
Conservative and Greedy Approaches to Classification-based Policy Iteration

Mohammad Ghavamzadeh and Alessandro Lazaric
INRIA Lille - Team SequeL, France

Abstract

The existing classification-based policy iteration
(CBPI) algorithms can be divided into two categories:
direct policy iteration (DPI) methods that directly as-
sign the output of the classifier (the approximate greedy
policy w.r.t. the current policy) to the next policy, and
conservative policy iteration (CPI) methods in which
the new policy is a mixture distribution of the current
policy and the output of the classifier. The conservative
policy update gives CPI a desirable feature, namely the
guarantee that the policies generated by this algorithm
improve at each iteration. We provide a detailed
algorithmic and theoretical comparison of these two
classes of CBPI algorithms. Our results reveal that
in order to achieve the same level of accuracy, CPI
requires more iterations, and thus, more samples than
the DPI algorithm. Furthermore, CPI may converge to
suboptimal policies whose performance is not better
than DPI’s.

1 Introduction
Policy iteration (Howard 1960) is one of the two main
classes of dynamic programming (DP) algorithms to find
an optimal policy for a Markov decision process (MDP).
It is an iterative algorithm that discovers an optimal pol-
icy by generating a sequence of monotonically improving
policies. At each iteration k of this algorithm, given the
current policy πk, an improved policy πk+1 is generated
as the greedy policy w.r.t. the action-value function Qπk ,
i.e., πk+1 = Gπk. In MDPs with large or continuous state
and action spaces, policy iteration often fails to improve the
policy πk efficiently (to find the exact Gπk), mainly because
it cannot compute Qπk exactly, and as a result approxima-
tion schemes are required. There are two main approaches
to approximate policy iteration (API). The most common
approach is to find a good approximation of the value func-
tion of πk in a real-valued function space, and then com-
pute πk+1 as the greedy policy w.r.t. this approximation
(e.g., Lagoudakis and Parr 2003a). The other variant of API,
which is more recent and less studied, replaces the approx-
imation of the action-value function over the entire state-
action space with a learning step in a policy space (Kakade

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003; Lagoudakis and Parr 2003b; Fern, Yoon, and Givan
2006; Lazaric, Ghavamzadeh, and Munos 2010a). In this ap-
proach, at each iteration we solve a classification problem
in order to find a policy in a given policy space that best
predicts the greedy action at every state. Thus, this class of
API algorithms is called classification-based policy iteration
(CBPI).

The existing CBPI methods can be divided into two
groups according to the way that they generate the next pol-
icy πk+1 from the output of the classifier. The first group
directly assigns the output of the classifier to the next policy,
therefore are called direct policy iteration (DPI) algorithms.
The CBPI algorithms by Lagoudakis and Parr (2003b) and
Fern et al. (2006) and the algorithm presented and analyzed
in Lazaric et al. (2010a) belong to this category. The sec-
ond group of CBPI algorithms perform a more conservative
policy update in which the new policy πk+1 is a mixture
distribution of the current policy πk and the output of the
classifier. This group of algorithms are introduced and an-
alyzed in (Kakade and Langford 2002) and (Kakade 2003)
under the name conservative policy iteration (CPI).1 By us-
ing a conservative policy update, CPI aims at avoiding the
main drawback of the DPI methods, i.e., the significant pol-
icy degradation resulted from the direct use of approximate
greedy policies. This gives CPI two particularly desirable
features: 1) it guarantees to improve the policy at each it-
eration, i.e., the value function of πk+1 is larger on aver-
age than the value function of πk, and 2) it has a stop-
ping condition based on the quality of the generated pol-
icy (it stops whenever it cannot guarantee that the new pol-
icy has a better performance than the previous one). These
features can potentially make CPI a very appealing API al-
gorithm, mainly because other API methods have no guar-
antee to generate monotonically improving policies. This
includes both value function based API algorithms such
as LSPI (Lagoudakis and Parr 2003a) and classification-
based API methods other than CPI. Unfortunately, unlike
the DPI methods, that have been fully analyzed (Lazaric,

1While in Kakade and Langford (2002) the algorithm is pre-
sented as a rollout value-based approach, in the more detailed de-
scription and analysis of CPI found in Kakade (2003), the algo-
rithm is presented as a CBPI method. In Conclusions we will dis-
cuss how the comparison between DPI and CPI reported in this
paper can be easily extended to any value-based approach.

Ghavamzadeh, and Munos 2010a) and successfully ap-
plied to benchmark problems (Lagoudakis and Parr 2003b;
Fern, Yoon, and Givan 2006; Gabillon et al. 2011), CPI has
not been empirically evaluated and its performance bounds
have not been studied in details and thoroughly compared to
other API algorithms.

The main objective of this paper is to better understand
the behavior of the CPI algorithm and to find out whether
its two main features actually lead to a better performance.
To answer this question, we perform a detailed algorithmic
and theoretical comparison of these two classes of CBPI al-
gorithms. Our analysis reveals that in order to achieve the
same level of accuracy, CPI requires more iterations, and
thus, more samples than the DPI algorithm. This indicates
that although CPI’s conservative update allows it to have a
monotonically improving behavior, it slows down the algo-
rithm and increases its sample complexity. Furthermore, CPI
may converge to suboptimal policies whose performance is
not better than DPI.

2 Preliminaries
In this section, we set the notation used throughout the pa-
per. A discounted Markov decision process (MDP)M is a
tuple 〈X ,A, r, p, γ〉, where the state space X is a bounded
closed subset of a Euclidean space Rd, the set of actions A
is finite (|A| <∞), the reward function r : X ×A → [0, 1],
the transition model p(·|x, a) is a distribution over X , and
γ ∈ (0, 1) is a discount factor. We denote by ρ a distribution
over the state space X . We define a policy π : X → P(A)
as a function mapping each state to a probability distribu-
tion over actions. If the policy is deterministic then π simply
maps each state to an action in A, i.e., π : X → A. We use
Bπ(X) to denote the space of deterministic policies.

For a given policy π, we define its γ-discounted value
function V π :X → [0, 1] as the normalized expected sum
of discounted rewards obtained by following π, i.e.,

V π(x) = (1− γ)E
[∞∑
t=0

γtr(xt, at)|x0 = x, at ∼ π(xt)
]
,

where the expectation is w.r.t. to the stochastic transitions
and the stochastic policy (if π is stochastic). Given a state
distribution ρ, with an abuse of notation, we define the aver-
age value function as V π(ρ) = Ex∼ρ

[
V π(x)

]
. The optimal

policy π∗ is the policy which maximizes the value function
(i.e., π∗ = arg maxV π(ρ)) and its corresponding value is
the optimal value function V ∗ = V π

∗
. We also define the

γ-discounted action-value function Qπ :X ×A → [0, 1] as

Qπ(x, a)=(1− γ)
(
r(x, a) + E

[∞∑
t=1

γtr(xt, at)|at∼π(xt)
])
.

If the action a is chosen according to a policy π′, then we
define Qπ(x, π′) = Ea∼π′(x)

[
Qπ(x, a)

]
, whose average

value w.r.t. a state distribution ρ is denoted by Qπ(ρ, π′) =
Ex∼ρ

[
Qπ(x, π′)

]
. We then define the greedy policy operator

G : Bπ(X)→ Bπ(X) as

(Gπ)(x) = arg max
a∈A

Qπ(x, a), ∀x ∈ X , (1)

so that Gπ is the greedy policy w.r.t. Qπ . We also define the
advantage function Aπ : X ×A → [−1, 1], which indicates
how much an action a improves the performance of π in
state x,

Aπ(x, a) = Qπ(x, a)− V π(x).

We define the advantage of a policy π′ w.r.t. to π as
Aπ(x, π′) = Ea∼π′(x)

[
Aπ(x, a)

]
, and its average ad-

vantage w.r.t. to a state distribution ρ as Aπ(ρ, π′) =
Ex∼ρ

[
Aπ(x, π′)

]
. Finally, we recall the definition of the

future-state discounted distribution dπρ of policy π when the
initial state is drawn from a distribution ρ as

dπρ (x) = (1− γ)

∞∑
t=0

γtP[xt = x|ρ, π].

For each of the above quantities, we need to define their
estimated counterparts. First, aH-horizon rollout of a policy
π for a state-action pair (x, a) is defined as

Rπ(x, a) = (1− γ)
(
r(x, a) +

H−1∑
t=1

γtr(xt, at)
)
, (2)

where x1 ∼ p(·|x, a), xt ∼ p
(
· |xt−1, at−1

)
, and at−1 ∼

π(xt−1). If M independent rollouts are available at a state-
action pair (x, a), then we can estimate Qπ(x, a) as

Q̂π(x, a) =
1

M

M∑
j=1

Rπj (x, a). (3)

Let D = {xi}Ni=1 be a set of N states drawn indepen-
dently from a state distribution µ, then the estimated average
action-value function for a policy π′ is defined as

Q̂π(µ̂, π′) =
1

N

N∑
i=1

Ea∼π′(xi)

[
Q̂π(xi, a)

]
.

Similarly, we may define the estimated advantages Âπ(x, a),
Âπ(x, π′), and Âπ(ρ̂, π′).

3 CPI and DPI Algorithms
In this section, we provide a detailed algorithmic compari-
son of direct policy iteration (DPI) (Lazaric, Ghavamzadeh,
and Munos 2010a) and conservative policy iteration
(CPI) (Kakade and Langford 2002; Kakade 2003) methods.

3.1 The General Structure
Before getting into the details of each of the two algorithms,
we first describe their common structure (Figure 1). A
classification-based policy iteration (CBPI) algorithm takes
as input a policy space Π, a state distribution ρ, and an ac-
curacy parameter ε that defines the stopping condition of the
algorithm. Given the desired accuracy ε, the algorithm first
sets the number of rollout states N , the number of rollouts
per state-action pairM , and the rollout horizonH (Step (a)).
These parameters define the total number of transitions used
at each iteration of the algorithm (the per-iteration budget
B). As it will be discussed in the next section, the choice of

Input: policy space Π, state distribution ρ, accuracy ε
Initialize: Select an arbitrary policy π0 ∈ Π and set k = 0
(a) Compute the per-iteration budget B(ε) and N , M , H
repeat

(b) Define a suitable sampling policy µk from ρ and πk
Build the rollout set Dk = {xi}Ni=1, xi ∼ µk
for all states xi ∈ Dk and actions a ∈ A do

(c) Compute a rollout estimate Q̂πk (xi, a) (see Eq. 3)
end for
(d) Compute the approximate greedy policy π′ w.r.t. πk
(e) Construct the next policy πk+1 from π′ and πk
k = k + 1

until (f) Termination(ε) = false

Figure 1: The general structure of a classification-based pol-
icy iteration (CBPI) algorithm.

Input: policy space Π, state distribution ρ, accuracy ε
Initialize: Select an arbitrary policy π0 ∈ Π and set k = 0
(a) Compute the per-iteration budget B(ε) and N , M , H
(a’) Compute the total number of iterations K(ε)
repeat

(b) Set µk = ρ
Build the rollout set Dk = {xi}Ni=1, xi ∼ µk
for all states xi ∈ Dk and actions a ∈ A do

(c) Compute an estimate Q̂πk (xi, a) with M rollouts
end for
(d) Compute the approximate greedy policy π′ w.r.t. πk
(e) πk+1 = π′

k = k + 1
until (f) k ≤ K(ε)

Figure 2: The direct policy iteration (DPI) algorithm.

these parameters depends on the performance bound of the
algorithm at each iteration. Starting with an arbitrary policy
π0 ∈ Π, the algorithm can be summarized in the following
main steps. At Step (b), the algorithm builds a rollout set
Dk = {xi}Ni=1, with states xi drawn from a sampling distri-
bution µk defined according to the input distribution ρ and
the current policy πk. For each of the rollout states x ∈ Dk
and for each action a ∈ A, a rollout estimate of the action-
value function of the current policy Q̂πk(x, a) is computed
at Step (c) (see Eqs. 2 and 3). Step (d) receives the estimated
action-values Q̂πk(x, a),∀x ∈ Dk,∀a ∈ A, and computes
an approximation of Gπk. More precisely, the approximated
greedy policy π′ is computed as

π′ = arg max
π∈Π

Q̂πk(µ̂k, π). (4)

Note that this problem can be cast as a cost-sensitive clas-
sification problem, in which the training set is of the form{

(xi, a), Q̂πk(xi, a)
}N
i=1

,∀a ∈ A. Finally, at Steps (e) and
(f), the algorithm first constructs the next policy πk+1 using
πk and π′, and then checks a termination condition.

3.2 DPI Algorithm
Figure 2 shows how the direct policy iteration (DPI) algo-
rithm implements each of the steps of the general CBPI
structure. Although we focus on the specific DPI algorithm

Input: policy space Π, state distribution ρ, accuracy ε
Initialize: Select an arbitrary policy π0 ∈ Π and set k = 0
(a) Compute the per-iteration budget B(ε) and N , M , H
repeat

(b) Set µk = d
πk
ρ

Build the rollout set Dk = {xi}Ni=1, xi ∼ µk
for all states xi ∈ Dk and actions a ∈ A do

(c) Compute an estimate Q̂πk (xi, a) with one rollout
end for
(d) Compute the approximate greedy policy π′ w.r.t. πk
(e) Compute α = Â(µ̂k,π

′)−ε/3
4

(1− γ)
(e’) πk+1 = (1− α)πk + απ′

k = k + 1
until (f) Â(µ̂k, π

′) ≤ 2ε
3

Figure 3: The conservative policy iteration (CPI) algorithm.

analyzed in Lazaric et al. (2010a), the pseudo-code of Fig-
ure 2 also includes other DPI algorithms in the literature
that use a 0/1 loss function in the computation of the ap-
proximate greedy policy (Step (d)) instead of solving a
cost-sensitive classification problem (e.g., Lagoudakis and
Parr 2003b). After computing the per-iteration budget (i.e,
N , M , and H), DPI also determines the total number of it-
erations K(ε) needed to meet the required accuracy ε (Step
(a’)). This reduces the termination condition at Step (f) to
a simple condition on the number of iterations ran so far.
Note that at each iteration the algorithm builds the rollout
set with states drawn from ρ (Step b), and runs M rollouts
for each state-action pair (Step (c)). Finally, the policy at the
next iteration πk+1 is set to π′ (Step (e)).

3.3 CPI Algorithm
Figure 3 shows how the conservative policy iteration (CPI)
algorithm (Kakade and Langford 2002; Kakade 2003) im-
plements each of the steps of the general CBPI structure. In
CPI, the sampling distribution µk is set to the future-state
discounted distribution dπk

ρ of the current policy πk (Step
(b)). In practice, in order to generate samples xi from the
distribution dπk

ρ , we first draw a state x0 from ρ and then we
follow policy πk. At each step t, the current state xt is either
accepted as xi with probability γ and the simulation stops or
it is rejected with probability 1 − γ and the rollout contin-
ues. If the rollout is not terminated after H steps (the rollout
horizon), then it is forced to terminate and the last state xH
is selected as xi. Once the rollout set is built, one single
rollout is run for each state-action pair (Step (c)). While the
approximate greedy policy π′ is computed as in Eq. 4 (Step
(d)), CPI constructs the next policy πk+1 in a conservative
way as a mixture distribution of the current policy πk and the
approximate greedy policy π′ with a suitable mixing param-
eter α. The algorithm stops when the estimated advantage of
π′ is smaller than 2ε/3 (Step (f)).

3.4 The Algorithmic Comparison
Given the sketch of the DPI and CPI algorithms in Figures 2
and 3, we can now easily highlight their most relevant algo-
rithmic differences. The first difference is in the construction

of the rollout set Dk, where DPI and CPI use the sampling
distributions ρ and dπk

ρ , respectively. This implies that the
greedy policies approximated by the two algorithms are dif-
ferent. In fact, if we let the size of the rollout set, the number
of rollouts, and the rollout horizon go to infinity, we have

π′CPI = arg max
π∈Π

Qπk(dπk
ρ , π), π′DPI = arg max

π∈Π
Qπk(ρ, π).

If Π contains the actual greedy policy G(πk), then π′CPI =
π′DPI, otherwise CPI favors policies that improve πk in the
regions of the state space reachable by πk itself, while DPI
prefers policies with high action-values in the states cov-
ered by the state distribution ρ. The choice of dπk

ρ is critical
since it allows CPI to estimate the advantageAπk(dπk

ρ , π′CPI)
which is used to compute a suitable α that guarantees πk+1

improves over πk (Step (e)). On the other hand, since DPI
does not ensure any monotonic improvement, it does not re-
quire any specific sampling strategy. Once the rollout set is
built, Steps (c) and (d) are the same for both algorithms. The
other major difference is in the way the next policy πk+1 is
generated in Step (e). While DPI simply sets the next policy
πk+1 to π′, CPI returns a policy πk+1 which is a mixture
of the current policy πk and the approximate greedy pol-
icy π′. In fact, CPI is based on the evidence that if π′ has
a sufficiently large average advantage Aπk(µk, π

′), then it
is possible to compute a mixing parameter α such that the
corresponding mixture πk+1 is guaranteed to improve the
current policy (see Corollary 7.2.3 in Kakade 2003 for more
details), i.e., the value function of πk+1 is larger than the
value function of πk (V πk+1(ρ) ≥ V πk(ρ)). Although this
is a major advantage over DPI, it comes at the cost of using
stochastic policies instead of deterministic ones, which may
be problematic in some applications (e.g., in robotics). The
difference in the computation of πk+1 also explains the dif-
ferent termination conditions (Step (f)). In fact, while DPI
simply limits the number of iterations, CPI stops whenever
it cannot guarantee a sufficient improvement over the cur-
rent policy (which depends on the advantage Aπk(µ̂k, π

′)).
As discussed in the next section, this difference has a deep
impact on the actual performance of the algorithms. In fact,
the monotonic improvement of CPI may result in an exces-
sively slow convergence to a solution which may not even
be better than the solution found by DPI in fewer iterations.

4 CPI and DPI Performance Bounds
While in the last section we compared CPI and DPI from
an algorithmic perspective, we now study how these differ-
ences affect the performance of these algorithms. In particu-
lar, we elaborate on their theoretical analysis in (Kakade and
Langford 2002) (for CPI) and (Lazaric, Ghavamzadeh, and
Munos 2010a) (for DPI), and reformulate their performance
bounds in order to capture their similarities and differences
and better explain their behaviors.

Thanks to the comparison in the previous section, we
notice that, while the two algorithms are very similar in
approximating the greedy policy π′ at each iteration, they
mainly differ in the way they compute the next policy πk+1.
Thus, we split the theoretical comparison into two parts, the
part that takes into account the error in approximating the

greedy policy π′, and the one which studies how this error is
propagated through the iterations of the algorithms.2

4.1 Error in Approximating the Greedy Policy
As described in Figure 1 Steps (b-d), at each iteration k,
the two algorithms (a CBPI algorithm in general) build a
rollout set Dk according to µk, compute a rollout estimate
Q̂πk(xi, a),∀xi ∈ Dk,∀a ∈ A, and finally generate a train-
ing set for a classifier that solves a cost-sensitive classifi-
cation problem and returns an estimated greedy policy π′

(w.r.t. πk). The quality of such a policy depends on two main
factors (see also Eqs. 1 and 4): the number of transitions used
to compute Q̂πk(xi, a), i.e., the per-iteration budget B(ε) at
Step (a), and the policy space Π (the classifier) to which π′
belongs to. Although the results in (Kakade and Langford
2002) and (Lazaric, Ghavamzadeh, and Munos 2010a) are
stated differently and analyze slightly different quantities,
it is easy to derive a general theorem bounding the action-
value of π′ w.r.t. policy πk and a distribution µk. A proof of
the following theorem is reported in Appendix.

Theorem 1 If the policy space Π received by the algorithm
of Figure 1 has a finite VC-dimension V C(Π) = h < ∞,
and the per-iteration budget is B(ε) = 2NMH with

N = Ω

(
h

ε2
log

1

εδ

)
, M = Ω(1), H = Ω

(
log 1/ε

1− γ

)
,

then at each iteration k, the algorithm returns an approxi-
mate greedy policy π′ such that

Qπk(µk,Gπk)−Qπk(µk, π
′) ≤ (5)

inf
π∈Π

[
Qπk(µk,Gπk)−Qπk(µk, π)

]
+ ε,

with probability at least 1− δ (w.r.t. to random rollouts).

This bound actually decomposes the loss in the perfor-
mance of π′ w.r.t. Gπk into a term which depends on the
“richness” of the policy space Π and is usually referred to as
approximation error, and the term ε which depends on the
per-iteration budget (i.e., the number of transitions needed at
each iteration) and is called the estimation error. As we will
see in the next section, this decomposition is crucial to un-
derstand how this error is propagated by the two algorithms.
We also notice that the number of rollouts per state-action
pair M can be actually set to 1 for both algorithms.

4.2 Error Propagation
In Step (e), CPI and DPI use the approximate greedy
policy π′ in a completely different way. While DPI simply
uses it as the next policy πk+1 and then iterates for K(ε)
iterations, CPI generates a more conservative policy πk+1

by combining the current policy πk and π′ which guarantees
a monotonic improvement over πk in terms their average
value functions. This different behavior naturally leads to a
difference in the final performance. In fact, DPI usually does

2As in (Kakade and Langford 2002) and (Lazaric,
Ghavamzadeh, and Munos 2010a), from this point on, we
assume that the action space contains only two actions |A| = 2.

not converge to a fix policy and keeps oscillating between
different policies (i.e., the so-called convergence to region).
On the other hand, CPI monotonically improves the policies
until it converges to a policy that cannot be improved any
further. Although this nice property may suggest that CPI
outperforms DPI, by a careful inspection of their theoretical
properties we obtain some surprising results. Before stating
the main theorems that contain the performance bounds
of the algorithms, we need to introduce a few terms and
assumptions that play a critical role in the comparison.
Since we are interested in bounding the final performance of
the algorithms in σ-norm, which might be different than the
sampling distribution ρ, we use the following assumptions:

Assumption 1 For any policy π and any non-negative in-
tegers s and t, there exists a constant Cσ,ρ(s, t) < ∞
such that σ(P ∗)s(Pπ)t ≤ Cσ,ρ(s, t)ρ. We define
CDPI(σ, ρ) = (1− γ)2

∑∞
s=0

∑∞
t=0 γ

s+tCσ,ρ(s, t).

Assumption 2 The term CCPI(σ, ρ) = ||dπ∗σ /ρ||∞, which
represents the mismatch between the γ-discounted future
state distribution of the optimal policy π∗ for the starting
state distribution σ and the distribution ρ, is bounded.

Similar to (Lazaric, Ghavamzadeh, and Munos 2010a),
we refer to CDPI and CCPI as concentrability terms. We also
define the approximation error of the algorithms as:

Definition 1 The inherent greedy error of a policy space Π
is defined for DPI and CPI as follows:

dDPI(Π,GΠ) = sup
π∈Π

inf
π′∈Π

[
Qπ(ρ,Gπ)−Qπ(ρ, π′)

]
,

dCPI(Π,GΠ) = sup
π∈Π

inf
π′∈Π

[
Qπ(dπρ ,Gπ)−Qπ(dπρ , π

′)
]
.

We now state the main results, i.e., the performance
bounds of the algorithms.

Theorem 2 If the policy space Π received by CPI has a fi-
nite VC-dimension V C(Π) = h <∞, and the per-iteration
budget is B(ε) as in Theorem 1, then CPI stops after at most

K(ε) = O

(
1

ε2

)
iterations and returns a policy πCPI such that

V ∗(σ)− V πCPI(σ) ≤ CCPI(σ, ρ)

(1− γ)2

(
dCPI(Π,GΠ) + ε

)
,

with probability 1−Kδ.

Theorem 3 If the policy space Π received by DPI has a fi-
nite VC-dimension V C(Π) = h <∞, and the per-iteration
budget is B(ε) as in Theorem 1, then DPI runs for

K(ε) = O

(
log 1/ε

(1− γ)

)

iterations and returns a policy πDPI such that

V ∗(σ)− V πDPI(σ) ≤ CDPI(σ, ρ)

(1− γ)2

(
dDPI(Π,GΠ) + ε

)
,

with probability 1−Kδ.

While the proof of Theorem 2 is reported in the Ap-
pendix, Theorem 3 is a rewriting of Theorem 6 in Lazaric et
al. (2010b).

Remark 1 (approximation error). The first interesting re-
sult is the definition of approximation error dCPI(Π,GΠ)
in CPI. In order to understand it better, let us consider the
asymptotic case where ε = 0 (using infinite number of roll-
outs and iterations). Since CPI improves the quality of the
policy at each iteration, one might expect it to return the
policy π̃ ∈ Π that best approximates the performance of
π∗, i.e., π̃ = arg maxπ∈Π V

π(dπ
∗

ρ). However, unlike exact
policy iteration where monotonic improvement is enough
to guarantee convergence to the optimal policy, CPI may
converge to a suboptimal policy. The approximation error
dCPI(Π,GΠ) exactly bounds the error of the worst subop-
timal policy that CPI can converge to (see also Appendix
to find out how the approximation error appears in the final
bound of CPI). Another interesting aspect of the result is the
striking similarity between the approximation error terms of
the algorithms. Apart from the use of two different norms ρ
and dπρ , CPI may converge to a policy with the same qual-
ity as the one returned by DPI. This is surprising since at
each iteration DPI does not have any guarantee to improve
over the current policy and it may oscillate between multi-
ple policies. Nonetheless, the performance of such policies
is not worse than the suboptimal policy CPI can converge to.
Finally, we note that

dCPI(Π,GΠ) ≥ (1− γ)dDPI(Π,GΠ).

Although this inequality does not imply any strict ordering
between the two error terms, it suggests that for γ close to
1, CPI may have a worse approximation error than DPI.

Remark 2 (number of iterations). One of the major differ-
ences in the bounds is the number of iterations K(ε) that
CPI needs to converge and DPI needs to run in order to
guarantee an ε accuracy (estimation error). This indicates
that CPI requires exponentially more iterations than DPI to
obtain the same accuracy. This is because it converges after
1/ε2 iterations, while DPI only needs log(1/ε)/(1 − γ)
steps. This result is not completely surprising since CPI
performs conservative updates and modifies the current
policy with a step-size α, which can be very small, while
DPI always performs a full update and set the new policy
to the (approximate) greedy policy. Based on the number
of iterations and the approximation error, we may conclude
that CPI is over-conservative, and although DPI does not
necessarily improve its performance monotonically, it could
converge to policies which are as good as CPI with much
less iterations, and thus, less number of samples. However,
we should note that K(ε) in DPI has a factor 1/(1 − γ)

which can be large when γ is close to 1, thus forcing
DPI to run for many iterations before having ε accuracy.
Moreover, we remark that the K(ε) in Theorem 2 may
largely over-estimate the actual number of iterations the
algorithm needs before stopping. In fact, the upper-bound is
tight only when at each iteration the advantage of π′ is very
close to ε (see Step (f) in Figure 3), the starting policy has an
average value of 0, and the returned policy has an average
value of 1, conditions which are not likely to happen in
general.

Remark 3 (concentrability terms). Another difference in
the bounds is in the concentrability terms CDPI(σ, ρ) and
CCPI(σ, ρ) defined in Assumptions 1 and 2. These terms
indicate that selecting the input distribution ρ (in relation
to the evaluation distribution σ and the MDP) may have a
significant effect on the final performance of the algorithms.
Unfortunately, selecting the right ρ requires complete
knowledge of the MDP and some related quantities that
are not usually available in advance, such as the optimal
policy π∗ itself. This is why we usually set ρ to a safe
distribution such as uniform in order to make sure that
the concentrability terms remain bounded. One potential
advantage of CPI over DPI is that if some knowledge about
the stationary distribution dπ

∗

σ of the optimal policy π∗ is
available, it would be possible to select ρ so as to minimize
CCPI(σ, ρ), while knowing π∗ is not enough to optimize the
concentrability terms CDPI(σ, ρ) in the DPI algorithm.

Remark 4 (convergence of DPI). In case the DPI algorithm
converges to a policy π̃, using the results of Sec. 4.2 of
Lazaric et al. (2010a), we can show that

V ∗ − V π̃ ≤ (I − γP ∗)−1
(
Qπ̃(Gπ̃)−Qπ̃(π̃)

)
.

This point-wise inequality implies the following final per-
formance bound for the DPI algorithm:

V ∗(σ)− V π̃(σ) ≤ CCPI(σ, ρ)

1− γ
(
dDPI(Π,GΠ) + ε

)
. (6)

Comparing Eq. 6 with the bound of Theorem 3, we note two
major improvements in the performance bound of DPI: 1)
the bound has been improved by a factor 1/(1 − γ), which
is significant especially when γ is close to 1, and 2) the CPI
concentrability term, which can be better optimized than its
DPI counterpart (see Remark 3), appears in the DPI bound.
This indicates that in case DPI converges, it achieves a per-
formance superior to the one by CPI with a factor 1/(1−γ).

5 Conclusions
In this paper, we provided a detailed algorithmic and theo-
retical comparison of the two classes of classification-based
policy iteration algorithms: direct policy iteration (DPI) and
conservative policy iteration (CPI). The main objective was
to fully understand the potential advantages of the CPI algo-
rithm, particularly the fact that it guarantees to generate poli-
cies that improve at each iteration before the algorithm ter-
minates. This desirable feature suggests that CPI could out-
perform the standard approximate policy iteration methods

whose full greedy updates do not necessarily lead to mono-
tonically improving policies. In this paper, we first identified
similarities and differences between CPI and DPI, and high-
lighted the parts of the algorithms that have major impact in
their performance. The theoretical analysis then led to two
interesting findings: 1) in order to achieve the same level of
accuracy, CPI requires more iterations, and thus, more sam-
ples than DPI (see Remark 2), and 2) CPI may converge
to suboptimal policies whose performance is no better than
the one achieved by DPI (see Remark 1). This indicates that
CPI’s conservative update comes at the cost of increasing
the sample complexity of the algorithm. Nonetheless, as re-
ported in Remarks 2 and 3, CPI may still be a valid choice
when γ is close to 1 and some knowledge of the stationary
distribution of the optimal policy is available.

Finally, we remark that the results reported in the pa-
per in terms of the comparison between the conservative
and direct policy updates are not necessarily limited to the
classification-based approach to policy iteration. In fact, the
results and analysis can be easily extended to any value func-
tion based policy iteration methods (e.g., LSPI) by simply
replacing Theorem 1 with a suitable bound on the policy
evaluation error (Theorems 2 and 3 remain unchanged).

Acknowledgments
This work was supported by French National Research
Agency (ANR) through the project LAMPADA n◦ ANR-
09-EMER-007, by Ministry of Higher Education and Re-
search, Nord-Pas de Calais Regional Council and FEDER
through the “contrat de projets état region (CPER)
2007–2013”, European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦
231495, and by PASCAL2 European Network of Excel-
lence.

Appendix
In this section, we sketch the proof of Theorems 1 and 2.

Proof of Theorem 1: For DPI, the bound of Eq. 5 is obtained
by noting that maximizing the action value (Eq. 4) is equiva-
lent to minimize the loss defined in (Lazaric, Ghavamzadeh,
and Munos 2010a) and by inverting the bound in Theo-
rem 1 of (Lazaric, Ghavamzadeh, and Munos 2010a) (or
more accurately in Theorem 5 of (Lazaric, Ghavamzadeh,
and Munos 2010b)).

For CPI, we first notice that the maximization of the
action-value function corresponds to maximize the advan-
tage and the bound of Eq. 5 is an immediate consequence of
Lemma 7.3.4 in (Kakade 2003). We can write the following
sequence of inequalities

Qπk(µk, π̃)−Qπk(µk, π
′) = Qπk(µk, π̃)− Q̂πk(µ̂k, π̃)

+ Q̂πk(µ̂k, π̃)− Q̂πk(µ̂k, π
′)

+ Q̂πk(µ̂k, π
′)−Qπk(µk, π

′) ≤ ε

2
+ 0 +

ε

2
,

where π̃ = arg maxπ∈ΠQ
πk(µk, π), and the first and the

last two terms are bounded by Lemma 7.3.4 in (Kakade

2003), if N and H are chosen as in Theorem 1, and the
second two terms are smaller than zero by the definition of
π′ as the best policy in Π w.r.t. the estimated action-value
function Q̂πk(µ̂k, ·). The statement follows by adding and
subtracting Qπk(µk,Gπk) and reordering the terms.

We now turn to the proof of Theorem 2. In the original
analysis of CPI reported in (Kakade and Langford 2002)
no approximation error appears explicitly in the final
bound. The reason is that by Definition 4.3 in (Kakade and
Langford 2002), it is assumed that the greedy policy π′

returned at Step (d) is always ε close to the actual greedy
policy Gπk. In general, it is not possible to guarantee such
a performance, since the quality of the policy space Π in
approximating the greedy policy is directly related to the
classifier. In fact, it is clear from Theorem 1 that even if
an infinite number of rollouts is used to compute π′, its
performance is still constrained by the quality of the policy
space Π. In the following, we report the steps needed to
introduce the approximation error in the analysis of (Kakade
and Langford 2002).

Proof of Theorem 2: Similar to (Kakade and Langford 2002),
we define OPT(µ, π) = maxπ′ A

π(µ, π′) as the maximum
amount a policy π can be improved w.r.t. a distribution µ.
Note that π′ is any stationary policy defined over the MDP
at hand and not the best policy in the policy space Π. We
may rewrite OPT(µ, π) as

OPT(µ, π) = max
π′

[
Qπ(µ, π′)− V π(µ)

]
= Qπ(µ,Gπ)− V π(µ)

= Qπ(µ,Gπ)−Qπ(µ, π̃) +Qπ(µ, π̃)− V π(µ)

= inf
π′∈Π

[
Qπ(µ,Gπ)−Qπ(µ, π′)

]
+Aπ(µ, π̃),

where π̃ = arg maxπ′∈ΠQ
π(µ, π′). From Theorem 7.3.3

in (Kakade 2003), if the per-iteration budget is the same as
in Theorem 1 and CPI is run for O(1/ε2) iterations, then
it returns a policy πCPI such that for any policy π̄ ∈ Π,
A(dπCPI

ρ , π̄) ≤ ε. This means that the returned policy can-
not be improved more than ε w.r.t. dπCPI

ρ by the policies in
the policy space Π. As a result, for any π̄ ∈ Π, and thus,
also for π̃, and µ = dπCPI

ρ , we have

OPT(µ, πCPI) ≤ inf
π′∈Π

[
QπCPI(µ,GπCPI)−QπCPI(µ, π′)

]
+ ε.

Since πCPI is a random variable, the first term above is
also a random variable, and thus, needs to be further upper
bounded as

OPT(µ, πCPI) ≤ sup
π∈Π

inf
π′∈Π

[
Qπ(µ,Gπ)−Qπ(µ, π′)

]
+ ε

= dCPI(Π,GΠ) + ε.

We obtain the statement of Theorem 2 by plugging this result
into Theorem 6.2 in (Kakade and Langford 2002).

References
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate pol-
icy iteration with a policy language bias: Solving relational

Markov decision processes. Journal of Artificial Intelligence
Research 25:85–118.
Gabillon, V.; Lazaric, A.; Ghavamzadeh, M.; and Scherrer,
B. 2011. Classification-based policy iteration with a critic.
In Proceedings of the Twenty-Eighth International Confer-
ence on Machine Learning, 1049–1056.
Howard, R. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press.
Kakade, S., and Langford, J. 2002. Approximately optimal
approximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learning,
267–274.
Kakade, S. 2003. On the Sample Complexity of Reinforce-
ment Learning. Ph.D. Dissertation, Gatsby Computational
Neuroscience Unit., University College London.
Lagoudakis, M., and Parr, R. 2003a. Least-squares policy
iteration. Journal of Machine Learning Research 4:1107–
1149.
Lagoudakis, M., and Parr, R. 2003b. Reinforcement learning
as classification: Leveraging modern classifiers. In Proceed-
ings of the Twentieth International Conference on Machine
Learning, 424–431.
Lazaric, A.; Ghavamzadeh, M.; and Munos, R. 2010a. Anal-
ysis of a classification-based policy iteration algorithm. In
Proceedings of the Twenty-Seventh International Confer-
ence on Machine Learning, 607–614.
Lazaric, A.; Ghavamzadeh, M.; and Munos, R. 2010b.
Analysis of a classification-based policy iteration algorithm.
Technical Report 00482065, INRIA.

