
Learning to Communicate and Act using Hierarchical Reinforcement Learning

Mohammad Ghavamzadeh & Sridhar Mahadevan
Department of Computer Science, University of Massachusetts Amherst, MA 01003-4610, USA

mgh@cs.umass.edu & mahadeva@cs.umass.edu

Abstract

In this paper, we address the issue of rational commu-
nication behavior among autonomous agents. The goal is
for agents to learn a policy to optimize the communica-
tion needed for proper coordination, given the communi-
cation cost. We extend our previously reported cooperative
hierarchical reinforcement learning (HRL) algorithm to in-
clude communication decisions and propose a new multia-
gent HRL algorithm, called COM-Cooperative HRL. In this
algorithm, we define cooperative subtasks to be those sub-
tasks in which coordination among agents significantly im-
proves the performance of the overall task. Those levels of
the hierarchy which include cooperative subtasks are called
cooperation levels. Coordination skills among agents are
learned faster by sharing information at the cooperation
levels, rather than the level of primitive actions. We add
a communication level to the hierarchical decomposition of
the problem below each cooperation level. Before making
a decision at a cooperative subtask, agents decide if it is
worthwhile to perform a communication action. A commu-
nication action has a certain cost and provides each agent
at a certain cooperation level with the actions selected by
the other agents at the same level. We demonstrate the effi-
cacy of the COM-Cooperative HRL algorithm as well as the
relation between the communication cost and the learned
communication policy using a multiagent taxi domain.

1. Introduction

Cooperative multiagent learning studies algorithms for
multiple agents coexisting in the same environment to learn
how to interact effectively to accomplish a task. The rein-
forcement learning (RL) framework has been well-studied
in cooperative multiagent domains [1, 2, 4, 15]. Multiagent
RL has been recognized to be more challenging than single-
agent RL for two main reasons: 1) curse of dimensionality:
the number of parameters to be learned increases dramati-
cally with the number of agents, and 2) partial observabil-
ity: states and actions of the other agents which are required

for an agent to make decision are not fully observable. Prior
work in multiagent RL has addressed the curse of dimen-
sionality in different ways. One natural approach is to re-
strict the amount of information available to each agent and
maximize the global payoff by solving local optimization
problems [10, 13]. Another approach is to exploit the struc-
ture in the multiagent problem using factored value func-
tions [7]. This approach approximates the joint value func-
tion as a linear combination of local value functions, each
of which relates only to the parts of the system controlled
by a small number of agents. Factored value functions al-
low the agents to find a globally optimal joint-action using
a message passing scheme. However, these approaches do
not address the communication cost in their message pass-
ing strategy.

All the above methods ignore the fact that agents might
not have free access to the other agents’ information which
are required for their decision making. In general, the world
is partially observable for the agents in distributed multia-
gent domains. One way to address partial observability in
these domains is to use communication to exchange infor-
mation among agents. However, since communication can
be costly, in addition to its normal actions, each agent needs
to decide about communicating with other agents [11, 16].
The trade-off between the quality of solution and the com-
munication cost is currently a very active area of research
in multiagent learning and planning.

In our previous work [9], we introduced a different
approach to address curse of dimensionality and partial
observability in cooperative multiagent systems. The key
idea underlying the approach is that coordination skills are
learned much more efficiently if the agents have a hierarchi-
cal representation of the task structure. Agents have only a
local view of the overall state space, and learn joint abstract
action-values by communicating with each other only the
high-level subtasks that they are doing. It reduces the num-
ber of parameters to be learned. Furthermore, since high-
level subtasks can take a long time to complete, communi-
cation is needed only fairly infrequently and this is a signifi-
cant advantage over flat techniques. Although the hierarchi-
cal RL (HRL) algorithm proposed in that work reduces the
amount of communication required for coordination among

agents, it does not address the issue of optimal communi-
cation, which is important when communication is costly.
In this paper, we generalize our previous algorithm to in-
clude communication decisions and propose a new multi-
agent HRL algorithm, called COM-Cooperative HRL. The
goal is to derive both action and communication policies
that together optimize the task given the communication
cost. In this algorithm, we define cooperative subtasks to
be those subtasks in which coordination among agents has
significant effect on the performance of the overall task.
Those levels of the hierarchy on which cooperative sub-
tasks lie are called cooperation levels. Agents learn coor-
dination skills by sharing information at cooperation levels,
rather than the level of primitive actions. We add a commu-
nication level to the hierarchical decomposition of the prob-
lem below each cooperation level. A communication action
has a certain cost and provides each agent at a certain co-
operation level with the actions selected by the other agents
at the same level. We demonstrate the efficacy of the COM-
Cooperative HRL algorithm as well as the relation between
communication cost and communication policy in a multia-
gent taxi domain.

2. Hierarchical Multiagent RL Framework

In this section, we illustrate the hierarchical multiagent
RL framework underlying the COM-Cooperative HRL al-
gorithm proposed in this paper. Our HRL framework builds
upon the MAXQ value function decomposition [5], and the
options model [14].

2.1. Hierarchical Task Decomposition

To illustrate our hierarchical multiagent RL framework
and algorithm, we present a multiagent taxi problem, which
will also be used in the experiments of this paper. Con-
sider a 5-by-5 grid world inhabited by two taxis (T1 and
T2) shown in Figure 1. There are four specially designated
locations in this domain, marked as B(lue), G(reen), R(ed)
and Y(ellow). The task is continuing, passengers appear ac-
cording to a fixed passenger arrival rate1 at these four lo-
cations and wish to be transported to one of the other loca-
tions chosen randomly. Taxis must go to the location of a
passenger, pick up the passenger, go to its destination loca-
tion, and drop the passenger there. The goal here is to in-
crease the throughput of the system, which is measured in
terms of the number of passengers dropped off at their desti-
nations per 5000 time steps, and to reduce the average wait-
ing time per passenger.

1 Passenger arrival rate 10 indicates that on average, one passenger ar-
rives at stations every 10 time steps.

0 1 2 3 4

0

1

2

3

4

T1

T2

G

BY

R

T1: Taxi 1
T2: Taxi 2
B: Blue Station
G: Green Station
R: Red Station
Y: Yellow Station

Figure 1. A multiagent taxi domain.

Hierarchical RL methods provide a general framework
for scaling RL to problems with large state spaces by using
the task structure to restrict the space of policies. In these
methods, the overall task is decomposed into a collection of
subtasks that are important for solving the problem. Each
of these subtasks has a set of termination states, and termi-
nates when one of its termination states is reached. Each
primitive action (North, West, South, East, Pickup and Put-
down) is a primitive subtask in this decomposition, such that
it is always executable and it terminates immediately after
execution. On the other hand, non-primitive subtasks such
as root (the whole taxi problem), Put, Get B, G, R and Y,
Navigate to B, G, R and Y, might take more than one time
step to complete. After defining subtasks, we must indicate
for each subtask, which other primitive or non-primitive
subtasks it should employ to reach its goal. For example,
navigation subtasks use four primitive actions North, West,
South and East. Put uses four navigation subtasks plus one
primitive action Putdown, and so on. All of this informa-
tion is summarized by the task graph shown in Figure 2.

PutdownPick B Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative SubtaskCooperation LevelChildren of
the top-level
Cooperative
Subtask (Root)

Nav

North South EastWest

Get B PutGet RGet G Get Y Wait

Figure 2. The task graph of the multiagent
taxi domain.

2.2. Temporal Abstraction using SMDP

Hierarchical RL studies how lower level policies over
subtasks or primitive actions can themselves be composed
into higher level policies. Policies over primitive actions are
semi-Markov when composed at the next level up, because
they can take variable, stochastic amount of time to com-

plete. Thus, semi-Markov decision processes (SMDPs) [8]
have become the preferred language for modeling tempo-
rally extended actions. SMDPs extend the MDP model in
several aspects. Decisions are only made at discrete points
in time. State of the system may change continually be-
tween decisions, unlike MDPs where state changes are only
due to the actions. Thus, the time between transitions may
be several time units and can depend on the transition that
is made. These transitions are at decision epochs only. Basi-
cally, the SMDP represents snapshots of the system at deci-
sion points, whereas the so-called natural process describes
the evolution of the system over all times.

In this section, we extend the SMDP model to multi-
agent domains, when a team of agents controls the pro-
cess, and introduce the multiagent SMDP (MSMDP)
model. We assume agents are cooperative, i.e., maxi-
mize the same utility over an extended period of time.
The individual actions of agents interact in that the ef-
fect of one agent’s action may depend on the actions taken
by the others. When a group of agents perform tempo-
rally extended actions, these actions may not terminate
at the same time. Therefore, unlike the multiagent exten-
sion of MDP (MMDP model [1]), the multiagent exten-
sion of SMDP is not straight forward.

Definition 1: A MSMDP consists of six components
(α,S,A,P ,R,τ) and is defined as follows:

The set α is a finite collection of n agents, with each
agent j ∈ α having a finite set Aj of individual ac-
tions. An element ~a = 〈a1, . . . , an〉 of the joint-action space
A =

∏n

j=1
Aj , represents the concurrent execution of ac-

tions aj by each agent j. The components S, R and P

are as in an SMDP, the set of states of the system be-
ing controlled, the reward function mapping S → <, and
the state and action dependent multi-step transition prob-
ability function P : S × N × S × A →[0, 1] (where N is
the set of natural numbers). Since individual actions in a
joint-action are temporally extended, they may not termi-
nate at the same time. Therefore, the multi-step transition
probability function P depends on how we define deci-
sion epochs, and as a result, depends on the termination
scheme τ that is used in the MSMDP model. Three ter-
mination strategies τany, τall and τcont for temporally
extended joint-actions were investigated in [12]. In τany ter-
mination scheme, the next decision epoch is when the
first action within the joint-action currently being exe-
cuted terminates, where the rest of the actions that did not
terminate are interrupted. When an agent finishes its ac-
tion, all other agents interrupt their actions, the next de-
cision epoch occurs and a new joint-action is selected. In
τall termination scheme, the next decision epoch is the ear-
liest time at which all the actions within the joint-action

currently being executed have terminated. When an
agent completes an action, it waits (takes the idle ac-
tion) until all other agents complete their current ac-
tions. Then, the next decision epoch occurs and agents
choose the next joint-action together. In both these termi-
nation strategies, all agents make a decision at every deci-
sion epoch. τcont termination scheme is similar to τany in
the sense that the next decision epoch is when the first ac-
tion within the joint-action currently being executed ter-
minates. However, the other agents are not interrupted
and only terminated agents select new actions. In this ter-
mination strategy, only a subset of agents choose action
at each decision epoch. When an agent finishes an ac-
tion , the next decision epoch occurs only for that agent
and it selects its next action given the actions being per-
formed by the other agents. 2

The three termination strategies described above are the
most common, but not the only termination schemes in co-
operative multiagent activities. A wide range of termina-
tion strategies can be defined based on them. Of course,
all these strategies are not appropriate for every multiagent
task. We categorize termination strategies as synchronous
and asynchronous. In synchronous schemes, such as τany

and τall, all agents make a decision at every decision epoch
and therefore we need a centralized mechanism to synchro-
nize agents at decision epochs. In asynchronous strategies,
such as τcont, only a subset of agents make decision at each
decision epoch. In this case, there is no need for a central-
ized mechanism to synchronize agents and decision making
can take place in a decentralized fashion.

While SMDP theory provides the theoretical underpin-
nings of temporal abstraction by allowing for actions that
take varying amounts of time, the SMDP model provides lit-
tle in the way of concrete representational guidance which
is critical from a computational point of view. In particu-
lar, the SMDP model does not specify how tasks can be
broken up into subtasks, how to define policy for subtasks,
how to decompose value function etc. We examine these is-
sues in the rest of this section.

Mathematically, a task hierarchy such as the one in Fig-
ure 2 can be modeled by decomposing the overall task
MDP M , into a finite set of subtasks {M0, . . . , Mn}, where
M0 is the root task and solving it solves the MDP M .

Definition 2: Each non-primitive subtask i consists of
five components (Si, Ii, Ti, Ai, Ri):

• Si is the state space for subtask i and is described by
those state variables that are relevant to subtask i. The
range of the state variables describing Si might be a
subset of their range in S (the state space of the over-
all task MDP M).

• Ii is the initiation set for subtask i. Subtask i could
start only in states belong to Ii.

• Ti is the set of terminal states for subtask i. Subtask i

terminates when it reaches a state in Ti.

• Ai is the set of actions that can be performed to achieve
subtask i. These actions can either be primitive actions
from A (the set of primitive actions for MDP M), or
they can be other subtasks.

• Ri is the reward function of subtask i. 2

The goal is to learn a policy for every subtask in the hier-
archy. It gives us a policy for the overall task. This collec-
tion of policies is called a hierarchical policy.

Definition 3: A hierarchical policy π is a set with
a policy for each of the subtasks in the hierarchy:
π = {π0, . . . , πn}.

The hierarchical policy is executed using a stack dis-
cipline, similar to ordinary programming languages. Each
subtask policy takes a state and returns the name of a prim-
itive action to execute or a subtask to invoke. When a sub-
task is invoked, its name is pushed onto the stack and
its policy is executed until it enters one of its termi-
nal states. When a subtask terminates, its name is popped
off the stack. Under a hierarchical policy π, we de-
fine a multi-step transition probability P π

i for each subtask i

in the hierarchy. P π
i (s′, N |s) denotes the probability that ac-

tion πi(s) will cause the system to transition from state s to
state s′ in N primitive steps.

The action-value function of executing subtask Ma un-
der hierarchical policy π in state s in the context of parent
task Mi, Qπ(i, s, a), is decomposed into two parts: the value
of subtask Ma in state s, V π(a, s), and the value of com-
pleting parent task Mi after invoking subtask Ma in state
s, which is called the completion function Cπ(i, s, a) [5, 6].
The value function decomposition is recursively defined as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (1)

V
π(i, s) =

{

Qπ(i, s, πi(s)) if i is non-primitive
∑

s′ P (s′|s, i)R(s′|s, i) if i is primitive

2.3. Multiagent Setup

In our hierarchical multiagent model, we assume
that there are n agents in the environment, cooperat-
ing with each other to accomplish a task. The task is de-
composed by the designer of the system and its task
graph is built, as described in Section 2.1. We also as-
sume that agents are homogeneous, i.e., all agents are

given the same task hierarchy.2 At each level of the hierar-
chy, we define cooperative subtasks to be those subtasks
in which coordination among agents has significant ef-
fect on the performance of the overall task. The set of
all cooperative subtasks at a certain level of the hier-
archy is called the cooperation set of that level. Each
level of the hierarchy with a non-empty cooperation set
is called a cooperation level. We usually define cooper-
ative subtasks at highest level(s) of the hierarchy. Co-
ordination at high-level has two main advantages. First,
it increases cooperation skills as agents do not get con-
fused by low level details. Second, since high-level
subtasks can take a long time to complete, communica-
tion among agents is needed only fairly infrequently. In
this model, we specify policies for non-cooperative sub-
tasks as single-agent policies, and policies for coopera-
tive subtasks as joint policies.

Definition 4: Under a hierarchical policy π, each non-
cooperative subtask i can be modeled by a SMDP con-
sists of components (Si, Ai, P

π

i
, Ri).

Definition 5: Under a hierarchical policy π, each co-
operative subtask i located at the lth level of the hierar-
chy can be modeled by a MSMDP as follows:

α is the set of n agents in the team. We assume that
agents have only local state information and ignore state
of the other agents. Therefore, the state space Si is de-
fined as the single-agent state space Si (not joint state
space). This is certainly an approximation but greatly sim-
plifies the underlying multiagent RL problem. This ap-
proximation is based on the fact that an agent can get
a rough idea of what state the other agents might be
in just by knowing the high-level actions being per-
formed by them. The action space is joint and is de-
fined as Ai = Ai × (Ul)

n−1, where Ul =
⋃m

k=1
Ak is

the union of the action sets of all the lth level coopera-
tive subtasks, and m is the cardinality of the lth level co-
operation set. In the taxi domain, root is defined as a
cooperative subtask, and the highest level of the hierar-
chy as a cooperation level (see Figure 2). Thus, root is
the only member of the cooperation set at that level and
Uroot = Aroot = {GetB, GetG, GetR, GetY, Wait, Put}.
The joint-action space for root, Aroot, is specified as the
cross product of the root action set, Aroot, and Uroot. Fi-
nally, since our goal is to design a decentralized multia-
gent RL algorithm, we use the τcont termination scheme for
joint-action selection. 2

2 Studying the heterogeneous case where agents are given dissimilar de-
compositions of the overall task would be more challenging and be-
yond the scope of this paper.

2.4. Incorporating Communication in the Model

Communication is used by each agent to obtain the lo-
cal information of its teammates by paying a certain cost.
The Cooperative HRL algorithm described in our previous
paper [9] works under three important assumptions, free, re-
liable, and instantaneous communication, i.e., communica-
tion cost is zero, no message is lost in the environment, and
each agent has enough time to receive information about its
teammates before taking its next action. Since communica-
tion is free, as soon as an agent selects an action at a cooper-
ative subtask, it broadcasts it to the team. Using this simple
rule, and the fact that communication is reliable and instan-
taneous, whenever an agent is about to choose an action at
a lth level cooperative subtask, it knows the subtasks in Ul

being performed by all its teammates.
However, communication can be costly and unreliable in

real-world problems. When communication is not free, it is
no longer optimal for a team that agents always broadcast
actions taken at their cooperative subtasks to their team-
mates. Therefore, agents must learn to optimally use com-
munication by taking into account its long term return and
its immediate cost. In this paper, we examine the case that
communication is not free, but still assume that it is reli-
able and instantaneous. We extend the Cooperative HRL al-
gorithm to include communication decisions and propose
a new algorithm, called COM-Cooperative HRL. In the
COM-Cooperative HRL, we add a communication level to
the task graph of the problem below each cooperation level,
as shown in Figure 3 for the taxi domain. When an agent
is going to select an action at a cooperative subtask lo-
cated at the lth level of the hierarchy, it first decides whether
to communicate (takes communicate action) with the other
agents to acquire their selected actions in Ul, or takes not-
communicate action and selects its action without new in-
formation about its teammates. The goal of our algorithm is
to learn a hierarchical policy (a set of policies for all sub-
tasks including the communication subtasks) to maximize
the team utility given the communication cost. We illustrate
the algorithm in more detail in the next section.

3. Cooperative HRL Algorithm with Commu-
nication (COM-Cooperative HRL)

In the COM-Cooperative HRL, agents decide
about communication by comparing the expected
value of communication plus the communication cost
(Q(Parent(Com), s, Com) + ComCost), with the ex-
pected value of not communicating with the other agents
(Q(Parent(NotCom), s, NotCom)). If agent j decides not
to communicate, it chooses action like a selfish agent by us-
ing its action-value function Qj(NotCom, s, a), where
a ∈ Children(NotCom). When it decides to communi-

Get G Get R Get Y

North South EastWest

Nav

Wait

Communication
Level

Putdown

Children of
the top-level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative Subtask

Communicate Not-Communicate

Put

Cooperation Level

Figure 3. The task graph of the multiagent
taxi domain with communication subtasks.

cate, it acquires the actions being executed by all the other
agents in Ul and then uses its joint-action-value func-
tion Qj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a) to select
its next action, where a ∈ Children(Com). For in-
stance, in the taxi domain, when taxi T1 drops off a
passenger and is going to pick a new one, it should first de-
cide whether to communicate with taxi T2 in order
to acquire its action in Uroot. To make communica-
tion decisions, T1 compares Q1(Root, s, NotCom) with
Q1(Root, s, Com) + ComCost. If it chooses not to com-
municate, it selects its action using Q1(NotCom, s, a),
where a ∈ Uroot. If it decides to communicate, after ac-
quiring the T2’s action in Uroot, aT2, it selects its ac-
tion using Q1(Com, s, aT2, a), where a ∈ Uroot. We can
make the model more complicated by making deci-
sion about communication with each individual agent. In
this case, the number of communication actions would be
C1

n−1 + C2
n−1 + . . . + Cn−1

n−1 , where Cq
p is the number of dis-

tinct combinations selecting q out of p agents. For in-
stance, in a three-agent case, communication actions for
agent 1 would be communicate with agent 2, commu-
nicate with agent 3, and communicate with both agents
2 and 3. It increases the number of communication ac-
tions and therefore the number of parameters to be learned.
However, there are methods to reduce the number of com-
munication actions in real-world applications. For instance,
we can cluster agents based on their role in the team and as-
sume each cluster as a single entity to communicate with. It
reduces n from the number of agents to the number of clus-
ters.

In the COM-Cooperative HRL algorithm, Communicate
subtasks are configured to store joint completion func-
tion values. The joint completion function for agent j,
Cj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, aj) is defined as the
expected discounted reward of completing subtask aj by
agent j in the context of the parent task Com when other

agents performing subtasks ai, ∀i ∈ {1, . . . , n}, i 6= j. In the
taxi domain, if taxi T1 communicates with taxi T2, its value
function decomposition would be

Q1(Com, s, GetR, GetB) = V 1(GetB, s)

+ C1(Com, s, GetR, GetB)

which represents the value of T1 performing subtask GetB,
when T2 is executing subtask GetR. Note that this value is
decomposed into the value of subtask GetB and the value of
completing subtask Parent(Com) (here root is the parent
of subtask Com) after executing subtask GetB. If T1 does
not communicate with T2, its value function decomposition
would be

Q1(NotCom, s, GetB) = V 1(GetB, s) + C1(NotCom, s, GetB)

which represents the value of T1 performing subtask GetB,
regardless of the action being executed by T2.

The V and C values are learned through a standard
temporal-difference learning method based on sample tra-
jectories. Since subtasks are temporally extended in time,
the update rules are based on the SMDP model (see [6] for
details). Completion function and joint completion function
values for an action in Ul are updated when the action is
taken under Not-Communicate and Communicate subtasks
respectively. In the later case, the actions selected in Ul by
other agents are known as a result of communication and
are used to update the joint completion function values.

4. Experimental Results

In this section, we demonstrate the performance of the
COM-Cooperative HRL algorithm using the multiagent taxi
problem described in Section 2.1. We also investigate the re-
lation between communication policy and communication
cost in this domain.

The state variables in this task are locations of taxis T1
and T2 (25 values each), status of taxis (2 values each, full
or empty), status of stations B, G, R, Y (2 values each,
full or empty), destination of stations (4 values each, one
of the other three stations or without destination, which
happens when the station is empty), destination of taxis
(5 values each, one of the four stations or without desti-
nation, which is when taxi is empty). Thus, in the multi-
agent flat case, the size of the state space would grow to
256 × 106. The size of the Q table is this number multi-
plied by 10, the number of primitive actions (256 × 107).
In the hierarchical selfish case (where each agent acts inde-
pendently without communicating with other agents), us-
ing state abstraction and the fact that each agent stores
only its own state variables, the number of C and V val-
ues to be learned is reduced to 2 × 135, 895 = 271, 790,

which is 135,895 values for each agent. In the hierarchi-
cal cooperative without communication action, this num-
ber would be 2 × 729, 815 = 1, 459, 630, and finally in
the hierarchical cooperative with communication action, it
is 2 × 934, 615 = 1, 869, 230. All the experiments in this
section were repeated five times and the results averaged.

Figures 4 and 5 show the throughput of the system
and the average waiting time per passenger for four algo-
rithms, single-agent HRL, selfish multiagent HRL, Coop-
erative HRL and COM-Cooperative HRL when commu-
nication cost is zero. The Cooperative HRL and COM-
Cooperative HRL algorithms use the task graphs in Figures
2 and 3 respectively. As seen in Figures 4 and 5, Coopera-
tive HRL and COM-Cooperative HRL with ComCost = 0
have better throughput and average waiting time per pas-
senger than selfish multiagent HRL and single-agent HRL.
The COM-Cooperative HRL learns slower than the Cooper-
ative HRL, due to the more parameters to be learned in this
model. However, it eventually converges to the same perfor-
mance as the Cooperative HRL.

300

400

500

600

700

800

0 20000 40000 60000 80000 100000 120000 140000

T
hr

ou
gh

pu
t o

f t
he

 S
ys

te
m

Number of Steps (Passenger Arrival Rate = 10)

Single-Agent HRL
Selfish Multiagent HRL

Cooperative HRL
COM-Cooperative HRL, ComCost = 0

Figure 4. This figure shows that the Coopera-
tive HRL and the COM-Cooperative HRL with
ComCost = 0 have better throughput than the
selfish multiagent HRL and the single-agent
HRL.

Figure 6 compares the average waiting time per pas-
senger for the multiagent selfish HRL and the COM-
Cooperative HRL with ComCost = 0, for three dif-
ferent passenger arrival rates (5, 10 and 20). It demon-
strates that as the passenger arrival rate becomes smaller,
the coordination among taxis becomes more impor-
tant. When taxis do not coordinate, there is a possibil-
ity that both taxis go to the same station. In this case,
the first taxi picks up the passenger and the other one re-
turns empty. This case can be avoided by incorporating
coordination in the system. However, when the passen-
ger arrival rate is high, there is a chance that a new
passenger arrives after the first taxi picked up the pre-

20

25

30

35

40

45

50

55

60

65

0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 W
ai

tin
g

T
im

e
pe

r
P

as
se

ng
er

Number of Steps (Passenger Arrival Rate = 10)

Single-Agent HRL
Selfish Multiagent HRL

Cooperative HRL
COM-Cooperative HRL, ComCost = 0

Figure 5. This figure shows that the average
waiting time per passenger in the Coopera-
tive HRL and the COM-Cooperative HRL with
ComCost = 0, is less than the selfish multia-
gent HRL and the single-agent HRL.

vious passenger and before the second taxi reaches the
station. This passenger will be picked up by the sec-
ond taxi. In this case, coordination would not be as crucial
as the case when the passenger arrival rate is low.

Figure 7 demonstrates the relation between the commu-
nication policy and the communication cost. These two fig-
ures show the throughput and the average waiting time per
passenger for the selfish multiagent HRL and the COM-
Cooperative HRL when communication cost equals 0, 1, 5,
10. In both figures, as the communication cost increases, the
performance of the COM-Cooperative HRL becomes closer
to the selfish multiagent HRL. It indicates that when com-
munication is expensive, agents learn not to communicate
and to be selfish.

5. Conclusion and Future Work

In this paper, we investigate methods for learning to
communicate and act in cooperative multiagent systems
using hierarchical reinforcement learning (HRL). The use
of hierarchy speeds up learning in multiagent domains by
making it possible to learn coordination skills at the level
of subtasks instead of primitive actions. We introduce a
new cooperative multiagent HRL algorithm, called COM-
Cooperative HRL, by extending our previously reported
algorithm [9] to include communication decisions. In the
COM-Cooperative HRL, we define cooperative subtasks to
be those subtasks in which coordination among agents sig-
nificantly improves the performance of the system. Those
levels of the hierarchy to which cooperative subtasks be-
long are called cooperation levels. Each agent learns joint-
action-values at cooperative subtasks by communicating
with its teammates, and is unaware of them at the other
subtasks. We add a communication level to the task hier-

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 W
ai

tin
g

T
im

e
pe

r
P

as
se

ng
er

Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 W
ai

tin
g

T
im

e
pe

r
P

as
se

ng
er

Number of Steps (Passenger Arrival Rate = 10)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 W
ai

tin
g

T
im

e
pe

r
P

as
se

ng
er

Number of Steps (Passenger Arrival Rate = 20)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

Figure 6. This figure compares the average
waiting time per passenger for the selfish
multiagent HRL and the COM-Cooperative
HRL with ComCost = 0, for three differ-
ent passenger arrival rates (5, 10 and 20).
It shows that coordination among taxis be-
comes more important as the passenger ar-
rival rate becomes smaller.

archy, below each cooperation level. Before selecting an
action at a cooperation level, agents decide if it is worth-
while to perform a communication action to acquire the ac-
tions chosen by the other agents at the same level. It al-
lows agents to learn a policy to optimize the communica-
tion needed for proper coordination, given the communica-
tion cost. We study the empirical performance of the COM-
Cooperative HRL algorithm as well as the relation between
the communication cost and the communication policy us-
ing a multiagent taxi problem.

A number of extensions would be useful, from study-
ing the scenario where agents are heterogeneous, to rec-

400

450

500

550

600

650

700

750

800

0 20000 40000 60000 80000 100000 120000 140000 160000

T
hr

ou
gh

pu
t o

f t
he

 S
ys

te
m

Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0
COM-Cooperative HRL, ComCost = 1
COM-Cooperative HRL, ComCost = 5

COM-Cooperative HRL, ComCost = 10

18

20

22

24

26

28

30

0 20000 40000 60000 80000 100000 120000 140000 160000

A
ve

ra
ge

 W
ai

tin
g

T
im

e
pe

r
P

as
se

ng
er

Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0
COM-Cooperative HRL, ComCost = 1
COM-Cooperative HRL, ComCost = 5

COM-Cooperative HRL, ComCost = 10

Figure 7. This figure shows that as commu-
nication cost increases, the throughput (top)
and the average waiting time per passenger
(bottom) of the COM-Cooperative HRL be-
come closer to the selfish multiagent HRL. It
indicates that agents learn to be selfish when
communication is expensive.

ognizing the high-level subtasks being performed by the
other agents using a history of observations instead of di-
rect communication. In the later case, we assume that each
agent can observe its teammates and uses its observations
to extract their high-level subtasks [3]. Good examples for
this approach are games such as soccer, football or bas-
ketball, in which players often extract the strategy being
performed by their teammates, using recent observations
instead of direct communication. Many other manufactur-
ing and robotics problems can benefit from this algorithm.
We are currently applying the COM-Cooperative HRL to a
complex four-agent AGV scheduling problem used in our
previous paper [9]. Combining our algorithm with function
approximation and factored action models, which makes it
more appropriate for continuous state problems, is also an
important area of research. The success of the proposed al-
gorithm depends on providing agents with a good initial hi-
erarchical task decomposition. Therefore, deriving abstrac-
tions automatically is an essential problem to study. Finally,
studying those communication features that have not been
considered in our model, such as message delay and proba-

bility of loss, is another fundamental problem that needs to
be addressed.

References

[1] C. Boutilier. Sequential optimality and coordination in multi-
agent systems. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI), 1999.

[2] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence, 136:215–250,
2002.

[3] H. Bui, S. Venkatesh, and G. West. Policy recognition in the
Abstract Hidden Markov Model. Journal of Artificial Intel-
ligence Research, 17:451–499, 2002.

[4] R. Crites and A. Barto. Elevator group control using multiple
reinforcement learning agents. Machine Learning, 33:235–
262, 1998.

[5] T. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial
Intelligence Research, 13:227–303, 2000.

[6] M. Ghavamzadeh and S. Mahadevan. Hierarchical multi-
agent reinforcement learning. UMASS Computer Science
Technical Report, 2004.

[7] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated rein-
forcement learning. In Proceedings of the Nineteenth Inter-
national Conference on Machine Learning, 2002.

[8] R. Howard. Dynamic Probabilistic Systems: Semi-Markov
and Decision Processes. John Wiley and Sons., 1971.

[9] R. Makar, S. Mahadevan, and M. Ghavamzadeh. Hierarchi-
cal multi-agent reinforcement learning. In Proceedings of
the Fifth International Conference on Autonomous Agents,
2001.

[10] L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learn-
ing to cooperate via policy search. In Proceedings of the Six-
teenth International Conference on Uncertainty in Artificial
Intelligence (UAI), 2000.

[11] D. Pynadath and M. Tambe. The communicative multiagent
team decision problem: Analyzing teamwork theories and
models. Journal of Artificial Intelligence Research (JAIR),
16:389–426, 2002.

[12] K. Rohanimanesh and S. Mahadevan. Learning to take con-
current actions. In Proceedings of the Sixteenth Annual Con-
ference on Neural Information Processing Systems, 2002.

[13] J. Schneider, W. Wong, A. Moore, and M. Riedmiller. Dis-
tributed value functions. In Proceedings of the Sixteenth In-
ternational Conference on Machine Laerning (ICML), 1999.

[14] R. Sutton, D. Precup, and S. Singh. Between MDPs and
Semi-MDPs: A framework for temporal abstraction in re-
inforcement learning. Artificial Intelligence, 112:181–211,
1999.

[15] M. Tan. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the Tenth Interna-
tional Conference on Machine Learning, 1993.

[16] P. Xuan, V. Lesser, and S. Zilberstein. Communication de-
cisions in multi-agent cooperation: Model and experiments.
In Proceedings of the Fifth International Conference on Au-
tonomous Agents, 2001.

