
Learning to Cooperate using Hierarchical Reinforcement
Learning

Mohammad Ghavamzadeh
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8, Canada

mgh@cs.ualberta.ca

Sridhar Mahadevan
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, USA

mahadeva@cs.umass.edu

ABSTRACT
In this paper, we investigate the use of hierarchical rein-
forcement learning (HRL) to speed up the acquisition of
cooperative multi-agent tasks. We introduce a hierarchical
multi-agent RL framework, and present a hierarchical multi-
agent RL algorithm called Cooperative HRL. The fundamen-
tal property of our approach is that the use of hierarchy al-
lows agents to learn coordination faster by sharing informa-
tion at the level of subtasks, rather than attempting to learn
coordination at the level of primitive actions. We study the
performance of the Cooperative HRL algorithm using a four-
agent automated guided vehicle (AGV) scheduling problem.
We also address the issue of rational communication behav-
ior among autonomous agents in this paper. The goal is
for agents to learn both action and communication policies
that together optimize the task given a communication cost.
We extend our multi-agent HRL framework to include com-
munication decisions and present a cooperative multi-agent
HRL algorithm called COM-Cooperative HRL. We demon-
strate the efficiency of this algorithm as well as the relation
between the communication cost and the learned communi-
cation policy using a multi-agent taxi problem.

1. INTRODUCTION
Multi-agent learning has been recognized to be challeng-

ing for two main reasons: the curse of dimensionality: the
number of parameters to be learned increases dramatically
with the number of agents, and partial observability: states
and actions of the other agents which are required for an
agent to make a decision are not fully observable and inter-
agent communication is usually costly. In this paper, we use
hierarchical reinforcement learning (HRL) to address these
problems, and to accelerate learning to communicate and
act in cooperative multi-agent systems. The key idea un-
derlying our approach is that coordination skills are learned
much more efficiently if agents have a hierarchical represen-
tation of the task structure. The use of hierarchy speeds up

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

learning in cooperative multi-agent domains by making it
possible to learn coordination skills at the level of subtasks
instead of primitive actions.

In our hierarchical multi-agent RL framework, we assume
learning is distributed, each agent is given a hierarchical de-
composition of the overall task, and has only a local view of
the overall state space. We define cooperative subtasks to be
those subtasks in which coordination among agents has sig-
nificant effect on the performance of the overall task. Agents
cooperate at cooperative subtasks and are unaware of their
teammates at the other subtasks. Cooperative subtasks are
usually defined at the highest level(s) of a hierarchy. Co-
ordination at high-level provides significant advantage over
flat methods by preventing agents from getting confused by
low-level details and reducing the amount of communication
needed for proper coordination among agents.

These benefits can be potentially achieved using any type
of HRL algorithm. However, it is necessary to generalize the
HRL frameworks to make them more applicable to multi-
agent learning. In this paper, initially we assume that com-
munication is free and present a hierarchical multi-agent
RL algorithm called Cooperative HRL. We study the per-
formance of the Cooperative HRL algorithm using a com-
plex four-agent automated guided vehicle (AGV) scheduling
problem. We compare its performance and speed with self-
ish multi-agent HRL and single-agent HRL algorithms. We
also demonstrate that the Cooperative HRL algorithm out-
performs three widely used industrial heuristics for AGV
scheduling. Later in the paper, we address the issue of
optimal communication, which is important when commu-
nication is costly. We generalize the Cooperative HRL al-
gorithm to include communication decisions and present a
multi-agent HRL algorithm called COM-Cooperative HRL.
We study the empirical performance of this algorithm as well
as the relation between communication cost and the learned
communication policy using a multi-agent taxi problem.1

2. HIERARCHICAL MULTI-AGENT RL
In this section, we introduce a hierarchical multi-agent

RL framework in which agents are capable of learning si-
multaneously at multiple levels of hierarchy. This is the
framework underlying the hierarchical multi-agent RL algo-
rithms presented in this paper. The main contribution of

1This paper summarizes our previous work on hierarchical
multi-agent RL. For more detailed description of the mod-
els and algorithms presented in this paper, and also more
experimental results please refer to [3].

this framework is that it enables agents to exploit the hier-
archical structure of the task in order to learn coordination
strategies more efficiently. Our hierarchical multi-agent RL
framework can be viewed as extending the existing single-
agent HRL methods, including hierarchies of abstract ma-
chines (HAMs) [4], options [8], and MAXQ [2], especially
MAXQ, to the cooperative multi-agent setting.

We use a multi-agent taxi problem to illustrate the overall
approach. Consider a 5-by-5 grid world inhabited by two
taxis T1 and T2 shown in Figure 1. Passengers appear at
four stations marked as B, G, R, and Y, and wish to be
transported to one of the other stations chosen randomly.
Taxis must go to the location of a passenger, pick her up, go
to her destination station, and drop her there. This task can
be parallelized among the taxis. Taxis need to learn three
skills here. 1) How to do each subtask, such as navigate to
B or Y. 2) The order to carry out the subtasks, for example
go to a station and pickup a passenger before heading to
her destination. 3) How to coordinate with each other, for
example if taxi T1 is on its way to pick up a passenger at B,
taxi T2 should serve a passenger at one of the other stations.

Putdown

Children of
the top−level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

PutGet G Get R Get Y Wait

North South EastWest

Nav

Root Cooperative SubtaskCooperation Level

0 1 2 3 4

0

1

2

3

4

T1

T2

G

BY

R

T1: Taxi 1
T2: Taxi 2
B: Blue Station
G: Green Station
R: Red Station
Y: Yellow Station

Figure 1: A multi-agent taxi problem and its task
graph.

The strength of the HRL methods (when extended to
multi-agent domains) is that they can serve as a substrate
for efficiently learning all these three skills. In these meth-
ods, the overall task is decomposed into a collection of prim-
itive actions and temporally extended (non-primitive) sub-
tasks that are important for solving the problem. The non-
primitive subtasks in the taxi problem are Root (the overall
task), Get G,. . .,Get Y to pick up passengers, Put to drop
down passengers, and Nav B,. . .,Nav Y for navigation to sta-
tions. Each of these subtasks has a set of terminal states,
and terminates when it reaches one of its terminal states.
After defining subtasks, we must indicate for each subtask,
which other primitive or non-primitive subtasks it should
employ to reach its goal. For example, navigation subtasks
use four primitive actions North, West, South, and East.
Get subtasks use navigation subtasks plus primitive action

Pick, and so on. All of this information is summarized by
a directed acyclic graph called task graph. The task graph
for the taxi problem is shown in Figure 1. This hierarchical
model is able to support state abstraction (while a taxi is
transporting a passenger, the status of the stations is irrel-
evant to this process. Therefore, the variables defining the
status of the stations can be removed from the state space
of the navigation subtasks), and subtask sharing (if the sys-
tem learns how to solve the Nav G subtask once, then the
solution can be shared by both Get G and Put G subtasks).

2.1 Multi-agent SMDPs
In the HRL methods, decisions are no longer made at

synchronous time steps, as is traditionally assumed in RL.
Instead, agent makes decision in epochs of variable length,
such as when a distinguishing state is reached (e.g., sta-
tion G in navigate to G subtask), or a subtask is completed
(e.g., passenger is dropped off at her destination). A sta-
tistical model is available to treat variable length actions:
the semi-Markov decision process (SMDP) model [5]. The
action duration in an SMDP can depend on the transition
that is made. The state of the system may change continu-
ally between actions, unlike MDPs where state changes are
only due to actions. Therefore, SMDPs have become the
main mathematical model underlying the HRL methods.

We now extend the SMDP model to multi-agent domains,
and introduce the multi-agent SMDP model. We assume
agents are cooperative, i.e., maximize the same utility. The
individual actions of agents interact in that the effect of
one agent’s action may depend on the actions taken by the
others. When a group of agents perform temporally ex-
tended actions, these actions may not terminate at the same
time. Therefore, unlike the multi-agent extension of MDP,
the MMDP model [1], the multi-agent extension of SMDP
requires extending the notion of a decision making event.

Definition 1: A multi-agent SMDP (MSMDP) consists of
six components (Υ,S,A,P,R,T) and is defined as follows:

The set Υ is a finite collection of n agents, with each agent
j ∈ Υ having a finite set Aj of individual actions. An ele-
ment ~a = 〈a1, . . . , an〉 of the joint action space A =

Qn

j=1
Aj

represents the concurrent execution of actions aj by each
agent j. The components S, R, and P are defined as in
an SMDP, the set of states of the system being controlled,
the reward function mapping S → IR, and the state and
action dependent multi-step transition probability function
P : S × IN×S ×A → [0, 1]. Since the components of a joint
action are temporally extended actions, they may not termi-
nate at the same time. Therefore, the multi-step transition
probability P depends on how we define decision epochs and
as a result, depends on the termination scheme T . 2

Three termination strategies τany, τall, and τcontinue for
temporally extended joint actions were introduced and an-
alyzed in [6]. In τany termination scheme, when an agent
completes an action, all other agents interrupt their actions,
the next decision epoch occurs, and a new joint action is se-
lected. In τall termination scheme, when an agent completes
an action, it waits (takes the idle action) until all the other
agents finish their current actions, the next decision epoch
occurs, and all the agents choose the next joint action to-
gether. Both these termination strategies are synchronous,

since all the agents choose actions at every decision epoch.
In synchronous termination schemes, we need a centralized
mechanism to synchronize the agents at decision epochs.
In τcontinue termination scheme, when an agent completes
an action, the agents whose activities have not completed
are not interrupted, next decision epoch occurs only for the
agents that completed their actions, and they select their
next action given the actions being performed by the other
agents. This is an asynchronous termination strategy, since
only a subset of the agents chooses action at each decision
epoch. In asynchronous termination schemes, there is no
need for a centralized mechanism to synchronize the agents
and decision making can take place in a decentralized fash-
ion. Since our goal is to design decentralized multi-agent
RL algorithms, we use the τcontinue termination scheme for
joint action selection in the hierarchical multi-agent model
and algorithms presented in this paper.

2.2 Hierarchical Task Decomposition
A task hierarchy such as the one illustrated in Figure 1

can be modeled by decomposing the overall task MDP M ,
into a finite set of subtasks {M0, . . . , Mm−1}, where M0 is
the root task and solving it solves the entire MDP M . Each
primitive action is a primitive subtask which is always exe-
cutable and terminates immediately after execution.

Definition 2: Each non-primitive subtask Mi consists of
five components 〈Si, Ii, Ti, Ai, Ri〉. Si is the state space,
which is described by those state variables that are rele-
vant to subtask Mi. Ii ⊂ Si and Ti ⊂ Si are the initiation

set and the set of terminal states for subtask Mi. Subtask
Mi can be initiated only in states belonging to Ii and termi-
nates when it reaches a state in Ti. Ai is the set of actions

that can be performed to achieve subtask Mi. These actions
can be either primitive actions from MDP M , or they can
be other subtasks. Ri is the reward function of subtask Mi.

If we have a policy for each subtask in the hierarchy, we
can define a hierarchical policy for the model.

Definition 3: A hierarchical policy π is a set of policies, one
policy for each subtask in the hierarchy: π = {π0, . . . , πm−1}.

A hierarchical policy is executed similar to ordinary pro-
gramming languages. Each subtask policy takes a state and
returns the name of a primitive action to execute or a sub-
task to invoke. When a subtask is invoked, its policy is
executed until it enters one of its terminal states. Under a
hierarchical policy π, we define a multi-step transition prob-
ability function P π

i : Si×IN×Si →[0, 1] for each subtask Mi

in the hierarchy, where P π
i (s′, N |s) denotes the probability

that hierarchical policy π will cause the system to transition
from state s to state s′ in N primitive steps at subtask Mi.

2.3 Multi-agent Setup
In our hierarchical multi-agent framework, we assume that

there are n agents in the environment, cooperating with each
other to accomplish a task. The designer of the system uses
her domain knowledge to recursively decompose the overall
task into a collection of subtasks that she believes are im-
portant for solving the problem. We assume that agents are
homogeneous, i.e., all agents are given the same task hierar-
chy. At each level of the hierarchy, the designer of the system

defines cooperative subtasks to be those in which coordina-
tion among agents significantly increases the performance
of the overall task. The set of all cooperative subtasks at a
certain level of the hierarchy is called the cooperation set of
that level. Each level of the hierarchy with non-empty co-

operation set is called a cooperation level. The union of the
children of the lth level cooperative subtasks is represented
by Ul. Since high-level coordination allows for increased co-
operation skills as agents do not get confused by low-level
details, we usually define cooperative subtasks at the highest
level(s) of the hierarchy. Agents actively coordinate while
making decision at cooperative subtasks and are ignorant
about other agents at non-cooperative subtasks.

For example in the multi-agent taxi problem, it is more
effective that an agent learns high-level coordination knowl-
edge (what is the utility of taxi T2 serving the passen-
ger at station B if taxi T1 is serving the one at station
G), rather than learning its response to low-level primi-
tive actions of the other agents (what taxi T2 should do
if taxi T1 takes action North). Therefore, we define Root

as a cooperative subtask. As a result, the top-level of the
hierarchy is a cooperation level, Root is the only member
of the cooperation set at the top-level, and U1 consists of
all subtasks located at the second level of the hierarchy,
U1 = {Get B, . . . , Get Y, Wait, Put}.

In our hierarchical multi-agent framework, we define single-
agent policies for non-cooperative subtasks and joint policies
for cooperative subtasks.

Definition 4: Under a hierarchical policy π, each non-
cooperative subtask Mi can be modeled by an SMDP con-
sisting of components (Si, Ai, P

π
i , Ri). 2

Definition 5: Under a hierarchical policy π, each coop-

erative subtask Mi located at the lth level of the hierarchy
can be modeled by an MSMDP as follows:

Υ is the set of n agents in the team. We assume that agents
have only local state information and ignore the states of
the other agents. Thus, the state space Si is defined as
the single-agent state space Si (not joint state space). The
action space is joint and is defined as Ai = Ai × (Ul)

n−1.
Finally, since we are interested in decentralized control, we
use the τcontinue termination strategy. 2

In the multi-agent taxi problem, the joint action space for
the cooperative subtask Root, ARoot, is specified as the cross
product of its action set ARoot, and U1, ARoot = ARoot×U1.
The pros and cons of the presented hierarchical multi-agent
framework can be summarized as:

Pros: 1) Using HRL scales learning to problems with large
state spaces by using the task structure to restrict the space
of policies. 2) Cooperation among agents is faster and more
efficient as agents learn joint action values only at coopera-

tive subtasks usually located at the high level(s) of abstrac-
tion and do not get confused by low-level details. 3) Since
high-level tasks can take a long time to complete, communi-
cation is needed only fairly infrequently. 4) The complexity
of the problem is reduced by storing only the local state
information by each agent. It is due to the fact that each
agent can get a rough idea of the state of the other agents
just by knowing about their high-level actions.

Cons: 1) The learned policy would not be optimal if agents
need to coordinate at the subtasks that have not been de-
fined as cooperative. This issue will be addressed in one of
the AGV experiments in Section 4, by extending the joint-
action model to the lower levels of the hierarchy. Although,
this extension provides the cooperation required at the lower
levels, it increases the complexity of the learning problem.
2) If communication is costly, this method might not find an
appropriate policy for the problem. We address this issue
in Section 5 by including communication decisions in the
model. 3) Storing only local state information by agents is
an approximation and may cause sub-optimality. However,
it greatly simplifies the underlying multi-agent RL problem.

2.4 Value Function Decomposition
A value function decomposition decompose the value func-

tion of Root in terms of the value functions of all the subtasks
in the hierarchy. In our hierarchical multi-agent framework,
we use a value function decomposition similar to the one in
MAXQ [2]. The value function of subtask Mi under a hier-
archical policy π, V π(i, s), is the expected sum of discounted
reward until subtask Mi terminates. Suppose that the pol-
icy of subtask Mi, πi, chooses subtask πi(s) in state s, this
subtask executes for a number of steps N and terminates in
state s′ according to P π

i (s′, N |s, πi(s)). Now we can write
V π(i, s) in the form of a Bellman equation:

V π(i, s) = V π(πi(s), s) +
X

s′,N

P π
i (s′, N |s, πi(s))γ

NV π(i, s′) (1)

Equation 1 can be restated for the action-value function as

Qπ(i, s, a) = V π(a, s) +
X

s′,N

P π
i (s′, N |s, a)γNQπ(i, s′, πi(s

′))

The right-most term in this equation is the expected dis-
counted cumulative reward of completing subtask Mi after
execution of subtask Ma in state s, and is called the com-

pletion function. The reward is discounted back to the time
where Ma begins execution. Now, we can express the action-
value function Q and the value function V as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)

(2)

V π(i, s) =

8

>

>

>

<

>

>

>

:

Qπ(i, s, πi(s))
if Mi is a non-primitive subtask

P

s′∈Si
P (s′|s, i)R(s′|s, i)

if Mi is a primitive action

Equations 2 are referred to as the decomposition equations
for a hierarchy under a hierarchical policy π. Using these
equations, we can recursively calculate all the Q values in a
hierarchy in terms of the value functions and the completion
functions for the subtasks. The fundamental quantities that
must be stored to represent Q values are the completion
function values C for non-primitive subtasks and the value
functions V for primitive actions.

Now, we show how this single-agent value function de-
composition can be modified to formulate the joint value
function for cooperative subtasks. In our hierarchical multi-
agent model, we configure cooperative subtasks to store the
joint completion function values.

Definition 6: The joint completion function for agent j,
Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj), is the expected discounted
cumulative reward of completing cooperative subtask Mi af-
ter executing subtask aj in state s while other agents per-
forming subtasks ak, ∀k ∈ {1, . . . , n}, k 6= j. The reward is
discounted back to the time where aj begins execution. 2

In this definition, Mi is a cooperative subtask at level l

of the hierarchy and 〈a1, . . . , an〉 is a joint action in its ac-
tion set. Each individual action in this joint action belongs
to Ul. More precisely, the decomposition equations used for
calculating the value function V for cooperative subtask Mi

of agent j have the following form:

V j(i, s, a1, . . . , aj−1 , aj+1, . . . , an) =

Qj (i, s, a1, . . . , aj−1, aj+1, . . . , an, π
j
i (s))

(3)

Qj(i, s, a1, . . . , aj−1 , aj+1, . . . , an, aj) = V j(aj , s) +

Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

For example, the value of taxi T1 performing Get R in the
context of Root, when taxi T2 is executing Get Y, Q1(Root, s,

Get Y, Get R), is decomposed into the value of subtask Get

R, V 1(Get R, s), and the completion value of the remainder
of the Root task, C1(Root, s, Get Y, Get R).

One important point to note in Equation 3 is that if sub-
task aj is itself a cooperative subtask at level l + 1 of the hi-
erarchy, its value function is defined as a joint value function
V j(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn), where ã1, . . . , ãj−1, ãj+1,

. . . , ãn belong to Ul+1. In this case, V j(aj , s) is replaced by
V j(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn) in Equation 3.

3. A HIERARCHICAL MULTI-AGENT RL
ALGORITHM

We now use the hierarchical multi-agent RL framework
described in Section 2 and present a hierarchical multi-agent
RL algorithm, called Cooperative HRL. The pseudo code for
this algorithm is shown in Algorithm 1. In the Cooperative

HRL algorithm, the V and C values can be learned through
a standard temporal-difference (TD) learning method based
on sample trajectories. In this algorithm, an agent starts at
Root and chooses a subtask until it reaches a primitive ac-
tion. It executes the primitive action and updates its value
function (Line 5). Whenever a non-primitive subtask termi-
nates, its C values are updated for all states visited during
the execution of that subtask (Line 27). The V values in
the update equation on Line 27 are calculated using

V (i, s) =

8

>

>

>

<

>

>

>

:

maxa∈Ai
Q(i, s, a)

if Mi is a non-primitive subtask

P

s′∈Si
P (s′|s, i)R(s′|s, i)

if Mi is a primitive action

(4)

Similarly, when agent j completes execution of subtask aj ∈
Ai, the joint completion function C of cooperative subtask

Mi located at level l of the hierarchy is updated for all the
states visited during the execution of subtask aj (Line 17).
This update equation indicates that in addition to the states
visited during the execution of a subtask in Ul (s and s′),
an agent must store the actions in Ul being performed by
all the other agents (a1, . . . , aj−1, aj+1, . . . , an in state s and
â1, . . . , âj−1, âj+1, . . . , ân in state s′). Sequence Seq is used
for this purpose in Algorithm 1.

Algorithm 1 The Cooperative HRL Algorithm.

1: Function Cooperative-HRL(Agent j, Task Mi at the lth level
of the hierarchy, State s)

2: let Seq = {} be the sequence of (state-visited, actions in
SL

k=1
Uk

being executed by other agents) while executing Mi /* L is
the number of levels in the hierarchy */

3: if Mi is a primitive action then

4: execute action Mi in state s, receive reward r(s′|s, i) and ob-
serve state s′

5: V
j

t+1
(i, s)←− [1− α

j
t(i)]V

j
t (i, s) + α

j
t(i)r(s

′|s, i)

6: push (state s, actions in {Ul|l is a cooperation level} being

performed by the other agents) onto the front of Seq

7: else /* Mi is a non-primitive subtask */
8: while Mi has not terminated do

9: if Mi is a cooperative subtask then

10: choose subtask aj using the current exploration policy

π
j
i (s, a1, . . . , aj−1, aj+1, . . . , an)

11: let ChildSeq = Cooperative-HRL(j, aj , s), where Child-

Seq is the sequence of (state-visited, actions in
SL

k=1
Uk

being performed by the other agents) while executing sub-

task aj

12: observe result state s′ and actions in Ul being performed
by the other agents â1, . . . , âj−1, âj+1, . . . , ân

13: let a∗ = arg maxa′∈Ai
[V j

t (a′, s′)+

C
j
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′)]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from

the beginning do

16: N = N + 1
17: C

j
t+1

(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)←−

[1− α
j
t(i)]C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

α
j
t(i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗)+

V
j

t (a∗, s′)]
18: end for

19: else /* Mi is a non-cooperative subtask */

20: choose subtask aj according to the current exploration

policy π
j
i (s)

21: let ChildSeq = Cooperative-HRL(j, aj , s), where Child-

Seq is the sequence of (state-visited, actions in
SL

k=1
Uk

being performed by the other agents) while executing sub-

task aj

22: observe result state s′

23: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, a′) + V
j

t (a′, s′)]

24: let N = 0
25: for each s in ChildSeq from the beginning do

26: N = N + 1
27: C

j
t+1

(i, s, aj)←− [1− α
j
t(i)]C

j
t (i, s, aj)+

α
j
t(i)γ

N [Cj
t (i, s′, a∗) + V

j
t (a∗, s′)]

28: end for

29: end if

30: append ChildSeq onto the front of Seq

31: s = s′

32: end while

33: end if

34: return Seq

35: end Cooperative-HRL

4. EXPERIMENTAL RESULTS FOR THE
COOPERATIVE HRL ALGORITHM

In this section, we demonstrate the performance of the Co-

operative HRL algorithm using a complex four-agent AGV
scheduling problem, and compare it with selfish multi-agent
HRL, where each agent acts independently and learns its
own optimal policy, and single-agent HRL algorithms. Au-
tomated Guided Vehicles (AGVs) are used in flexible man-
ufacturing systems (FMS) for material handling. Any FMS
using AGVs faces the problem of optimally scheduling the
paths of the AGVs in the system. Since this problem is an-
alytically intractable, various heuristics are generally used
to schedule AGVs. However, the heuristics perform poorly

when the constraints on the movement of the AGVs are re-
duced. The system performance is generally measured in
terms of throughput, i.e., the number of finished assemblies
deposited at the unloading deck per unit time.

Figure 2 shows the layout of the AGV scheduling domain.
M1 to M4 show workstations. Parts of type i have to be
carried to the drop-off station at workstation i, Di, and the
assembled parts brought back from the pick-up stations of
workstations, Pi’s, to the warehouse. The AGV travel is uni-
directional (as the arrows show). This task is decomposed
using the task graph in Figure 3. Each agent uses a copy
of this task graph. We define Root as a cooperative subtask

and the highest level of the hierarchy as a cooperation level.
Therefore, all subtasks at the second level of the hierarchy
(DM1, . . . , DM4, DA1, . . . , DA4) belong to set U1. Coor-
dination skills among agents are learned using joint action-
values at the highest level of the hierarchy.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 2: A multi-agent AGV scheduling domain.
AGVs (not shown) carry raw materials and finished
parts between machines and the warehouse.

Forward RightLeft

DM i : Deliver Material to Station i
DA i : Deliver Assembly from Station i
NavLoad : Navigation to Loading Deck
NavPut i : Navigation to Dropoff Station i
NavPick i : Navigation to Pickup Station i
NavUnload : Navigation to Unload Deck

Root

DA2DA1.DM1 DM2

Cooperative SubtaskCooperation Level

.Load Put Pick UnloadNavLoad NavUnloadNavPick iNavPut i

The shaded subtasks are defined as
cooperative subtasks and this level

as cooperation level in the last
experiment of this section

1 the top−level
Cooperative
Subtask (Root)

U = Children of

Figure 3: Task graph for the AGV scheduling task.

The state of the environment consists of the number of
parts in the pick-up and drop-off stations of each machine,
and whether the warehouse contains parts of each of the
four types. In addition, each agent keeps track of its own
location and status as a part of its state space. Thus, in the

flat case, the state space consists of 100 locations, 8 buffers
of size 3, 9 possible states of AGV (carrying part1, . . . , car-
rying assembly1, . . . , empty), and 2 values for each part in
the warehouse, i.e., 100×48 ×9×24 ≈ 109 states. State ab-
straction helps in reducing the state space considerably and
speeds up the algorithm. Only the relevant state variables
are used while storing the completion function values.

Here we assume that there are four AGVs in the environ-
ment. The experimental results were generated with the fol-
lowing model parameters. The inter-arrival time for parts at
the warehouse is uniformly distributed with a mean of 4 sec
and variance of 1 sec. The percentage of Part1, Part2, Part3,
and Part4 in the part arrival process are 20, 28, 22, and 30
respectively. The time required for assembling the various
parts is normally distributed with means 15, 24, 24, and 30
sec for Part1, Part2, Part3, and Part4 respectively, and vari-
ance 2 sec. The execution time of primitive actions (right,
left, forward, load, and unload) is normally distributed with
mean 1000 µ-sec and variance 50 µ-sec. The execution time
for the idle action is also normally distributed with mean 1
sec and variance 0.1 sec. In these algorithms, learning rate
α is set to 0.2, and exploration starts with 0.3, remains un-
changed until the performance reaches to a certain level, and
then is decreased by a factor of 1.01 every 60 seconds. We
use discount factors 0.9, 0.95, and 0.99 in these algorithms.
Using discount factor 0.99 yielded better performance in all
the algorithms. In this task, each experiment was conducted
five times and the results were averaged.

Figure 4 shows that the Cooperative HRL algorithm achieves
higher throughput than the single-agent HRL and the self-
ish multi-agent HRL algorithms. As seen in Figure 4, agents
learn a little faster initially in the selfish multi-agent method,
but after some time the algorithm results in sub-optimal per-
formance. This is due to the fact that two or more AGVs
select the same action, but once the first AGV completes
the task, the other AGVs might have to wait for a long time
to complete the task, due to the constraints on the number
of parts that can be stored at a particular place.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

Time since Start of Simulation (sec)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Cooperative HRL
Single−Agent HRL
Selfish Multi−Agent HRL

Figure 4: This figure shows that the Cooperative

HRL algorithm outperforms both the selfish multi-
agent HRL and the single-agent HRL algorithms.

Figure 5 compares the Cooperative HRL algorithm with
several well-known AGV scheduling rules, highest queue first,
nearest station first, and first come first serve, showing clearly

the improved performance of the HRL method.

0 0.5 1 1.5 2

x 10
4

3

5

7

9

11

Time since Start of Simulation (sec)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Cooperative HRL
Highest Queue First Heuristic
Nearest Station First Heuristic
First Come First Served Heuristic

Figure 5: This plot shows that the Cooperative HRL

algorithm outperforms three widely used industrial
heuristics for AGV scheduling.

So far we have only defined Root as a cooperative subtask.
Now, we also define navigation subtasks at the third level of
the hierarchy as cooperative subtasks. As a result, the third
level of the hierarchy is a cooperation level and its cooper-

ation set contains all the navigation subtasks at that level
(see Figure 3). Figure 6 compares the performance of the
system in these two cases. When the navigation subtasks are
also configured to represent joint actions, learning is consid-
erably slower (since the number of parameters is increased
significantly) and the overall performance is not better. The
lack of improvement is due in part to the fact that the AGV
travel is unidirectional (see Figure 2), thus coordination at
the navigation level does not improve the performance of
the system. However, there are problems that having joint
actions at multiple levels will be worthwhile, even if conver-
gence is slower, due to better overall performance.

0 3 6 9

x 10
4

0

2

4

6

8

10

12

Time since Start of Simulation (sec)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Cooperative HRL − Cooperation at Top Level of the Hierarchy
Cooperative HRL − Cooperation at Top and Third Levels of the Hierarchy

Figure 6: This plot compares the performance of the
Cooperative HRL algorithm with cooperation at the
top level of the hierarchy vs. cooperation at the top
and third levels of the hierarchy.

5. HIERARCHICAL MULTI-AGENT RL WITH
COMMUNICATION DECISIONS

Communication can be viewed as an action taken by an
agent to obtain the local information of its teammates, which
may incur a certain cost. In Cooperative HRL algorithm, we
assume that communication is free, and thus as soon as an
agent selects an action at a cooperative subtask, it broad-
casts it to the team. When communication is not free, it is
no longer optimal for a team that agents always broadcast
actions taken at their cooperative subtasks to their team-
mates. Therefore, agents must learn to use communication
optimally by taking into account its long term return and
its immediate cost. We now extend the Cooperative HRL

algorithm to include communication decisions and present a
new algorithm called COM-Cooperative HRL.

In the COM-Cooperative HRL algorithm, we add a com-
munication level to the task graph of the problem below
each cooperation level, as shown in Figure 7 for the multi-
agent taxi problem. In this algorithm, when an agent is
going to make a decision at an lth level cooperative subtask,
it first decides whether to communicate (takes Communi-

cate action) with the other agents to acquire their actions
in Ul, or do not communicate (takes Not-Communicate ac-
tion) and selects its action without inquiring new informa-
tion about its teammates. Agents decide about communi-
cation by comparing the expected value of communication
Q(Parent(Com), s, Com) with the expected value of not com-
municating with the other agents Q(Parent(NotCom), s, NotCom).
If agent j decides not to communicate, it chooses an action
like a selfish agent by using its action-value (not joint action-
value) function Qj(NotCom, s, a), where a ∈ Children(NotCom).
Upon the completion of the selected action, the expected
value of not communicate Qj(Parent(NotCom), s, NotCom)

is updated using the sum of all rewards received during the
execution of this action. When agent j decides to commu-
nicate, it inquires the actions in Ul being performed by all
other agents. Then it uses its joint action-value (not action-
value) function Qj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a), a ∈

Children(Com) to select its next action in Ul. When the
selected action terminates, the expected value of communi-
cation Qj(Parent(Com), s, Com) is updated using the sum of
all rewards received during the execution of this action plus
the communication cost.

Communication
Level

Putdown

Children of
the top−level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative Subtask

Communicate Not−Communicate

PutGet G Get R Get Y Wait

North South EastWest

Nav

Cooperation Level
U1=

Figure 7: Task graph of the multi-agent taxi prob-
lem with communication actions.

In COM-Cooperative HRL, we assume that when an agent
decides to communicate, it communicates with all the other
agents as described above. We can make the model more
complicated by making decision about communication with
each individual agent. In this case, the number of communi-
cation actions would be C1

n−1
+C2

n−1
+ . . .+Cn−1

n−1
, where C

q
p

is the number of distinct combinations selecting q out of p

agents. For instance, in a three-agent case, communication
actions for agent 1 would be communicate with agent 2, com-

municate with agent 3, and communicate with both agents 2

and 3. It increases the number of communication actions,
and therefore the number of parameters to be learned. How-
ever, there are methods to reduce the number of communi-
cation actions in real-world applications. For example, we
can cluster agents based on their role in the team and as-
sume each cluster as a single entity to communicate with.
It reduces n from the number of agents to the number of
clusters.

In the COM-Cooperative HRL algorithm, Communicate

subtasks are configured to store joint completion function
values and Not-Communicate subtasks are configured to store
completion function values. The joint completion function
for agent j, Cj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, aj) is de-
fined as the expected discounted cumulative reward of com-
pleting the cooperative subtask Parent(Com) after executing
subtask aj in state s, while other agents performing subtasks
ai, ∀i ∈ {1, . . . , n}, i 6= j.

In the multi-agent taxi domain, if taxi T1 communicates
with taxi T2, its value function decomposition would be

Q1(Com, s, Get Y, Get R) = V 1(Get R, s)+C1(Com, s, Get Y, Get R)

which represents the value of taxi T1 performing subtask
Get R, when taxi T2 is executing subtask Get Y. Note that
this value is decomposed into the value of subtask Get R and
the value of completing subtask Parent(Com) (Root) after
executing subtask Get R. If taxi T1 does not communicate
with taxi T2, its value function decomposition would be

Q1(NotCom, s, Get R) = V 1(Get R, s) + C1(NotCom, s, Get R)

which represents the value of taxi T1 performing subtask
Get R, regardless of the action being executed by taxi T2.

In the COM-Cooperative HRL algorithm, the V and C

values are learned similar to the Cooperative HRL algorithm.
Completion function values for an action in Ul are updated
when we take an action under a Not-Communicate subtask,
and joint completion function values for an action in Ul are
updated when it is selected under a Communicate subtask.

6. EXPERIMENTAL RESULTS FOR THE
COM-COOPERATIVE HRL ALGORITHM

In this section, we demonstrate the performance of the
COM-Cooperative HRL algorithm using the multi-agent taxi
problem shown in Figure 1. We assume that the task is con-
tinuing, passengers appear according to a fixed passenger
arrival rate2 at these four stations and wish to be trans-
ported to one of the other stations chosen randomly. The
goal here is to increase the throughput of the system, which
is measured in terms of the number of passengers dropped
off at their destinations per 5,000 time steps, and to reduce

2Passenger arrival rate 10 indicates that on average, one
passenger arrives at stations every 10 time steps.

the average waiting time per passenger. The state variables
in this task are locations of the taxis (25 values each), sta-
tus of the taxis (5 values each, taxi is empty or transport-
ing a passenger to one of the four stations), and status of
the four stations (4 values each, station is empty or has a
passenger whose destination is one of the other three sta-
tions). The Cooperative HRL and COM-Cooperative HRL

algorithms use the task graphs in Figures 1 and 7 respec-
tively. We used several discount factors, however using dis-
count factor 0.99 yielded better performance in all the al-
gorithms. All the experiments in this section were repeated
five times and the results were averaged.

Figure 8 shows the throughput and the average waiting
time per passenger for four algorithms, single-agent HRL,
selfish multi-agent HRL, Cooperative HRL, and COM-Cooperative

HRL when communication cost is zero. Cooperative HRL

and COM-Cooperative HRL with ComCost = 0 have bet-
ter throughput and average waiting time per passenger than
selfish multi-agent HRL and single-agent HRL. The COM-

Cooperative HRL algorithm learns slower than Cooperative

HRL, due to more parameters to be learned in this model.
However, it eventually converges to the same performance
as the Cooperative HRL algorithm does.

0 5 10 15

x 10
4

300

350

400

450

500

550

600

650

700

750

Number of Steps (Passenger Arrival Rate = 10)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

2 4 6 8 10 12 14

x 10
4

20

25

30

35

40

45

50

55

60

65

Number of Steps (Passenger Arrival Rate = 10)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

Figure 8: This figure shows that Cooperative HRL

and COM-Cooperative HRL with ComCost = 0 have
better throughput (top) and average waiting time
per passenger (bottom) than selfish multi-agent
HRL and single-agent HRL.

Figure 9 demonstrates the relation between the learned
communication policy and the communication cost. These

two figures show the throughput and the average waiting
time per passenger for selfish multi-agent HRL and COM-

Cooperative HRL when communication cost equals 0, 1, 5,
and 10. In both figures, as the communication cost increases,
the performance of the COM-Cooperative HRL algorithm
becomes closer to the performance of the selfish multi-agent
HRL algorithm. It indicates that when communication is
expensive, agents learn not to communicate and to be selfish.

0 2 4 6 8 10 12 14 16

x 10
4

400

450

500

550

600

650

700

Number of Steps (Passenger Arrival Rate = 5)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

2 4 6 8 10 12 14 16

x 10
4

18

20

22

24

26

28

30

Number of Steps (Passenger Arrival Rate = 5)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

Figure 9: This figure shows that as communication
cost increases, the throughput (top) and the average
waiting time per passenger (bottom) of the COM-

Cooperative HRL algorithm become closer to those
for the selfish multi-agent HRL algorithm.

7. DISCUSSION AND FUTURE WORK
In this paper, we studied the use of HRL to address the

curse of dimensionality (joint state space and joint action
space problems) and partial observability in cooperative multi-
agent systems. The key idea underlying our approach is
that the use of hierarchy speeds up learning in cooperative
multi-agent domains by making it possible to learn coor-
dination skills at the level of subtasks instead of primitive
actions. The hierarchical multi-agent models and algorithms
presented in this paper address the joint action space prob-
lem by allowing the agents to learn joint action values only
at cooperative subtasks usually located at the high level(s)
of hierarchy. They also address the communication problem
by allowing coordination at the level of subtasks instead of
primitive actions. Since high-level subtasks can take a long

time to complete, communication is needed only fairly infre-
quently. Additionally, the COM-Cooperative HRL algorithm
presented in this paper optimizes communication by includ-
ing communication decisions in the hierarchical model. We
did not directly address the joint state space problem in
this paper. Although the presented models do not pre-
vent us from using joint state space for the subtasks in a
hierarchy, we avoided dealing with its complexity by stor-
ing only local state information by each agent. However,
using hierarchy can alleviate the joint state space problem
in cooperative multi-agent systems. First, only cooperative

subtasks can be defined as joint state space problems. It
is an approximation, but it can be a good approximation
if agents rarely need to cooperate at non-cooperative sub-
tasks. Second, state abstraction in a hierarchical model can
help to reduce the size of the joint state space at a cooper-

ative subtask. Third, since each agent can get a rough idea
of the state of the other agents just by knowing about their
high-level subtasks, it would sometimes be even possible to
achieve a reasonably good performance by storing only lo-
cal state information at cooperative subtasks, as shown in
the experiments of this paper.

A number of extensions would be useful, from studying
the scenario where agents are heterogeneous, to recogniz-
ing the high-level subtasks being performed by the other
agents using a history of observations (plan recognition and
activity modeling) instead of direct communication. In the
later case, we assume that each agent can observe its team-
mates and uses its observations to extract their high-level
subtasks. Good examples for this approach are games such
as soccer, football, or basketball, in which players often ex-
tract the strategy being performed by their teammates using
recent observations instead of direct communication. Saria
and Mahadevan presented a theoretical framework for on-
line probabilistic plan recognition in cooperative multi-agent
systems [7]. We believe that their model can be combined
with the learning algorithms presented in this paper to re-
duce communication by learning to recognize the high-level
subtasks being performed by the other agents. In the models
presented in this paper, cooperative subtasks are predefined
by the designer of the system. Another useful extension is to
give the agents the ability to discover cooperative subtasks,
or more general, the ability to decide (or learn to decide)
when and with whom to cooperate.

8. REFERENCES
[1] C. Boutilier. Sequential optimality and coordination in

multi-agent systems. In Proceedings of the Sixteenth

International Joint Conference on Artificial

Intelligence, pages 478–485, 1999.

[2] T. Dietterich. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of

Artificial Intelligence Research, 13:227–303, 2000.

[3] M. Ghavamzadeh, S. Mahadevan, and R. Makar.
Hierarchical multi-agent reinforcement learning. To

appear in Journal of Autonomous Agents and

Multi-Agent Systems, 2006.

[4] R. Parr. Hierarchical Control and Learning for Markov

Decision Processes. PhD thesis, University of California
Berkeley, 1998.

[5] M. Puterman. Markov Decision Processes. Wiley
Interscience, 1994.

[6] K. Rohanimanesh and S. Mahadevan. Learning to take
concurrent actions. In Proceedings of the Sixteenth

Annual Conference on Neural Information Processing

Systems, 2002.

[7] S. Saria and M. Mahadevan. Probabilistic plan
recognition in multi-agent systems. In Proceedings of

the Fourteenth International Conference on Automated

Planning and Scheduling, pages 12–22, 2004.

[8] R. Sutton, D. Precup, and S. Singh. Between MDPs
and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial

Intelligence, 112:181–211, 1999.

