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Active Learning for Classification with

Abstention

Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi

Abstract

We construct and analyze active learning algorithms for the problem of binary classification with

abstention, in which the learner has an additional option to withhold its decision on certain points in

the input space. We consider this problem in the fixed-cost setting, where the learner incurs a cost

λ ∈ (0, 1/2) every time the abstain option is invoked. Our proposed algorithm can work with the

three most commonly used active learning query models, namely, membership-query, pool-based, and

stream-based. We obtain upper-bounds on the excess risk of our algorithm, and establish its minimax

near-optimality by deriving matching lower-bound (modulo polylogarithmic factors). Since our algorithm

relies on the knowledge of the smoothness parameters of the regression function, we then describe a

new strategy to adapt to these unknown parameters in a data-driven manner under an additional quality

assumption. We show that using this strategy our algorithm achieves the same performance in terms of

excess risk as their counterparts with the knowledge of the smoothness parameters. We end the paper

with a discussion about the extension of our results to the setting of bounded rate of abstention, the

details of which are given in [22].

Index Terms

Binary Classification, Minimax rates, Abstention

I. INTRODUCTION

We consider the problem of binary classification in which the learner has an additional provision

of abstaining from declaring a label. This problem models several practical scenarios in which

it is preferable to withhold a decision at the cost of some additional experimentation, instead
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of making an incorrect decision and incurring much higher costs. A canonical application of

this problem is in automated medical diagnostic systems [20], where classifiers which defer to a

human expert on uncertain inputs are more desirable than those that always make a decision.

Other key applications include dialog systems and detecting harmful contents on the web: it is

costly for many companies to incorrectly label harmful (harmless) content as harmless (harmful)

on their platform.

Active learning is a learning paradigm in which the learner can sequentially request labels at

certain input points selected based on the observed data. Existing results in the literature, such

as [12, 6], have demonstrated the benefits of active (over passive) learning, in terms of improved

sample complexity or equivalently, lower excess risk, in standard classification. However, in

the case of classification with abstention, the design of active learning algorithms and their

comparison with their passive counterparts have largely been unexplored. In this paper, we aim

to fill this gap in the literature.

In this paper, we study the problem of classification with a fixed-cost of abstention, in which

every usage of the abstain option results in a known cost λ ∈ (0, 1/2). The fixed-cost setting is

suitable for problems where a precise cost can be assigned to additional experimentation due to

using the abstain option. The analysis of this problem was initiated by [10], who derived the

Bayes optimal classifier for this setting, and then studied the trade-off between the error rate and

the rejection rate [9]. More recently, [14] obtained convergence rates for fixed-cost of abstention

classifiers in a non-parametric framework, similar to our paper. [2] and [31] proposed calibrated

convex surrogate loss functions for this problem, and obtained bounds on the excess risk of the

classifiers constructed using these loss functions via empirical risk minimization. [29] and [30]

studied an `1-regularized version of this problem, and [11] introduced a new framework that

involved learning a pair of functions, and proposed and analyzed convex surrogate loss functions.

An alternative to the fixed cost setting is the bounded-rate setting, in which the learner is allowed

to abstain for up-to a given fraction δ ∈ (0, 1) of the input samples at no cost. This setting is

more natural than fixed-cost in applications such as medical diagnostics, where the bottleneck

is the processing speed of the human expert [19]. Binary classification with a bounded-rate

of abstention has been studied less extensively than its fixed-cost counterpart. [19] proposed a

method to construct abstaining classifiers using ROC analysis. [13] re-derived the Bayes optimal

classifier for the bounded rate setting under the same assumptions as [10]. They further proposed

a general plug-in strategy for constructing abstaining classifiers in a semi-supervised setting, and
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obtained an upper-bound on the excess risk.

However, all the prior work mentioned above study this problem in the passive setting, and

thus a precise characterization of the potential benefits of active learning in this problem is not

available. In this paper, we aim to address this issue.

Contributions: We now summarize the main contributions of the paper:

1) We begin by proposing an active learning algorithm for the fixed-cost setting with knowledge

of the smoothness of the regression function, and obtain bounds on its excess risk. The proposed

algorithm is general enough to work for the three most commonly used active learning query

models: membership query, pool-based, and stream-based (Section III-A).

2) Under an additional quality assumption [23, 5], we then propose an adaptive strategy that

does not require the knowledge of the smoothness of the regression function, and achieves the

same performance in terms of excess risk (Section III-B).

3) We then demonstrate the minimax near-optimality of our proposed algorithms by deriving

matching (modulo logarithmic terms) lower-bound on the excess risk. The lower-bound proof

relies on a new comparison inequality for classification with abstention, and a novel construction

of a class of hard problems (Section III-C).

(4) We end with a discussion about extension of our results from the fixed-cost case to the

bounded-rate setting, which must be studied in a semi-supervised setting. The details of this

extension are given in the associated pre-print [22, Appendix C & D] due to space constraints.

II. PRELIMINARIES

Let X denote the input space and Y = {0, 1} denote the set of labels to be assigned to

points in X . We assume that X = [0, 1]D and d is the Euclidean metric on X , i.e., for all

x, x′ ∈ X , d(x, x′) :=
√∑D

i=1(xi − x′i)2. A binary classification problem is completely specified

by PXY , i.e., the joint distribution of the input-label random variables. Equivalently, it can also

be represented in terms of the marginal over the input space, PX , and the regression function

η(x) := PY |X (Y = 1 | X = x). A (randomized) abstaining classifier is defined as a mapping

g : X 7→ P (Y1), where Y1 = Y ∪ {∆}, the symbol ∆ represents the option of the classifier

to abstain from declaring a label, and P(Y1) represents the set of probability distributions on

Y1. Such a classifier g comprises of three functions gi : X → [0, 1], for i ∈ Y1, satisfying∑
i∈Y1

gi(x) = 1, for each x ∈ X . A classifier g is called deterministic if the functions gi take

values in {0, 1}. Every deterministic classifier g partitions X into three disjoint sets (G0, G1, G∆).
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Two common abstention settings considered in the literature are:

(i) Fixed-Cost, in which the abstain option can be employed with a fixed cost λ ∈ (0, 1/2). In

this setting, the classification risk is defined as lλ(g, x, y) := 1{g(x)6=∆}1{g(x)6=y}+λ1{g(x)=∆}, and

the classification problem is stated as

min
g
Rλ(g) := E[lλ(g,X, Y )] = PXY

(
g(X) 6= Y, g(X) 6= ∆

)
+ λPX

(
g(X) = ∆

)
. (1)

The Bayes optimal classifier is defined as g∗λ(x) = 1, 0, or ∆, depending on whether 1− η(x),

η(x), or λ is the smallest.

(ii) Bounded-Rate, in which the classifier can abstain up to a fraction δ ∈ (0, 1) of the

input samples. In this setting, we define the misclassification risk of a classifier g as R(g) :=

PXY
(
g(X) 6= Y, g(X) 6= ∆

)
, and state the classification problem as

min
g

R(g), subject to PX
(
g(X) = ∆

)
≤ δ. (2)

The Bayes optimal classifier for (2) is in general a randomized classifier. However, under some

continuity assumptions on the joint distribution PXY , it is again of a threshold type, g∗δ (x) = 1,

0, or ∆, depending on whether 1 − η(x), η(x), or γδ is minimum, where γδ := sup{γ ≥ 0 :

PX(|η(X)− 1/2| ≤ γ) ≤ δ} [10].

The main difference between (1) and (2) is that in the fixed-cost setting, the threshold levels are

known beforehand, while in bounded-rate, the mapping δ 7→ γδ is unknown, and in general is

quite complex. In order to construct a classifier that satisfies the constraint in (2), we need some

information about the marginal PX . Accordingly, this problem is studied in a semi-supervised

framework in which the learner can request a limited number (polynomial in query budget n) of

unlabelled samples to estimate the measure of any set of interest (details in [22, Appendix D]).

Active Learning Models: For the above abstention settings, we propose active classification

algorithms for three commonly used active learning models [21, § 2]: (i) membership query

(MQ), (ii) pool-based (PB), and (iii) stream-based (SB). MQ is the strongest query model, in

which the learner can request labels at any point of the input space. We use a slightly weaker

version of MQ in this paper that only requires labels sampled from PX restricted to certain

partitions of X , which we introduce in Definition 1. In the PB model, the learner is provided

with a pool of unlabelled samples and must request labels of a subset of the pool. Finally, in the
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SB model, the learner receives a stream of samples and must decide whether to request a label

or discard the sample.

A. Definitions

To construct our active classifier, we will require a hierarchical sequence of partitions of the

input space, called the tree of partitions [4, 18].

Definition 1. A sequence of subsets {Xh}h≥0 of X is said to form a tree of partitions of X ,

if they satisfy the following properties: (i) |Xh| = 2h and we denote the elements of Xh by

xh,i, for 1 ≤ i ≤ 2h, (ii) for every xh,i ∈ Xh, we denote by Xh,i, the cell associated with xh,i,

which is defined as Xh,i := {x ∈ X | d(x, xh,i) ≤ d(x, xh,j), ∀j 6= i}, where ties are broken

in an arbitrary but deterministic manner, and (iii) there exist constants 0 < v2 ≤ 1 ≤ v1 and

ρ ∈ (0, 1), such that for all h and i, we have B(xh,i, v2ρ
h) ⊂ Xh,i ⊂ B(xh,i, v1ρ

h), where

B(x, a) := {x′ ∈ X | d(x, x′) < a} is the open ball in X centered at x with radius a.

Remark 1. For the metric space (X , d) considered in our paper, i.e., X = [0, 1]D and d being

the Euclidean metric, the cells Xh,i are D-dimensional rectangles. Thus, a suitable choice of

parameter values for our algorithms are ρ = 2−1/D, v1 = 2
√
D, and v2 = 1/2.

Next, we define the dimensionality of the region of the input space at which the regression

function η(·) is close to some threshold value γ.

Definition 2. For a function ζ : [0,∞) 7→ [0,∞) and a threshold γ ∈ (0, 1/2), we define the

near-γ dimension associated with (X , d) and the regression function η(·) as

Dγ (ζ) := inf
{
a ≥ 0 | ∃C > 0 : M

(
Xγ
(
ζ(r)

)
, r
)
≤ Cr−a, ∀r > 0

}
,

where Xγ
(
ζ(r)

)
:=
{
x ∈ X : |η(x) − γ| ≤ ζ(r)

}
and M(S, r) is the r packing number of

S ⊆ (X , d).

The above definition is motivated by similar definitions used in the bandit literature, such as

the near-optimality dimension [4] and the zooming dimension [15]. For the case of X = [0, 1]D

considered in this paper, the term Dγ(ζ) must be no greater than D, i.e., Dγ(ζ) ≤ D. This

is because Xγ
(
ζ(r)

)
⊂ X , for all r > 0, and there exists a constant CD < ∞, such that

M(X , r) ≤ CDr
−D, for all r > 0.
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Remark 2. We will use an instance of near-γ dimension for stating our results defined as

D̃ = maxj=1,2{D̃j}, where D̃j := Dγj (ζ1) with ζ1(r) = 12(L1v1

v2
)βrβ and γj = 1

2
+ (−1)j(1

2
− λ)

in the fixed-cost setting, and γj = 1
2

+ (−1)jγδ in the bounded-rate setting.

III. FIXED-COST SETTING

In this section, we design active learning strategies for the problem of classification with a fixed

and known cost, λ ∈ (0, 1/2), of abstention. We begin by describing an algorithm that requires

the knowledge of the smoothness parameters of the regression function in Section III-A. Next,

we describe an adaptive strategy that achieves similar performance without the knowledge of the

smoothness parameters under an additional assumption in Section III-B. In Section III-C, we

derive lower-bounds to demonstrate the minimax near-optimality of our algorithms.

A. Algorithm with Known Smoothness Parameters

In this section, we propose an active learning algorithm, whose pseudo-code is shown in

Algorithm 1, for the problem of binary classification with a fixed cost, λ, of abstention, and

obtain theoretical bounds on its excess risk under the following two standard assumptions:

(MA) The joint distribution PXY of the input-label pair satisfies the margin assumption with

parameters C0 > 0 and α0 ≥ 0, for γ ∈ {1/2−λ, 1/2 +λ}, which means that for any 0 < t ≤ 1,

we have PX (|η(X)− γ| ≤ t) ≤ C0t
α0 .

(HÖ) The regression function η is Hölder continuous with parameters L > 0 and 0 < β ≤ 1,

i.e., for all x1, x2 ∈ (X , d), we have |η(x1)− η(x2)| ≤ L× d(x1, x2)β .

The Hölder continuity assumption (HÖ) ensures that points which are close to each other have

similar distribution on the label set. It is a standard assumption employed in a large number

of existing works in the nonparametric learning and estimation literature. Some examples of

prior work using Hölder continuity assumption are [1, 6, 17, 16]. For simplicity, we restrict

our attention to the case of β ≤ 1 so that it suffices to consider piecewise constant estimators

to achieve the minimax optimal rate. For Hölder functions with β > 1, our algorithms can be

suitably modified by replacing the piece-wise constant estimators with local polynomial estimators

[27, § 1.6].

The margin assumption (MA) controls the amount of PX measure assigned to the regions of the

input space with η(·) values in the vicinity of the threshold boundaries. The assumption (MA) as

employed in this paper is a modification of Tsybakov’s margin condition for binary classification [3,
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Definition 7] [26]. The original margin assumption for binary classification requires the condition

PX (|η(X)− γ| ≤ t) ≤ Cot
α0 to hold only for γ = 1/2. In contrast, for the classification with

abstention problem, the margin condition is required to hold at the threshold values 1/2 − λ

and 1/2 + λ (for the fixed-cost setting) and at 1/2 − γδ and 1/2 + γδ (for the bounded-rate

setting). As the abstention cost λ or the allowed abstention rate δ are changed, the threshold

values at which the margin condition is required to hold also changes. Thus it is implicit in

the definition that the parameters C0 and α0 are functions of λ in the fixed-cost setting, and

δ in the bounded-rate setting. This modified margin condition is a natural generalization of

the original margin assumption for the problem of classification with abstention, and it has be

employed in several existing works in classification with abstention literature such as [14, 2, 31].

A similar modified margin condition was also employed in a related problem of Neyman-Pearson

classification [24, 25].

Outline of Algorithm 1. At any time t, the algorithm maintains a set of active points Xt ⊂

∪h≥0Xh, such that the cells associated with the points in Xt partition the whole X , i.e., ∪xh,i∈XtXh,i =

X . The set Xt is further divided into classified active points, X (c)
t , unclassified active points,

X (u)
t , and discarded points, X (d)

t . The classified points are those at which the value of η has

been estimated sufficiently well so that we do not need to evaluate them further. The unclassified

points require further evaluation and perhaps refinement before making a decision. The discarded

points are those for which we do not have sufficiently many unlabelled samples in their cells

(in the stream-based and pool-based settings). For every active point, the algorithm computes

high probability upper and lower bounds on the maximum and minimum η values in the cell

associated with the point. The difference of these upper and lower bounds can be considered as

a surrogate for the uncertainty in the η value in a cell. In every round, the algorithm selects a

candidate point from the unclassified set that has the largest value of this uncertainty. Having

chosen the candidate point, the algorithm either refines the cell or asks for a label at that point.

At a high level, Algorithm 1 involves repeating the following two steps: 1) Maintaining a partition

of the input space, and for each set in the partition, constructing upper and lower confidence

bounds for the maximum and minimum (respectively) η values in the cell, and 2) Based on

these confidence bounds, either refine the partition or request a label. Finally, when the sampling

budget is exhausted, 3) Aggregate the information gathered by the sampling strategy to define an

abstaining classifier. We now describe these three steps in more details.
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Algorithm 1: An active learning algorithm for binary classification with the fixed-cost

λ ∈ (0, 1/2) of abstention, when the smoothness parameters, (L, β), are known.
Input: n, λ, L, β, v1, ρ, hmax = log n

1 Initialize t = 1, ne = 0, Xt = {x0,1}, X (u)
t = Xt, X (c)

t = ∅, X (d)
t = ∅

2 while ne ≤ n do

3 for xh,i ∈ X (u)
t do

4 if [lt(xh,i), ut(xh,i)] ∩ {1/2− λ, 1/2 + λ} = ∅ then

5 X (c)
t ← X

(c)
t ∪ {xh,i}

6 end

7 end

8 xht,it ∈ arg max
xh,i∈X

(u)
t
I

(1)
t (xh,i) = ut(xh,i)− lt(xh,i)

9 if
(
et
(
nht,it(t)

)
< L(v1ρ

ht)β
)

and (ht < hmax) then

10 X (u)
t ← X (u)

t \ {xht,it} ∪ {xht+1,2it−1, xht+1,2it}

11 ut(xht+1,i′)← ut(xht,it), lt(xht+1,i′)← lt(xht,it), for i′ ∈ {2it − 1, 2it}

12 else

13 call REQUEST_LABEL

14 end

15 t← t+ 1

16 end

Output: ĝ defined by Eq. (3)

a) Confidence Interval Construction: At t ≥ 1, for any cell Xh,i associated with a point

xh,i ∈ Xt, we compute an upper-bound on the maximum η value in the cell as ut (xh,i) :=

min{ut−1 (xh,i) , ūt (xh,i)}, where ūt (xh,i) = η̂t(xh,i) + et(nh,i(t)) +Vh. Here we have η̂t (xh,i) =

1
nh,i(t)

∑t
s=1 1{xht,it∈Xh,i}yt, et (nh,i(t)) is the confidence interval length on the estimate of the

average η value in the cell Xh,i (see Lemma 3), and Vh = L
(
v1ρ

h
)β is an upper-bound on the

maximum variation of the η value in a cell at level h of the tree of partitions (Xh)h≥0. We can

define the lower-bound on the minimum η value in the cell in a similar manner, lt (xh,i) :=

max{lt−1 (xh,i) , l̄t (xh,i)}, where l̄t (xh,i) := η̂t (xh,i) − et (nh,i(t)) − Vh. We set l0(xh,i) = −∞

and u0(xh,i) = +∞ for all xh,i.

b) Refine or Request Label: In order to select a candidate point, Algorithm 1 selects an unclassified

point with maximum amount of uncertainty in its value. The uncertainty is measured by the

index I(1)
t (xh,i) = ut (xh,i)− lt (xh,i) (Line 8). Having selected a candidate point xht,it at time t,
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the algorithm either refines the cell (Lines 9-11) or requests a label depending on the relative

magnitudes of et (nht,it(t)) and Vht (Line 13). The label request depends on the query model and

consists of the following steps: (i) In the membership query model (MQ), the point xt for which

we request the label is drawn from the distribution PX restricted to the cell Xht,it . (ii) In the

pool-based model (PB), we request the label if there is an unlabelled sample remaining in the

cell Xht,it , otherwise, we remove xht,it from X (u)
t and add it to X (d)

t . (iii) In the stream-based

model (SB), we discard the samples until a point in Xht,it arrives. If Nn = 2n2 log(n) samples

have been discarded, we remove xht,it from X (u)
t and add it to X (d)

t . The pseudo-code of the

above three steps is provided in the subroutine REQUEST_LABEL in Algorithm ??.

c) Classifier Definition: Let tn denote the time at which the n’th query is made and Algorithm 1

halts. We define the final estimate of the regression function as η̂(x) = η̂tn
(
πtn(x)

)
, where

πtn(x) :=
{
xh,i ∈ Xtn | x ∈ Xh,i

}
, and the discarded region of the input space as X̃ (d)

n :=

∪
xh,i∈X

(d)
tn

Xh,i. Finally, the classifier returned by the algorithm is defined as

ĝ(x) =


1 if utn

(
πtn(x)

)
> 1− λ or x ∈ X̃ (d)

n ,

0 if ltn
(
πtn(x)

)
< λ and x 6∈ X̃ (d)

n ,

∆ otherwise.

(3)

Analysis. Before stating an upper-bound on the excess risk of Algorithm 1, we show (Lemma 1)

that it will suffice to prove this bound for the MQ model. Note that in MQ, the set X̃ (d)
n is empty.

In Lemma 1 (proved in Appendix A-A), we show that under mild assumptions, the PX measure

of X̃ (d)
n in PB and SB models is no larger than 1/n with probability at least (1 − 1/n). This

implies that in these two models, with high probability, the misclassification risk of ĝ can be

upper-bounded by 1/n + PXY
(
ĝ(X) 6= Y, ĝ(X) 6= ∆, X 6∈ X̃ (d)

n

)
, where the analysis of the

second term is identical for all three active learning models.

Lemma 1. Assume that in the pool-based model, the pool size Mn > max{2n3, 16n2 log(n)},

and in the stream-based model, Nn = 2n2 log(n). Then, we have P
(
PX(X̃ (d)

n ) > 1/n
)
≤ 1/n.

As discussed above, given Lemma 1, we can carry out the rest of the analysis for the MQ

model, with the knowledge that the same result holds for the other two models with an additional

1/n term. We now obtain an upper-bound on the excess risk of the classifier constructed by

Algorithm 1 with a budget of n label queries in the MQ model.
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Algorithm 2: REQUEST_LABEL subroutine

Input: Mode, xht,it , ne, X
(d)
t , X (u)

t

1 Flag ← False;

2 if Mode==‘Membership’ then

3 xt ∼ PX (· | Xht,it), yt ∼ Bernoulli(η(xt)), Increment ← True ;

4 else if Mode==‘Pool’ then

5 if Zt ∩ Xht,it 6= ∅ then

6 choose x̃ht,it ∈ Zt ∩ Xht,it arbitrarily ;

7 yt ∼ Bernoulli (η (x̃ht,it)), Zt ← Zt \ {x̃ht,it}, Increment ← True;

8 else

9 X (d)
t ← X (d)

t ∪ {xht,it}, X (u)
t ← X (u)

t \ {xht,it};

10 end

11 else

12 counter ← 1 , discard ← True, Flag ← True ;

13 while
(
counter ≤ Nn

)
AND Flag do

14 Observe next element of the stream x ∼ PX ;

15 if x ∈ Xht,it then

16 yt ∼ Bernoulli(η(x)), discard ← False, Increment ← True, ;

17 Break

18 end

19 counter ← counter +1;

20 end

21 if discard then

22 X (d)
t ← X (d)

t ∪ {xht,it}, X (u)
t ← X (u)

t \ {xht,it};

23 end

24 if Increment then

25 ne ← ne + 1 ;

26 end

27 end



IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOLUME: 2, ISSUE: 2, JUNE 2021 11

Theorem 1. Suppose that the assumptions (MA) and (HÖ) hold, and let D̃ be the dimension

term defined in Remark 2. For a > D̃ and the corresponding Ca, assume n is large enough to

ensure ( n
logn

) ≥ ( 64Ca
L2v2β

1 va2
)(

8Lvβ1
ρβ

)(2β+a)/β . Then, for the classifier ĝ defined by (3), with probability

at least 1 − 2/n, we have Rλ(ĝ) − Rλ(g
∗
λ) = Õ

(
n−β(α0+1)/(2β+a)

)
, where the hidden constant

depends on the parameters L, β, v1, v2, ρ, C0, and a.

The above result (proof in App. A-B) improves upon the convergence rate of the plug-in scheme

of [14] in the passive setting, mirroring the benefits of active (over passive) learning in standard

classification. See Sec. IV for further discussion.

B. Adaptivity to Smoothness Parameters

The knowledge of the smoothness parameters, (L, β), is required by Alg. 1 at three junctures:

1) to define the index I(1)
t for selecting a candidate point, 2) to decide the set of classified and

unclassified active points, and 3) to decide when to refine a cell. In this section, we describe a

data-driven approach that can achieve similar convergence rates as Alg. 1, without the knowledge

of the smoothness parameters, but under an additional assumption.

Additional Notation. We need to introduce additional notation to describe the results of this

section. For any cell Xh,i, we define (i) the set E (h,i)
j = Xh+j ∩ Xh,i and the corresponding

partition of Xh,i, defined as H(h,i)
j := {Xh+j,i′ : xh+j,i′ ∈ E (h,i)

j }. In words, E (h,i)
j is the set

of points in the cell Xh,i that lie at level h + j in the tree of partitions (Xh)h≥0, and (ii)

η̃ (Xh,i) = η̃ (xh,i) :=
∫
Xh,i

ηdν, where ν is the Lebesgue measure1 on [0, 1]D. The empirical

counterpart of η̃ (Xh,i) at time t is denoted by η̂t (Xh,i) = η̂t (xh,i). Next we introduce ˆ̄η
(h,i)
j (t) :=

max
A∈H(h,i)

j
η̂t(A) and η̂

¯
(h,i)

j
(t) := min

A∈H(h,i)
j

η̂t(A), which represent the maximum and minimum

empirical average η values in cells in H(h,i)
j . We also define w(h,i)

j = max
A1,A2∈H(h,i)

j

(
η̃(A1)−

η̃(A2)
)
, and its empirical counterpart (at time t) as ŵ(h,i)

j (t) := ˆ̄η
(h,i)
j (t)− η̂

¯
(h,i)

j
(t). Finally, we

define Vh,i := supx1,x2∈Xh,i η(x1)− η(x2), which is the variation of the function η(·) in the cell

Xh,i. Note that under the assumption that the function is Hölder continuous with parameters

(L, β) and that the cell Xh,i is contained in a ball of radius v1ρ
h, we have Vh,i ≤ L

(
v1ρ

h
)β.

This is equal to the term Vh that we previously used in Algorithm 1. At the end, we introduce

1To reduce notation in stating the adaptive scheme, we assume that PX is the Lebesgue measure on [0, 1]D . The construction

can be extended to general PX that admit a density w.r.t. Lebesgue measure, by discarding regions where the density takes

values below a threshold.
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bt (h, i, j) :=
√

8 log(1/δt)
nh,i(t)(v2/v1)Dρj

, for 1 ≤ j ≤ kn :=
⌈ log(vD1 logn)

D log(1/ρ)

⌉
, where δt = 12

n2t2π2 log(n)
. Note that

by definition, we have et (nh,i(t)) ≤ bt (h, i, j), for all 1 ≤ j ≤ kn. Finally, for every xh,i ∈ X (u)
t ,

we introduce the following two terms: ĵ(h,i)
t := min{1 ≤ j1 ≤ kn : |ŵ(h,i)

j1
(t) − ŵ(h,i)

j2
(t)| ≤

4bt(h, i, j2), for all j1 ≤ j2 ≤ kn} and Ŵ (h,i)
t := 2

(
ŵ

(h,i)

ĵ
(h,i)
t

(t) + 6bt (h, i, kn)
)
.

Next we recall the definition of quality from [23], suitably modified for our problem.

Definition 3. For a given X = [0, 1]D, a regression function η : X 7→ [0, 1], and a tree of

partitions (Xh)h≥0, we say the pair (η, (Xh)h≥0) have quality q ∈ (0, 1), if the following holds:

for any cell Xh,i, there exist two cells Xh′,i1 and Xh′,i2 , both subsets of Xh,i, such that 1)

ν
(
Xh′,ij

)
≥ qν (Xh,i), for j = 1, 2, and 2) η̃ (Xh′,i1)− η̃ (Xh′,i2) ≥ Vh,i/2.

We now state the additional assumption required by our adaptive scheme:

(QU): The pair (η, (Xh)h≥0) has quality q > 1/ log(n), where n is the label budget.

Adaptive Version of Algorithm 1. in the MQ model consists of the following steps:

• Candidate points selection. We select one candidate point for every h, such that Xh ∩ Xt 6= ∅.

Thus, Line 8 of Algorithm 1 changes to xh,it ∈ arg max
xh,i∈X

(u)
t ∩Xh

(η̂t(xh,i) + et(nh,i(t))), for

all h : Xh ∩ X (u)
t 6= ∅.

• Request Label. For every candidate point, if the stopping rule (defined below) is not satisfied, we

request the label at a point drawn uniformly from the cell. Thus, in each round, the algorithm

may request up to hmax = O (log n) labels.

• Stopping Rule. We use the following rule for cell refinement: Refine a cell if ŵ(h,i)

ĵt
(t) −

8bt(h, i, kn) ≥ 0. This modification is introduced in Line 9 of Algorithm 1.

• Update X (u)
t and X (c)

t . We follow the same rule for updating the sets X (u)
t and X (c)

t as

in Lines 10-11 of Algorithm 1, but with the data-driven construction of ut and lt, defined

as ut (xh,i) = min{ūt (xh,i) , ut−1 (xh,i)}, where ūt (xh,i) = η̂t (xh,i) + et (nh,i) + Ŵ
(h,i)
t , and

lt (xh,i) = max{l̂t (xh,i) , lt−1 (xh,i)}, where l̄t (xh,i) := η̂t (xh,i)− et (nh,i)− Ŵ (h,i)
t .

Theorem 2. Suppose that the assumptions (MA), (HÖ), and (QU) hold, and let D̃(a) :=

max{D(a)
1 , D

(a)
2 }, with D

(a)
j = D1/2+(−1)j(1/2−λ)

(
ζ

(a)
1

)
and ζ

(a)
1 (r) := 42(Lv1/v2)βrβ, for r > 0.

Then, for large enough n, with probability at least 1− 2/n, for the classifier ĝ defined by (3)

and for any a > D̃(a), we have Rλ(ĝ)−Rλ(g
∗
λ) = O

(
n

log2(n) log(n logn)

)−β(1+α0)/(a+2β), where the

hidden constant depends on the parameters L, β, v1, v2, ρ, C0, and a, and is explicitly defined

in (10) and (11) in Appendix B (where the proof of the theorem is given).
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The result of Theorem 2 has two main differences with that of Theorem 1: 1) there is an

additional polylogarithmic in n factor in the excess risk bound, and 2) the dimension term D̃(a)

is larger than the corresponding dimension term D̃ in Theorem 1, as there is a factor of 42 in

the definition of ζ(a)
1 compared to 12 in the definition of ζ1. However, as we show in Section IV,

under an additional strong density assumption, both D̃ and D̃(a) can be upper-bounded by the

same quantity, max{0, D − α0β}, which can be much smaller than D.

Remark 3. We note that there are other adaptive schemes for active learning, such as [17, 16],

that can also be suitably modified to apply to the problem studied in this paper. Our adaptive

scheme allows us to obtain excess risk bounds that depend on the local dimensionality of the

space near the λ and 1− λ level sets of η, and thus, are most directly comparable to the excess

risk bounds of Alg. 1. Moreover, we present the risk bound for the adaptive scheme under the

(HÖ) assumption to facilitate comparison with Thm. 1. Our scheme can be easily modified to

deal with spatially inhomogeneous η, as well as η with only implicit similarity information, as

in [23, 5].

C. Lower Bound

We now derive minimax lower-bounds on the expected excess risk of the fixed-cost setting and

the membership query model. Since this is the strongest active learning query model, the obtained

lower-bounds are also true for the other two models. The proof follows the general outline for

obtaining lower-bounds described in works, such as [1, 17], reducing the estimation problem to

an appropriate multiple hypothesis testing problem, and then applying Theorem 2.5 of [27]. The

novel elements of our proof are the construction of an appropriate class of regression functions

(see Appendix C) and the comparison inequality presented in Lemma 2 (proof is in Appendix C).

Lemma 2. In the fixed-cost of abstention setting with the cost λ < 1/2, let g represent any

abstaining classifier and g∗λ represent the Bayes optimal one. Then, we have Rλ (g)−Rλ (g∗λ) ≥

cPX
(
(G∗λ \Gλ)∪ (Gλ \G∗λ)

)(1+α0)/α0 , where c > 0 is a constant and α0 is the parameter of the

assumption (MA).

Lemma 2 aids our lower-bound proof in several ways: 1) it motivates our construction of hard

problem instances in which it is difficult to distinguish between the ‘abstain’ and ‘not-abstain’

options, 2) it suggests a natural definition of pseudo-metric (see Thm. 4 in Appendix C-B), and
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3) it allows us to convert the lower-bound on the hypothesis testing problem to that on the excess

risk. We now state the main result of this section (see Appendix C for the proof).

Theorem 3. Let A be any active learning algorithm in the fixed-cost λ < 1/2 abstention setting

and ĝn be the abstaining classifier learned by A with n label queries. Let P (L, β, α0) represent

the class of joint distributions PXY satisfying the margin assumption (MA) with exponent α0 > 0,

whose regression function is (L, β) Hölder continuous with L ≥ 3 and 0 < β ≤ 1. Then, we

have infA supPXY ∈P(L,β,α0)

(
E [Rλ (ĝn)−Rλ (g∗λ)]

)
= Ω

(
n−β(1+α0)/(2β+D)

)
.

This result shows the minimax near-optimality of Algorithm 1, as its excess risk upper-bound

matches the lower-bound up to poly-logarithmic factors in the worst case when D̃ = D.

IV. DISCUSSION

A. Improved rates in active setting.

The convergence rates of the excess risk of our active learning algorithms improve upon those

obtained for the passive case in the literature. More precisely, the minmax excess risk in the passive

case is of the order Θ
(
n−β(1+α0)/(D+2β+α0β)

)
, where the upper bound of Õ

(
n−β(1+α0)/(D+2β+α0β)

)
is achieved by the plug-in scheme of [14] using the estimators of [1]. The lower bound of

Ω
(
n−β(1+α0)/(D+2β+α0β)

)
can be proved by using Lemma 2 and the construction used in the

proof of Theorem 3 (details in the supplementary material). In contrast, the minmax rate for the

active setting is Θ
(
n−β(1+α0)/(a+2β)

)
with the upper and lower bounds derived in Theorem 1 and

Theorem 3 respectively.

B. Extension to the Bounded-Rate setting

As mentioned earlier, the optimal abstaining classifier in the bounded-rate setting with parameter

δ corresponds to an optimal fixed-cost abstaining classifier with cost λ = λδ (= 1/2 − γδ

from Sec. II). Since the cost (i.e., λδ) in this case is unknown, this problem is studied in the

semi-supervised setting in which the learner can also request unlabelled samples drawn according

to the marginal PX . Under this setting, the idea underlying our fixed-cost algorithm (Algorithm 1)

can be generalized with suitable modifications to construct an active classifier for the bounded

rate setting. If the number of unlabelled samples available to the learner is sufficiently large,

then the proposed classifier again achieves a Õ
(
n−β(1+α0)/(D+2β)

)
upper bound on the excess

risk under an additional detectability assumption. This assumption is a converse to the (MA)
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assumption stated earlier and has been employed in several works in nonparametric learning and

estimation, such as [6, 7, 28].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and analyzed active learning algorithms for the problem of binary

classification with a fixed-cost of abstention. We proposed a new algorithm for this problem

that can work with three most commonly used active learning query models: membership-query,

pool-based, and stream-based. We obtained upper-bound on the excess risk of our algorithm

and demonstrated its minimax (near)-optimality by deriving matching lower-bound. We also

proposed a general strategy to adapt our algorithm to the smoothness parameters of the regression

function in a data driven manner under an additional quality assumption. A novel aspect of

our adaptive strategy is that it can also work for more general learning problems with implicit

distance measure on the input space. Finally, we ended with a discussion about the extension of

our results to the case of bounded-rate of abstention, the details of which are provided in [22].

An interesting topic for future work is the design of computationally efficient active learning

algorithms for classification with abstention. This might require considering a restricted function

class for η, along with techniques from existing works in literature, such as [8] and [2].
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APPENDIX A

PSEUDO-CODE AND PROOFS OF THE ALGORITHM FROM SECTION III-A

A. Proof of Lemma 1

We begin with the proof of Lemma 1 which shows that with probability at least 1− 1/n, the

PX measure of the (random) set X̃ (d)
n is no larger than 1/n.

Suppose the discarded region X̃ (d)
n := ∪

xh,i∈X
(d)
tn

Xh,i consists of T components, i.e., |X (d)
tn | = T .

Since the algorithm only refines cells up to the depth hmax = log(n), and the total number of

cells in Xhmax is 2hmax ≤ ehmax = n, we can trivially upper bound the number of discarded

cells/points with n, i.e., T ≤ n.

a) Stream-based setting.: In this case a cell Xh,i is discarded, if after Nn consecutive draws

from PX , none of the samples fall in Xh,i. We proceed as follows:

P
(
PX(X̃ (d)

n ) >
1

n

)
= P

 ∑
xh,i∈X (d)

tn

PX (Xh,i) > 1/n


(a)

≤ P
(
∃xh,i ∈ X (d)

tn : PX (Xh,i) > 1/(nT )
)

(b)

≤
∑

xh,i∈X (d)
tn

P
(
PX (Xh,i) >

1

nT
;xh,i ∈ X (d)

tn

)
(c)

≤ T

(
1− 1

nT

)Nn (d)

≤ n

(
1− 1

n2

)Nn

≤ exp

(
−Nn

n2
+ log (n)

)
(e)
=

1

n
.

In the above display,

(a) follows from the pigeonhole principle,

(b) follows from an application of union bound,

(c) follows from the rule used for discarding cells in the stream-based setting,

(d) follows from the fact that T ≤ n, and

(e) follows from the choice of Nn = 2n2 log(n).

b) Pool-based setting.: Let Z = {X1, X2, . . . , XMn} denote the pool of unlabelled samples

available to the learner, and for any Xh,i we introduce the notation Mh,i := |Z ∩Xh,i| to represent

the number of samples lying in the cell Xh,i. Recall that a cell Xh,i is discarded if the number

of unique unlabelled samples in the cell is smaller than the number of label requests in the
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cell, which can be trivially upper bounded by n, the total budget. Thus, introducing the terms

C1 := {xh,i | Mh,i < n} and C2 := {xh,i ∈ C1 | PX (Xh,i) ≥ 1/(n2)}, we get the following (for

any realization of Z):

PX

(
X̃n
)
≤ PX

 ⋃
xh,i∈C1

Xh,i


≤ n

(
1

n2

)
+ PX

 ⋃
xh,i∈C2

Xh,i

 ,

where in first term after the second inequality above, we use the fact that the total number of

cells discarded up to the depth of log(n) cannot be larger than n.

Now, we claim that to complete the proof, it suffices to show that for any Xh,i such that

PX (Xh,i > 1/n2), we have P (Mh,i < n) ≤ 1/n2. This is because C2 ⊂ {xh,i | PX (Xh,i) ≥

1/n2}, and |C2| ≤ n, and combined with the previous statement it implies that C2 is an empty

set with probability at least 1− 1/n.

Consider any cell Xh,i such that PX(Xh,i) = p ≥ 1/n2. For points Xj in Z define the Bernoulli(p)

random variable Uj = 1{Xj∈Xh,i}. Suppose Mn = max {2n3, 16n2 log(n)}. Then we have the

following:

P (Mh,i < n) = P

(
Mn∑
j=1

Uj < n

)
(a)

≤ P

(
1

Mn

Mn∑
j=1

Uj <
1

2n2

)
(b)

≤ P

(
1

Mn

Mn∑
j=1

Uj ≤ (1− 1/2) p

)
(c)

≤ exp (−Mnp/8)
(d)

≤ 1

n2
.

In the above display:

(a) follows from the fact that Mn ≥ 2n3,

(b) follows from the fact that p > 1/n2,

(c) follows from the application of Chernoff inequality for the lower tail of Binomial,

(d) follows from the fact that Mn ≥ 16n2 log(n) and p ≥ 1/n2.

Remark 4. Lemma 1 tells us that the region discarded by Algorithm 1 under the pool-based or

stream-based setting, will have PX measure smaller than 1/n with probability at least 1− 1/n.

For the remaining part of the input space, i.e, X \ X̃ (d)
n , all the three active learning frameworks

are equivalent because in all the three frameworks we can query any cell in the region X \ X̃ (d)
n .
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B. Proof of Theorem 1

We first present a lemma which gives us high probability upper and lower bounds on the

empirical estimates of the average η value in a cell Xh,i associated with a point xh,i, denoted

by η̃ (xh,i) :=
∫
Xh,i

η(x)dPX (x | Xh,i). The empirical estimate η̂t (xh,i) is assumed to have been

constructed from labels queried at samples drawn according to the distribution PX (· | Xh,i) in

an i.i.d. manner. In conjunction with Lemma 1, this next lemma provides a combined description

of the confidence intervals of the empirical estimates of the average η value of cells in X (u)
t or

X (c)
t constructed by any of the three active learning querying models.

Lemma 3. The event Ω1 = ∩t≥1Ω1,t occurs with probability at least 1 − 1
n

, where the events

Ω1,t, for t ≥ 1, are defined as

Ω1,t :=
{
|η̂t(xh,i)− η̃(xh,i)| ≤ et(nh,i), ∀xh,i ∈ Xt

}
, with et(nh,i) :=

√
2 log(2π2t3n/3)

nh,i(t)
,

where nh,i(t) is the number of times that xh,i has been queried up until time t.

Proof. It suffices to show that P (Ωc
1,t) ≤ 6

nπ2t2
. The result then follows from a union bound over

all t ≥ 1 and the fact that
∑

t≥1
1
t2

= π2

6
. Now, for a given xh,i ∈ Xt and for any et(nh,i(t)) > 0,

by Hoeffding-Azuma’s inequality, we have

Pr
(
|η̂t(xh,i)− η̃(xh,i)| > et(nh,i(t))

)
≤ 2e−net(nh,i(t))

2/2.

Finally, by selecting et(nh,i(t)) =

√
2 log
(

(2π2t3n)/3
)

nh,i(t)
, we obtain

P (Ωc
1,t) ≤ 2

∑
(h,i):xh,i∈Xt

e−nh,i(t)a
2
h,i/2

≤
∑

(h,i):xh,i∈Xt

3

nπ2t3

(a)
≤ 6

nπ2t2
.

(a) follows from the fact that |Xt| ≤ 2t, for all t ≥ 1. This is because of the following reasoning:

|X0| = 1, and for any 1 ≤ i ≤ t, we must have |Xi| ∈ {|Xi−1| + 1, |Xi−1|} ≤ |Xi−1| + 1. Thus

by induction, we get |Xt| ≤ t+ 1, which is no larger than 2t, for t ≥ 1.

We now present a result on the monotonicity of the term I
(1)
t (xht,it) which will be used in

obtaining bounds on the estimation error of the regression function.

Lemma 4. I(1)
t (xht,it) is non-increasing in t.
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Proof. The proof of this statement relies on the monotonic nature of ut(xh,i) and lt(xh,i). More

specifically, for any xh,i ∈ X (u)
t , we have I(1)

t+1(xh,i) ≤ I
(1)
t (xh,i) due to the definition of ut(xh,i)

and lt(xh,i given in Step 2 of Algorithm 1. Furthermore, if the algorithm refines the cell Xht,it , then

by definition, we also have I(1)
t+1(xh,i) ≤ I

(1)
t (xht,it), for h = ht + 1 and i ∈ {2it− 1, 2it}, due to

the cell refinement rule. These two statements together imply that the term sup
xh,i∈X

(u)
t
I

(1)
t (xh,i)

is also a non-increasing term.

We next derive a bound on the error in estimating the regression function at the cells close to

the threshold values λ and 1− λ.

Lemma 5. Suppose tn is the time at which Algorithm 1 stops (i.e., performs the nth query)

and X (u)
tn is the set of unclassified points at time tn. Define the term D̃ = max{D̃1, D̃2},

where {D̃j}2
j=1 := D1/2+(−1)j(1/2−λ) (ζ1) in which ζ1(r) = 12L(v1/(v2ρ))βrβ and Dλ(ζ) is from

Definition 2. Then for large enough n and for any a > D̃, with probability at least 1− 1
n

, we

have

|η(xh,i)− η̂(xh,i)| ≤ bn

=
4Lvβ1
ρβ

(
2Ca

L2v2β
1 va2

)β (
log(2πn/3)

n

) β
(a+2β)

,

for all xh,i ∈ X (u)
tn .

Proof. First, note that tn ≤ n2, where tn is the time step at which the algorithm halts. This

follows from the fact that the maximum depth explored by the algorithm is hmax = log n, which

implies that the maximum number of active points at any time is n. This implies that between

any two label requests there can be at most n cell expansions/refinements. Together, these facts

imply that tn ≤ n2.

Next, we recall that the algorithm refines the cell associated with a point xh,i, if et(nh,i(t)) ≤

Vh = L(v1ρ
h)β . The uncertainty of the estimate of η(xh,i) can be further upper-bounded at any

time t by setting t = tn in the expression of et(nh,i(t)), i.e.,

et (nh,i(t)) ≤

√
8 log(2π2n7/3)

nh,i(t)
.

Thus, to find an upper-bound on the number of times a point xh,i is queried by the algorithm, it

suffices to find the number of queries sufficient to ensure that
√

(8 log(2π2n7/3))/nh,i(t) is less
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than or equal to Vh. Equating this term with Vh, we obtain

nh,i(tn) ≤ 8 log(2π2n7/3)

L2v2β
1 ρ2hβ

, (4)

where tn is the time at which the budget of n label queries is exhausted and the algorithm stops.

Now, by definition, a point xh,i belongs to the set X (u)
t , only if {1/2−λ, 1/2+λ}∩[lt(xh,i), ut(xh,i)]

6= ∅. Suppose for a given xh,i ∈ Xt, the interval [lt(xh,i), ut(xh,i)] contains 1/2− λ. This implies

that for h ≥ 1, we have

sup
x∈Xh,i

|η(x)− 1/2 + λ| ≤ max

{
ut(xh,i) + Vh − 1/2 + λ,

1/2− λ− lt(xh,i)− Vh
}

(a)
≤ ut(xh,i)− lt(xh,i)
(b)
≤ 4Vh−1 = 4L

(
v1ρ

h−1
)β
.

(a) follows from the condition that lt(xh,i) ≤ 1/2− λ ≤ ut(xh,i).

(b) follows from the rule used for refining the parent cell of xh,i, after which xh,i becomes

active. More specifically, let t1 ≤ t be the time at which the parent cell of xh,i (denoted

by xh−1,i′) was refined to activate the point xh,i. Then due to the monotonicity of ut and

lt, we must have ut (xh,i) ≤ ut1 (xh−1,i′), and lt (xh,i) ≥ lt1 (xh−1,i′). By definition we have

ut1 (xh−1,i′)− lt1 (xh−1,i′) ≤ 2 (Vh−1 + et1 (nh−1,i′ (t1))). Finally, since the cell Xh−1,i′ was refined

at time t1, we must have et1 (nh−1,i′(t1)) ≤ Vh−1, which implies the inequality (b) in the above

display.

Now, we define the function ζ1(r) = 12L(v1/(v2ρ))βrβ and use it2 to define the term D̃1 = Dλ(ζ1)

(see Definition 2). Similarly, we define D̃2 = D1−λ(ζ1) at the other threshold value and introduce

the notation D̃ = max{D̃1, D̃2}. Thus, the total number of points that are activated by the

algorithm at level h of the tree, denoted by Nh, can be upper-bounded by the packing number

of the set Xλ
(
ζ1(v2ρ

h)
)
∪ X1−λ

(
ζ1(v2ρ

h)
)

with balls of radius v2ρ
h. Now, by the definition of

D̃, for any a > D̃, there exists a Ca < ∞ such that we can upper-bound Nh with the term

2Ca(v2ρ
h)a. Using the bound on Nh and nh,i(tn), we observe that the number of queries made

2Actually, a factor of 4 instead of 12 suffices, but we use 12 so that the same D̃ can be used for stating the result of the

bounded-rate setting as well.
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by the algorithm at level h of the tree is no more than Nhnh,i(tn). Hence, for any H ≥ 1, we

have
H∑
h=0

Nhnh,i(tn) ≤ 8 log(2π2n7/3)Cav
−a
2

L2v2β
1

H∑
h=0

(
1

ρ

)h(a+2β)

≤ 8 log(2π2n7/3)Cav
−a
2

L2v2β
1

(
1

ρ

)H(a+2β)

. (5)

Next, we need to find a lower-bound on the depth in the tree that has been explored by the

algorithm. This can be done by finding the largest H for which (5) is smaller than or equal to n.

By equating (5) with n, we obtain the following relation for the largest such value of H , denoted

by H0, (
1

ρ

)H0

=

(
L2v2β

1 va2
8Ca

)1/(a+2β)(
n

log(2π2n7/3)

)1/(a+2β)

. (6)

Now, for any x ∈ ∪
xh,i∈X

(u)
tn

Xh,i, we must have

|η̂(x)− η(x)| = |η̂tn(πtn(x))− η(x)| ≤ utn(x)− ltn(x)
(a)
≤ I

(1)
tn (xhtn ,itn ).

(a) follows from the point selection rule of the algorithm.

Lemma 6 implies that if the algorithm is evaluated a point at level H0 at some time t ≤ tn, then

we have

sup
xh,i∈X

(u)
tn

I
(1)
tn (xh,i) ≤ 4VH0−1 = 4L(v1ρ

H0−1)β := bn,

where

bn =
4Lvβ1
ρβ

(
8Ca

L2v2β
1 va2

)β/(a+2β)(
log(2π2n7/3)

n

)β/(a+2β)

= O

((
n

log n

)−β/(a+2β)
)
.

We note that the our classifier is well defined only when bn ≤ 1− 2λ, a sufficient condition for

which is that n is large enough to ensure that(
n

log n

)
≥
(

64Ca

L2v2β
1 va2

)(
4Lvβ1

(1− 2λ)ρβ

)(2β+a)/β

. (7)

Finally, we combine Lemma 5 with the margin assumptions to obtain the required result.

Lemma 6. The excess risk of the classifier ĝ in (3), learned by Algorithm 1, w.r.t. the optimal

classifier in the fixed cost of abstention setting, with the fixed abstention cost λ = 1/2 − λ,

satisfies Rλ(ĝ)−Rλ(g
∗
λ) ≤ Õ

(
n−β(α0+1)/(2β+a)

)
.
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Proof. By definition of the classifier ĝ = (Ĝ0, Ĝ1, Ĝ∆), under the event Ω1, the set Ĝ∆ ⊂ G∗∆.

Now, by Lemma 5, we know that sup
xh,i∈X

(u)
tn

I
(1)
t (xh,i) ≤ bn, which for n large enough ensures

that bn ≤ λ leading to Ĝ0 ⊂ {x ∈ X | η(x) ≥ 1/2}. This implies that Ĝ0 ∩G∗1 = ∅. Similarly,

we can obtain Ĝ1 ∩G∗0 = ∅. Thus, the excess risk of the estimated classifier can be written as

Rλ (ĝ)−Rλ (g∗λ) =

∫
Ĝ0

η(x)dPX +

∫
Ĝ1

(
1− η(x)

)
dPX + λPX

(
Ĝ∆

)
−
∫
G∗0

η(x)dPX −
∫
G∗1

(
1− η(x)

)
dPX − λPX(G∗∆)

=

∫
Ĝ0∩G∗∆

(η(x)− λ)dPX +

∫
Ĝ1∩G∗∆

(1− λ− η(x))dPX

+

∫
Ĝ∆∩G∗0

(λ− η(x))dPX +

∫
Ĝ∆∩G∗∆

(η(x)− 1 + λ)dPX

≤ bnPX
(
|η(X)− λ| ≤ bn

)
+ bnPX

(
|η(X)− 1 + λ| ≤ bn

)
≤ 2C0b

1+α0
n .

APPENDIX B

PROOF OF THEOREM 2 (THE ADAPTIVE SCHEME)

In this section, we elaborate on the adaptive scheme introduced in Section III-B of the main text.

Before describing the adaptive routine, we first state the following concentration result.

Proposition 1. For a cell Xh,i and 1 ≤ j ≤ kn, and time t ≥ 1, we define the event Θ(t, h, i, j)

as follows:

Θ(t, h, i, j) :=
{
|η̂t(A)− η̃(A)| ≤ bt (h, i, j) ∀A ∈ H(h,i)

j

}
where b (h, i, j) :=

√
8 log(δt)

nh,i(t)(v2/v1)Dρj
and δt =

12

n2 log(n)t2π2
.

Then the event Θ := {∩Θ (t, h, i, j) | t ≥ 1, (h, i) : xh,i ∈ Xt, 1 ≤ j ≤ kn} occurs with

probability at least 1− 1/n.

The proof of this result follows in an analogous manner to the proof of Lemma 3, and we omit

the details.

We next state the lemma, which tells us that the adaptive scheme ensures that the two conditions

mentioned at the beginning of this section are satisfied.
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Lemma 7. If the adaptive scheme refines a cell Xh,i at time t, and if nh,i denotes the number of

labels that were requested in the cells Xh,i before refining, then we have the following:

32 log(1/δt) log(n)

V 2
h,i

≤ nh,i (t) ≤
6273 log(1/δt) log n

V 2
h,i

.

Proof. We will drop the superscript and denote the terms such as w(h,i)
j with w(h,i)

j for this proof.

Since the cell was refined at time t ≥ 2, the following is true

|ŵĵt − ŵkn| ≤ 4bt (h, i, kn)⇒ ŵkn ≥ ŵĵt − 4bt (h, i, kn)

⇒Vh,i ≥ wkn ≥ ŵkn − 2bt(h, i, kn) ≥ ŵĵt − 6bt (h, i, kn) ≥ 2bt (h, i, kn) (8)

Since bt(h, i, kn) ≤
√

8 log(1/δt) log(n)
nh,i(t)

, this implies that

nh,i(t) ≥
32 log(1/δt) log n

V 2
h,i

.

Next, let t1 denote the time at which a label was requested in the cell Xh,i. Since it was not

refined at time t1, the following sequence is true.

|ŵĵt1 − ŵkn| ≤ 4bt1 (h, i, kn) ⇒ ŵkn ≤ ŵĵt1
+ 4bt(h, i, kn)

⇒ŵkn + 2bt1 (h, i, kn) ≤ 14bt1 (h, i, kn)

⇒Vh,i
2
≤ wkn ≤ ŵkn + 2bt1 (h, i, kn) ≤ 14bt1(h, i, kn).

This implies the following for N1 = log(n):

Vh,i
2
≤ 14

√
8 log(1/δt1) log n

(nh,i(t)− 1)

⇒ nh,i(t) ≤ 1 +
6272 log(1/δt) log(n)

V 2
h,i

≤ 6273 log(1/δt) log(n)

V 2
h,i

.

Next we present a lemma which obtains a bound on the maximum deviation of η(x) from 1/2−λ

or 1/2 + λ for x lying in the subset of the input space covered by the cells of the unclassified

active points.

Lemma 8. If a cell xh,i ∈ X (u)
t for some h ≥ 1, then we must have for i′ := b(i+ 1)/2c,

min{|η(xh,i)− 1/2− λ|, |η(xh,i)− 1/2 + λ|} ≤ 42Vh−1,i′ . (9)
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Proof. Let t1 ≤ t be the time at which the parent cell of Xh,i was expanded to include xh,i in the

active unclassified set, and let t2 ≤ t1 be the previous time instant at which the cell Xh−1,i′ was

queried. Since xh,i ∈ X (u)
t , the interval [lt(xh,i), ut(xh,i)] must contain either 1/2 + λ or 1/2− λ.

Without loss of generality assume that [lt(xh,i), ut(xh,i)] contains λ1 := 1/2 + λ (The other case

can be handled in exactly the same way.). Then we have the following:

|η(x)− λ1| ≤ ut (xh,i)− lt (xh,i) ≤ ut1 (xh−1,i′)− lt1 (xh−1,i′)

(a)

≤ ut2 (xh−1,i′)− lt2 (xh−1,i′) ≤ ūt2 (xh−1,i′)− l̄t2 (xh−1,i′) = 2
(
et2 (nh−1,i′) + Ŵ

(h−1,i′)
t2

)
(b)

≤ 2et2 (nh−1,i′) + 4 (8bt2 (h− 1, i′, kn) + 6bt2 (h− 1, i′, kn))

(c)

≤ 2bt2 (h− 1, i′, kn) + 4 (8bt2 (h− 1, i′, kn) + 6bt2 (h− 1, i′, kn))

(d)

≤
√

2 (2bt1 (h− 1, i′, kn) + 4 (8bt1 (h− 1, i′, kn) + 6bt1 (h− 1, i′, kn)))

≤ 84bt1 (h− 1, i′, kn)
(e)

≤ 42Vh−1,i′ .

In the above display,

(a) follows from the definition of the terms l̄t and ūt, and the fact that t1 ≤ t,

(b) follows from the fact that t2 ≤ t1 and the monotonicity of ut and lt,

(c) follows from the fact that et2 (nh−1,i′)) ≤ bt2 (h− 1, i′, kn),

(d) uses the fact that nh−1,i′(t2) ≥ nh−1,i′(t1)/2,

(e) uses the fact that Vh−1,i′ ≥ 2bt1 (h− 1, i′, kn) as shown in (8).

The rest of the proof follows along the lines of the proof of Theorem 1. We first present a lemma,

which is analogous to Lemma 5 and introduces an appropriate notion of dimensionality D̃(a) for

the adaptive scheme.

Lemma 9. Suppose tn is the time at which the adaptive algorithm stops (i.e., performs the

nth query) and X (u)
tn is the set of unclassified points at time tn. Define the term D̃(a) =

max{D̃(a)
1 , D̃

(a)
2 }, where {D̃(a)

j }2
j=1 := D1/2+(−1)jλ

(
ζ

(a)
1

)
in which ζ

(a)
1 (r) = 36L(v1/(v2ρ))βrβ

and D1/2+(−1)jλ(ζ) is from Definition 2. Then for large enough n and for any a > D̃(a), with

probability at least 1− 1
n

, we have

|η(xh,i)− η̂(xh,i)| ≤ b(a)
n = O

(
n

log2(n)

)−β(a+2β)

, for all xh,i ∈ X (u)
tn .
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Proof. We know from Lemma 7 that we have Nh,i ≤ 6273 log(n) log(1/δtn )

V 2
h,i

, where we used the fact

that δt is decreasing in t. Since the maximum depth is hmax = log(n), we must have tn ≤ n3.

Thus we can obtain the following bound:

Nh,i ≤
6273 log(n) log(1/δt)

V 2
h,i

≤ 6273 log(n) log(n5 log(n))

V 2
h,i

:=
Cn
V 2
h,i

. (10)

Also from Lemma 9, we know that any point in X (u)
t at level h satisfies min{|η(xh,i)− 1/2−

λ|, |η(xh,i)− 1/2 + λ|} ≤ 42Vh−1,i.

Due to the Holder continuity assumption on η, we again have Vh,i ≤ L
(
v1ρ

h
)β for all h, i. The

rest of the proof follows the steps of the proof of Lemma 5, and we get that

|η̂(xh,i)− η(xh,i)| ≤ L

(
v1

ρ

)β (
nva2L

2v2β
1

2CnCa

)−β/(a+2β)

:= b(a)
n = O

(
n

log2(n)

)−β/(a+2β)

(11)

A sufficient condition for this bound to be non-trivial (i.e., for the RHS to be less than 1) is if

the following holds:

n

log n log(n log n)
≥ L(a+2β)/β

(
62730Ca

va2L
2v2β

1

)(
v1

ρ

)a+2β

. (12)

Having obtained the result of Lemma 9, the result in the statement of Theorem 2 follows by an

application of Lemma 6.

APPENDIX C

PROOF OF LOWER BOUND

A. Proof of Lemma 2

[In this section, we use the notation
∫
A
fdµ as a shorthand for

∫
A
f(x)dµ(x) for the integral of

function f with respect to some measure µ over some set A.]
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We first observe the following:

Rλ(g)−Rλ(G
∗
λ) =

∫
Gλ

λdPX +

∫
G0

ηdPX +

∫
G1

(1− η)dPX

−
∫
G∗λ

λdPX −
∫
G∗0

ηdPX −
∫
G∗1

(1− η)dPX

=

∫
Gλ∩G∗0

(λ− η) dPX +

∫
Gλ∩G∗1

(λ− 1 + η) dPX +

∫
G∗λ∩G0

(η + λ) dPX

+

∫
G∗λ∩G1

(1− η − λ) dPX +

∫
G0∩G∗1

(2η − 1) dPX +

∫
G∗0∩G1

(1− 2η) dPX

:= T1 + T2 + T3 + T4 + T5 + T6.

We now consider the six terms separately.

• By definition of G∗1, we know that η ≥ 1− λ in this set. This implies that the integrand in

T5 is at least 1− 2λ ≥ 0. Thus we can lower bound T5 with 0. The term T6 can similarly

be shown to be non-negative.

• To lower bound the term T1, we partition G∗0 into two regions: G∗0,a which is close to the

boundary, and G∗0,b which is the region away from the boundary.

G∗0,a := {x ∈ G∗0 | η(x) ≥ λ− t}, and G∗0,b := G∗0 \G∗0,a,

where t > 0 will be decided later. In the set Gλ ∩G∗0,b, we have λ− η ≥ t, which implies

that

T1 =

∫
Gλ∩G∗0

(λ− η) dPX ≥
∫
Gλ∩G∗0,b

(λ− η) dPX ≥ tPX
(
Gλ ∩G∗0,b

)
≥ t
(
PX (Gλ ∩G∗0)− PX

(
G∗0,a

)) (i)

≥ tPX (Gλ ∩G∗0)− C0t
1+α0 ,

where the inequality (i) follows from the margin condition.

• To lower bound the term T2, we introduce the sets G∗1 into G∗1,a ∪G∗1,b where G∗1,a := {x ∈

G∗1 | η(x) ≤ 1− λ+ t} and G∗1,b := G∗1 \G∗1,a. We then have:

T2 =

∫
Gλ∩G∗1

(λ− 1 + η) dPX ≥
∫
Gλ∩G∗1,b

(λ− 1 + η) dPX ≥ tPX
(
Gλ ∩G∗1,b

)
≥ t
(
PX (Gλ ∩G∗1)− PX

(
G∗1,a

))
≥ tPX (Gλ ∩G∗1)− C0t

1+α0 .
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• To lower bound T3 we introduce G∗λ,a := {x ∈ G∗λ | η(x) ≤ λ+ t}, and G∗λ,b := G∗λ \G∗λ,a.

Then we have the following:

T3 :=

∫
G0∩G∗λ

(η − λ)dPX ≥
∫
G0∩G∗λ,b

(η − λ) dPX ≥ tPX
(
G0 ∩G∗λ,b

)
≥ t
(
PX (G0 ∩G∗λ)− PX

(
G∗λ,a

))
≥ tPX (G0 ∩G∗λ)− C0t

α0+1.

• Finally, to lower bound the term T4, we introuce G∗λ,c := {x ∈ G∗λ | η(x) ≥ 1− λ− t}, and

G∗λ,d = G∗λ \G∗λ,c. Then we have

T4 :=

∫
G1∩G∗λ

(1− η − λ)dPX ≥
∫
G1∩G∗λ,d

(1− η − λ)dPX ≥ tPX
(
G1 ∩G∗λ,d

)
≥ t
(
PX (G1 ∩G∗λ)− PX

(
G∗λ,c

))
≥ tPX (G1 ∩G∗λ)− C0t

α0+1.

Combining the above we have the following:

Rλ(g)−Rλ(g
∗
λ) ≥ t (PX (Gλ ∩ (G∗λ)

c) + PX (G∗λ ∩Gc
λ))− 4C0t

1+α0

= tPX (Gλ4G∗λ)− 4C0t
1+α0 . (13)

The result then follows by setting t such that tPX (Gλ4G∗λ) = 5C0t
1+α0 , which leads to the

following:

Rλ(g)−Rλ(g
∗
λ) ≥ C0

(
PX (Gλ4G∗λ)

5C0

)(1+α0)/α0

=

(
1

5

)(1+α0)/α0
(

1

C0

)1/α0

PX (Gλ4G∗λ)
(1+α0)/α0

:= cPX (Gλ4G∗λ)
(1+α0)/α0

B. Proof of Theorem 3

We follow the general scheme for obtaining lower bounds in nonparametric learning problems

used in prior work such as [1, 17]. This method involves constructing a set of hard problem

instances which are (1) sufficiently well separated in terms of some pseudo-metric, and (2)

sufficiently close together in terms of some statistical distance (such as KL divergence or χ2

distance). Once we have such a construction, we can employ Theorem 2.5 of [27] (recalled

below as Theorem 4) to get a lower bound on the distance in terms of the pseudo-metric for

any estimator. Finally, we can use the comparison lemma (Lemma 2) to convert this to a lower

bound on the excess risk.
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Theorem 4 (Theorem 2.5 of [27]). Assume that for M̃ ≥ 2, Θ = {θ1, . . . , θM̃}, d̃ is a pseudo-

metric on Θ, and {Pθj | θj ∈ Θ} is a collection of probability measures such that:

• d̃ (θi, θj) ≥ 2s > 0 for all 1 ≤ i, j ≤ M̃ .

• Pθi << Pθ0 for all 1 ≤ i ≤ M̃ .

• 1
M̃

∑M̃
j=1DKL

(
Pθj , Pθ0

)
≤ a log

(
M̃
)

for 0 < a < 1/8.

Then we have for M̃ ≥ 10,

inf
θ̂

sup
θ∈Θ

Pθ

(
d̃
(
θ̂, θ
)
≥ s
)
≥ 1

4

where the infimum is over all estimators θ̂ constructed using samples from Pθ.

We now describe the construction of the regression functions. First, given X = [0, 1]D, for

some ε > 0 to be decided later, we partition X into hypercubes of side ε, and denote by

M = (1/ε)D the number of such hypercubes. Let V be the set of centers of the hypercubes, i.e,

V = {z1, z2, . . . , zM}, and let π : X 7→ V denote the projection operator onto V .

a) Choose appropriate subsets of the input space.: Assuming D ≥ 2, let e1, e2, e3 and e4 denote

any four corner points of X = [0, 1]D. We define the following subsets of the space X

Qj := {x ∈ X | ‖x− ej‖ ≤ 1/3} for j = 1, 2, 3 and 4.

For ε small enough, we note that there exists a constant c1 > 0 such that the number of

hypercubes contained inside each Qj , denoted by Mj , can be lower bounded by c1M . (Note

that by symmetry M1 = M2 = M3 = M4, so we will use M̃ to denote any of Mj). We will

use Vj = {zj,1, zj,2, . . . , zj,M̃} to denote the centers of the hypercubes contained in Qj , and

Yj :=
⋃
z∈Vj B∞(z, ε/2) to denote the union of all the hypercubes strictly contained in Qj . Here

B∞(z, ε/2) denotes the hypercube with center z and side ε.

b) Define the regression function.: Let u : [0,∞) 7→ [0, 1] be a function defined as u(z) =

min{(1 − z)β, 0}. Note that u satisfies the following properties: (1) u(0) = 1 − u(1) = 1, (2),

u(z) = 0 for z ≥ 1, and (3) u is (1, β) Hölder continuous for 0 < β ≤ 1.

For any z ∈ S, we define the function ϕz(x) = L (ε/2)β u ((2/ε)‖x− z‖). By construction, the

function ϕz is is (L, β) Hölder continuous. Furthermore, we assume that ε is small enough to

ensure that L(ε/2)β < 1/2− λ.

For any ~σ(j) ∈ {−1, 1}M̃ , for j = 1, 2 we introduce the notation ~σ =
(
~σ(1), ~σ(2)

)
∈ {−1, 1}2M̃ .

Next we define η~σ(x) = λ +
∑M̃

i=1 σ
(1)
i ϕz1,i(x) for x ∈ Y1 and 1 − λ +

∑M̃
i=1 σ

(2)
i ϕz2,i(x) for

x ∈ Y2. For x lying in Q1 \ Y1 and Q2 \ Y2, we assign η~σ(x) the values λ and 1− λ respectively.
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Furthermore, we assign η~σ(x) = 1 for x ∈ Q3 and η~σ(x) = 0 for x ∈ Q4.

It remains to specify the values of η~σ(·) in the region X \
(⋃4

j=1Qj

)
. For any A ⊂ X and

x ∈ X , we use dA(x) := inf{‖y− x‖ | y ∈ A} to represent the distance of the point x from the

set A. We also introduce the terms z1 =
(

1/2−λ
L

)1/β

and z2 =
(

1
2L

)1/β, and assume that L ≥ 3

which ensures that z1 ≤ z2 ≤ 1/6. Now for all x ∈ X \
⋃4
j=1 Qj , we define

η~σ(x) =



λ+ Lu (1− dQ1(x)) if x : dQ1(x) ≤ z1

1− λ− Lu (1− dQ2(x)) if x : dQ2(x) ≤ z1

1− Lu (1− dQ3(x)) if x : dQ3(x) ≤ z2

Lu (1− dQ4(x)) if x : dQ4(x) ≤ z2

1/2 otherwise

This completes the definition of the regression function at all points in X . By construction, we

have that for any ~σ ∈ {−1, 1}2M̃ , the regression function η~σ is (L, β) Hölder continuous for

0 < β ≤ 1 and L ≥ 3.

c) Define the marginal PX .: Next, we need to define a marginal such that the margin condition

is satisfied with exponent α0 > 0. For this we can proceed as in [1, § 6.2] and for some

w < (1/(2M̃)), define the density of the marginal w.r.t. the Lebesgue measure as follows:

pX(x) =


w1B(π(x),ε/4)(x)

Vol(B(π(x),ε/4))
for x ∈ Y1 ∪ Y2

1−2M̃w
2Vol(Qj)

for x ∈ Qj, for j = 3, 4

0 otherwise.

We can now check that the joint distribution thus defined satisfied the Margin condition for a

given exponent α0 > 0 with constant C0 = (8/3)βα0 , if we have M̃w = O
(
εα0β

)
.

d) Apply Theorem 4.: In order to apply Theorem 4, we proceed as follows:

• Let Σ denote the set {−1, 1}2M̃ . Then by Gilbert-Varshamov bound [27, Lemma 2.9],

we know that there exists a subset of Σ, denoted by Σ̃, such that |Σ̃| ≥ 2M̃/4, ~σ0 =

(1, 1, . . . , 1) ∈ Σ̃, and for any ~σ1, ~σ2 ∈ Σ̃, we have dH(~σ1, ~σ2) ≥ M̃/4. Here dH(·, ·) denotes

the Hamming distance.

• Let P ′ denote the class of joint distributions P~σ with marginal PX , and conditional distribution

η~σ for ~σ ∈ Σ̃. For any two P~σ1 and P~σ2 in P ′, we introduce the pseudo-metric d̃ defined as

d̃ (P~σ1 , P~σ2) := PX (sign (η~σ1 − λ) 6= sign (η~σ2 − λ))+PX (sign (η~σ1 − 1 + λ) 6= sign (η~σ2 − 1 + λ)).
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Thus, by the properties of Σ̃, we get that for any ~σ1, ~σ2 ∈ Σ̃, we have

d̃ (P~σ1 , P~σ2) ≥ M̃w

4
.

• Next, by using Eq.(10) of [17], we can upper bound the average KL divergence between

the distributions in P ′ after n label requests by any active learning algorithm:

DKL (P~σ1 , P~σ2) ≤ 32nL2
( ε

2

)2β

.

If we select, ε = c2n
−1/(D+2β), with c2 small enough (a suitable value is c2 =

(
(4βc1)/(322L2)

)1/(D+2β)),

we have

DKL (P~σ1 , P~σ2) ≤ M̃

4
≤ 1

8
log
(
|Σ̃|
)
,

as required by Theorem 4.

Since all the conditions of Theorem 4 are satisfied by our construction, we can conclude that for

any active learning algorithm η̂, we have

inf
η̂

sup
(η,PX)∈P ′

P
(
PX (sign (η̂ − κ) 6= sign (η − κ) for κ ∈ {λ, 1− λ}) ≥ c3n

−(α0β)/(D+2β)
)
≥ 1

4
.

e) Apply the comparison inequality (Lemma 2).: Finally, by employing the comparison inequality

(Lemma 2), we obtain the following:

inf
ĝ

sup
(η,PX)∈P ′

P
(
Rλ (ĝ)−Rλ (∗) ≥ c4n

−β(1+α0)/(D+2β)
)
≥ 1

4
,

which gives us the required bound:

inf
ĝ

sup
(η,PX)∈P ′

E [Rλ(ĝ)−Rλ(g
∗)] ≥ c4

4
n−β(1+α0)/(D+2β).

C. Lower Bound for the Bounded-Rate setting

By exploiting the relation between the Bayes optimal classifier in the fixed-cost and bounded-rate

of abstention settings, we can obtain the following lower-bound on the expected excess risk in

the bounded-rate of abstention setting.

Corollary 1. For the bounded-rate of abstention setting, we have the following lower-bound:

inf
A

sup
PXY ∈P(L,β,α0)

(E [R(ĝn)−R(g∗δ )]) = Ω
(
n−β(1+α0)/(2β+D)

)
.

We prove this statement by using the correspondence between the Bayes optimal solution under

the fixed-cost and the bounded-rate abstention regimes. For a given δ > 0, we cannot directly
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apply the construction used in the proof of Theorem 3 because the amount of probability mass

contained in the region PX (|η − 1/2| ≤ 1/2− λ) is O
(
n−α0β/(D+2β)

)
which for large enough

n can be much smaller than a fixed δ > 0. Thus the λ level sets of the constructed regression

functions in the proof of Theorem 3 will not correspond to the Bayes optimal solution with rate

of abstention bounded by some fixed δ > 0.

This problem can be fixed in the following way. Let e5 denote a corner point of X = [0, 1]D other

than ej for j = 1, 2, 3 and 4, and define Q5 = {x ∈ X | ‖x−e5‖ ≤ 1/3}. The regression functions

constructed in the proof of Theorem 3 in the previous sections, are such that η~σ(x) = 1/2 for all

xx ∈ Q5. It suffices to re-define the marginal density pX to depend on ~σ in the following way:

p~σX(x) =



w1B(π(x),ε/4)(x)

Vol(B(π(x),ε/4))
for x ∈ Y1 ∪ Y2

1−δ
2Vol(Qj)

for x ∈ Qj, for j = 3, 4

δ−2M̃w
Vol(Q5)

for x ∈ Q5

0 otherwise.

Note that for n large enough and the same choice of parameters ε, and w, we must have

2M̃w = O
(
n−βα0/(2D+β)

)
≤ δ/2. This implies that P ~σ

X << P ~σ0
X for all ~σ in Σ = {−1, 1}2M̃ as

required by Theorem 4. The rest of the proof follows from the fact that revealing the threshold

can only further decrease the lower bound for the bounded-rate setting.

APPENDIX D

DETAILS FROM SECTION IV

A. Improved rates in active setting.

Suppose that the marginal PX has a density pX w.r.t. the Lebesgue measure, and that the density

is bounded below by a constant c0 > 0 almost surely. This implies that for any set A ⊂ X , we

have P(X ∈ A) = PX(A) ≥ c0Vol(A).

Here we show that under this assumption, we have D̃(a) ≤ max{0, D−α0β} which also implies

that D̃ ≤ max{0, D − α0β} as we know that D̃ ≤ D̃(a) by definition.

Define λj = 1/2 + (−1)jλ for j = 1, 2, and the set Xλj(ζ3(r)) := {x ∈ X | |η(x) − λj| ≤

42L(v1/(v2ρ))βrβ}. Then by the assumption (MA), we have the following

PX
(
Xλj(ζ1(r))

)
≤ C0L

α0

(
v1r

v2ρ

)βα0

≤ C̃1r
βα0
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for some constant C̃1 > 0 depending on L, v1, v2, ρ, C0, α0, β. Furthermore, by the additional

assumption on PX , for any x ∈ X and r > 0, we have

PX (B(x, r)) ≥ c0Vol (B(x, r)) = C̃2r
D

for some constant C̃2 > 0 depending on c0 and D. Thus for r > 0, the r-packing number of the

set Zr := Xλ1 (ζ3(r)) ∪ Xλ2 (ζ3(r)) can be upper bounded as follows:

C̃1r
βα0 ≥ PX (Zr) ≥M (Zr, r) C̃2r

D

⇒M (Zr, r) ≤
C̃1

C̃2

r−(D−βα0).

Finally, by the definition of near-λ dimension we observe that D̃(a) ≤ max{0, D − βα0}.
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