
Natural Actor–Critic Algorithms∗

Shalabh Bhatnagar†, Richard S. Sutton‡, Mohammad Ghavamzadeh§, and Mark Lee¶

June 2009

Abstract

We present four new reinforcement learning algorithms based on actor–critic, function ap-
proximation, and natural gradient ideas, and we provide their convergence proofs. Actor–critic
reinforcement learning methods are online approximations to policy iteration in which the value-
function parameters are estimated using temporal difference learning and the policy parameters
are updated by stochastic gradient descent. Methods based on policy gradients in this way are of
special interest because of their compatibility with function approximation methods, which are
needed to handle large or infinite state spaces. The use of temporal difference learning in this
way is of special interest because in many applications it dramatically reduces the variance of the
gradient estimates. The use of the natural gradient is of interest because it can produce better
conditioned parameterizations and has been shown to further reduce variance in some cases.
Our results extend prior two-timescale convergence results for actor–critic methods by Konda
and Tsitsiklis by using temporal difference learning in the actor and by incorporating natural
gradients. Our results extend prior empirical studies of natural actor–critic methods by Peters,
Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental
algorithms. We present empirical results verifying the convergence of our algorithms.

Key Words: Actor–critic reinforcement learning algorithms, policy gradient methods, ap-
proximate dynamic programming, bootstrapping, function approximation, two-timescale stochas-
tic approximation, temporal difference learning, natural-gradient.

1 Introduction

Many problems of scientific and economic importance are optimal sequential decision problems
and as such can be formulated as Markov decision processes (MDPs) [16, 62, 74]. In some cases,
MDPs can be solved analytically, and in many cases they can be solved iteratively by dynamic
programming or linear programming. However, in other cases these methods cannot be applied
either because the state space is too large, a system model is available only as a simulator, or no

∗A shorter version of this paper has been accepted as a regular paper in Automatica
†Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India. E-Mail:

shalabh@csa.iisc.ernet.in
‡Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8. E-Mail: sut-

ton@cs.ualberta.ca
§INRIA Lille - Nord Europe, Team SequeL, France. E-Mail: mohammad.ghavamzadeh@inria.fr
¶Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8. E-mail:

mlee@cs.ualberta.ca

1

system model is available. It is in these cases that the techniques and algorithms of reinforcement
learning may be helpful.

Reinforcement learning [19, 68] can be viewed as a broad class of sample-based methods for
solving MDPs. In place of a model, these methods use sample trajectories of the system and the
controller interacting, such as could be obtained from a simulation. It is not unusual in practical
applications for such a simulator to be available when an explicit transition-probability model of
the sort suitable for use by dynamic or linear programming is not [70, 34]. Reinforcement learning
methods can also be used with no model at all, by obtaining sample trajectories by direct interaction
with the system [13, 44, 54].

One of the biggest challenges to solving MDPs with conventional methods is handling large
state (and action) spaces. This is sometimes known as the “curse of dimensionality” because of the
tendency of the size of a state space to grow exponentially with the number of its dimensions. The
computational effort required to solve an MDP thus increases exponentially with the dimension
and cardinality of the state space. A natural and venerable way of addressing the curse is to
approximate the value function and policy parametrically with a number of parameters much
smaller than the size of the state space [14, 35, 33]. However a straightforward application of
such function approximation methods to dynamic programming has not proved effective on large
problems. Some work with reinforcement learning and function approximation has also run into
problems of convergence and instability [29, 8], but about a decade ago it was established that
if trajectories were sampled according to their distribution under the target policy (the on-policy
distribution) then convergence could be assured for linear feature-based function approximators
[72, 66, 69]. Reinforcement learning’s most impressive successes have in fact been on problems
with extremely large state spaces that could not have been solved without function approximation
[70, 34, 54]. The ability of sample-based methods to use function approximation effectively is one of
the most important reasons for interest in reinforcement learning within the engineering disciplines.

Policy-gradient reinforcement learning methods are some of the simplest reinforcement learning
methods and provide both a good illustration of reinforcement learning and a foundation for the
actor–critic methods that are the primary focus of this paper. In policy-gradient methods, the
policy is taken to be an arbitrary differentiable function of a parameter vector θ ∈ Rd. Given some
performance measure J : Rd → R, we would like to update the policy parameter in the direction
of the gradient:

∆θ ∝ ∇θJ(θ). (1)

The gradient is not directly available of course, but sample trajectories can be used to construct
unbiased estimators of it, estimators that can be used in a stochastic approximation of the actual
gradient. This is the basic idea behind all policy-gradient reinforcement learning methods [76, 52,
67, 46, 11, 58, 3, 39, 22, 23, 37, 38]. Theoretical analysis and empirical evaluations have highlighted
a major shortcoming of these algorithms, namely, the high variance of their gradient estimates, and
thus the slow convergence and sample inefficiency.

One possible solution to this problem, proposed by Kakade in 2002 [43] and then refined and
extended by Bagnell and Schneider [9] and by Peters et al. [56], is based on the idea of natural
gradients previously developed for supervised learning by Amari [5]. In the application to rein-
forcement learning, the policy gradient in (1) is replaced with a natural version. This is motivated
by the intuition that the policy updates should be invariant to bijective transformations of the
parametrization. Put more simply, a change in the policy parameterization should not influence
the result of the policy update. In terms of the policy update rule (1), the move to the natural

2

gradient rule amounts to linearly transforming the gradient using the inverse Fisher information
matrix of the policy. In empirical evaluations, natural policy gradient has sometimes been shown
to outperform conventional policy gradient methods [43, 9, 56, 60]. Moreover, the use of natural
gradients can lead to simpler, and in some cases, more computationally efficient algorithms. Three
of the four algorithms we introduce in this paper incorporate natural gradients.

In this paper we focus on a sub-class of policy-gradient methods known as actor–critic methods.
These methods can be thought of as reinforcement learning analogs of dynamic programming’s
policy iteration method. Actor–critic methods are based on the simultaneous online estimation
of the parameters of two structures, called the actor and the critic. The actor corresponds to a
conventional action-selection policy, mapping states to actions in a probabilistic manner. The critic
corresponds to a conventional state-value function, mapping states to expected cumulative future
reward. Thus, the critic addresses a problem of prediction, whereas the actor is concerned with
control. These problems are separable, but are solved simultaneously to find an optimal policy. A
variety of methods can be used to solve the prediction problem, but the ones that have proved most
effective in large applications are those based on some form of temporal difference (TD) learning
[65], in which estimates are updated on the basis of other estimates much as they are in dynamic
programming. Such “bootstrapping methods” [68] can be viewed as a way of accelerating learning
by trading bias for variance [63].

Actor–critic methods were among the earliest to be investigated in reinforcement learning [10,
64]. They were largely supplanted in the 1990’s by methods that estimate action-value functions
(mappings from states and actions to the subsequent expected return) that are then used directly
to select actions without constructing an explicit policy structure. The action-value approach
was initially appealing because of its simplicity, but theoretical complications arose when it was
combined with function approximation: these methods do not converge in the normal sense, but
rather may “chatter” in the neighborhood of a good solution [40]. These complications lead to
renewed interest in policy gradient methods. Policy gradient methods without bootstrapping can
easily be proved convergent, but can suffer from high variance resulting in slow convergence as
mentioned above, motivating their combination with bootstrapping TD methods as in actor–critic
algorithms.

In this paper we introduce four novel actor–critic algorithms along these lines. For all four
methods we prove convergence of the parameters of the policy and state-value function to a small
neighborhood of the set of local maxima of the average reward when the temporal difference error
inherent in the function approximation is small. Our results are an extension of our prior work
[24], and of prior work on the convergence of two-timescale stochastic approximation recursions
[1, 21, 45, 46]. That work had previously shown convergence to a locally optimal policy for several
non-bootstrapping algorithms with or without function approximation. Konda and Tsitsiklis [46]
have shown convergence for an actor–critic algorithm that uses bootstrapping in the critic, but our
results are the first to prove convergence when the actor is bootstrapping as well. Our results also
extend prior two-timescale results by incorporating natural gradients. Our results and algorithms
differ in a number of other, smaller ways from those of Konda and Tsitsiklis; we detail these in
Section 7 after the analysis has been presented.

Two other aspects of the theoretical results presented here should be mentioned at the outset.
First, one of the issues that arises in policy gradient methods is the selection of a baseline reward
level. In contrast to previous work, we show that, in an actor–critic setting when compatible
features are used, the baseline that minimizes the estimator variance for any given policy is in fact

3

the state-value function. Second, for the case of a fixed policy we use a recent result by Borkar and
Meyn [27] to provide an alternative, simpler proof of convergence (cf. [72, 73]) in the Euclidean
norm of temporal difference recursions.

In this paper we do not explicitly consider the treatment of eligibility traces (λ > 0 in TD(λ)
[65]), which have been shown to improve performance in cases of function approximation or partial
observability, but we believe the extension of all of our results to general λ would be straightforward.
Less clear is how or whether our results could be extended to least-squares temporal difference
methods [31, 28, 20, 49, 57]. It is not clear how to satisfactorily incorporate these methods in a
context in which the policy is changing. Our proof techniques do not immediately extend to this
case and we leave it for future work. We do consider the use of approximate advantages as in the
works of Baird [7] and Peters and Schaal [57].

The rest of the paper is organized as follows. In Section 2 we present our reinforcement learn-
ing framework and provide an overview of policy gradient methods. We motivate two-timescale
stochastic approximation in Section 3 as this is the technique used by our algorithms. In Section
4 we discuss policy gradient methods with function approximation and present some preliminary
results. We show here in particular that the minimum variance baseline for the action-value func-
tion corresponds to the state-value function and obtain a form of bias in gradient estimates that
results from the use of function approximation. Our four actor–critic algorithms are presented in
Section 5, and their convergence analysis is in Section 6. In Section 7 we discuss the relationship
of our algorithms to the actor–critic algorithm of Konda and Tsitsiklis [46] and the natural actor–
critic algorithm of Peters, Vijayakumar and Schaal [56]. Section 8 presents numerical experiments
verifying the operation of our algorithms. Section 9 contains concluding remarks.

2 The Policy Gradient Framework

We consider the standard reinforcement learning framework (e.g., see [68]) in which a learning
agent interacts with a stochastic environment. The overall model we consider is that of a discrete
time Markov decision process (MDP) with finite numbers of states and actions, and bounded
rewards. We allow S and A to respectively denote the state and action spaces of this MDP. For
simplicity, we assume that S is the set S = {1, . . . , n}. We denote by st, at and rt, the state,
action and reward, respectively, at time t. We assume that reward is stochastic, real-valued and
uniformly bounded. For simplicity and ease of notation, we assume that all actions in A are
feasible in each state. The state transition probabilities for the environment will be characterized
by P (s, a, s′) = Pr(st+1 = s′|st = s, at = a), ∀s, s′ ∈ S, a ∈ A. Further, the single-stage expected
reward when action a is taken in state s will be denoted R(s, a) = E[rt+1|st = s, at = a].

An admissible policy π̄ is a decision rule that is described by a sequence of functions π̄ = {µ0,
µ1, . . .} such that each µt : S → A, with action µt(s) taken in state s at instant t ≥ 0. A stationary
policy is a time invariant decision rule, i.e., one for which µt = µ, ∀t ≥ 0, for some µ : S → A.
Most often, one refers to the function µ itself as the stationary policy. A stationary randomized
policy π that we refer to as simply a randomized policy is specified via a probability distribution
π(s, ·) over A, for s ∈ S. Under the long-run average reward setting considered in this paper, it can
be shown that a stationary optimal policy exists [59]. Note that any stationary policy is trivially a
randomized policy as well. We motivate the following discussion from the viewpoint of randomized
policies as we consider a parameterized class of these in this paper. From now on, for simplicity,
we shall refer to a randomized policy as simply a policy.

4

For a given policy, the sequence of states produced by the MDP is a Markov chain. Throughout
the paper we assume
(A1) Under any policy π, the Markov chain resulting from the MDP, {st, t = 0, 1, 2, . . .}, is
irreducible and aperiodic.

Let dπ(s) denote the stationary probability of the Markov chain being in state s ∈ S, and let
dπ = (dπ(s), s ∈ S). Our aim is to find a policy π that maximizes the long-run average reward
J(π) given by

J(π) = lim
T→∞

1

T
E

[
T−1∑

t=0

rt+1|π

]
=
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)R(s, a). (2)

The limit in (2) is well defined by (A1). Let πopt denote an optimal policy

πopt = arg max
π

J(π).

Further, we shall denote by Qπ(s, a), the expected differential reward associated with a state–action
pair (s, a), given policy π, that is defined by

Qπ(s, a) =
∞∑

t=1

E[rt+1 − J(π)|s0 = s, a0 = a, π], ∀s ∈ S, a ∈ A.

Likewise, we denote by V π(s), the expected differential reward associated with a state s when
actions are selected according to policy π. Here

V π(s) =
∑

a∈A

π(s, a)Qπ(s, a).

The Poisson equation under policy π is given by [59]

J(π) + V π(s) =
∑

a∈A

π(s, a)[R(s, a) +
∑

s′∈S

P (s, a, s′)V π(s′)], ∀s ∈ S. (3)

In policy gradient methods, we define a class of parameterized randomized policies {πθ(s, .), s ∈
S, θ ∈ Rd1}, estimate the gradient of the average reward with respect to the policy parameters
θ from the observed states, actions, and rewards, and then improve the policy by adjusting its
parameters in the direction of an estimate of the gradient of J with respect to θ. Since in this
setting a policy π is represented by its parameters θ, J can be viewed as a function of θ and by
abuse of notation, we let J(θ) denote the long-run average reward when the parameter is θ. In what
follows, we shall interchangeably use J(π) or J(θ) to denote the long-run average reward when the
policy π or its associated parameter θ are to be emphasized. We also drop θ from πθ, and simply
denote this quantity as π. The optimum parameter can now be obtained as

θopt = arg max
θ

J(θ).

The following assumption is a standard requirement in policy gradient methods.

5

(A2) For any state–action pair (s, a), π(s, a) is continuously differentiable in the parameter θ.

Previous works [52, 67, 11] have shown that the gradient of the average reward for parameterized
policies that satisfy (A1) and (A2) is given by1

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)Qπ(s, a). (4)

For the case of Markov processes with a parameterized infinitesimal generator, a similar expression
can be found in [32]. Observe that if b(s) is any given function of s (also called a baseline), then

∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)b(s) =
∑

s∈S

dπ(s)b(s)∇

(∑

a∈A

π(s, a)

)
=
∑

s∈S

dπ(s)b(s)∇(1) = 0,

and thus, for any baseline b(s), the gradient of the average reward can be written as

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)[Qπ(s, a) ± b(s)]. (5)

The baseline b(s) can be chosen in a way that the variance of the gradient estimates ∇J(π) is
minimized [41].

The natural gradient, denoted ∇̃J(π), can be calculated by linearly transforming the regular
gradient, ∇J(π), using the inverse Fisher information matrix of the policy: ∇̃J(π) = G(θ)−1∇J(π).
The Fisher information matrix G(θ) can be seen to be [56, 9]

G(θ) = Es∼dπ,a∼π[∇ log π(s, a)∇ log π(s, a)⊤] =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)∇ log π(s, a)∇ log π(s, a)⊤. (6)

Matrix G(θ) plays an important role in the algorithms that use natural gradients [43, 57]. Here
Es∼dπ,a∼π[·] denotes the expectation under the conditional joint distribution where states are first
selected according to distribution dπ, and then given that a state s is selected, actions are selected
according to distribution π(s, ·). The Fisher information matrix is clearly positive definite [43].

A well-studied example of parameterized randomized policies, which we use in the experiments
of this paper, is the Gibbs (or Boltzmann) distribution having the form

π(s, a) =
eθ

⊤φsa

∑
a′∈A e

θ⊤φ
sa′
, ∀s ∈ S , ∀a ∈ A, (7)

where each φsa is a d1-dimensional feature vector for the state–action pair (s, a). The Gibbs dis-
tribution has connections with statistical mechanics and is also used in other domains such as
evolutionary algorithms [36] and the well-known simulated annealing search technique for multi-
variate optimization [4].

Before we proceed further, we first motivate two-timescale stochastic approximation [25] as our
algorithms also use this technique.

1In the rest of the paper we use the notation ∇ to denote ∇θ — the gradient with respect to the policy parameters.

6

3 Two-Timescale Stochastic Approximation Algorithms

Two-timescale stochastic approximation algorithms are typically characterized by coupled stochas-
tic recursions that are driven by two different (decreasing) step-size schedules, of which one has
a higher convergence rate to zero than the other. We present here more generally the setting of
two-timescale stochastic approximations. Suppose Xt, Yt, t ≥ 0 be two parameter sequences that
are governed according to

Xt+1 = Xt + αt(f(Xt, Yt) +N1
t+1), (8)

Yt+1 = Yt + βt(g(Xt, Yt) +N2
t+1), (9)

where f , g are Lipschitz continuous functions and {N1
t }, {N

2
t } are martingale difference sequences

w.r.t. the σ-fields F̄t = σ(Xn, Yn, N
1
n, N

2
n, n ≤ t), t ≥ 0, satisfying

E[‖ N i
t+1 ‖2| F̄t] ≤ D1(1+ ‖ Xt ‖

2 + ‖ Yt ‖
2), i = 1, 2, t ≥ 0,

for some constant D1 <∞. Also, here {αt} and {βt} are two step-size schedules that satisfy

∑

t

αt =
∑

t

βt = ∞,
∑

t

α2
t ,
∑

t

β2
t <∞, (10)

βt = o(αt). (11)

As a consequence of (11), βt → 0 faster than {αt}. Hence (8) is a ‘faster’ recursion than (9) as
beyond some t0 (i.e., for t ≥ t0), (8) has uniformly higher increments as compared to (9). Consider
the ODEs

.
X= f(X(t), Y (t)), (12)

.
Y= 0. (13)

Alternatively (as a consequence of (13)), one can consider the ODE

.
X= f(X(t), Y) (14)

in place of (12), where because of (13), Y is a constant. Suppose Assumptions (B1)–(B3) below
hold.
(B1) sup

t
‖ Xt ‖, sup

t
‖ Yt ‖<∞.

(B2) The ODE (14) has a globally asymptotically stable equilibrium µ(Y) where µ(·) is a Lips-
chitz continuous function.

Consider also the ODE
.
Y= g(µ(Y (t)), Y (t)). (15)

We also assume

(B3) The ODE (15) has a globally asymptotically stable equilibrium Y ⋆.

Define two real-valued sequences {rt} and {st} as rt =

t−1∑

n=0

αn and st =

t−1∑

n=0

βn, respectively.

Note that (rt−rt−1), (st−st−1) → 0 as t→ ∞. Define continuous time processes X̄(r), Ȳ (r), r ≥ 0

7

as X̄(rt) = Xt, Ȳ (rt) = Yt, respectively, with linear interpolations in between. For s ≥ 0, let Xs(r),
Y s(r), r ≥ s denote the trajectories of (12)-(13) with Xs(s) = X̄(s) and Y s(s) = Ȳ (s). Note that
because of (13), Y s(r) = Ȳ (s) ∀r ≥ s. Now (8)-(9) can be viewed as ‘noisy’ Euler discretizations
of the ODEs (12)-(13) when the time discretization corresponds to {rt}. This is because (9) can
be written as

Yt+1 = Yt + αt

(
βt

αt

(
g(Xt, Yt) +N2

t+1

))
,

and (11) implies that the term multiplying αt on the RHS above vanishes in the limit. One can
now show (cf. [25]) using a sequence of approximations involving the Gronwall inequality that for
any given T > 0, with probability one, sup

r∈[s,s+T]
‖ X̄(r) −Xs(r) ‖ → 0 as s→ ∞. The same is also

true for sup
r∈[s,s+T]

‖ Ȳ (r) −Y s(r) ‖ as well. Further, using the time discretization {st} for the ODE

(15), a similar conclusion with regards to iteration (9) (and ODE (15)) can be drawn following a
continuous time trajectory that is obtained with the iterates in (9) interpolated along the time line
{st}. The following is the main two-timescale convergence result (cf. [25]).

Theorem 1 Under Assumptions (B1)-(B3), (Xt, Yt) → (µ(Y ⋆), Y ⋆) as t → ∞, with probabil-
ity one.

4 Policy Gradient with Function Approximation

Now consider the case in which the action-value function for a fixed policy π, Qπ, is approximated
by a learned function approximator. If the approximation is sufficiently good, we might hope to
use it in place of Qπ in Equations (4) and (5), and still point roughly in the direction of the
true gradient. Sutton et al. [67] showed that if the approximation Q̂π

w with parameter w ∈ Rd1 is
compatible, i.e., ∇wQ̂

π
w(s, a) = ∇ log π(s, a), and minimizes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[Qπ(s, a) − Q̂π
w(s, a)]2 (16)

for parameter value w⋆, then we can replace Qπ with Q̂π
w⋆ in Equations (4) and (5). We work with

linear approximation Q̂π
w(s, a) = w⊤ψsa in which the ψsa’s are compatible features defined according

to ψsa = ∇ log π(s, a). Convergence of a temporal difference critic under a linear approximation
when trajectories are sampled according to their distribution under the target policy has been estab-
lished earlier [66, 69, 72]. Note that compatible features are well-defined under (A2). As an example,
the compatible features for the Gibbs policy in Equation (7) are ψsa = φsa −

∑
a′∈A π(s, a′)φsa′ .

The Fisher information matrix of Equation (6) can be written using the compatible features as

G(θ) = Es∼dπ,a∼π[ψsaψ
⊤
sa] =

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)ψsaψ
⊤
sa.

Suppose Eπ(w) denotes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[Qπ(s, a) − w⊤ψsa − b(s)]2 (17)

8

of our compatible linear parameterized approximation w⊤ψsa and an arbitrary baseline b(s). Let
w⋆ = arg minw Eπ(w) denote the optimal parameter. We first show in Lemma 1 that the value
of w⋆ does not depend on the given baseline b(s); as a result the mean squared error problems of
Equations (16) and (17) have the same solutions. Next, in Lemma 2, we show that if the parameter
is set to be equal to w⋆, then the resulting mean squared error Eπ(w⋆) (now treated as a function
of the baseline b(s)) is further minimized when b(s) = V π(s) (see also Chapter 11 of [53]). In other
words, the variance in the action-value function estimator is minimized if the baseline is chosen to
be the value function itself.2

Lemma 1 The optimum weight parameter w⋆ for any given θ (policy π) satisfies3

w⋆ = G(θ)−1Es∼dπ,a∼π[Qπ(s, a)ψsa].

Proof Note that

∇wE
π(w) = −2

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[Qπ(s, a) − w⊤ψsa − b(s)]ψsa. (18)

Equating the above to zero, one obtains

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)ψsaψ
⊤
saw

⋆ =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)Qπ(s, a)ψsa −
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)b(s)ψsa.

The last term on the right hand side equals zero because

∑

a∈A

π(s, a)ψsa =
∑

a∈A

π(s, a)∇ log π(s, a) =
∑

a∈A

∇π(s, a) = ∇

(∑

a∈A

π(s, a)

)
= ∇(1) = 0

for any state s. Now from (18), the Hessian ∇2
wE

π(w) of Eπ(w) evaluated at w⋆ can be seen to be
2G(θ). The claim follows because G(θ) is positive definite for any θ. �

Next (as stated above), given the optimum weight parameter w⋆, we obtain the minimum vari-
ance baseline in the action-value-function estimator corresponding to policy π. Thus we consider
now Eπ(w⋆) as a function of the baseline b, and obtain b⋆ = arg min

b
Eπ(w⋆).

Lemma 2 For any given policy π, the minimum variance baseline b⋆(s) in the action-value-
function estimator corresponds to the state-value function V π(s).

Proof For any s ∈ S, let Eπ,s(w⋆) denote

Eπ,s(w⋆) =
∑

a∈A

π(s, a)[Qπ(s, a) − w⋆⊤ψsa − b(s)]2.

2It is important to note that Lemma 2 is not about the minimum variance baseline for gradient estimation. It is
about the minimum variance baseline of the action-value-function estimator.

3This lemma is similar to Theorem 1 in [43], except that we consider baseline b(s) which again can be seen as
additional basis functions in the sense of [56, 57].

9

Then Eπ(w⋆) =
∑

s∈S

dπ(s)Eπ,s(w⋆). Note that by Assumption (A1), the Markov chain corresponding

to any policy π is positive recurrent because the number of states is finite. Hence, dπ(s) > 0 for all
s ∈ S. Thus, one needs to find the baseline b(s) that minimizes Eπ,s(w⋆) for each s ∈ S. Now for
any s ∈ S,

∂Eπ,s(w⋆)

∂b(s)
= −2

∑

a∈A

π(s, a)[Qπ(s, a) − w⋆⊤ψsa − b(s)].

Equating the above to zero, we obtain

b⋆(s) =
∑

a∈A

π(s, a)Qπ(s, a) −
∑

a∈A

π(s, a)w⋆⊤ψsa.

The rightmost term equals zero because
∑

a∈A

π(s, a)ψsa = 0. Hence b⋆(s) =
∑

a∈A

π(s, a)Qπ(s, a) = V π(s).

The second derivative of Eπ,s(w⋆) with respect to b(s) is equal to 2. The claim follows. �

From Lemma 1, w⋆⊤ψsa is a least-squared optimal parametric representation for the action-value
function Qπ(s, a). On the other hand, from Lemma 2, the same is also a least-squared optimal
parametric representation for the advantage function Aπ(s, a) = Qπ(s, a) − V π(s). The mean-
squared error (17) is seen to be minimized w.r.t. the baseline b(s) for b⋆(s) = V π(s), thereby making
it more meaningful to consider w⋆⊤ψsa to be the least-squared optimal parametric representation
for the advantage function rather than the action-value function itself.

The temporal difference (TD) error δt is a random quantity that is defined according to

δt = rt+1 − Ĵt+1 + V̂st+1
− V̂st

, (19)

where V̂si
is an unbiased estimate of the differential reward in states si, i = t, t + 1. Likewise,

Ĵt+1 is an unbiased estimate of the average reward. Thus, in particular, these estimates satisfy
E[V̂st

|st, π] = V π(st) and E[Ĵt+1|st, π] = J(π), respectively, for any t ≥ 0. We assume here that
actions are chosen according to policy π. The next lemma, see also [56, 57] where it has been
mentioned as well, shows that δt is an unbiased estimate of the advantage function Aπ.

Lemma 3 Under given policy π with actions chosen according to it, we have

E[δt|st, at, π] = Aπ(st, at).

Proof Note that

E[δt|st, at, π] = E[rt+1 − Ĵt+1 + V̂st+1
− V̂st

|st, at, π] = R(st, at) − J(π) + E[V̂st+1
|st, at, π] − V π(st).

Now

E[V̂st+1
|st, at, π] = E[E[V̂st+1

|st+1, π] | st, at] = E[V π(st+1)|st, at] =
∑

st+1∈S

P (st, at, st+1)V
π(st+1).

Also, R(st, at) − J(π) +
∑

st+1∈S

P (st, at, st+1)V
π(st+1) = Qπ(st, at). The claim follows. �

10

By setting the baseline b(s) equal to the value function V π(s), Equation (5) can be written as
∇J(π) =

∑
s∈S d

π(s)
∑

a∈A π(s, a)ψsaA
π(s, a). From Lemma 3, δt is an unbiased estimate of the

advantage function Aπ(s, a). Thus, ∇̂J(π) = δtψstat
is an unbiased estimate of ∇J(π). However,

calculating δt requires having estimates, Ĵ , V̂ , of the average reward and the value function. While
an average reward estimate is simple enough to obtain given the single-stage reward function, the
same is not necessarily true for the value function. We use function approximation for the value
functions as well. Suppose fs is a d2-dimensional feature vector for state s (for some d2 ≥ 1).
We denote fs = (fs(1), . . . , fs(d2))

⊤. One may then approximate V π(s) with v⊤fs, where v is a
d2-dimensional weight vector which can be tuned (for a fixed policy π) using a TD algorithm. In
our algorithms, we then use

δt = rt+1 − Ĵt+1 + v⊤t fst+1
− v⊤t fst

(20)

as an estimate for the TD error, where vt corresponds to the value function parameter at time t.
From now on, unless explicitly mentioned, we shall consider δt to be defined according to (20). Let
V̄ π(s) denote the quantity

V̄ π(s) =
∑

a∈A

π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′], (21)

where vπ⊤fs′ is an estimate of the differential value function V π(s′) that is obtained upon conver-
gence of a TD recursion (above) viz., lim

t→∞
vt = vπ with probability one. Also, let δπ

t denote the

associated quantity
δπ
t = rt+1 − Ĵt+1 + vπ⊤fst+1

− vπ⊤fst
.

Here rt+1 and Ĵt+1 are the same as before. Then δπ
t corresponds to a stationary estimate of the

TD error (with function approximation) under policy π. We have the following analog of Theorem
1 of [67].

Lemma 4 E[δπ
t ψstat

|θ] = ∇J(π) +
∑

s∈S

dπ(s)[∇V̄ π(s) −∇vπ⊤fs].

Proof A simple calculation shows that

E[δπ
t ψstat

|θ] = E[E[δπ
t |st, at]ψstat

|θ]

=
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′ − vπ⊤fs]. (22)

Now from (21),

∇V̄ π(s) =
∑

a∈A

∇π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′]

+
∑

a∈A

π(s, a)[−∇J(π) +
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′].

Thus, from (22) and the above, we get

∑

s∈S

dπ(s)∇V̄ π(s) = E[δπ
t ψstat

|θ] −∇J(π) +
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′. (23)

11

Now observe that dπ(s) correspond to the stationary probabilities that satisfy

dπ(s) =
∑

s′′∈S

dπ(s′′)pπ(s′′, s), s ∈ S, with
∑

s′′∈S

dπ(s′′) = 1, (24)

where pπ(s′′, s) =
∑

a∈A

π(s′′, a)P (s′′, a, s) are the transition probabilities of the resulting Markov

chain under policy π. Hence,

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′ =
∑

s∈S

dπ(s)
∑

s′∈S

pπ(s, s′)∇vπ⊤fs′

=
∑

s′∈S

∑

s∈S

dπ(s)pπ(s, s′)∇vπ⊤fs′ =
∑

s′∈S

dπ(s′)∇vπ⊤fs′. (25)

The claim now follows from (23). �

Note that according to Theorem 1 of [67], E[δtψstat
|θ] = ∇J(π), provided δt is defined accord-

ing to (19). For the case with function approximation that we study, from Lemma 4, the quantity∑
s∈S d

π(s)[∇V̄ π(s) −∇vπ⊤fs] may be viewed as the error or bias in the estimate of the gradient
of average reward that results from the use of function approximation. It is interesting to observe
that this does not depend on the differential reward V π(s) that is obtained as a solution to (3).
We also have

Corollary 1
∑

s∈S

dπ(s)[V̄ π(s) − vπ⊤fs] = 0.

Proof This follows directly from the definition of V̄ π(s) in (21), the definition of J(π) in (2),
and an analogous equation as (25) with vπ⊤fs′ in place of ∇vπ⊤fs′. �

5 Actor–Critic Algorithms

We present four new actor–critic algorithms in this section. These algorithms are in the general
form shown in Table 1. They update the policy parameters along the direction of the average
reward gradient. While estimates of the regular gradient are used for this purpose in Algorithm
1, natural gradient estimates are used in Algorithms 2–4. Let V̂ (s, v) = v⊤fs denote the parame-
terized approximation to the differential value function in state s. One can also denote the same
as V̂ (v) = Φv, where Φ is an n × d2–dimensional matrix whose kth column (k = 1, . . . , d2) is
f(k) = (fs(k) , s ∈ S)⊤. We make the following assumption as in [73] (see also [72]).

(A3) The basis functions {f(k), k = 1, . . . , d2} are linearly independent. In particular, d2 ≤ n
and Φ has full rank. Also, for every v ∈ Rd2 , Φv 6= e, where e is the n-dimensional vector with all
entries equal to one.

Let {αt} and {βt} be two step-size schedules that satisfy (10)-(11). As a consequence of (10)-
(11), βt → 0 faster than αt. Hence as explained in the couple of lines following (11), critic is a
faster recursion than actor. We set the average reward step-size ξt = cαt, for a positive scalar c.

12

However, more general step-sizes may be chosen. For instance, it may be desirable in some cases
to have the average reward update move on a faster timescale as compared to critic (in which case
it will converge faster than critic does).

Table 1: A Template for AC Algorithms.
1: Input:

• Randomized parameterized policy πθ(·, ·),
• Value function feature vector fs.

2: Initialization:
• Policy parameters θ = θ0,
• Value function weight vector v = v0,
• Step sizes α = α0, β = β0, ξ = cα0,
• Initial state s0.

3: for t = 0, 1, 2, . . . do
4: Execution:

• Draw action at ∼ πθt(st, at),
• Observe next state st+1 ∼ P (st, at, st+1),
• Observe reward rt+1.

5: Average Reward Update: Ĵt+1 = (1 − ξt)Ĵt + ξtrt+1

6: TD Error: δt = rt+1 − Ĵt+1 + v⊤t fst+1
− v⊤t fst

7: Critic Update: algorithm specific (see the text)
8: Actor Update: algorithm specific (see the text)
9 : endfor
10: return Policy and value function parameters θ, v

We now present the critic and the actor updates of our four actor–critic algorithms. For the
actor updates in our algorithms, we use a projection operator Γ : Rd1 → Rd1 that projects any
x ∈ Rd1 to a compact set C = {x | qi(x) ≤ 0, i = 1, . . . , s} ⊂ Rd1 , where qi(·), i = 1, . . . , s are
real-valued, continuously differentiable functions on Rd1 that represent the constraints specifying
the (above) compact region. Here for each x on the boundary of C, the gradients of the active
constraints are considered to be linearly independent. This is the setting considered for projection
based algorithms in Chapter 5 of [47]. For any x ∈ Rd1 , Γ(x) ∈ C and in particular for x ∈ C,
Γ(x) = x itself. As explained in Chapter 2 of [47], any compact hyperrectangle in Rd1 is a special
case of C (above). The projection method is an often used technique to ensure boundedness of
iterates in stochastic approximation algorithms, see for instance, [2] where it has been used in the
context of a stochastic shortest path Q-learning algorithm. Some discussion on this is also available
in [71]. The other approach (that is also usually taken, which we do not follow) is to simply assume
that the iterates (see below) (27), (32), (36) and (40) without the projection are bounded, and then
show convergence of these under this assumption. In our experiments, however, we do not project
the iterates to a constraint region as they are seen to remain bounded (without projection). In
Remark 2 (that follows Theorem 2), we explain the difficulties in proving boundedness of iterates
in the absence of the projection operator Γ(·).

13

Algorithm 1 (Regular-Gradient Actor–Critic):

Critic Update: vt+1 = vt + αtδtfst
, (26)

Actor Update: θt+1 = Γ(θt + βtδtψstat
). (27)

This is the only actor–critic algorithm presented in the paper that is based on the regular gradient
estimate. This algorithm stores two parameter vectors θ and v. Its per time-step computational
cost is linear in the number of policy and value-function parameters.

The next algorithm is based on the natural-gradient estimate ∇̃J(θt) = G(θt)
−1δtψstat

in place
of the regular-gradient estimate in Algorithm 1. We derive a procedure below for recursively
estimating G(θ)−1 on a faster timescale. The above estimation is done on a faster scale so that
convergence of the associated iterates is achieved prior to a θ-update. Suppose G−1

t denote the tth
estimate of G(θ)−1. Our procedure is obtained in a similar manner as the method described on
pp. 147-152 of [75]. The latter approach however considers the estimates as being obtained via a
“fading memory” condition in which the most recent observation is given the highest weight. The
weights themselves decrease geometrically over past observations. On the other hand, unlike [75],
we consider stationary averages that depend on parameter θ, that in turn gets updated along the
“slower timescale”. This constitutes a natural setting for our algorithm. We show in Lemma 6 that
G−1

t → G(θ)−1 as t → ∞ with probability one. This is required for proving convergence of our
algorithm. On the other hand, showing the same for the corresponding estimates in [75] does not
seem possible as Gt 6→ G(θ) there.

We consider Gt, t ≥ 0 defined as (the sample averages)

Gt =
1

t+ 1

t∑

l=0

ψslal
ψ⊤

slal
.

Thus, one may obtain recursively

Gt =

(
1 −

1

t+ 1

)
Gt−1 +

1

t+ 1
ψstat

ψ⊤
stat

. (28)

More generally, one may consider the recursion

Gt = (1 − αt)Gt−1 + αtψstat
ψ⊤

stat
, (29)

where the step-size αt is as before. This would correspond to a case of weighted averages (with
the weights corresponding to the step-sizes αt). However, through a stochastic approximation
argument, one can see that (29) would asymptotically converge to G(θ), almost surely, if θ is held
fixed. In fact, with an appropriate choice of {αt}, one can obtain faster convergence of iterates in
(29) over those in (28). Using Sherman-Morrison matrix inversion lemma, one obtains

G−1
t =

1

1 − αt

[
G−1

t−1 − αt
(G−1

t−1ψstat
)(G−1

t−1ψstat
)⊤

1 − αt + αtψ⊤
stat

G−1
t−1ψstat

]
. (30)

We make the following assumption on the matrices Gt, G
−1
t .

14

(A4) The iterates Gt satisfy sup
t,θ,s,a

‖ Gt ‖, sup
t,θ,s,a

‖ G−1
t ‖< ∞.

Assumption (A4) will be used in proving the convergence of our Algorithms 2 and 4 (below)
and is similar to a corresponding requirement in the case of certain Hessian matrices in the Newton
based simulation optimization schemes in [22, 23]. A sufficient condition for both the requirements
in (A4) is that (cf. pp. 35 of [17]) for some scalars c1, c2 > 0,

c1 ‖ z ‖2≤ z⊤ψsaψ
⊤
saz ≤ c2 ‖ z ‖2,

for all s ∈ S, a ∈ A, z ∈ Rd1 and θ. It is then easy to see that

c̄1 ‖ z ‖2≤ z⊤Gtz ≤ c̄2 ‖ z ‖2,

for all t ≥ 0, and the eigenvalues of Gt lie between c̄1 and c̄2. Here c̄1 = min(a, c1) and c̄2 =
max(a, c2). Also, c̄1, c̄2 > 0. Hence, the procedure (below) does not get stuck at a nonstationary
point. Under the above sufficient condition, (A4) follows from Propositions A.9 and A.15 of [17].

Our second algorithm stores matrix G−1 and two parameter vectors θ and v. Its per time-step
computational cost is linear in the number of value-function parameters and quadratic in the num-
ber of policy parameters.

Algorithm 2 (Natural-Gradient Actor–Critic with Fisher Information Matrix):

Critic Update: vt+1 = vt + αtδtfst
, (31)

Actor Update: θt+1 = Γ(θt + βtG
−1
t δtψstat

), (32)

with the estimate of the inverse Fisher information matrix updated according to Equation (30). As
with [75], we let G−1

0 = kI, where I is a d1 × d1-dimensional identity matrix and k > 0. Thus G−1
0

and hence also G0 are positive definite and symmetric matrices. From (29), Gt, t ≥ 1 can be seen
to be positive definite and symmetric because these are convex combinations of positive definite
and symmetric matrices. Hence, G−1

t , t ≥ 1 are positive definite and symmetric matrices as well.

As we mentioned in Section 4, it is better to think of the compatible approximation w⊤ψsa

as an approximation of the advantage function rather than of the action-value function. In our
next algorithm, we tune the weight parameters w in such a way as to minimize an estimate of the
least-squared error Eπ(w) = Es∼dπ,a∼π[(w⊤ψsa −Aπ(s, a))2]. Note that the gradient of Eπ(w) is

∇wE
π(w) = 2

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[w⊤ψsa −Aπ(s, a)]ψsa.

We use the following estimate of ∇wE
π(w).

∇̂wEπ(w) = 2(ψstat
ψ⊤

stat
w − δtψstat

). (33)

Hence, we update advantage parameters w along with value-function parameters v in the critic
update of this algorithm as

wt+1 = wt − αt∇̂wt
Eπ(wt) = wt − αt(ψstat

ψ⊤
stat

wt − δtψstat
).

15

The factor 2 on the RHS of (33) does not play a role because of the diminishing step-size sequence
αt, t ≥ 0 and so has been dropped in the above recursion. We maximize the long-run average reward
J(θ) along the slower timescale and use the natural gradient estimate for this purpose. As with
[57], the natural gradient estimate that we use in the actor update of Algorithm 3 is ∇̃J(θt) = wt+1.
This algorithm stores three parameter vectors, v, w, and θ. Its per time-step computational cost is
linear in the number of value-function parameters and quadratic in the number of policy parameters.

Algorithm 3 (Natural-Gradient Actor–Critic with Advantage Parameters):

Critic Update: vt+1 = vt + αtδtfst
, (34)

wt+1 = [I − αtψstat
ψ⊤

stat
]wt + αtδtψstat

, (35)

Actor Update: θt+1 = Γ(θt + βtwt+1). (36)

Although the estimates of G(θ)−1 are not explicitly computed and used in Algorithm 3, the con-
vergence analysis of this algorithm in the next section shows that the overall scheme still moves in
the direction of the natural gradient of average reward.

In Algorithm 4, however, we explicitly estimate G(θ)−1 (as in Algorithm 2), and use it in the
critic update for w. The overall scheme is again seen to follow the direction of the natural gradient
of average reward. Here, we let

∇̃wE
π(w) = 2G−1

t (ψstat
ψ⊤

stat
w − δtψstat

) (37)

be the estimate of the natural gradient of the least-squared error Eπ(w). This also simplifies the
critic update for w. Further, we remove the factor 2 from the natural gradient estimate (37) be-
cause of diminishing αt, t ≥ 0 as before. Algorithm 4 stores a matrix G−1 and three parameter
vectors, v, w, and θ. Its per time-step computational cost is linear in the number of value-function
parameters and quadratic in the number of policy parameters.

Algorithm 4 (Natural-Gradient Actor–Critic with Advantage Parameters and Fisher
Information Matrix):

Critic Update: vt+1 = vt + αtδtfst
, (38)

wt+1 = (1 − αt)wt + αtG
−1
t δtψstat

, (39)

Actor Update: θt+1 = Γ(θt + βtwt+1), (40)

where the estimate of the inverse of the Fisher information matrix is updated according to Equation
(30). As with Algorithm 2, we let G−1

0 = kI with k > 0.

16

6 Convergence Analysis

We now present the convergence analysis of our algorithms. The analysis mainly follows the or-
dinary differential equation (ODE) approach [15, 47, 48]. Note that the problem we consider is
a maximization and not a minimization problem. For the purpose of analysis, we consider an
associated problem with costs defined as negative rewards and our aim is to minimize the associ-
ated long-run average cost. The negative of the minimum cost thus obtained then corresponds to
the maximum reward in the original problem. This is useful in pushing through certain stability
arguments and showing convergence of iterates. Our algorithms use function approximation and
aim at finding the local maxima of the average rewards. All our convergence results are in the
Euclidean norm. Further, for any matrix A, we define its norm as the induced matrix norm ‖ A ‖
= max

{x|‖x‖=1}
‖ Ax ‖.

6.1 Convergence Analysis for Algorithm 1

We require Assumptions (A1)–(A3) here. As explained above, one may view −rt+1 as the cost
incurred at instant t in a transformed problem. Because of the above, a change occurs only in the
actor recursion (27) due to this transformation, and it becomes

θt+1 = Γ(θt − βtδtψstat
). (41)

Recursions for average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26)
being fixed point recursions (see [73]) are left unchanged. Note that recursions for average reward
(Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26) move on the faster timescale or
step-size schedule, hence converge faster, while (41) moves slower [25], see the discussion in Section
3. For any given policy π (along the faster timescale), average reward (Line 5 in Table 1), TD-error
(Line 6 in Table 1), and critic (26) recursions correspond to the TD(λ) recursions in [73] with λ = 0.
In [73], the updates in these recursions are rewritten as

µt+1 = µt + αt(A(Xt)µt + b(Xt)),

where, Xt = (st, st+1, fst
) is another associated Markov chain under π, µt = (Jt, vt)

⊤, and A(Xt),
b(Xt) are suitably defined matrix and column vector respectively.

Let D denote the diagonal matrix with elements dπ(s1), . . . , d
π(sn) along its diagonal. Let

P π be the probability matrix with elements pπ(s, s′) =
∑

a∈A

π(s, a)P (s, a, s′), s, s′ ∈ S. Let Rπ be

the column vector (
∑

a∈A

π(s1, a)R(s1, a), . . . ,
∑

a∈A

π(sn, a)R(sn, a))
⊤. Also, let T : Rn → Rn be the

operator given by
T (J) = Rπ − J(π)e+ P πJ.

The proof of convergence of TD(λ) in [73] is based on a result from [15]. We provide in Lemma 5
an alternative simpler proof of convergence under the same assumptions as in [73] using a recently
developed result in [27]. We consider λ = 0 to suit our algorithm. The proof however carries
through quite easily for λ > 0 as well. We have

17

Lemma 5 For any given π and {Ĵt}, {vt} as in the average reward recursion (Line 5 in Ta-
ble 1) and the critic recursion (26), we have Ĵt → J(π) and vt → vπ with probability one, where

J(π) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)R(s, a), (42)

is the average reward under π and vπ is obtained as the unique solution to

Φ′DΦvπ = Φ′DT (Φvπ). (43)

Proof First consider the average reward recursion (Line 5 in Table 1). The ODE describing the
asymptotic behavior of this recursion corresponds to

.
η= −η +

∑

s∈S

dπ(s)
∑

s∈A

π(s, a)R(s, a). (44)

Let f(η) denote the RHS of (44). Then f(η) is Lipschitz continuous in η. Let f∞(η) = lim
r→∞

f(rη)

r
.

The function f∞(η) exists and is simply f∞(η) = −η. The origin is an asymptotically stable
equilibrium for the ODE

.
η= f∞(η),

with V1(η) = η2/2 serving as an associated Lyapunov function.

Now consider recursions for TD-error (Line 6 in Table 1) and critic (26). Consider the following
ODE associated with them.

.
v=

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[R(s, a) − J(π) + v⊤
∑

s′∈S

P (s, a, s′)fs′ − v⊤fs]fs. (45)

In vector-matrix notation, (45) is analogous to

.
v= Φ′D(T (Φv) − Φv). (46)

Let g1(v) denote the RHS of (46). Then g1(v) is also Lipschitz continuous in v. Further, for

g1
∞(v)

△
= lim

r→∞

g1(rv)

r
, it can be seen that g1

∞(v) exists and equals

g1
∞(v) = Φ′D(P π − I)Φv,

where I is the identity matrix. Consider now the system

.
v= g1

∞(v). (47)

Note that the matrix P π has a simple eigenvalue of one and its remaining eigenvalues have real
parts that are less than one. Thus (P π − I) will have one eigenvalue of zero and other eigenvalues
with negative real parts. Also, corresponding to the eigenvalue zero, the matrix (P π − I) has a left
eigenvector dπT and a right eigenvector e = (1, . . . , 1)T (the n-dimensional unit vector), respectively.
Thus, in principle, the set of asymptotically stable fixed points of (47) would correspond to the
set {αv | Φv = e and α ∈ R, α 6= 0} ∪ {v = 0}. Note that the two sets in the union (above) are

18

disjoint. Now by the second part of Assumption (A3), Φv 6= e, for every v ∈ Rd2 . Thus the only
asymptotically stable equilibrium for (47) is the origin.

Now, from average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26)
recursions, define N1(t), M1(t), t ≥ 0, according to

N1(t) = rt+1 − E[rt+1 | F1(t)], M1(t) = δtfst
− E[δtfst

| F1(t)],

respectively, where F1(t) = σ(vr, Ĵr,M
1(r), N1(r), r ≤ t). It is easy to see that

E[‖ N1(t+ 1) ‖2| F1(t)] ≤ C1(1+ ‖ Ĵt ‖
2 + ‖ vt ‖

2), t ≥ 0,

E[‖M1(t+ 1) ‖2| F1(t)] ≤ C2(1+ ‖ vt ‖
2 + ‖ Ĵt ‖

2), t ≥ 0,

for some C1, C2 < ∞. In fact, quantities N1(t) can be directly seen to be uniformly bounded
almost surely. Thus Assumptions (A1) and (A2) of [27] can be seen to be satisfied in the case
of the average reward (Line 5 in Table 1), the TD-error (Line 6 in Table 1), and the critic (26)
recursions. From Theorem 2.1 of [27], average reward, TD-error, and critic iterates are uniformly
bounded with probability one. Now note that (44) has J(π) defined as in (42) as its unique globally
asymptotically stable equilibrium with V2(η) = (η − J(π))2 serving as the associated Lyapunov
function.

Next, suppose that v = vπ is a solution to the system

Φ′DΦv = Φ′DT (Φv). (48)

We show that vπ is the unique globally asymptotically stable equilibrium of the ODE (46) with the
function W (·) defined by

W (v) =
1

2
(Φ′D(T (Φv) − Φv))′(Φ′D(T (Φv) − Φv))

serving as an associated strict Liapunov function. Thus note that

∇W (v) = Φ′(P π − I)′DΦΦ′D(T (Φv) − Φv).

Hence,
dW (v)

dt
= ∇W (v)′

.
v

= (T (Φv) − Φv)′DΦΦ′D(P π − I)ΦΦ′D(T (Φv) − Φv).

In lieu of (A3), for any r ∈ Rd2 , Φr is a nonconstant vector (i.e., one that is not of the form αe
for α 6= 0). Thus, r′Φ′D(P π − I)Φr < 0 ∀r 6= 0̄ (0̄ being the vector in Rd2 with all entries 0), i.e.,
the matrix Φ′D(P π − I)Φ is negative definite (see also the proof of Lemma 7, pp.1803 of [73] for
a similar conclusion). The above can also be independently shown using the L2-non-expansivity of
the matrix P π. Now any v̂ = vπ + αv, with α ∈ R, α 6= 0 and v such that Φv = e will also be a
solution to the linear system of equations (48). However, again by Assumption (A3), Φv 6= e for
any v ∈ Rd2 . Thus any v̂ as above will not be a solution and the only solution is v = vπ which is
therefore unique. Thus,

dW (v)

dt
< 0 on the set {v ∈ R

d2 | v 6= vπ},

19

and
dW (v)

dt
= 0 on the set {v = vπ}.

Thus for (46), vπ is the unique globally asymptotically stable equilibrium. The assumptions (A1)-
(A2) of [27] are now verified and the claim follows from Theorem 2.2, pp. 450 of [27]. �

Remark 1

• Note that Assumption (A3) has also been used in the analysis of average cost TD learning
in [73] (cf. Assumption 2, pp.1800 of [73]). We also require this assumption as our TD
recursions are exactly the same as those in [73]. On the other hand, in a recent paper, [26],
Borkar develops a variant of TD learning with function approximation that is based on the
relative value iteration scheme. For such a scheme, one would not require the later part of
Assumption (A3) (i.e., Assumption 2(b) of [73]).

• As with [73], from (43), by premultiplying both sides by Φ(Φ′DΦ)−1, one gets

Φvπ = Φ(Φ′DΦ)−1Φ′DT (Φvπ) = ΠT (Φvπ),

where Π = Φ(Φ′ DΦ)−1Φ′D corresponds to the projection matrix that projects onto the
subspace spanned by the basis functions and satisfies for any J ∈ Rn,

ΠJ = arg min
J̄∈{Φr|r∈Rd2}

‖ J − J̄ ‖D,

with respect to the weighted norm ‖ · ‖D (see [73]).

Consider an ODE in Rd1 given by
.
z= f(z), (49)

for a Lipschitz continuous f : Rd1 → Rd1 such that (49) has a globally asymptotically stable
attractor Y. Given ǫ > 0, let Yǫ denote the ǫ-neighborhood of Y i.e.,

Yǫ = {x |‖ x− y ‖< ǫ, y ∈ Y}.

Given T , ∆ > 0, we call a bounded, measurable x(·) : R+ ∪ {0} → Rd1, a (T,∆)-perturbation of
(49) if there exist 0 = T0 < T1 < T2 < · · · < Tr ↑ ∞ with Tr+1 − Tr ≥ T ∀r and solutions zr(y),
y ∈ [Tr, Tr+1] of (49) for r ≥ 0, such that sup

y∈[Tr,Tr+1]
‖ zr(y) − x(y) ‖< ∆. We recall the following

result from [42].

Lemma 6 Given ǫ, T > 0, ∃∆̄ > 0 such that for all ∆ ∈ (0, ∆̄), every (T,∆)-perturbation of
(49) converges to Yǫ. �

Consider now recursion (41) along the slower timescale corresponding to βt. Let v(·) be a vector
field on C. Define another vector field

Γ̂(v(y)) = lim
0<η→0

(
Γ(y + ηv(y)) − y

η

)
.

20

In case the above limit is not unique, we let Γ̂(v(y)) be the set of all possible limit points (see
pp. 191 of [47]). Consider now the ODE

.
θ= Γ̂

(
−
∑

s

dπ(s)
∑

a

∇πθ(s, a)(R(s, a) − J(π) +
∑

s′

P (s, a, s′)vπ⊤fs′)

)
. (50)

In lieu of Lemma 4, the above ODE is analogous to

.
θ= Γ̂ (−∇J(π) − eπ) , (51)

where eπ =
∑

s∈S d
π(s)(∇V̄ π(s) −∇vπT fs). Consider also an associated ODE:

.
θ= Γ̂ (−∇J(π)) . (52)

In case of multiple limit points in the above ODEs, one has a differential inclusion limit. However,
if the driving vector field of the ODE is transversal pointing inwards at the boundary, it is fine as
is.

Let Z denote the set of asymptotically stable equilibria of (52) i.e., the local minima of J , and
let Zǫ be the ǫ-neighborhood of Z. We obtain

Theorem 2 Under Assumptions (A1)–(A3), given ǫ > 0, ∃δ > 0 such that for θt, t ≥ 0 ob-
tained using Algorithm 1, if sup

πt

‖ eπt ‖< δ, then θt → Zǫ as t → ∞, with probability one.

Proof Let F2(t) = σ(θr, r ≤ t) denote the sequence of σ-fields generated by θr, r ≥ 0. We
have

θt+1 = Γ(θt − βtE[δπt

t ψstat
| F2(t)] − βt(δtψstat

− E[δtψstat
| F2(t)]) − βtE[(δt − δπt

t)ψstat
| F2(t)]),

where πt is the policy corresponding to θt. Since the critic converges along the faster timescale,
from Lemma 5, it follows that E[(δt − δπt

t)ψstat
| F2(t)] = o(1). Now let

M2(t) =

t−1∑

r=0

βr(δrψsrar
− E[δrψsrar

| F2(r)]), t ≥ 1.

The quantities δt can be seen to be uniformly bounded since from the proof in Lemma 5, {Ĵt+1}
and {vt} are bounded sequences. It is now easy to see [21] using (10) that {M2(t)} is a convergent

martingale sequence. Thus, for any T > 0, with nT
△
= min{m ≥ n |

∑m
r=n βr ≥ T}, we have that∑nT

r=n βr(δrψsrar
− E[δrψsrar

| F2(r)]) → 0 a.s. as n→ ∞.
Next, it can be seen using similar arguments as before (see proof of Lemma 4) that

E[δπt

t ψstat
| θt] =

∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′].

We now show that h1(θt)
△
= −

∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′]

is Lipschitz continuous. Here vπt corresponds to the weight vector to which the critic update

21

converges along the faster timescale when the corresponding policy is πt (see Lemma 5). A simple
calculation shows that for s ∈ S, a ∈ A,

∇2πt(s, a) = πt(s, a)[ψsa
⊤ψsa −

∑

a′∈A

πt(s, a
′)ψsa′

⊤φsa′].

Thus ∇2πt(s, a) exists and is bounded. Further, from (24), it can be seen that dπt(s), s ∈ S
are continuously differentiable in θ and have bounded derivatives. Also, J(πt) is continuously
differentiable as well and has bounded derivative as can also be seen from (42). Further, vπt

can be seen to be continuously differentiable with bounded derivatives. Thus h1(θ) is a Lipschitz

continuous function and the ODE (50) is well posed. Let n(t) =
t−1∑

r=0

βr, t ≥ 1 with n(0) = 0. Let

It = [n(t), n(t + 1)], t ≥ 0. Let θ̄(s), s ≥ 0, be a continuous linear interpolation of the iterates θt

over intervals It i.e., with θ̄(n(t)) = θt, t ≥ 0. One can show using an application of Gronwall’s
inequality as in Lemma 2.3 of [25] that for any ∆ > 0, ∃s(∆) > 0 such that θ̄(s(∆) + ·) is a
(T,∆)-perturbation of (51).

Let supπt
‖ eπt ‖< δ for some small δ > 0. Let θs(∆)(t), θ̂s(∆)(t) be solutions of (51), (52),

respectively, for t ∈ [s(∆), s(∆) + T], for given T > 0, with θs(∆)(s(∆)) = θ̂s(∆)(s(∆)) = θ̄(s(∆)).
From the foregoing, we have sup

t∈[s(∆),s(∆)+T]
‖ θs(∆)(t) − θ̄(t) ‖ < ∆. The trajectories θs(∆)(t) and

θ̂s(∆)(t) of the ODEs (51) and (52), respectively, are obtained from

θs(∆)(t) = θs(∆)(s(∆)) +

∫ t

s(∆)
Γ̂(−∇J(πs) − eπs)ds

and

θ̂s(∆)(t) = θ̂s(∆)(s(∆)) +

∫ t

s(∆)
Γ̂(−∇J(πs))ds.

Since θs(∆)(s(∆)) = θ̂s(∆)(s(∆)) = θ̄(s(∆)), we get (cf. [47])

‖ θs(∆)(t) − θ̂s(∆)(t) ‖≤ sup
πs

‖ eπs ‖ (t− s(∆)) ≤ Tδ.

Hence,

sup
t∈[s(∆),s(∆)+T]

‖ θ̂s(∆)(t)−θ̄(t) ‖≤ sup
t∈[s(∆),s(∆)+T]

‖ θs(∆)(t)−θ̄(t) ‖ + sup
t∈[s(∆),s(∆)+T]

‖ θ̂s(∆)(t)−θs(∆)(t) ‖

≤ ∆ + Tδ.

Thus, θ̄(s(∆)+·) is a (∆+Tδ)-perturbation of the ODE (52). For sufficiently small δ, ∆+Tδ ∈ (0, ∆̄)
with ∆̄ as in Lemma 6. From the above, as sup

π
‖ eπ ‖→ 0 (viz., δ → 0), the trajectories of (51)

converge to those of (52) uniformly on compacts for the same initial condition in both. The claim
follows from Lemma 6. �

Remark 2 From Theorem 2, it follows that if the error term
∑

s∈S

dπ(s)[∇V̄ π(s) −∇vπ⊤fs] is

small, the algorithm will converge almost surely to a small neighborhood of a local minimum of J .

22

(For the original problem, this corresponds to a small neighborhood of a local maximum of J .) Note
also that, in principle, the stochastic approximation scheme may get trapped in an unstable equi-
librium. In [55], with noise assumed to be sufficiently ‘omnidirectional’ in addition, it is shown that
convergence to unstable fixed points will not occur; see also [30] for conditions on avoidance of un-
stable equilibria that lie in certain compact connected chain recurrent sets. However, in most cases
(even without extra noise conditions) due to the inherent randomness, stochastic approximation
algorithms converge to stable equilibria.

We discuss now the difficulties involved in proving boundedness of iterates when projection Γ(·)
is not used in (41). Suppose we rewrite h1(θ) as

h1(θ) = −
∑

s∈S

dπ(s)
∑

a∈A

πθ(s, a)ψθ
sa[R(s, a) − J(π) +

∑

s′∈S

P (s, a, s′)vπ⊤fs′].

Note here that we write ψθ
sa in place of ψsa in order to show explicit dependence of ψsa on θ. Then

defining h1
∞(θ) as h1

∞(θ) = lim
r→∞

h1(rθ)

r
, one obtains

h1
∞(θ) = − lim

r→∞

1

r

∑

s∈S

dπ(s)
∑

a∈A

πrθ(s, a)ψrθ
sa

∑

s′∈S

P (s, a, s′)vπrθ⊤
fs′ .

It is not clear whether the limit above exists because of the complex dependence of dπ and vπ on
θ. Note that vπ is obtained as a solution to a linear system of equations (see Lemma 5) with the
matrix D therein also depending on θ. Assumption (A1′), pp. 454 in [27] considers the case where
the above limits may not exist. However, it requires that for r ≥ R and t ≥ T , for some R,T > 0,

the trajectories φ̂(t) of the ODE
.
θt=

h1(rθt)

r
should lie within a ball of radius 1/2 around the origin.

This can be shown provided the origin is a unique asymptotically stable attractor for the above
ODEs for all r ≥ R. Again, it is not clear if this is the case here. Next, note that the methods
described in [2] and [71] for stability of iterates are for different classes of algorithms, largely of the
Q-learning type, and are not directly applicable in our setting.

Finally, we discuss the use of the stochastic Lyapunov function method [48] for stability of
iterates in (41). The prime requirement here is that there exists a real-valued nonnegative function
W (·) that satisfies

E[W (θt+1) | θt = θ]−W (θ) ≤ −K(θ)

for all θ ∈ Qλ
△
= {θ | W (θ) ≤ λ}, where K(θ) ≥ 0 is continuous on Qλ. Then by Theorem

4.1, pp. 80-81 of [48], the stability and convergence of iterates would follow. Hence consider the
recursion (41). By a Taylor’s expansion for “small” βt assuming a smooth W (·), one gets

E[W (θt+1)|θt] ≈W (θt) − βtE[δπ
t ψstat

|θt]
′∇W (θt) + o(βt). (53)

It appears difficult to obtain such a W (·) here. On the other hand, if we use the look up table
representation (viz., d2 = n in Assumption (A3) or that δt is as in (19)), then from Lemma 4
above, as also Theorem 1 of [67], one would get E[δtψstat

| θ] = ∇θJ(θ). Then W (θ) = J(θ)
would serve as a Lyapunov function and the iterates (41) (without the projection) will be bounded
and almost surely convergent, in lieu of Theorem 4.1 of [48]. It is only because of the use of
function approximation in the iterates that a Lyapunov function is hard to obtain. However, in

23

our experiments, we do not use projection but still observe that the iterates remain bounded and
convergence is achieved.

Note also that if function approximation is not used, J(θ) also serves as a Lyapunov function
for the ODE associated with (41) without the projection. When function approximation is used (as
with our case), the above problem of finding a suitable Lyapunov function (now) for the associated
ODE also carries over and it is difficult to suitably characterize the set of stable attractors.

Remark 1 and many of the arguments in the analysis of Algorithm 1 are also valid for the
analysis of the other algorithms. We skip the details in such cases to avoid repetition.

6.2 Convergence Analysis for Algorithm 2

The analysis in Lemma 5 of the recursions for average reward (Line 5 in Table 1), TD-error (Line 6
in Table 1), and critic (31) proceeds in the same manner as for Algorithm 1. We thus concentrate
on showing convergence of the recursion for the inverse of the Fisher information matrix (30) and
the actor recursion (32). We assume (A1)–(A4) for our analysis here. We now have

Lemma 7 For any given parameter θ, G−1
t , t ≥ 1 in (30) satisfy G−1

t → G(θ)−1 as t → ∞
with probability one.

Proof It is easy to see from recursion (29) that Gt → G(θ) as t → ∞ with probability one,
for any given θ held fixed. Now for fixed θ, we have

‖ G−1
t −G(θ)−1 ‖=‖ G(θ)−1(G(θ)G−1

t − I) ‖=‖ G(θ)−1(G(θ) −Gt)G
−1
t ‖

≤ sup
θ

‖ G(θ)−1 ‖ sup
t,s,a

‖ G−1
t ‖ · ‖ G(θ) −Gt ‖→ 0 as t→ ∞,

by (A4). In the above, I denotes the d2 × d2–dimensional identity matrix. The inequality above
follows from the property on induced matrix norms (see Proposition A.12 of [18]). The claim fol-
lows. �

As with Algorithm 1, we consider again the transformed problem with rewards replaced with
costs (see above). This transformation, however, only affects the actor recursion (32). The trans-
formed slower timescale recursion that we have is thus

θt+1 = Γ(θt − βtG
−1
t δtψstat

). (54)

We have

Theorem 3 Under Assumptions (A1)–(A4), given ǫ > 0, ∃δ > 0 such that for θt, t ≥ 0 ob-
tained using Algorithm 2, if sup

πt

‖ eπt ‖< δ, then θt → Zǫ as t → ∞, with probability one.

Proof As with the proof of Theorem 2, let F3(t) = σ(θr, r ≤ t), t ≥ 0. Note that

θt+1 = Γ(θt−βtE[G(θt)
−1δπt

t ψstat
| F3(t)]−βt(G(θt)

−1δtψstat
−E[G(θt)

−1δtψstat
| F3(t)])+βtξ1(t)),

where in lieu of Lemmas 5 and 7, ξ1(t) = o(1). As before, the critic recursion (31) converges faster
for given policy πt corresponding to an actor update θt and converges to vπt . For t ≥ 1, let

M3(t) =
t−1∑

r=0

βr(G(θr)
−1δrψsrar

− E[G(θr)
−1δrψsrar

| F3(r)])

24

=
t−1∑

r=0

βrG(θr)
−1(δrψsrar

−E[δrψsrar
| F3(r)]).

The quantities δt and G(θt)
−1 are uniformly bounded from Lemmas 5 and 7, and (A4) respectively.

Now using (10), it can be seen [21] that {M3(t)} is a convergent martingale sequence. Hence,∑nT

r=n βr(G(θr)
−1δrψsrar

−E[G(θr)
−1δrψsrar

| F3(r)]) → 0 a.s. as n → ∞, with nT as before (see
proof of Theorem 2). As before, also note that

E[G(θt)
−1δπt

t ψstat
|θt] = G(θt)

−1

[∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′]

]
.

Consider now the ODE

.
θ= Γ̂(−G(θ)−1

∑

s∈S

dπ(s)
∑

a∈A

∇πθ(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′]), (55)

associated with recursion (54). As before, the above ODE can be analogously written as

.
θ= Γ̂(−G(θ)−1(∇J(π) + eπ)). (56)

Consider also the associated ODE

.
θ= Γ̂(−G(θ)−1∇J(π)). (57)

As before, let θ̄(s), s ≥ 0, be a continuous linear interpolation of the iterates θt over intervals It.
One can again show that for any ∆ > 0, ∃s(∆) > 0 such that θ̄(s(∆) + ·) is a (T,∆)-perturbation
of (56).

Let eπ be such that supπt
‖ eπt ‖< δ for some small δ > 0. Let θs(∆)(t), θ̂s(∆)(t) be solutions of

(56), (57), respectively, for t ∈ [s(∆), s(∆) + T], for given T > 0, with θs(∆)(s(∆)) = θ̂s(∆)(s(∆))
= θ̄(s(∆)). The trajectories θs(∆)(t) and θ̂s(∆)(t) of the ODEs (56) and (57), respectively, are
obtained from

θs(∆)(t) = θs(∆)(s(∆)) +

∫ t

s(∆)
Γ̂(−G(θs)

−1(∇J(πs) − eπs))ds

and

θ̂s(∆)(t) = θ̂s(∆)(s(∆)) +

∫ t

s(∆)
Γ̂(−G(θs)

−1∇J(πs))ds.

Since θs(∆)(s(∆)) = θ̂s(∆)(s(∆)) = θ̄(s(∆)), we get (cf. [47])

‖ θs(∆)(t) − θ̂s(∆)(t) ‖≤ sup
θs

‖ G(θs)
−1 ‖ sup

πs

‖ eπs ‖ (t− s(∆)) ≤ CTδ,

where sup
θs

‖ G(θs)
−1 ‖

△
= C <∞, by Assumption (A4) and Lemma 7. As before (viz., Theorem 2),

θ̄(s(∆) + ·) can be seen to be a (∆ + CTδ)-perturbation of the ODE (57) and for δ sufficiently
small, ∆ + CTδ ∈ (0, ∆̄) with ∆̄ as in Lemma 6. The claim now follows from Lemma 6. �

25

6.3 Convergence Analysis for Algorithm 3

As stated previously, the main idea in this algorithm is to minimize the least squares error in
estimating the advantage function via function approximation. The analysis of average reward
(Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (34) recursions proceeds in the same
manner as before (cf. Lemma 5). We thus concentrate on recursion (35) and the actor recursion
(36). We require Assumptions (A1)–(A3) here. In the transformed problem (with costs in place of
rewards), recursion (35) can be rewritten as

wt+1 = (I − αtψstat
ψ⊤

stat
)wt − αtδtψstat

, (58)

with the actor recursion (36) the same as before. Note that (58) moves on a faster timescale as
compared to the actor recursion. Hence, on the timescale of the former recursion, one may consider
the parameter θt to be fixed. We have the following result:

Lemma 8 Under a given parameter θ, wt, t ≥ 1 in (58) satisfy wt → −G(θ)−1E[δπ
t ψstat

] as
t→ ∞ with probability one, where π is the policy corresponding to θ.

Proof Consider the following ODE associated with (58) for given θ

.
w= Est∼dπ ,at∼π[−ψstat

ψT
stat

w − δπ
t ψstat

]. (59)

Let g2(w) correspond to the RHS of (59). Then g2(w) is Lipschitz continuous in w. Now let g2
∞(w)

= lim
r→∞

g2(rw)

r
. The function g2

∞(w) exists and can be seen to satisfy g2
∞(w) = −G(θ)w. For the

ODE
.
w= −G(θ)w, the origin is an asymptotically stable equilibrium with V4(w) = w′w/2 as the

associated Lyapunov function (since G(θ) is positive definite). Define now {M4(t)} as

M4(t) = (−ψstat
ψT

stat
wt − δtψstat

) + E[(ψstat
ψT

stat
wt + δtψstat

) | F4(t)],

where F4(t) = σ(wr,M
4(r), r ≤ t). It is easy to see that there exists a constant C0 <∞ such that

E[‖M4(t+ 1) ‖2| F4(t)] ≤ C0(1+ ‖ wt ‖
2),

for all t ≥ 0. For the ODE (59), consider the function V5(w) defined by

V5(w) = (w +G(θ)−1E[δπ
t ψstat

])′(w +G(θ)−1E[δπ
t ψstat

])/2.

Then
dV5(w)

dt
= ∇V5(w)′

.
w= −(w +G(θ)−1E[δπ

t ψstat
])′(G(θ)w + E[δπ

t ψstat
])

= −(w +G(θ)−1E[δπ
t ψstat

])′G(θ)(w +G(θ)−1E[δπ
t ψstat

])

< 0 for all w 6= −G(θ)−1E[δπ
t ψstat

],

since G(θ)−1 is a positive definite matrix. Thus (see [48]) wπ = −G(θ)−1E[δπ
t ψstat

] is an asymp-
totically stable equilibrium for (59). Now from Theorem 2.2 of [27], recursion (58) converges with
probability one to wπ. �

26

We now consider the actor recursion (36), which is the slower recursion. We have

Theorem 4 Under Assumptions (A1)–(A3), given ǫ > 0, ∃δ > 0 such that for θt, t ≥ 0 ob-
tained using Algorithm 3, if sup

πt

‖ eπt ‖< δ, then θt → Zǫ as t → ∞, with probability one.

Proof Note that the recursion (36) can be written as

θt+1 = Γ(θt − βtG(θt)
−1E[δπt

t ψstat
| θt] + βtξ2(t)),

where ξ2(t) = o(1) by Lemma 8. The rest can be shown in a similar manner as Theorem 3. �

6.4 Convergence Analysis for Algorithm 4

As with Algorithm 2, we require Assumptions (A1)–(A4). The result in Lemma 7 continues to hold
here and we get for fixed θ, G−1

t → G(θ)−1 as t→ ∞ with probability one. Recursions for average
reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (38) are the same as before
and have been analyzed earlier (cf. Lemma 5). We now concentrate on recursion (39) and the actor
recursion (40). Under the transformed problem (with costs in place of rewards), recursion (39) can
be rewritten as

wt+1 = (1 − αt)wt − αtG
−1
t δtψstat

, (60)

with the actor recursion the same as before. An exactly similar result as Lemma 8 holds in this
case as well (described as Lemma 9 below).

Lemma 9 Under a given parameter θ, wt, t ≥ 1 defined by (60) satisfy wt → −G(θ)−1E[δπ
t ψstat

| θ]
as t→ ∞ with probability one, with π being the policy corresponding to θ.

Proof Note that as a consequence of (A4) and Lemma 5, sup
t,θ,st,at

‖ G−1
t δtψstat

‖< ∞ with prob-

ability one. As a consequence of (10), there exists an integer N0 < ∞, such that for all t ≥ N0,
αt ≤ 1. Hence for all t ≥ N0, wt+1 is a convex combination of wt and a uniformly bounded quantity.
Thus, starting from any initial value w0 ∈ Rd2 , the overall sequence wt of iterates remains bounded
with probability one. Now note that one can rewrite (60) as

wt+1 = (1 − αt)wt − αtG(θ)−1E[δπ
t ψstat

| θ]−M5(t) + αtξ3(t) + αtξ4(t),

where M5(t) = αtG(θ)−1(δtψstat
− E[δtψstat

| θ]), ξ3(t) = (G(θ)−1 − G−1
t)δtψstat

, and ξ4(t) =
G(θ)−1E[(δπ

t − δt)ψstat
| θ], respectively. From Lemmas 5 and 7, ξ3(t) and ξ4(t) are both o(1). Fur-

ther, {

t−1∑

r=0

M5(r)} can be seen to be a convergent martingale sequence. Hence,

mT∑

r=n

αrG(θ)−1(δrψsr ,ar

−E[δrψsrar
| θr]) → 0 a.s. as n → ∞, where mT = min{m ≥ n |

∑m
r=n αr ≥ T}. Consider the

following ODE associated with (60).

.
w= −w −G(θ)−1Est∼dπ,at∼π[δπ

t ψstat
]
△
= g3(w). (61)

It is easy to see that g3(w) above is Lipschitz continuous in w, hence (61) is well posed. Let

g3
∞(w) = lim

r→∞

g3(rw)

r
. It can be seen that g3

∞(w) = −w. Now for the ODE
.
w= −w, the origin

27

is the unique globally asymptotically stable equilibrium with V5(w) = w′w/2 as the associated
Lyapunov function. One can also show as in Lemma 8 that wπ = −G(θ)−1E[δπ

t ψstat
] is an asymp-

totically stable attractor for the ODE (61). The rest then follows from Theorem 2.2 of [27]. �

We now consider the actor recursion (40), which is the slower recursion. We have the following
result whose proof follows as in Theorems 3-4.

Theorem 5 Under Assumptions (A1)–(A4), given ǫ > 0, ∃δ > 0 such that for θt, t ≥ 0 ob-
tained using Algorithm 4, if sup

πt

‖ eπt ‖< δ, then θt → Zǫ as t → ∞, with probability one. �

7 Relation to Previous Algorithms

As we mentioned in Section 1, the actor–critic algorithms presented in this paper extend prior
actor–critic methods, especially those of Konda and Tsitsiklis [46] and of Peters, Vijayakumar and
Schaal [56]. In this section, we discuss these relationships further.

Actor–Critic Algorithm of Konda and Tsitsiklis [46]: Contrary to Algorithms 2-4, this al-
gorithm does not use estimates of natural gradient in its actor’s update. It is somewhat similar to
our Algorithm 1, but with some key differences. 1) Konda’s algorithm uses the Markov process of
state–action pairs and thus its critic update is based on an action-value function. Algorithm 1 uses
the state process and therefore its critic update is based on a value function. 2) While Algorithm 1
uses TD error in both critic and actor recursions, Konda’s algorithm uses TD error only in its
critic update. The actor recursion in Konda’s algorithm uses a Q-value estimate instead. Because
the TD error is an unbiased estimate of the advantage function (Lemma 3), the actor recursion in
Algorithm 1 uses estimates of advantages instead of Q-values, which may result in lower variances.
3) The convergence analysis of Konda’s algorithm is based on the martingale approach and aims at
bounding error terms and directly showing convergence. Convergence to a local optimum is shown
when TD(1) critic is used. For the case when λ < 1, they show that given ǫ > 0, there exists λ
close enough to one such that when a TD(λ) critic is used, one gets lim inft |∇J(θt)| < ǫ with prob-
ability 1. Unlike Konda and Tsitsiklis, we primarily use the ordinary differential equation (ODE)
based approach for our convergence analysis. Even though we also use martingale arguments in
our analysis, these are restricted to showing that the noise terms asymptotically diminish and the
resulting scheme can be viewed as a Euler-discretization of the associated ODE.

Natural Actor–Critic Algorithm of Peters et al. [56]: Algorithms 2-4 extend this algorithm,
by being fully incremental and providing convergence proofs. Peters’s algorithm uses a least-squares
TD method in its critic’s update, while our algorithms are all fully incremental. It is not entirely
clear how to satisfactorily incorporate least-squares TD methods in a context in which the policy is
changing. Our proof techniques do not immediately extend to this case. However, we use estimates
of advantage function in Algorithms 3 and 4 as in Peters’s algorithm.

28

8 Empirical Results

In this section we report empirical results applying the algorithms presented in the paper to a set
of abstract randomly constructed MDPs which we call Garnet problems. We present results with
our algorithms as described in Section 5, illustrating the convergence proved in Section 6. We also
report results for the most closely related algorithm in the prior literature, that by Konda and
Tsitsiklis [46].4 In all our experiments, we observed that the average rewards obtained by Konda’s
algorithm were much smaller than those obtained by our algorithms. Thus, we do not plot them
in Figure 1 and only report their means and standard errors (STSs) in Table 2. The C++ code for
all the experiments conducted in this section is available at [51].

Garnet problems are a class of randomly constructed finite MDPs serving as environments for
reinforcement learning algorithms optimizing average reward. Garnet problems do not correspond
to any particular application, but are meant to be totally abstract or generic while remaining
representative of the kind of MDPs that might be encountered in practice (cf. [6]). The name
“Garnet” is an acronym for Generic Average Reward Non-stationary Environment Testbed. The
process for generating an instance of a Garnet problem is characterized by 5 parameters and written
as Garnet(n,m, b, σ, τ). The parameters n and m are the number of states and actions respectively,
and b is a branching factor specifying the number of possible next states for each state–action
pair. The possible next states are chosen at random from the state set without replacement. The
probability of going to each next state is generated by partitioning the unit interval at b−1 cut points
selected randomly between 0 and 1. The expected reward for each such transition is a normally
distributed random variable with mean 0 and unit variance. The actual reward is selected randomly
according to a normal distribution with mean equal to the expected reward and standard deviation
σ. Finally, the parameter τ, 0 ≤ τ ≤ 1/n determines the degree of non-stationarity in the problem.
If τ = 0, the Garnet problem is stationary. If τ > 0, states of the MDP are occasionally selected
randomly for deletion and replacement with newly constructed expected rewards and transition
probabilities. At each time step, with probability n ∗ τ , one of the states is selected at random and
reconstructed as described above. We use stationary Garnet problems (τ = 0) in the experiments
of this paper. From the above definition, it is clear that Garnet(n,m, b, σ, τ) represents a family of
Garnet problems with the same structure.

In our experiments, we used linear function approximation for state value functions V (s, v) =
v⊤fs, and parameterized Gibbs distribution for policies (7). State feature vectors fs and state–
action feature vectors φsa were binary and were randomly generated using two parameters d and l.
The parameter d is the dimensionality of the state feature vectors fs ∈ {0, 1}d (i.e., d2 = d). The
parameter l is the number of components of the state feature vectors that were 1 (the others were 0).
The locations of the 1’s were chosen randomly with equal probability such that no two states had
the same feature vector. The state–action feature vectors had dimension d ×m, φsa ∈ {0, 1}d×m

(i.e., d1 = d×m) and were constructed using state feature vectors as follows:

φsai
= (0, . . . , 0︸ ︷︷ ︸

d×(i−1)

, fs , 0, . . . , 0︸ ︷︷ ︸
d×(m−i)

)⊤ (62)

We chose d such that d × m are ≪ n. Therefore, an exact solution is usually not possible and
approximate value functions are required. We also chose l substantially less than d as this case has
proven powerful in many applications of reinforcement learning and is computationally efficient.

4From now on in the paper we call this algorithm Konda’s algorithm.

29

We set the initial values for policy parameters θ0, state value function weights v0, and weights
w0 to 0.0. We used the following step-size schedules for the critic {αt} and the actor {βt}:

αt =
α0 · αc

αc + t2/3
, βt =

β0 · βc

βc + t
.

Note that these step-size schedules satisfy (10) and (11). We set the constant c used for the average
reward step-size in our algorithms to 0.95. In Algorithms 2 and 4, we initialized the inverse of
the Fisher information matrix to G−1

0 = 1.5I and G−1
0 = 2.5I respectively. We also used step-size

0.001αt in place of αt to update G−1
t for numerical stability in these algorithms. As described

earlier, we did not use projection Γ(·) in any of the actor updates in the various algorithms but
still observed that the iterates were bounded and exhibited convergence.

Figure 1 shows the average rewards obtained by the four actor–critic algorithms presented in
the paper in two families of stationary Garnet problems, Garnet(30,4,2,0.1,0) (top row) and Gar-
net(100,10,3,0.1,0) (bottom row). The function approximation parameters were set to d = 8 and
l = 3 in Garnet(30,4,2,0.1,0), and to d = 20 and l = 5 in Garnet(100,10,3,0.1,0). All the graphs in
the top row are averaged over 100 independent runs of a fixed Garnet(30,4,2,0.1,0) problem (top
left) and 100 different randomly and independently generated Garnet(30,4,2,0.1,0) problems (top
right). All the graphs in the bottom row are averaged over 20 independent runs of a fixed Gar-
net(100,10,3,0.1,0) problem (bottom left) and 20 different randomly and independently generated
Garnet(100,10,3,0.1,0) problems (bottom right). Table 2 contains the means and the standard errors
(STEs) of the average rewards obtained by the four actor–critic algorithms presented in the paper,
plus the Konda’s algorithm, for 100 runs of a fixed Garnet(30,4,2,0.1,0) problem (2nd column),
100 different Garnet(30,4,2,0.1,0) problems (3rd column), 20 runs of a fixed Garnet(100,10,3,0.1,0)
problem (4th column), and 20 different Garnet(100,10,3,0.1,0) problems (5th column).

Algorithm Mean ± STE Mean ± STE Mean ± STE Mean ± STE

Algorithm 1 1.592 ± 0.004 0.780 ± 0.025 0.764 ± 0.003 0.816 ± 0.018
Algorithm 2 1.582 ± 0.002 0.787 ± 0.024 0.872 ± 0.002 0.948 ± 0.022
Algorithm 3 1.597 ± 0.001 0.835 ± 0.025 0.918 ± 0.001 0.992 ± 0.014
Algorithm 4 1.570 ± 0.002 0.786 ± 0.024 0.871 ± 0.002 0.933 ± 0.021

Konda’s Algorithm 0.607 ± 0.005 0.444 ± 0.017 0.144 ± 0.001 0.230 ± 0.012

Table 2: Means and standard errors (STEs) of the average rewards obtained by the algorithms on
100 runs of a fixed Garnet(30,4,2,0.1,0) problem (2nd column), 100 different Garnet(30,4,2,0.1,0)
problems (3rd column), 20 runs of a fixed Garnet(100,10,3,0.1,0) problem (4th column), and 20
different Garnet(100,10,3,0.1,0) problems (5th column).

Table 3 contains the values of the step-size schedule parameters used by the algorithms in
the experiments with Garnet(30,4,2,0.1,0) (2nd column) and Garnet(100,10,3,0.1,0) (3rd column)
problems. We tried many values for these parameters in the experiments with the fixed Garnet
problems (left column in Figure 1) and those in the table yielded the best performance. We then
used the same parameters in the experiments with different Garnet problems (right column in
Figure 1).

Algorithm 3 showed reliably good performance in both small and large size problems. We
found it easier to find good parameter settings for Algorithm 3 than for the other natural gradient

30

0 2 4 6 8 10
x 10

5

1.4

1.45

1.5

1.55

1.6

Number of Steps

A
ve

ra
g

e
R

ew
ar

d

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0 2 4 6 8 10
x 10

5

0.6

0.65

0.7

0.75

0.8

0.85

Number of Steps

A
ve

ra
g

e
R

ew
ar

d

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0 1 2 3 4
x 10

6

0.5

0.6

0.7

0.8

0.9

1

Number of Steps

A
ve

ra
g

e
R

ew
ar

d

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0 1 2 3 4
x 10

6

0.5

0.6

0.7

0.8

0.9

1

Number of Steps

A
ve

ra
g

e
R

ew
ar

d

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

Figure 1: This figure shows the average rewards obtained by the four actor–critic algorithms pre-
sented in the paper in two families of stationary Garnet problems, Garnet(30,4,2,0.1,0) (top row)
and Garnet(100,10,3,0.1,0) (bottom row). All the graphs in the top/bottom left figure are aver-
aged over 100/20 independent runs of a fixed Garnet(30,4,2,0.1,0)/Garnet(100,10,3,0.1,0) problem,
while the graphs in the top/bottom right figure are averaged over 100/20 different randomly and
independently generated Garnet(30,4,2,0.1,0)/Garnet(100,10,3,0.1,0) problems.

algorithms and, perhaps because of this, it converged more rapidly than them and than Konda’s
algorithm. However, these empirical observations should be taken only as suggestive; our experi-
ments were not extensive enough to be taken as showing anything comparative about the relative
rate of convergence of any of the algorithms.

We used relative value iteration algorithm [19] and separately computed the best average rewards
if there were no constraints due to the function approximator, for the fixed Garnet problems.
The unconstrained optimal rewards are 1.618 and 1.170 for the fixed Garnet(30,4,2,0.1,0) and
Garnet(100,10,3,0.1,0) problems respectively. On the smaller Garnet problem, our four actor–critic
algorithms converged to the unconstrained optimal average reward 1.618 (see Figure 1 top-left and

31

Algorithm α0 αc β0 βc α0 αc β0 βc

Algorithm 1 0.1 1000 0.01 100000 0.1 1000000 0.01 100000000
Algorithm 2 0.1 1000 0.01 1000 0.1 1000 0.01 1000
Algorithm 3 0.1 10000 0.001 10000 0.1 10000 0.001 100000
Algorithm 4 0.1 1000 0.001 10000 0.1 1000 0.001 10000

Konda’s Algorithm 0.1 10000 0.01 10000 0.1 10000 0.01 10000

Table 3: Values of the step-size schedule parameters in the Garnet(30,4,2,0.1,0) (second column)
and Garnet(100,10,3,0.1,0) (third column) experiments.

the second column of Table 2). On the larger problem function approximation plays a larger role
and the unconstrained optimum is not reached and presumably cannot be reached.

9 Conclusions and Future Work

We have introduced and analyzed four actor–critic reinforcement learning algorithms utilizing linear
function approximation. All the algorithms are based on existing ideas such as temporal difference
learning, natural policy gradients, and two-timescale convergence analysis, but we combine them in
new ways. The main contribution of this paper is the proof of convergence of the four algorithms to
a local maximum in the space of policy and value function parameters. Our work extends that by
Konda and Tsitsiklis [46] and others [1, 21, 45] by incorporating a bootstrapping (λ < 1) form of
temporal difference learning. Our four algorithms are the first actor–critic algorithms to be shown
convergent that utilize both function approximation and bootstrapping, a combination which seems
essential to large-scale applications of reinforcement learning.

Our Algorithms 2-4 are explorations of the use of natural gradients within an actor–critic
policy gradient architecture. The way we use natural gradients is distinctive in that it is totally
incremental: the policy is changed on every time step yet we never reset the gradient computation
as is done in the algorithm of Peters and Schaal [57]. Algorithm 3 is perhaps the most interesting
of the three natural gradient algorithms. It never explicitly stores an estimate of the inverse of
the Fisher information matrix and, as a result, it requires less computation. In our empirical
experiments we found it easier to find good parameter settings for Algorithm 3 than for the other
natural gradient algorithms and, perhaps because of this, it converged more rapidly than them
and than Konda and Tsitsiklis’s algorithm. These empirical observations should be taken only as
suggestive; more experiments to properly assess the relative performance of these algorithms must
be carried out.

The most important potential extension of our results would be to characterize the quality of
the converged solution. It may be possible to bound the performance loss due to bootstrapping
and approximation error in a way similar to how it was bounded by Tsitsiklis and Van Roy [72].
Because of the use of function approximation, our convergence analysis would carry through for the
case of continuously valued state–action spaces as well. However, it would be interesting to study
empirical evaluations of our algorithms in such settings in order to evaluate their applicability
in such scenarios as well. There are a number of other ways in which our results are limited
and suggest for future work. First, there is the issue of rate of convergence. Ideally one would
like analytic results but, short of that, it would be useful to conduct a thorough empirical study,

32

varying parameters and schedules in a more extensive and sophisticated way than we have done
here. Second, the algorithms could be extended to incorporate eligibility traces and least-squares
methods. As discussed earlier, the former seems straightforward whereas the latter seems to require
more fundamental extensions. A thorough study on the sensitivity of our algorithms to the various
system parameters and settings needs to be shown. Further, a study on the choice of the basis
functions for the critic to obtain a good estimate of the policy gradient needs to be done. Finally,
application of these ideas and algorithms to a real-world problem is needed to assess their ultimate
utility.

References

[1] Abdulla, M. S. and Bhatnagar, S. (2007) “Reinforcement learning based algorithms for average
cost Markov decision processes”, Discrete Event Dynamic Systems: Theory and Applications,
17(1):23-52.

[2] Abounadi, J., Bertsekas, D. and Borkar, V. S. (2001) “Learning Algorithms for Markov Deci-
sion Processes”, SIAM Journal on Control and Optimization, 40:681-698.

[3] Aleksandrov, V., Sysoyev, V. and Shemeneva, V. (1968) “Stochastic Optimization”, Engineer-
ing Cybernetics, 5:11-16.

[4] Alrefaei, M. H. and Andradóttir, S. (1999) “A simulated annealing algorithm with constant
temperature for discrete stochastic optimization”, Management Science, 45(5):748-764.

[5] Amari, S. (1998) “Natural gradient works efficiently in learning”, Neural Computation,
10(2):251-276.

[6] Archibald, T., McKinnon, K., and Thomas, L. (1995) “On the Generation of Markov Decision
Processes”, Journal of the Operational Research Society, 46:354-361.

[7] Baird, L. C. (1993) “Advantage Updating”, Technical Report WL-TR-93-1146, Wright labo-
ratory, Wright-Patterson Air Force Base, OH 45433-7301.

[8] Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxima-
tion. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 30–37.
Morgan Kaufmann, San Francisco.

[9] Bagnell, J. and Schneider, J. (2003) “Covariant policy search”, Proceedings of International
Joint Conference on Artificial Intelligence.

[10] Barto, A., Sutton, R. S. and Anderson, C. (1983) “Neuron-like elements that can solve difficult
learning control problems”, IEEE Transactions on Systems, Man and Cybernetics, 13:835-846.

[11] Baxter, J. and Bartlett, P. L. (2001) “Infinite-horizon policy-gradient estimation”, Journal of
Artificial Intelligence Research, 15:319-350.

[12] Baxter, J., Bartlett, P. L. and Weaver, L. (2001) “Experiments with infinite-horizon, policy-
gradient estimation”, Journal of Artificial Intelligence Research, 15:351-381.

33

[13] Baxter, J., Tridgell, A., and Weaver, L. (1998) “KnightCap: A Chess Program that Learns by
Combining TD(λ) with Game-Tree Search”, Proceedings of the Fifteenth International Con-
ference on Machine Learning, pp. 28–36.

[14] Bellman, R. E., and Dreyfus, S. E. (1959). Functional approximations and dynamic program-
ming. Mathematical Tables and Other Aids to Computation, 13:247–251.

[15] Benveniste, A., Metivier, M. and Priouret, P. (1990) Adaptive Algorithms and Stochastic Ap-
proximations, Springer, Berlin.

[16] Bertsekas, D. P. (1995) Dynamic Programming and Optimal Control, Athena Scientific, Bel-
mont, MA.

[17] Bertsekas, D. P. (1999) Nonlinear Programming, Athena Scientific, Belmont, MA.

[18] Bertsekas, D. P. and Tsitsiklis J. N. (1989) Parallel and Distributed Computation, Prentice
Hall, New Jersey.

[19] Bertsekas, D. P. and Tsitsiklis J. N. (1996) Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA.

[20] Bertsekas, D. P., Borkar, V. S. and Nedic, A. (2003) “Improved temporal difference methods
with linear function approximation”, MIT LIDS Report LIDS-P-2573.

[21] Bhatnagar, S. and Kumar, S. (2004) “A simultaneous perturbation stochastic approximation
based actor–critic algorithm for Markov decision processes”, IEEE Transactions on Automatic
Control, 49(4):592-598.

[22] Bhatnagar, S. (2005) “Adaptive multivariate three-timescale stochastic approximation algo-
rithms for simulation based optimization”, ACM Transactions on Modeling and Computer
Simulation, 15(1):74-107.

[23] Bhatnagar, S. (2007) “Adaptive Newton-based multivariate smoothed functional algorithms
for simulation optimization”, ACM Transactions on Modeling and Computer Simulation,
18(1):2:1-2:35.

[24] Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M. (2008) “Incremental Natural
Actor-Critic Algorithms”, Advances in Neural Information Processing Systems, 20:105-112.

[25] Borkar, V. S. (1997) “Stochastic approximation with two timescales”, Systems and Control
Letters, 29:291-294.

[26] Borkar, V. S. (2008) “Reinforcement learning – a bridge between numerical methods and
Monte-Carlo”, Preprint.

[27] Borkar, V. S. and Meyn, S. P. (2000) “The O.D.E. method for convergence of stochastic approx-
imation and reinforcement learning”, SIAM Journal of Control and Optimization, 38(2):447-
469.

34

[28] Boyan, J. A. (1999). Least-squares temporal difference learning. In Proceedings of the Six-
teenth International Conference on Machine Learning, pages 49–56. Morgan Kaufmann, San
Francisco, CA.

[29] Boyan, J. A., and Moore, A. W. (1995). Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D. S. Touretzky, and T. Leen (eds.), Advances
in Neural Information Processing Systems: Proceedings of the 1994 Conference, pp. 369–376.
MIT Press, Cambridge, MA.

[30] Brandiere, O. (1998) “Some pathological traps for stochastic approximation”, SIAM
J. Contr. and Optim., 36:1293-1314.

[31] Bradtke, S. J. and Barto, A. G. (1996) “Linear least-squares algorithms for temporal difference
learning”, Machine Learning, 22:33-57.

[32] Cao, X.-R. and Chen, H. F. (1997) “Perturbation realization, potentials and sensitivity analysis
of Markov processes”, IEEE Transactions on Automatic Control, 42:1382-1393.

[33] Chow, C.-S., and Tsitsiklis, J. N. (1991). An optimal one-way multigrid algorithm for discrete-
time stochastic control. IEEE Transactions on Automatic Control, 36:898–914.

[34] Crites, R. H., and Barto, A. G. (1998). Elevator Group Control using Multiple Reinforcement
Learning Agents. Machine Learning, 33:235–262.

[35] Daniel, J. W. (1976). Splines and efficiency in dynamic programming. Journal of Mathematical
Analysis and Applications, 54:402–407.

[36] Dukkipati, A., Murty, M. N., and Bhatnagar, S. (2005) “Information theoretic justification of
Boltzmann selection and its generalization to Tsallis case”, Proceedings of IEEE Congress on
Evolutionary Computation, pp. 1667-1674, Vol.2, Edinburgh, U.K.

[37] Ghavamzadeh, M., and Engel, Y. (2007) “Bayesian Policy Gradient Algorithms”, Advances in
Neural Information Processing Systems, 19:457-464.

[38] Ghavamzadeh, M., and Engel, Y. (2007) “Bayesian Actor-Critic Algorithms”, Proceedings of
the Twenty-Fourth International Conference on Machine Learning, pp. 297-304.

[39] Glynn, P. (1990) “Likelihood Ratio Gradient Estimation for Stochastic Systems”, Communi-
cations of the ACM, 33:75-84.

[40] Gordon, G. J. (1995). Stable function approximation in dynamic programming. In A. Prieditis
and S. Russell (eds.), Proceedings of the Twelfth International Conference on Machine Learn-
ing, pp. 261–268. Morgan Kaufmann, San Francisco. An expanded version was published as
Technical Report CMU-CS-95-103. Carnegie Mellon University, Pittsburgh, PA, 1995.

[41] Greensmith, E., Bartlett, P. L. and Baxter, J. (2004) “Variance reduction techniques for
gradient estimates in reinforcement learning”, Journal of Machine Learning Research, 5:1471-
1530.

[42] Hirsch, M. W. (1989) “Convergent activation dynamics in continuous time networks”, Neural
Networks, 2:331-349.

35

[43] Kakade, S. (2002) “A Natural Policy Gradient”, Advances in Neural Information Processing
Systems, 14.

[44] Kohl, N., Stone, P. (2004). Policy Gradient Reinforcement Learning for Fast Quadrupedal
Locomotion. Proceedings of the IEEE International Conference on Robotics and Automation
pp. 2619-2624.

[45] Konda, V. R. and Borkar, V. S. (1999) “Actor–critic like learning algorithms for Markov
decision processes”, SIAM Journal on Control and Optimization, 38(1):94-123.

[46] Konda, V. R. and Tsitsiklis, J. N. (2003) “On actor–critic algorithms”, SIAM Journal on
Control and Optimization, 42(4):1143-1166.

[47] Kushner, H. J. and Clark, D. S. (1978) Stochastic Approximation Methods for Constrained and
Unconstrained Systems, Springer Verlag, New York.

[48] Kushner, H. J. and Yin, G. G. (1997) Stochastic Approximation Algorithms and Applications,
Springer Verlag, New York.

[49] Lagoudakis, M. G. and Parr, R. (2003) “Least-Squares Policy Iteration”, Journal of Machine
Learning Research, 4:1107-1149.

[50] Lasalle, J. P. and Lefschetz, S. (1961) Stability by Lyapunov’s Direct Method with Applications,
Academic Press, New York.

[51] Lee, M., Sutton, R. S. and Ghavamzadeh, M. (2006) “Garnet Natural Actor–Critic Project”,
University of Alberta Reinforcement Learning Library.

[52] Marbach, P. and Tsitsiklis, J. N. (2001) “Simulation-based optimization of Markov reward
processes” IEEE Transactions on Automatic Control, 46:191-209.

[53] Meyn, S. P. (2007) Control Techniques for Complex Networks, Cambridge Univ. Press, Cam-
bridge, U.K.

[54] Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.
(2004). Inverted autonomous helicopter flight via reinforcement learning. International Sym-
posium on Experimental Robotics.

[55] Pemantle, R. (1990) “Nonconvergence to unstable points in urn models and stochastic approx-
imations”, Annals of Prob., 18:698-712.

[56] Peters, J., Vijayakumar, S. and Schaal, S. (2003) “Reinforcement learning for humanoid
robotics”, Proceedings of the Third IEEE-RAS International Conference on Humanoid Robots.

[57] Peters, J. and Schaal, S. (2008) “Natural Actor-Critic”, Neurocomputing, 71, 7-9, pp. 1180-
1190.

[58] Peters, J. and Schaal, S. (2008) “Reinforcement learning of motor skills with policy gradients”,
Neural Networks.

36

[59] Puterman, M. L. (1994) Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming, John Wiley, New York.

[60] Richter, S., Aberdeen, D., and Yu, J. (2007) “Natural Actor-Critic for Road Traffic Optimiza-
tion”, Advances in Neural Information Processing Systems, 19:1169-1176.

[61] Rummery, G. and Niranjan, M. (1994) “On-line Q-learning using Connectionist Systems”,
Technical Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge Univer-
sity.

[62] Rust, J. (1996). Numerical dynamic programming in economics. In H. Amman, D. Kendrick,
and J. Rust (eds.), Handbook of Computational Economics, pp. 614–722. Elsevier, Amsterdam.

[63] Singh, S., and Dayan, P. (1998) Analytical Mean Squared Error Curves for Temporal Difference
Learning. Machine Learning, 32:5–40.

[64] Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Doctoral disser-
tation, University of Massachusetts Amherst.

[65] Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3:9–44.

[66] Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.), Advances in
Neural Information Processing Systems: Proceedings of the 1995 Conference, pp. 1038–1044.
MIT Press, Cambridge, MA.

[67] Sutton, R. S., McAllester, D., Singh, S. and Mansour, Y. (2000) “Policy gradient methods
for reinforcement learning with function approximation”, Advances in Neural Information
Processing Systems, 12:1057-1063.

[68] Sutton, R. S. and Barto, A. (1998) Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA.

[69] Tadic, V. (2001). On the Convergence of Temporal Difference Learning with Linear Function
Approximation. Machine Learning 42(3):241–267.

[70] Tesauro, G. J. (1995). Temporal difference learning and TD-Gammon. Communications of
the ACM, 38:58–68.

[71] Tsitsikis, J. (1994) “Asynchronous Stochastic Approximation and Q-learning”, Machine Learn-
ing, 16:185-202.

[72] Tsitsiklis, J. and Van Roy, B. (1997) “An analysis of temporal-difference learning with function
approximation”, IEEE Transactions on Automatic Control, 42(5):674-690.

[73] Tsitsikis, J. and Van Roy, B. (1999) “Average cost temporal-difference learning”, Automatica,
35:1799-1808.

[74] White, D. J. (1993). A survey of applications of Markov decision processes. Journal of the
Operational Research Society, 44:1073–1096.

37

[75] Widrow, B. and Stearns, S. D. (1985) Adaptive Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ.

[76] Williams, R. J. (1992) “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning”, Machine Learning, 8:229-256.

38

