deep learning methods.
This led us to investigate the effects of a variety of fusion-based methods in dealing with uncertainty in
machine and deep learning methods. We realized that fusion-based methods have significant potential
to address the uncertainty of models. Therefore, we suggest that more fusion-based methods could be
used in future work for quantifying uncertainty.

• The results of our research show that although a variety of ensemble methods [369, 370, 371, 372, 373,
374, 375] also have a great ability to deal with uncertainty along with good performance and ability
to optimize the performance of other methods, the good capabilities of these methods have not been
used more widely. In other words, we noticed that these methods have performed remarkably well
in few studies. However, we realized that the ensemble methods are less commonly used in recent
studies. Therefore, we strongly recommend further studies on ensemble methods and their substantial
impact on quantifying uncertainty in the machine and deep learning domain. For example, Caldeira
and Nord [376] presented a comparative study to compare the performance of three important UQ
methods: BNN, CD and DE. Based on the obtained outcomes, they recommended DE for further
investigation and applications, as it achieved the best or comparable results in the study.

• Decision making is a cognitive process that results in choosing the best possible action or belief among
all other alternative options. There are few well-known theories, such as three-way decisions [377] and
info-gap (IG) decisions [378, 379], that can be used as UQ methods. Our findings reveal that these
theories have been able to help significantly in dealing with uncertainty. For this reason, we believe
that various decision making theories can be used during the decision making process for machine and
deep learning methods.

• Active learning (AL, sometimes also called optimal experimental design) plays a key role in dealing
with a lack of labeled data to label new data with the desirable outputs, as most researchers in the
domain of machine and deep learning are aware that obtaining labeled data is very difficult, costly
and time consuming. In a few extremely sensitive areas such as healthcare and self-driving cars, this
importance becomes more apparent. We have reviewed several good studies in this area, including
Gordon et al. [380], Lee et al. [381], Nguyen et al. [382], Hu et al. [383] and Qu et al. [384]. Our
reviews, however, reveal that although uncertainty in this area is quite important, very few studies
have been done on this subject. For example, Sinha et al. [385] proposed a new adversarial Al called
Variational Adversarial AL (VAAL). The proposed model trained a latent space by using a VAE and
an adversarial network trained to discriminate between labeled and unlabeled data (see Fig. 22). They
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Fig. 22: A schematic view of the VAAL model which is reproduced based on [385].

showed the dramatic impact of this type of method on UQ. For this reason, we believe that researchers
can fill this gap with further studies in order to improve the data labeling quality by obtaining far
more certainty than previous studies.

• Transfer learning is a technique to deal with training different machine and deep learning methods
well when there is not enough data to train the models properly. In other words, transfer learning is
a technique for repurposing and reusing already trained machine and deep learning methods in a set
of new situations. Based on our review study, this technique also has uncertainty. Hence, we would
recommend conducting more research in this area and proposing new UQ methods for transfer learning.

• Neural architecture search (NAS) methods are a set of techniques for automatically designing ANNs.
Uncertainty awareness in such methods is an important and sensitive area for the use of UQ methods.
However, the results of our research reveal that very few studies on this issue have been done so far.
Hence, we list this case as another research gap for further investigation. Moreover, neural ensemble
search methods [386] are well-developed techniques for uncertainty calibration.

• Self supervised learning (SSL) [387, 388] is an important subset of unsupervised learning for generating
output labels from different data objects by finding a relationship between various parts of the object or
a variety of views of the given object. We think that SSL methods have several sources of uncertainty,
and therefore, further investigation of these methods has a high potential as an important research gap
of UQ.

• The attention mechanism [389, 390] is a powerful strategy in NNs and DL methods to concentrate more
on adequate parts of the input data than on unnecessary (irrelevant) parts while performing a prediction
task. However, we found that selecting relevant and irrelevant parts of the data is accompanied by
uncertainty. Our reviews show that fewer studies of UQ have been conducted in this area. For this
reason, we also list this area as a research gap for further investigation.

• OoD [391, 392, 393, 394, 395, 396] inputs (samples) can improve the robustness of different models as
well as increase the uncertainty. For example, Lee et al. [381] proposed a new model called BTAML
for dealing with imbalanced data and the detection of OoD samples. According to previous studies, we
can see that detection of OoD samples can help in achieving outstanding performance with different
NN and DL methods. However, quantifying uncertainty in detecting OoD samples needs further
investigation [397].

• Hypernetworks [398, 399, 400] are a very powerful method of generating weights for one network
using another network. We found that quantifying uncertainty in hypernetworks can be a very useful
approach to achieving a better defense in dealing with adversarial samples. However, we found very
few studies dealing with uncertainties in hypernetworks [401]. Hence, we can also suggest this as an
open issue on which more research can be conducted to deal with uncertainty in hypernetworks.
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• Continual learning (CL) [402, 403, 404, 405, 406, 407] (or continual deep learning [408]) is a subset
of machine learning that provides an ability for different models to continually learn from a stream
of data. In other words, an algorithm deals with a sequence of samples (of stationary data) while
reusing former knowledge and then exploits it to better adapt to a changeable environment. Our
review shows that there are only a few studies introducing UQ methods in CL. Therefore, quantifying
uncertainties in the CL domain is another open research field for applying new UQ methods of dealing
with uncertainties.

• Graph neural networks (GNNs) [409, 410, 411, 412, 413] are powerful graph representation learning
methods that extract high-level features of related nodes from their topological neighborhoods. Uncer-
tainty quantification for GNNs in graph analytic tasks is still an open challenge. Our findings reveal
that even though Bayesian-based GNNs and GCNs (graph convolutional networks) [414, 415, 416, 417]
and deep graph BO [418] have shown promising outcomes for quantifying uncertainties in GNNs and
GCNs, there are a limited number of studies in this research domain. Hence, we recommend proposing
new efficient UQ methods for dealing with uncertainties in GNNs and GCNs.

• BO [419, 420] is a sample-efficient global optimization method for optimizing time-consuming black-box
objective functions, which take quite a long time to evaluate. We found that BO can be a very efficient
approach not only for optimizing a wide range of applications including hyperparameter tuning [421] but
also for quantifying uncertainties in machine and deep learning methods and quantifying uncertainties
in BO; this remains as an open issue for future investigation [422, 423].

• Uncertainty calibration is another approach for measuring a model’s calibration errors that has been
used in different case studies [169, 424, 425, 426]. However, we noticed that there are fewer studies
on the calibration of modern NNs, DLs and many other ML methods [427, 425, 428, 429, 430, 431].
Calibration measures can then be used for quantifying uncertainties in ML and DL predictions. Hence,
we recommend developing different uncertainty calibration approaches.

7.1.2. Future Directions Based on Applications

UQ methods have been making highly regarded achievements and obtaining distinguished performance
when applied to different machine and deep learning methods. However, there are some open challenges that
should be addressed. We provide several future directions of UQ methods for three main research topics:
computer vision and image processing, medical image processing and NLP.

Computer Vision and Image Processing: As discussed earlier, computer vision and image processing
are two main research domains for the application of different UQ methods. Although various studies
have been conducted in these areas, there are certainly still many open research directions that should be
considered in future studies. In the following, we aim to list a few of the most important future directions
in these domains.

Theoretical analysis and a more resilient inference methodology for various UQ methods should be inves-
tigated in future studies. For example, the integration of semisupervised learning and AL can be developed
for acquiring new samples. In addition, data labeling is a time-consuming and costly process in all domains,
not only computer vision and image processing. Therefore, we recommend conducting further studies on
automated data labeling techniques and investigating the impact of UQ methods. Applications of cascade
structures have proven to be a powerful mechanism for improving various machine and deep learning methods.
However, we think that simplifying these methods and their integration with UQ methods for different com-
puter vision and image processing tasks is valuable. Moreover, the integration of dynamic and multimodal
image restoration issues with some advanced inversion approaches (e.g., different plug-and-play schemes) for
applying UQ methods to reveal relevant point estimates is another interesting future research direction. In
addition, the review outcomes reveal that ensemble methods are still among the best approaches, especially
for detecting epistemic uncertainties (OoD issues). For this reason, the application of new ensemble methods
is another interesting research direction in computer vision and image processing.

The integration of UQ methods with different human pose architectures followed by using the estimated
uncertainty in future frame prediction and motion tracking tasks is another engaging open research direction.
Additionally, although we mentioned above some UQ methods for BAL, we note that better uncertainty es-
timates in BAL as well as more complex methods should be proposed in this domain. In addition, we found
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that detecting adversarial samples is an interesting challenge for BNNs [432]. Thus, we strongly recom-
mend further studies to develop more effective UQ methods for detecting adversarial samples. Sampling-free
learning methods (e.g., Bayesian quantized networks (BQNs) [433], sampling-free VI [434]) are powerful
techniques for learning an appropriate posterior distribution over their discrete parameters with truly cali-
brated uncertainty. Furthermore, embedding techniques have obtained outstanding performance in different
computer vision and image processing tasks. However, we found that there are very few studies on proba-
bilistic embedding strategies [435, 436] that quantify uncertainty. We also note that even though Bayesian
methods (i.e., variational Bayes [437]) have been used for UQ in capsule routing methods, the calibration of
uncertainty estimates of predictions by using different capsule networks is an open future research direction.
Online applications of different BNNs are an open issue for future investigations for various reasons such
as the limitations of variational techniques and risks in selecting the appropriate approximations of batch
posteriors [438]. The uncertainty of CL [439] is another open research direction in computer vision and
image processing. For example, Nguyen et al. [440, 441] proposed variational CL (VCL) to deal with un-
certainty and showed the effectiveness of such an approach. Finally, we found that quantifying uncertainty
in multitask transfer learning [442] is a very important research domain in which further investigations are
highly warranted.

Medical Image Analysis: One possible research direction that could be considered in the future is
a closer collaboration between medical and artificial intelligence researchers. Due to the high sensitivity
in this field of science, we strongly recommend collecting larger medical data in this domain. This can be
very helpful in resolving uncertainty, and as a result, the proposed machine and deep learning methods can
perform better in predicting various diseases and cancers. Ground-truth data for medical image segmentation
plays a critical role in the correctness of the obtained results. For this reason, closer cooperation between the
two groups can provide platforms for optimizing existing machine and deep learning models. Furthermore,
the referral of incorrectly predicted data to specialists has a great role in dealing with uncertainty. Hence,
there is a need for close collaboration between medical and computer researchers in the field of medical image
segmentation.

We also note that various fusion methods have good potential in segmentation uncertainty prediction for
medical images. Moreover, we found that in most previous studies, standard losses for medical segmentation
were used, whereas there are some new but effective losses that could be used. On the other hand, a
combination of both visualization of uncertainty and medical image segmentation can be used in AL computer
assisted diagnostic (CAD) systems to improve the segmentation output. Another important future direction
could focus on big medical data collection. Having more data can dramatically improve the performance of
various deep and machine learning methods. Our comprehensive review reveals that the problem of having
sufficient medical data is still open. However, if this is not possible, transfer learning techniques can be an
ideal solution for improving the training process. Using this technique, we can properly tune the applied DL
methods; however, we know there are a few uncertainties. As mentioned above, this can be considered an
open gap for future researchers.

The development of different semisupervised methods for medical image segmentation is another promis-
ing approach for dealing with medical data shortages. We found that UQ methods can have great impact
in semisupervised medical image segmentation, which is another interesting research direction for future
investigations. Along with all of these open directions in medical data analysis, MTL has also shown promis-
ing performance for medical data analysis. However, as Nguyen et al. [443] showed, adding UQ methods
to MTL can significantly quantify uncertainty for the prediction of clinical risks. However, as Gast and
Roth [283] stated, although probabilistic approaches have been used widely for several years, probabilistic
approaches have not been comprehensively applied in practice since sampling techniques are frequently too
slow. To address this issue, the development of proper probabilistic approaches [283] can be used in real
medical applications.

Natural Language Processing (NLP): There are a few NLP-based subjects such as neural machine
translation [444] and some other interdisciplinary subjects such as image captioning [445, 446, 447, 448] and
visual question answering (VQA) [449, 450, 451, 452, 453] that are closely associated with NLP. Finding the
right caption for an image has always been a challenge in computer science. In particular, this issue can be
accompanied by some uncertainties due to the merging of two important disciplines (i.e., image processing
and NLP). On the other hand, medical VQA is a very important task for health organizations to determine
the most appropriate answers to the given questions. Indeed, this topic involves both image processing and
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NLP tasks at the same time. We believe that because of the essence of this matter, adding methods to
deal with uncertainty can greatly contribute to the productivity of this branch of research. In addition,
classification of data stream text environments is an interesting domain for the application of UQ methods
for finding uncertain sentences.

Further Directions: In this section, we discuss a few research directions in various subjects such as
RL, numerical data analysis, signal processing and toy and synthetic data. For instance, the application of
meta RL (MRL) is effective and efficient in optimizing the decision performance. However, the decision-
making process always comes with uncertainty. Hence, we suggest adding UQ methods with various MRL
models to yield better decisions with more certainty. The proposed natural gradient approach [253] can
be generalized with some other approximation types (e.g., exponential-family distributions) and applied
to RL and stochastic optimization. Moreover, achieving a proper understanding of the interaction between
choosing an inference algorithm and an approximating family is another future research direction for synthetic
data (a regression task). Developing various stochastic regularization methods is another open direction for
researchers. We also note that leveraging the proper weights of the Frank-Wolfe optimization algorithm [117]
and determining how this technique interacts with some alternative procedures of approximate inference can
be interesting avenues for further investigation.

Moreover, digital healthcare is a very important research area that can help to make medicine more
precise and personalized. Quantifying uncertainty in digital healthcare and deploying it in real-world clinical
settings is another open research path. Approximate Bayesian inference in CL and sequential decision-
making applications should be used as an inner procedure of a larger method. In addition, this procedure
needs a robust version of BNNs. Hence, the application of deterministic VI [454] with different BNNs is an
ideal approach. Accordingly, the learning of different BNNs [455, 254] can be optimized by using various
assumed density filtering (ADF) techniques [456] and applying them in different machine and deep learning
tasks (e.g., NLP, computer vision and image processing, signal processing). In addition, ensemble-based
sampling [457, 458] methods have shown the ability to approximate sampling techniques (i.e., Thompson
sampling) and properly deal with uncertainty in complex methods such as different NNs. Finally, quantifying
uncertainties for multi-agent systems [459, 460] is another important future direction since an individual agent
cannot solve problems that are impossible or difficult.

7.2. Lack of Data and Code Availability

The availability of data and code plays a significant role in improving prior methods. In other words,
having data and code will assist researchers in examining proposed methods and finding the main gaps.
Our comprehensive review shows that most previous studies (especially medical case studies) do not share
their data and code with others. We understand that because there are few cases, the authors may not be
able to make the data or code public, but we believe sharing both the data and code will be very helpful
in improving the quality and performance of different machine and deep learning methods. In other words,
having the code and data of a research paper will accelerate the optimization of the code in the study.

8. Conclusion

Uncertainty quantification (UQ) is one of the key parts of the decision-making process. UQ methods
have become popular for evaluating uncertainty in various real-life applications, being an inseparable part of
traditional machine learning and deep learning techniques. This study provides a comprehensively review of
popular and efficient UQ methods that have been applied in traditional machine learning and deep learning.
Precisely, we presented a comprehensive description and comparative analysis of current state-of-the-art UQ
approaches. Moreover, we reviewed several UQ perspectives, including common UQ applications, in-depth
advantage discussions and main research gaps, ending by presenting some solid future research directions
in this area. We believe that this review paper focusing on the use of UQ methods in artificial intelligence
will benefit researchers in a variety of fields and may be considered a guideline for the use of UQ in deep
learning-based applications.
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[8] E. Hüllermeier, W. Waegeman, Aleatoric and epistemic uncertainty in machine learning: A tutorial
introduction, arXiv preprint arXiv:1910.09457 (2019).
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• Provided an extensive review of uncertainty quantification methods in deep learning. 

• Covered most applied Bayesian approaches for uncertainty quantification. 

• Listed notable ensemble techniques for quantifying uncertainty. 

• Discussed various applications of uncertainty quantification methods. 

• Summarized major open challenges and research gaps in uncertainty quantification.  
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