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Abstract— We study a collaborative multi-agent stochastic
linear bandit setting, where N agents that form a network
communicate locally to minimize their overall regret. In this
setting, each agent has its own linear bandit problem (its own
reward parameter) and the goal is to select the best global action
w.r.t. the average of their reward parameters. At each round,
each agent proposes an action, and one action is randomly
selected and played as the network action. All the agents observe
the corresponding rewards of the played action, and use an
accelerated consensus procedure to compute an estimate of
the average of the rewards obtained by all the agents. We
propose a distributed upper confidence bound (UCB) algorithm
and prove a high probability bound on its T -round regret in
which we include a linear growth of regret associated with
each communication round. Our regret bound is of order
O
(√

T
N log(1/|λ2|)

· (log T )2
)

, where λ2 is the second largest
(in absolute value) eigenvalue of the communication matrix.

I. INTRODUCTION

Stochastic linear bandits have been extensively studied
in decision-making problem with a linear structure, e.g.,
recommendation systems or path routing [1], [2]. At each
time step, an agent plays an action and receives its cor-
responding random reward with an expected value that is
linearly dependent on the action’s context. The goal of the
agent is to collect as much reward as possible over T rounds.

In this work, we consider the stochastic linear bandit
problem in a multi-agent setting, where a team of N agents
cooperate locally on a network to maximize their collective
reward. Specifically, we study the setting where each agent
has its own linear bandits problem, i.e., the underlying
reward parameter varies among the agents, and the network’s
true reward parameter is averaged among all the agents.
Therefore, agents need to collaborate in order to maximize
the global welfare of the network. Moreover, we want to
avoid excessive communication among the agents, and hence
we assume that 1) agents can only share their information
with their neighbors in the network; 2) each communication
step translates into a linear growth of regret. For this case,
we prove a regret of order O(

√
T

N log(1/|λ2|) ) which depends
on the spectral gap of the structure matrix (i.e., 1−|λ2|) and
decreases with the size of the network N .

As we review next, multi-agent bandit problems have
received significant attention in the past few years. As
a motivational example, consider a fashion brand that is
connected to N influencers over different locations. Here,
influencers represent the agents in our setting. The goal
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of the company is to maximize its global welfare, i.e., to
agree upon the best product (i.e., action) with respect to
the whole network’s true reward parameter with the help
of its influencers. The effect of different products on their
respective customer base is unknown a-priori to the influ-
encers. Therefore, each influencer has their own linear bandit
problem (its own reward parameter), which represents the
preference of the customers with whom they are interacting.
In this decentralized setting, each influencer only receives
feedback from their own customers, but other influencers in
their network can observe their score of the recommended
product (reward signal of the played action), e.g., see how
many likes they have received for a post. Hence, agents
collaborate with their neighbors in order to collectively move
towards the best action with respect to the network’s true
parameter (i.e., the best product that fits the whole network).
This decentralized setting has also been motivated by [3]
for the multi-armed bandit framework, with applications in
selecting a brand from a finite list of brands for a social
network, where each agent based on its own preferences
votes for a brand (i.e., action) in the given list of finite
number of brands, and the brand with the majority of votes
has been selected with the goal of maximizing social welfare.
This model is also applicable in distributed detection systems
where agents need to identify the global unknown parameter
for which they only have partial information [4].

The contributions of this work are as follows: we study
a variant of the decentralized multi-agent linear bandits for
a (connected) network structure of N agents who can only
communicate with their immediate neighbors. The network’s
true reward parameter is averaged across all agents and as
such cannot be learnt separately by individual agents. For
this, we propose and analyze a fully-decentralized UCB-
based algorithm, and adopt the accelerated consensus pro-
cedure for communication between the agents so that each
agent can compute an estimate of the network’s true reward
parameter. We then prove that even with a limited number
of communication rounds, agents are able to construct high
probability confidence regions that include the network’s
reward parameter. We show that this comes with an extra cost
in the regret, and we discuss the trade-off between regret and
communication. Moreover, we theoretically and empirically
show the effect of size of the network as well as the spectral
gap of the network’s graph on regret.

A. Related work

Multi-armed Bandits (MAB). Two popular algorithms
exist for MAB: 1) the upper confidence bound (UCB) algo-
rithm based on the optimism in the face of uncertainty (OFU)



principle [5], which chooses the best feasible environment
and corresponding optimal action at each time step with
respect to confidence regions on the unknown parameter;
2) Thompson Sampling (TS) (a.k.a., posterior sampling)
algorithm [6], which samples an environment from the prior
at each time step and selects the optimal action with respect
to the sampled parameter.

Linear Bandits. In stochastic linear bandit (LB) problems,
actions are modeled by feature vectors and the expected
reward corresponding to each action is a linear function of its
feature vector. Two well-known algorithms for LB are: linear
UCB (LinUCB) and linear Thompson Sampling (LinTS). [7]
provided a regret bound of order O(

√
T log T ) for LinUCB,

and [8], [9], [10], and [11] provided a regret bound of order
O(
√
T (log T )3/2) for LinTS in a frequentist setting, where

the unknown reward parameter θ? is fixed.
Multi-agent Stochastic Bandits. There has been increas-

ing attention on studying distributed or decentralized bandit
problems in the past years. In the multi-armed bandits
settings, the work of [12] study the problem of distributed
multi-armed bandits. They propose two UCB-based algo-
rithms, called coop-UCB and coop-UCB2. In coop-UCB,
it is assumed that all the eigenvalues and corresponding
eigenvectors of the structure matrix are known, which is
a stronger assumption. In [13], they consider a multi-agent
multi-armed bandits setting, where they also consider a cost
for communication between agents and propose an efficient
sampling rule and a communication protocol for each agent
to maximize its own total expected cumulative reward. In
[14], each agent can either send her information to the whole
network or pull an arm. There has been another line of work
that consider the distributed MAB problem with collision,
i.e., if two or more agents choose the same arm at the same
time, they either receive no reward or the reward splits among
them [15], [16]. [17] considers a setting where at each time
step only one agent can play an action and observes the
corresponding reward, while the others have only access to
the information that has been sent by that agent. In [3],
whose setting is the closest to ours, the authors consider
a MAB problem where each agent has a different reward
distribution over each arm, and the total regret is minimized
with respect to the global best arm, i.e., the one with the
largest expected reward when averaged across the agents.
In their setting, the arm played at each round is chosen by
the majority vote of the agents, which restricts their setting
to the finite action set. We generalize their setting to LB,
and hence, we can handle both finite and infinite action sets.
Another limitation of their setting is that the actions and their
corresponding rewards are independent across players and
arms (because in MAB the rewards are independent between
arms). However, in our setting, we model actions by their
feature vectors, and thus, they could be dependent on each
other in some sense. For example, in music recommendation
systems, two different genre of music, such as rock and metal
are not completely independent. The recent work of [18]
studies the setting where the agents are solving a similar
MAB problem and they can only share their information with

their neighbors. They use the Chebyshev acceleration applied
to the consensus procedure [19] for communication between
agents, so that each agent can compute an approximation
of the mean reward of each arm over all the network only
by sharing information with their neighbors. In our paper,
we adopt similar communication protocols in Section III. In
[20], the authors study a setting in which at each round, each
agent can only share its information with a randomly selected
agent that is not necessarily among its neighbors. [21] study
the two agent team-learning problem under two problem
settings of decoupled dynamics with no information sharing
and coupled dynamics with delayed information sharing.

Notation. The weighted `2-norm with respect to a positive
semi-definite matrix V is denoted by ‖x‖V =

√
x>V x. Let

Ft = (F1, σ(x1, ξ1, . . . , xt, ξt)) be the filtration (σ-algebra)
that represents the information up to round t. Eigenvalues of
the structure matrix W are noted by 1 = λ1 > |λ2| ≥ · · · ≥
|λN |. They are sorted by their absolute value.

II. PROBLEM SETTING

We consider a multi-agent network of N agents that
sequentially select actions played by the whole network. The
network is represented by an undirected graph G, and agents
are represented by the set of nodes V = {1, . . . , N} on the
graph. We assume that the graph G is connected, i.e., there
exists a path from each agent i to any other agent j. In our
setting, each agent can only communicate with its neighbors.
We define the doubly stochastic graph structure matrix W
with non-negative entries (i.e., Wi,j ≥ 0,∀i, j) in order to
capture the interaction between the agents with respect to
graph G. Therefore, Wij = 0, if there is no edge in G that
connects node j to node i. Each agent has its own local
linear bandit problem (with different reward parameter), and
communicates information with its neighbors on the graph
in order to solve the global bandit problem. Next, we first
describe the bandit problem that agents are solving, and then
explain the network structure that we adopt.

Local and Global Bandit Problems. Each agent is given
a set of actions D. At each round t, by playing the action
xt, each agent i observes a random reward

rit = 〈xt, θi?〉+ ξit, ∀i = 1, . . . , N, (1)

where θi? is the unknown, but fixed, reward parameter and
ξit is an additive zero-mean random noise of agent i. Note
that for agents i and j, the vectors θi? and θj? are not equal
in general. We further assume that the true global reward
parameter of the network is defined as:

µ? =
1

N

N∑
i=1

θi?. (2)

Agents aim to select the action that maximizes the global
expected reward of the network (i.e., with respect to µ?).
Since each agent i has only access to the observation based
on her own reward parameter θi?, it cannot make good
decisions in order to maximize the global expected reward
of the network without collaborating with the other agents.



Therefore, agents must communicate with each other in order
to estimate the true reward parameter µ? in (2). In our setting,
we assume that at each round t, the network coordinator
randomly selects an agent index a(t) ∈ V and all the agents
in the network play the action proposed by the agent a(t),
i.e., an action x

a(t)
t ∈ D is played by all the agents. Then,

each agent i observes a reward rit according to (1). We define
the cumulative pseudo-regret of the network as

R(T ) :=

T∑
t=1

〈x?, µ?〉 − 〈xa(t)t , µ?〉, (3)

where x? is the optimal action that maximizes the global ex-
pected reward of the network, i.e., x? = argmaxx∈D〈x, µ?〉.
Note that maximizing the global expected reward is equiva-
lent to minimizing the pseudo-regret of the network. Hence-
forward, we use regret to refer to the pseudo-regret R(T ).
We note that in our decentralized setting, the network coordi-
nator can only propagate the selected action (e.g., a product)
to the N agents (e.g., influencers), but it does not receive any
feedback from the social network and it does not perform any
computation since the number of samples could be very large
and the computation could be very costly.

Network Structure. We assume that the structure matrix
W is symmetric and the sum of each row, and hence the sum
of each column is 1. This implies that 1 is an eigenvalue of
W . We further assume that all the eigenvalues of W are real
and less than one in absolute value, i.e., 1 = λ1 > |λ2| ≥
· · · ≥ |λN | ≥ 0. For our algorithm, similar to [18], we only
allow agents to have limited information about the graph’s
structure. Specifically, we assume that each agent can only
share its information with its neighbors, and that it knows the
total number of nodes (i.e., agents) as well as the absolute
value of the second largest eigenvalue of matrix W i.e., |λ2|.
This is certainly less information compared to the existing
work in multi-agent LB, as described in Section I-A.

Our algorithm relies on decentralized communication be-
tween neighboring agents in the network so as to allow them
to compute estimates of the average of rewards obtained by
all the agents for the action taken by the netwrk xa(t)t . Details
of how agents propose the network action x

a(t)
t and the

communication protocol used to calculate the average reward
is provided next. First, we state some standard assumptions.

Assumption 1. For all t and i = 1, . . . , N , ξit is con-
ditionally zero-mean R-sub-Gaussian noise variables, i.e.,
E[ξit|Ft−1] = 0, and E[eλξit |Ft−1] ≤ exp (λ

2R2

2 ),∀λ ∈ R,
and Ft = (F1, σ(x1, ξ1, . . . , xt, ξt)) is the the history of the
entire network up to round t.

Assumption 2. There exists a positive constant S and L
such that ‖θi?‖2 ≤ S, and hence ‖µ?‖2 ≤ S, and ‖x‖2 ≤
L,∀x ∈ D. Also, we assume 〈x, µ?〉 ∈ [−1, 1],∀x ∈ D.

III. ALGORITHM DESCRIPTION

To tackle our multi-agent linear bandit problem, we pro-
pose a modified version of the linear UCB-based algorithm

proposed in [7] that we refer to as MA-LinUCB. The pseudo-
code of the MA-LinUCB is presented in Algorithm 1. MA-
LinUCB is an episodic algorithm such that each episode
consists of two phases: 1) an exploration-exploitation phase,
2) a communication phase. MA-LinUCB plays actions only
during the exploration-exploitation phase, and during the
communication phase, agents only share information with
their neighbors. As we will explain later, this approach
allows us to quantify the cost of unnecessarily lengthy
communication, as a lack of action translates into a linear
growth of regret due to no reward being accrued.

Exploration-exploitation Phase. Let ts be the time when
the episode s begins. At time ts the network coordinator ran-
domly selects an agent index a(s). Then, agent a(s), given a
regularized least-square estimate µ̂a(s)ts for the global network
parameter using the information up to time ts, constructs the
ellipsoidal confidence region Ea(s)ts , and computes the best
feasible action-environment pair (x̃a(s)ts , µ̃

a(s)
ts ) according to

the LinUCB action selection rule (line 6). The optimistic
action x̃a(s)ts is chosen as the network action xts = x̃

a(s)
ts and

all the agents play that action. By playing the network action,
each agent observes its corresponding reward according to
(1). Then MA-LinUCB activates the communication phase.

Communication Phase. During the communication
phase, agents do not play any action and they only share
information with their neighbors in order to collectively find
an approximation of the average reward all agents in the
network have received during episode s, i.e., 1

N

∑N
i=1 r

i
ts .

This means that for the length of the communication phase,
agents do not receive any reward, and as such regret grows
linearly with the length of the communication phase, high-
lighting a trade-off between how accurately the agents can
estimate the average network reward, and the regret of a
longer communication phase. The communication protocol
allows each agent i to share her latest reward rits with her
neighbors according to the structure matrix W , receive their
reward signals, and update her information according to an
accelerated consensus procedure in [18]. The summary of
how the agents share their information in the accelerated
consensus procedure, i.e., the mix function in line 12 of
Algorithm 1, is presented in Algorithm 2 of [18], and we
omit it here due to limited space. When the communication
phase of episode s finishes, each agent j can compute yjs ,
an approximation of the average rewards over all the agents
in the network at episode s, i.e., 1

N

∑N
i=1 r

i
ts . Then, each

agent updates her RLS estimate using this approximation.
The accuracy of the approximation depends on the length of
the communication phase q(s), which we carefully optimize
to control regret.

Lemma III.1 (from [18]) stated next captures how accurate
the approximation of the average observed reward will be
after certain communication steps following an accelerated
consensus procedure.

Lemma III.1. Let W be a structure matrix with real
eigenvalues such that 1>W = 1> and W1 = 1 and
all the eigenvalues are less than one in absolute value.



Fix ε > 0, and let q(ε) = dlog(2N/ε)/
√

2 log(1/|λ2|)e
where λ2 is the second largest eigenvalue in absolute value
of matrix W . Then after q(ε) communication time steps
based on Algorithm 2 of [18], each agent can construct a
polynomial pq(ε)(W ) of the structure matrix W that satisfies
‖pq(ε)(W )− 1

N 11
>‖2 ≤ ε/N .

Moreover, let rs = [rits ]i=1,...,N be the N -dimensional
vector containing the observed reward of each agent at
episode s before any communication. Then, after q(ε) =
dlog(2N/ε)/

√
2 log(1/|λ2|)e communication steps, agents

deploying Algorithm 2 of [18] can compute a polynomial
pq(ε)(W ) of the structure matrix W applied to the vector
rs, i.e., pq(ε)(W )rs. Here, the j-th entry of the vector, i.e.,
(pq(ε)(W )rs)j , is the approximation yjs available to agent
j for the average of the values in reward vector rs, i.e.,
1
N

∑N
i=1 r

i
ts . For a fixed ε, we can use Lemma III.1 to

write the accuracy of this approximation as ‖pq(ε)(W )rs −
1
N 11

>rs‖2 ≤ ‖pq(ε)(W ) − 1
N 11

>‖2‖rs‖2 ≤ ε
NN = ε,

where according to Assumption 2, we have ‖rs‖2 ≤ N .
Note that each entry j of the vector pq(ε)(W )rs is computed
by agent j using only hers and her neighbors’ reward
information. The only other information needed to compute
the Chebyshev polynomials pq(ε)(W ) (see details in [22]) are
the total number of agents N and second largest eigenvalue
in absolute value of the structure matrix W , i.e., λ2.

Algorithm 1: Multi-agent Linear UCB (MA-
LinUCB)

1 Input: δ, T, λ, t = 1, s = 1;
2 while t ≤ T do
3 Set q(s) = dlog(2Ns)/

√
2 log(1/|λ2|)e;

4 start time of episode s : ts ← t
5 The network coordinator selects the agent a(s)
6 Agent a(s) computes:

(x̃
a(s)
ts , µ̃

a(s)
ts ) = argmaxx∈Dmax

θ∈Ea(s)
ts

〈x, θ〉

7 Agents play the network action xts = x̃
a(s)
ts

8 for each agent i: observe rits = 〈xts , θi?〉+ ξits
9 if ts + q(s) > T then return

10 else activate communication phase:
11 for h = 0, . . . , q(s)− 1 do
12 rits ← mix(rits ,h,i)

13 end for
14 yis ← rits
15 end if
16 t← ts + q(s)
17 Update the RLS-estimates µ̂it according to (4)
18 Build the confidence region:

E it (δ) = {v ∈ Rd :
∥∥v − µ̂it∥∥Vt

≤ βt(δ)}
19 s← s+ 1

20 end while

Clearly, a longer communication phase allows agents to
compute a more accurate approximation of the average
rewards of the network but also adversely affects regret,

presenting a design trade-off. A requirement of any UCB-
based algorithm like ours is that the agents should be able
to construct high probability ellipsoidal confidence regions
E it that include the global reward parameter µ? at all rounds.
An important observation is that this requirement cannot be
met through a communication phase with a constant length.
We need to carefully design the length of the communication
phase to just be long enough so that each agent can construct
a high probability confidence region that includes µ?, but not
any longer so that we do not adversely affect the network
regret. As such, at the heart of Algorithm 1 and its proof of
regret lies an analytic argument that materialized the intuition
described above. The length of the communication phase for
episode s of the algorithm is denoted by q(s). Hence, for
episode s + 1, we have ts+1 = ts + q(s). We show that
by choosing the length of the communication phase of the
episode s to be q(s) = 1+log(2Ns)/

√
2 log(1/|λ2|), we can

guarantee the high probability confidence region as well as
control the regret of the network. Note that the length of the
communication phases is increasing in time (q(t) ∝ log t).
Intuitively, in the first rounds, agents do not have accurate
estimates of their underlying reward parameters, and hence
their current information is not very useful to share, which
leads to the short length of the communication phases. As
the algorithm progresses, since each agent can compute a
better approximation of her underlying reward parameter,
and hence they can share useful information, the length of
communication phases is longer. Moreover, we can conclude
that the number of times that communication happens is at

most of order O(T
√

2 log(1/|λ2|)
log(2N) ).

After q(s) communication steps, agents update their reg-
ularized least-square (RLS) estimates at time t = ts + q(s)
as follows:

µ̂it = V −1t

s∑
k=1

xtky
i
k, where Vt = λI +

s∑
k=1

xtkx
>
tk
, (4)

where xtk is the network action at episode k, and yik is the
estimation of the reward available to the agent i after commu-
nication phase of episode k. We note that MA-LinUCB only
updates the RLS-estimates when the communication phase
finishes, and agents have computed an approximation of the
average of the rewards. We will see in Theorem IV.1 that this
is critical for constructing the ellipsoid confidence regions
that contain the global reward parameter µ?.

IV. REGRET ANALYSIS

We first recall that each agent i’s underlying reward pa-
rameter is θi?. However, the goal of the agents is to maximize
the network’s global reward whose underlying parameter is
averaged over all the agents, i.e., µ?. It turns out that to
handle this issue, each agent needs to compute the average
of rewards of all the agents in the network. However, due to
communication limitations, each agent can only receive the
reward signals of her neighbors in the network. The key idea
that we use is to add a controlled number of communication
phases to the algorithm so agents can share their information.



In particular, after observing their reward signal, agents share
their information using an accelerated consensus procedure.
Then, each agent can compute an approximation of the av-
erage network reward. Next, in Theorem IV.1, we show that
by using the approximation of the average of the rewards,
each agent can build a modified version of the confidence
ellipsoid given in [7] such that it includes the network’s
true parameter µ? with high probability.

Theorem IV.1. Let Assumptions 1, 2 hold. Fix any δ ∈
(0, 1), and let the structure matrix W satisfy the conditions
required in Lemma III.1. Furthermore, let ts be the start time
of episode s. We choose the length of the communication
phase as q(s) = dlog(2Ns)/

√
2 log(1/|λ2|)e. Then, at each

time t in the interval [ts, ts+1) and using the information up
to round ts, each agent i can construct a confidence region
E it that includes the parameter µ? with probability at least
1− δ as:

E it (δ) = {v ∈ Rd :
∥∥v − µ̂it∥∥Vt

≤ βt(δ)}, (5)

where βt(δ) = R√
N

√
d log

(
1+sL2/λ

δ

)
+
√
λS + L/

√
λ.

Therefore, we show that agents only require an approx-
imation of the average rewards to construct the confidence
regions that include the true global reward parameter µ? with
high probability. However, we show that, this comes with an
extra cost, i.e., L/

√
λ in (5). Now we are ready to bound the

overall regret of the network. In Theorem IV.2, we provide
a regret bound for MA-LinUCB.

Theorem IV.2. Let Assumptions 1, 2 hold, λ ≥ max(1, L2),
and the structure matrix W satisfy the condition mentioned
in Lemma III.1. For a fixed δ ∈ (0, 1), the regret defined
in (3) for Algorithm 1 is upper bounded with probability at
least 1− δ by

R(T ) ≤4βT (δ)
√
2T ′d log (1+

T ′L2

dλ
)(1+

log(2NT )√
2 log(1/|λ2|)

)

+ log(2NT )/
√
2 log(1/|λ2|) (6)

where T ′ = T
1+q(1) , q(1) = log(2N)√

2 log(1/|λ2|)
.

Remark IV.1. The upper bound provided in Theorem IV.2 on
the T-period regret for Algorithm 1 has the following order:

R(T ) ≤ O

(
d
log(NT )√

N
log

(
TL2

δ

)√
T

log(1/|λ2|)

)
.

Remark IV.2. The regret bound provided in Theorem IV.2
depends on the spectral gap of the structure matrix. Recall
the spectral gap of the structure matrix W as SG(W ) =
1 − |λ2|. Therefore, for networks with larger spectral gap,
our algorithm performs better.

Intuitively, the overall regret of the network can be de-
composed into two terms: regret caused by the exploration-
exploitation phases, and that of communication phases. We
bound each term separately. The idea of bounding term I
is to use the result of Theorem IV.1, and bound the regret

for the times that algorithm plays the optimistic actions. We
first find an upper bound on the number of times the network
plays optimistic actions, and then bound the regret of it. For
the second term, we know that during the communication
phase, agents only share information and they do not play
any action, and hence regret grows linearly. However, in light
of our results on the length of the communication phases, we
bound the regret of the second term with logarithmic order.
In particular, from the Assumption 2, we have 〈x?, µ?〉 ≤ 1.
Therefore, the regret of the communication phase of episode
s of the algorithm is at most q(s). Hence, we can bound
the regret of the second term by the maximum length of the
communication phases up to time T , i.e., q(T ).

V. NUMERICAL RESULTS

In this section, we investigate the numerical performance
of our proposed algorithm on synthetic data. We show the
effect of the size and spectral gap of the network on the
performance of our algorithms. In all implementations, we
used δ = 1/4T , r = 0.1, and D = [−1, 1]4. The reward
parameters are drawn from N (0, I4). We have implemented
a modified version of LinUCB which uses `1-norms instead
of `2-norms due to computational considerations (for details
see [23]). The structure matrix W is chosen according to
[24]. We first define the graph Laplacian matrix as W =
I − M1/2AM−1/2, where A is the adjacency matrix of
the graph G, and M is a diagonal matrix such that Mii

is the degree of node i. For non-regular graphs, if we
call the maximum degree of the nodes kmax, we choose
W = I − 1

kmax+1M
1/2WM1/2. For k-regular graphs, we

choose W = I − k
1+kW .

In Figure 1, we plot the average cumulative regret of MA-
LinUCB on a complete graph (with self loops) for different
network sizes N = 4, 16, 64 over 100 realizations. We
show in Theorem IV.2 that regret decreases with the order
O( logN√

N
) in the number of agents in network. Similar to [3],

we plot Figure 1 in complete graphs in order to remove the
effect of the spectral gap of the matrix (the spectral gap of
the complete network is 1).
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Fig. 1. Comparison of the average cumulative regret of of MA-LinUCB
for a complete graph with different number of agents.

In Figure 2, we fix the number of agents in the network to
N = 50. We evaluate the performance of the MA-LinUCB



in different graphs: complete, 8-regular, 4-regular, and cycle
(all with self-loops). The values in Figure 2 are averaged over
100 realizations. Figure 2 captures the effect of the spectral
gap of the structure matrix on the cumulative regret. Recall
the definition of the spectral gap as SG(W ) = 1 − |λ2|.
As it is shown, networks with the larger spectral gap have
smaller regret. In particular, for complete network with the
largest spectral gap has the smallest regret in comparison to
the k-regular networks. Also, the cycle network has smaller
spectral gap than k-regular networks for k > 2.
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Fig. 2. Comparison of the average cumulative regret of MA-LinUCB for
complete and 4-regular and 8-regular and cycle graphs.

VI. CONCLUSION

In this work, we studied a variant of the collaborative
multi-agent stochastic linear bandits problem. In particular,
each agent has its own linear bandit problem (its own reward
parameter) and the goal is to select the best global action
w.r.t. the average of their reward parameters. Therefore,
agents need to collaborate to estimate the global reward
parameter. At each round, one action is randomly selected
and proposes the so-called network action. We adopt the
accelerated consensus procedure as a communication scheme
between agents and carefully design its length to control
network regret. We proposed a distributed UCB-based al-
gorithm with provable regret guarantee. For future work, a
natural extension of our setting is time-varying graphs or
generalized linear bandits. Additionally, it is interesting to
study extensions of setting to recently studied “incentive-
compatible bandits” in [25] where, in order to maximize the
social welfare, the network coordinator should incentivize the
agents to follow its policy, otherwise, they can act selfishly
in order to maximize their own reward.
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