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Abstract

We study the problem of combinatorial pure ex-
ploration in the stochastic multi-armed bandit
problem. We first construct a new measure of
complexity that provably characterizes the learn-
ing performance of the algorithms we propose
for the fixed confidence and the fixed budget
setting. We show that this complexity is never
higher than the one in existing work and illus-
trate a number of configurations in which it can
be significantly smaller. While in general this im-
provement comes at the cost of increased compu-
tational complexity, we provide a series of exam-
ples, including a planning problem, where this
extra cost is not significant.

1 Introduction

In the problem of best arm identification in the stochas-
tic multi-armed bandit (MAB) setting (e.g., Even-Dar et al.
[2006], Bubeck et al. [2009], Audibert et al. [2010]), a
learner has to identify the best arm/decision in a given de-
cision space. At each step, the learner selects an action
and receives a sample drawn from its corresponding reward
distribution. Unlike in standard MAB, where the goal is
to maximize the cumulative sum of rewards (e.g., Robbins
[1952], Auer et al. [2002]), here the performance is evalu-
ated based on the value of the arm(s) returned at the end.

In the original form of the problem, the decision set is com-
posed of a finite number of arms/actions and the task is
to identify the one with the highest expected value. This
problem has been studied in two different settings. In the
fixed confidence setting, the learner aims to minimize the
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number of pulls that allow her to identify the best arm
with the desired confidence. In the fixed budget setting,
the total number of pulls is fixed and the objective is to
return the best arm with the highest confidence. In re-
cent years, more complex forms of this problem have been
studied. In [Kalyanakrishnan and Stone, 2010, Kalyanakr-
ishnan et al., 2012, Gabillon et al., 2012, Kaufmann and
Kalyanakrishnan, 2013], the objective is to recommend the
set of m best arms. Gabillon et al. [2011], Wang et al.
[2013] studied a scenario in which the best arm must be
identified within each of m independent parallel bandit
problems. Soare et al. [2014] considered the case in which
the rewards of the arms depend linearly on an unknown pa-
rameter. Motivated by applications in project management
and surveillance over a network of hospitals, Ryzhov and
Powell [2011] moved to combinatorial decision sets and
studied the scenario in which at each step the learner sam-
ples an edge of the graph and the goal is to find the path
with the highest reward (i.e., the sum of the rewards of its
edges). They assumed a Bayesian prior over the rewards
of the arms and provided asymptotic results on the proba-
bility of error. Chen et al. [2014] studied the same setting
and proposed two novel algorithms for the fixed confidence
and the fixed budget setting, called CLUCB and CSAR.
They proved an upper on their performance that was com-
plemented by a general lower bound on the problem set-
ting. Finally, Wu et al. [2015] studied the combinatorial
case in which at each step the learner samples a path of
the graph and the goal is to find the edge with the high-
est value. Finally, we note that the case of combinatorial
actions/decisions has also been studied in the cumulative
regret setting [Cesa-Bianchi and Lugosi, 2012, Chen et al.,
2013, Kveton et al., 2015].

In this paper, we follow the setting of Chen et al. [2014]
with the objective of designing algorithms with improved
learning complexity relating the number of samples to the
probability of error. That is, in the fixed confidence setting,
the learning complexity is the required number of samples
to achieve the desired confidence, while in the fixed bud-
get setting it is the probability of error for a given budget
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of arm pulls available. We first introduce a new measure
of complexity in Sect. 3. In Sect. 4, we propose algo-
rithms for the fixed confidence and the fixed budget setting
whose learning complexity depends on this new measure.
Then in Sect. 5, we show that as our complexity measure is
never larger than the one of Chen et al. [2014], this leads to
improved learning complexity bounds. Finally in Sect. 6,
we discuss the computational complexity of our algorithms
and show that although they are computationally more ex-
pensive than those of Chen et al. [2014], this extra cost is
not significant in several practical scenarios.

2 Problem Formulation
We consider a set K of K = |K| arms, where each arm
i ∈ K is characterized by a distribution νi ∈ [0, 1] with ex-
pected value µi.1 The (combinatorial) decision space C ⊆
2K contains decision sets (sets of arms) U ⊆ K, and the
value of a decision set U ∈ C is defined as µU =

∑
i∈U µi.

In the following, we use upper-case lettersU toZ to refer to
decision sets. Without loss of generality we assume that for
each arm i ∈ K, there exists at least one decision set U ∈ C
such that i ∈ U and at least one decision set V ∈ C such
that i /∈ V . The gap between two decision sets is denoted
by ∆U,V = µU − µV , and U∗ = arg maxU∈C µU is the
best decision set with value µ∗ = µU∗ , which is assumed
to be unique. We denote by U ⊕ V = (U\V ) ∪ (V \U)
the exclusive disjunction between sets U and V , i.e., the
set of arms either in U or in V , but not in both. Finally, the
symmetric and asymmetric distances between two decision
sets are defined as dU,V = |U ⊕ V | and dU,V = |U\V |,
respectively.

Following Chen et al. [2014], we characterize the decision
space C by a set of patches that can transform any decision
set U ∈ C to any other decision set V ∈ C, without leaving
the decision space C.
Definition 1. An exchange set b is an ordered pair of dis-
joint sets b = (b+, b−) such that b+, b− ⊆ K and b+∩b− =
∅. For any set U and any exchange set b = (b+, b−), we
define U ± b = (U\b−) ∪ b+ and U ∓ b = (U\b+) ∪ b−.
Definition 2. The set B is an exchange class for the deci-
sion space C if for any pair of decision sets U 6= V ∈ C
and any arm k ∈ U\V , there exists an exchange set
b = (b+, b−) ∈ B that satisfies the five constraints: (a)
k ∈ b−, (b) b+ ⊆ V \U , (c) b− ⊆ U\V , (d) (U ± b) ∈ C,
(e) (V ∓ b) ∈ C. The width of an exchange class is defined
as width(B) = max(b+,b−)∈B |b+|+ |b−|.
Definition 3. The decision set U ∈ C is independent of
the decision set V ∈ C, U 6= V , denoted by U ⊥ V , iff
b = (V \U,U\V ) is the only non-empty exchange set that
satisfies the constraints (b)–(e) of Definition 2 for the pair
of decision sets (U, V ). It is easy to see that independence
is symmetric, i.e., U ⊥ V iff V ⊥ U .

1Actually, our results hold generally for bounded/sub-
Gaussian distributions.

The distributions {νi}Ki=1 are unknown to the learner. At
each round t, the learner pulls an arm I(t) and observes
a sample drawn from νI(t), independent from the past.
The learner estimates the mean of each arm i by averag-
ing the samples drawn from νi over time, i.e, µ̂i(t) =

1
Ti(t)

∑Ti(t)
s=1 Xi(s), where Ti(t) is the number of times that

i has been pulled by the end of round t and Xi(s) is the
s-th sample observed from νi. We denote by µ̂U (t) =∑
i∈U µ̂i(t) the empirical value of a decision set U , and

by Û∗(t) = arg maxU∈C µ̂U (t) the best empirical decision
set at round t.

In this paper, we consider both the fixed budget and the
fixed confidence setting defined as follows.

In the fixed budget setting, the objective is return the best
decision set with the largest possible confidence using a
fixed budget of n arm pulls. More formally, given a bud-
get n, the performance of an algorithm is measured by
the probability δ̃ of not identifying the best decision set,
i.e., δ̃ = P

[
Û∗(n) 6= U∗

]
. The smaller δ̃, the better the

algorithm is.

In the fixed confidence setting, the goal is to return the
optimal decision set with fixed confidence after the smallest
possible number of arm pulls. Given a confidence level δ,
if we denote by ñ the time when the algorithm stops, we
want to have P

[
Û∗(ñ) 6= U∗

]
≤ δ. The performance of

the algorithm is thus measured by the number of rounds ñ,
either in expectation or in high probability.

3 Definition of Learning Complexity
In this section, we introduce our novel complexity mea-
sure for combinatorial pure exploration problems. While
in Section 4 we derive algorithms whose performance is
actually characterized by this new measure of complexity,
in the following we introduce it in a constructive way to
provide a more solid intuition about its properties. In Sec-
tion 7, we discuss its relationship to existing lower bounds
and possible improvements.

Since the objective in combinatorial pure exploration is to
identify the optimal set U∗ in C, we first focus on charac-
terizing the complexity of discriminating between any two
decision setsU, V ∈ C, i.e., determining whether µV > µU
or µV ≤ µU . As usual, we expect that the smaller the gap
∆V,U , the harder it is to identify the better set. However
in our setting, resources cannot be directly allocated to the
sets, but rather need to be allocated to the arms in U ∪ V
until the estimates of µU and µV are accurate enough to
discriminate U from V . In order to simplify the discussion,
we focus on how often we have to pull arms i ∈ U ∪ V to
identify the better set with confidence 1− δ.2 We consider
an algorithm that sequentially selects arms in U ∪ V and

2As shown in Section 4.1, the arguments used in constructing
the arm complexity Hi are still valid in the fixed budget setting.
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at the end of each step t constructs the empirical estimate
µ̂i(t) for each arm i using the Ti(t) samples of arm i that
have been observed so far. By a direct application of Ho-
effding’s inequality, we may construct confidence intervals

|µ̂i(t)− µi| ≤ βi(t) =

√
log 4K′t2

δ

2Ti(t)
, (1)

which hold with probability at least 1 − δ for all K ′ =
dU,V arms at any time step t > 0. At the end of step t,
we construct the empirical estimate of the gap between U
and V as

∆̂V,U (t)=
∑
i∈V

µ̂i(t)−
∑
i∈U

µ̂i(t)=
∑
i∈V \U

µ̂i(t)−
∑

j∈U\V

µ̂j(t),

which shows that only arms in U⊕V actually play a role in
discriminating betweenU and V . As a result, we consider a
simple extension of the Hoeffding Races algorithm [Maron
and Moore, 1993], which selects arms in U ⊕ V using a
round-robin strategy (in an arbitrary order) and stops at the
first step twhen the lower-bound on the gap is positive, i.e.,

∆̂V,U (t)−
∑

i∈U⊕V
βi(t) > 0. (2)

The sample complexity of such an algorithm is bounded in
the following lemma.
Lemma 1. Let U, V ∈ C such that µV > µU and let

HU,V = d
2

U,V /∆
2
U,V .

When the round-robin algorithm with the termination con-
dition (2) stops after t steps, then for any arm i ∈ U ⊕ V ,
we have Ti(t) ≤ 2HU,V log

(
4K′t2

δ

)
+ 1 and V is returned

as the better set with probability at least 1− δ.

Lemma 1 is obtained using classical techniques. The full
proof is reported in Appendix A. Lemma 1 provides an up-
per bound on the number of times each arm in the disjunc-
tion U ⊕ V should be pulled before learning that V is bet-
ter than U with sufficiently high confidence. In particular,
Lemma 1 shows that beyond the inverse dependency on the
gap ∆U,V , the upper bound also depends on the number of
arms in the disjunction U ⊕ V . The number of arms dU,V
can be interpreted as a variance term, as the confidence in-
terval associated to a set is proportional to dU,V . As a re-
sult, given a fixed gap ∆, it is easier to discriminate sets that
differ by only few arms. This property implies that when
trying to discard a suboptimal set U from C (i.e., find that
U 6= U∗ with high confidence), it may be easier to compare
U to a set V 6= U∗ with µV > µU and smaller complexity
HU,V . Thus, we introduce the following definition.
Definition 4. The complement of any decision set U 6= U∗

is

CU = arg min
V ∈C:µV >µU

HU,V , (3)

where ties are broken in favor of V with smaller dU,V .

If HU,V characterizes the complexity of discriminating be-
tween U and V , CU is the set that is the most effective in
revealing that U is actually suboptimal. The complement
CU has also an additional important property.

Lemma 2. U ⊥ CU holds for all U ∈ C with U 6= U∗.

This lemma (proof in App. E), shows that for any subopti-
mal set U is independent from its complement CU .

Lemma 1 suggests that in order to discard a suboptimal
set U , the most effective strategy is to pull all the arms in
U⊕CU a number of times proportional toHU,CU

. Thus, we
define the complexity of an arm as the largest complexity
for discarding a set U with i in U ⊕ CU .

Definition 5. The complexity of an arm i ∈ K is3

Hi = max
U∈C:i∈U⊕CU

HU,CU
. (4)

As a direct consequence of Lemma 1 and Definition 5, we
note that an algorithm pulling each arm proportionally to
Hi and stopping when all sets but one are discarded returns
an empirical best set Û∗ = arg maxU∈C µ̂U that is optimal
with probability at least 1− δ. Consequently, we define the
global complexity H as the sum of the complexities of the
individual arms in K.

Definition 6. The global complexity H is defined as

H =
∑
i∈K

Hi. (5)

For notational convenience, we also introduce the notion of
simplicity of a pair of decision sets (U, V ) as

GU,V = ∆U,V /dU,V .

Unlike HU,V , GU,V is an asymmetric quantity, i.e.,
GU,V = −GV,U . We also define the simplicity of an arm
i ∈ K as Gi = min

U∈C:i∈U⊕CU

GCU ,U . Note that simplicity is

a positive quantity, i.e.,GCU ,U > 0, since µCU
> µU . Also

note that HU,V = G−2
U,V and Hi = G−2

i .

4 Learning Algorithms
In this section, we introduce novel learning algorithms for
the fixed budget and the fixed confidence setting. Both al-
gorithms are designed to discard an arm i whenever suf-
ficient information is gathered to decide whether or not it
belongs to U∗. While for existing algorithms, this requires
that the arms in U∗ are pulled sufficiently often, our al-
gorithms compare a decision set U not always to U∗, but
rather to CU . Thus, they focus on pulling arms in both U
and CU sufficiently often. This is achieved by computing

3See Appendix B for a proof that Hi is well defined.
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Parameters: number of rounds n, set of arms K, decision
set C, and cumulative pulls scheme n0, n1, . . . , nK .
Let K1 = K, k = 1.
while |Kk| ≥ 1 do

Pull each arm i ∈ Kk for nk − nk−1 rounds.
Compute Û∗(k) = arg maxU∈C µ̂U (k).
Find jk = maxi∈Kk Ĝi(k).
Deactivate arm jk, i.e., set Kk+1 = Kk\jk.
k ←− k + 1

end while
Return Jn = arg maxU∈C µ̂U (n)

Figure 1: The fixed budget algorithm.

empirical estimates of the complexity measure Hi and pro-
gressively discarding arms with low complexity. The re-
sulting algorithms enjoy performance guarantees on proba-
bility of error and on sample complexity, where the bounds
exhibit an explicit dependency onH . In Section 5, we show
that this leads to a potential significant gain w.r.t. the algo-
rithms of Chen et al. [2014]. The computational complex-
ity of our algorithms is discussed in Section 6.

4.1 Fixed Budget
Figure 1 shows our fixed budget algorithm. Apart from
the introduction of the new notion of complexity, Hi, the
algorithm builds upon a rather standard rejection strategy
shared by many existing algorithms such as Successive Re-
jects (SR) [Audibert et al., 2010], SAR [Wang et al., 2013],
and CSAR [Chen et al., 2014], which is specifically de-
signed for combinatorial problems. The algorithm runs
over K phases. At each phase k, it maintains a set of active
arms Kk that are all pulled uniformly until they reach nk
samples. At the end of a phase, we compute the empirical
means µ̂i(k), the empirical gap for any pair of sets U and
V , as ∆̂V,U (k) = µ̂V (k) − µ̂U (k), and the estimated op-
timal decision Û∗(k) = arg maxU∈C µ̂U (k). Using these
estimates, we also build empirical versions of the terms in-
troduced in Section 3, such as the estimated simplicity be-
tween two sets U and V as ĜV,U (k) = ∆̂V,U (k)/dV,U ,
which in turn implies the following definitions for the em-
pirical complement of a decision set U 6= Û∗,

ĈU (k) = arg max
V ∈C:µ̂V (k)>µ̂U (k)

ĜV,U (k), (6)

and the estimated simplicity of an arm i ∈ K,

Ĝi(k) = min
U∈C:i∈U⊕ĈU (k)

ĜĈU (k),U (k). (7)

In (6), ties are broken in favor of V with the smaller dis-
tance dV,U . At the end of each phase k, the easiest arm
jk = arg maxi∈Kk

Ĝi(k), i.e., the arm with largest es-
timated simplicity in Kk, is removed from the active set.
Note that jk is the arm for which it is easiest to determine
whether it belongs to U∗ or not, and thus, if jk ∈ Û∗(k),

then jk is accepted and will be a part of the final recom-
mended solution Jn, otherwise it is rejected. In either
case, it is not included in Kk+1 and is not pulled any-
more. 4 We use nk =

⌈
n−K

log(K)(K+1−k)

⌉
, k ∈ K, with

n0 = 0 and log(K) =
∑K
i=1 1/i. It is easy to verify that

with this scheme the algorithm never exceeds the budget
n. In fact, since at each of the K phases one arm is de-
activated, the total budget used is nFB =

∑K
k=1 nk ≤

K+ n−K
log(K)

(∑K
k=1

1
K+1−k

)
= n. We prove the following

performance guarantee for the algorithm.
Theorem 1. The probability of error of the fixed budget
algorithm in Figure 1 is

P
[
Û∗(n) 6= U∗

]
≤ 2K2 exp

(
n−K

32log(K)H

)
,

where H = maxi∈K iHπ(i) and π is a permutation of K
such that Hπ(1) ≥ Hπ(2) ≥ . . . ≥ Hπ(K). As noted in
Audibert et al. [2010], it holds that H ≤ H ≤ Hlog(K).

The full proof that –like the algorithm– borrows ideas
from Audibert et al. [2010], Wang et al. [2013], and Chen
et al. [2014] can be found in Appendix G. Here we only
provide a proof sketch. The proof proceeds by induction on
the phases of the algorithm. The two induction hypotheses
essentially claim that if an arm i /∈ Kk has been deacti-
vated during phase l ∈ {1, . . . , k − 1}, the number nl of
samples obtained for arm i is proportional to its complex-
ity Hi = 1/G2

i , which is crucial for the correct functioning
of the method. It first means that the deactivated arms have
been pulled sufficiently often in order to determine whether
they belong to the optimal set U∗. Moreover, although jk
is selected among the active arms in Kk on the basis of the
estimated simplicity, the computation of Ĝi requires com-
paring each set U containing i to its (estimated) comple-
ment ĈU (see Definition 5). Since the arms in CU may no
longer be active, we need to guarantee that when they are
deactivated, their values are estimated sufficiently precise,
so that ĈU , and as a result Ĝi, are accurate.

4.2 Fixed Confidence
Figure 2 shows our fixed confidence algorithm. At each
step t, the algorithm first uses the samples up to step t−1 to
compute an upper bound on the simplicity GU,V (t) of any
pair of decision sets (U, V ). To do so, we first define upper
and lower bounds for the mean of an arm i as µ̂+

i (t) =
µ̂i(t− 1) + βi(t− 1) and µ̂−i (t) = µ̂i(t− 1)− βi(t− 1),
where βi(t−1) is the confidence interval for arm i at time t
defined in (1). For any pair of decision sets (U, V ), we
then compute an upper bound on their gap as ∆̂+

U,V (t) =∑
i∈U\V µ̂

+
i (t) −

∑
j∈V \U µ̂

−
j (t) and on their simplicity

as Ĝ+
U,V (t) = ∆̂+

U,V (t)/dU,V .

4Note that the empty set can be considered a decision in C,
which explains whyK and notK−1 phases are necessary. A de-
fault value then need to be associated with the empty set decision.
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Parameters: confidence δ, set of arms K, and decision set
C.
Initialize: Pull each arm i once
Set UK+1 = {U : ∀V ∈ C, ∆̂+

U,V (K + 1) > 0}.
SAMP
while |Ut| > 1 do

Set threshold TU,V (t) = dU,V max
W∈C

Ĝ+
W,U (t)/2

Set U ′t = {U : ∀V ∈ C, ∆̂+
U,V (t) > −TU,V (t)}

Let (Ut, Vt) = arg max
U∈U′t,V ∈C,U 6=V

Ĝ+
V,U (t)

Let (Wt, Zt) = arg max
(W,Z)∈{(Ut,Vt),(Vt,Ut)}

∑
i∈W\Z

βi(t− 1)

Sample arm I(t) = arg maxi∈Wt\Zt
βi(t− 1).

Update Ut+1 = {U : ∀V ∈ C, ∆̂+
U,V (t+ 1) > 0}

t←− t+ 1
end while
Return the unique decision set in Ut, Û∗(t).

Figure 2: The fixed confidence algorithm.

At each step t, the set Ut is constructed as the set of decision
sets U , whose upper bound on the gap is positive w.r.t. any
other set V ∈ C. This corresponds to all sets that are still
potential candidates for the best set U∗ (i.e., there is not
enough confidence to discard them). Then, the most uncer-
tain arm belonging to the simplest pair (Ut, Vt) is selected,
and this is repeated until only one set in Ut is left, which
is then returned as Û∗(t). While it would be natural to se-
lect the sets (Ut, Vt) among those still “active” in Ut, this
would not guarantee a proper behavior for the algorithm.
Similarly to the fixed budget case, the largest simplicity for
a set U is associated to its complement V = CU , and thus,
in order to guarantee that the upper bound on the estimated
simplicity, Ĝ+

U,V , is accurate, we need to guarantee that all
the arms in V have been pulled at least a number of times
proportional to their complexity. This is achieved by in-
troducing an additional set U ′t . While in constructing Ut,
a set U is dropped when it is dominated with high confi-
dence, i.e., the upper bound on its gap ∆̂+

U,V (t) is negative
for at least one set V , U ′t is more conservative and requires
the gap to be negative by “enough” margin before actu-
ally discarding a set. That is, we introduce the threshold
TU,V (t) > 0, and let a set U be discarded from U ′t only if
there is a set V such that ∆̂+

U,V (t) < −TU,V (t). This al-
lows us to guarantee that all the arms that could be involved
in identifying a suboptimal set are pulled often enough. In
fact, after computing U ′t , the algorithm identifies the pair
of decision sets (Ut, Vt) with the highest upper bound on
simplicity in U ′t and selects among (Ut, Vt) the decision
W with the largest sum of uncertainty terms βi(t − 1) for
i ∈ W . Then the algorithm pulls the arm with the largest
uncertainty in W ∩ (Ut ⊕ Vt).

We now state the sample complexity of the algorithm.

Theorem 2. The algorithm in Figure 2 stops after ñ ≤
O
(
H log(HK/δ)

)
steps and returns the optimal decision

set U∗ with probability at least 1− δ.

We report the proof in Appendix H. For all t, we define
Ĝ+(t) = max

U∈U ′t,V ∈C
Ĝ+
V,U (t). The main idea is to show that

Ĝ+(t) is upper bounded by βI(t) (Lemma 10) and lower
bounded by GI(t) (Lemma 8), thus obtaining that GI(t) ≤
Ĝ+(t) ≤ βI(t). Given the definition of βi in (1), we recover
an upper bound on the number of pulls Ti(t) for each arm,
and thus, bound the overall sample complexity.

5 Comparison of Learning Complexities
In this section we show that the interest in designing algo-
rithms whose performance is characterized by the complex-
ity measure of Definition 5 resides on the fact that this rep-
resents a significant improvement w.r.t. previous pure ex-
ploration combinatorial algorithms. We first show that the
complexityHi is never higher than the complexity measure
H�i introduced by [Chen et al., 2014] for the performance
analysis of the algorithms CLUCB and CSAR. Then we
provide illustrative examples showing that our new com-
plexity measure can be significantly smaller.

We recall the definition of the complexity measure of Chen
et al. [2014]. For any arm i ∈ K, the gap is defined as

∆�i =

µ
∗ − max

U∈C:i∈U
µU if i /∈ U∗,

µ∗ − max
U∈C:i/∈U

µU if i ∈ U∗.

The width of C is the width of the smallest exchange
class for C, that is width(C) = minB∈exchange(C) width(B)

and the resulting complexity of arm i ∈ K is H�i =

width(C)2/
(
∆�i
)2

, leading to the global complexity
H� =

∑
i∈KH

�
i .5 The following theorem shows that for

any arm i ∈ K our complexity measure Hi is never higher
than the measure H�i of Chen et al. [2014].

Theorem 3. For all i ∈ K, H�i ≥ Hi.

We first provide some intuition about the statement of the
theorem. The complexity Hi of an arm i is defined as the
maximum over the complexities of the decision sets U for
which i ∈ U ⊕ CU . On the other hand, H�i only con-
siders the maximum over the sets U with i ∈ U . We
therefore need to guarantee that the extra terms in the
maximum of our definition do not lead to a larger value
compared to H�i . Consider for instance the specific case
C = {U, V, U∗} with V = CU and V being the only deci-
sion set containing i. Then U∗ = CV , H�i = HV,CV

, and
Hi = max{HV,CV

, HU,V }, so that if HU,V > HV,CV
then

Hi > H�i . Fortunately, we can show in Appendix C and D
that generally HV,CV

≥ HU,V , so that the additional terms
in the maximum do not increase the value of Hi. More

5Notice that in the original paper, the complexity of an arm
is defined as

(
1/∆�i

)2, but looking at the statements of the the-
orems, the complexity of i is always multiplied by the square of
the width of the decision space.
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S T

(a) Graph Example 1

S T

(b) Graph Example 2

Figure 3: Examples of decision spaces where H is signif-
icantly smaller than H�. Each arm is identified with an
edge of a graph, and C corresponds to the possible paths
(without loops) from the source S to the target T .

generally, we prove that for all i /∈ U∗, the maximum in the
complexity Hi is attained by a set U such that i ∈ U\CU .

Now we proceed with a proof sketch. Thus, consider an
arm i /∈ U∗ and let

U�i = arg max
U∈C:i∈U

µU , Ui = arg max
U∈C:i∈U⊕CU

HU,CU
.

Notice that U�i is the decision set that implicitly defines the
complexity of arm i according to the definition of ∆�i . As
mentioned before, i ∈ Ui. Let Vi = C∗Ui

, where C∗ is a
variation of C such that if we define an exchange set b with
b+ = Vi\Ui and b− = Ui\Vi, we have that Vi is indeed
“between” U and U∗, i.e. requiring U∗∓b ∈ C and i ∈ b−.
As a result, we have that ∆U∗,U�i

= min
U∈C:i∈U

∆U∗,U ≤
∆U∗,U∗∓b = ∆C∗Ui

,Ui , since i belongs to b−. Furthermore,
recalling Definition 3 of independent sets, we notice that an
equivalent interpretation of the width of C is to consider it
as the maximal distance dU,V between any two independent
sets U, V (i.e., U ⊥ V ). In fact, dU,V counts the number of
arms in the disjunction U ⊕ V . However, in the case of in-
dependent sets, this coincides with an exchange set b with
b+ = V \U and b− = U\V such that dU,V = |b+| + |b−|.
Since by Lemma 2, Ui is independent from its comple-
ment Vi, we have width(C) ≥ dVi,Ui . Summarizing, we
obtain the claimed

H�i = width(C)2/∆2
U∗,U�i

≥ d2

Vi,Ui
/∆2

Vi,Ui
= Hi.

The most interesting aspect of this result is that the po-
tential improvement of Hi over H�i may be achieved on
both terms characterizing the complexity, that is, the dis-
tance dCU ,U (which can be smaller than the width of C) and
the gap ∆CUi

,Ui
(which can be larger than the gap between

Ui and U∗). This is demonstrated in the two following il-
lustrative examples, in which Hi is indeed much smaller
than H�i .

Example 1: Comparing U to CU instead of U∗. The
definition of ∆�i always depends on the comparison of
sets U containing i to the optimal decision set U∗. The
following example demonstrates that comparing decision
sets to their complement can considerably reduce the over-
all complexity of an arm i. Consider the shortest path prob-

lem6 withK = {1, . . . ,m, a, b, i} illustrated in Figure 3(a).
The optimal path between source node S and exit node T
is the green path U∗ = {a} with µ∗ = 1. We first fo-
cus on the complexity of the red arm i. This arm only be-
longs to the decision set U = {i, 1, . . . ,m} (i.e., the black
and red path). The complexity of discriminating U from

U∗ is HU∗,U =
d
2
U∗,U

∆2
U∗,U

= (m+2)2

12 = (m + 2)2. Notice

that HU∗,U coincides with H�i since the largest exchange
set in this problem is indeed the one transforming U into
U∗, and thus H�i = width(C)2/

(
∆�i
)2

= (m + 2)2. On
the other hand, the complexity of discriminating U from
the set V = {b, 1, . . . ,m}, which differs from U only
by the exchange set ({i}, {b}), corresponds to HV,U =
d
2
V,U

∆2
V,U

= 22

(1−ε)2 . As a result, as soon as m > 2ε/(1 − ε),

we have that Hi = HV,U < HU∗,U = H�i . In particu-
lar, H�i = (1−ε)2(m+2)2

4 Hi. Since we can take ε arbitrarily
small while m is of order of K, we have H�i = O(K2)Hi,
implying that complexity Hi can be K2 times smaller than
the complexity proposed by Chen et al. [2014]. While this
shows already the potential of the complexity measure Hi,
it is limited to one single arm, and it does not immediately
show that the overall complexity of finding the optimal set
is significantly reduced. However, it is enough to slightly
modify the previous example by adding p copies of arm
i, thus leading to a total number of K = m + 2 + p
arms. Choosing ε = 1/2 we have H =

∑
j∈KHj =∑m+2

j=1 Hj + pHi = 4(m + 2)3 + 16p and H� =∑
j∈KH

�
j =

∑m+2
j=1 H

�
j +pH�i = 4(m+2)3 +p(m+2)2.

Then choosing p = O
(
m3
)
, we have K = O

(
m3
)
,

H = O
(
m3
)
, and H� = O

(
m5
)

= HO
(
K2/3

)
. This

shows that not only the per-arm complexity Hi can be sig-
nificantly smaller but that this may have a major impact
in the overall complexity of the combinatorial pure explo-
ration problem.

Example 2: Width of the graph vs individual pair dis-
tance. Unlike in the definition ofH�i , where the distance
between sets only appears in form of the width of the global
decision set C, Hi takes into consideration the specific dis-
tances dU,CU

for each U with i ∈ U . Since width(C)
may be larger than dU,CU

, we expect Hi to better adapt
to the “local” geometry of C. We illustrate this intuition
in the example shown in Figure 3(b). This is a shortest
path problem7 in a graph between a source node S and an
exit node T , where K = {1, . . . ,m, a, i} and the optimal
path is U∗ = {a, 1, . . . ,m/2} (i.e., the blue edge followed
by the top path). We focus on the complexity of the red
arm i. Let V = {i, 1, . . . ,m/2} (i.e., the red edge fol-
lowed by the top path) be the best path containing i. Then
∆�i = ∆U∗,V = 1

m . The width of the decision space is

6Actually, the goal is to maximize the rewards over the edges
in a path.

7Again, we actually want to maximize rewards over the path.
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m, since the largest exchange set needs to remove all the
(black) arms in the top (bottom) path and add all the (black)
arms in the bottom (top) path (e.g., consider the exchange
sets needed to move from U∗ to {a,m/2 + 1, . . . ,m}).
Hence, H�i = width(C)2

(∆�
U∗,V )2

= m2

(1/m)2 = m4, while Hi =

d
2
U∗,V

∆2U∗,V = 22

(1/m)2 = 4m2 ≤ H�i , showing that the com-
plexity of arm i can be 1

4m
2 times smaller than H�i . As

in the previous example, we are also interested in compar-
ing the global complexities H and H�. In this case, we
can show that H = O

(
m2
)

since the complexity of all
black arms is 1. On the other hand, H� = O

(
m4
)
. As

m increases, m ≈ K, we have that H� = O
(
K2
)
H ,

which suggests that overall complexity H can be K2 times
smaller than H�.

6 Computational Complexity
In this section, we discuss the computational complexity
of the algorithms presented in Section 4 and compare it to
the complexity of the algorithms of Chen et al. [2014], also
taking into consideration the respective learning complex-
ity discussed in Section 5.

In [Chen et al., 2014] the complexity is dominated by
an oracle solving the combinatorial optimization problem
U∗ = arg maxU∈C µU . While this task is NP-hard in gen-
eral, in some particular instances such as maximum match-
ing or maximum weight spanning tree, the computational
complexity of finding the best estimated decision in C is
polynomial in K. On the other hand, in both our algo-
rithms, the computational complexity is dominated by the
computation of the learning complexity of the arms. In fact,
as shown in equation (5), computing Hi for all arms i ∈ K
(the same for Gi and their empirical counterparts) requires
evaluating the complexity of any pair of sets U, V in C. As
a result, in the worst case the computational complexity for
both algorithms is O

(
|C|2

)
, which in some cases can be

exponential in the number of arms (e.g., maximum match-
ing or maximum weight spanning tree). While in general
this may be the unavoidable price to pay for improving the
learning complexity, in the following we show that, 1) in
some problems where we do not improve the learning com-
plexity, the computational complexity is indeed not worse
than for Chen et al. [2014], 2) there exists a class of plan-
ning problems where we obtain a better learning complex-
ity with only limited extra computational cost.

Taking advantage of independence, the multi-bandit ex-
ample. Lemma 2 allows to move from looping over C to
looping over the exchange sets in the exchange class B. In
particular, we can easily construct the exchange class ob-
tained by considering all the exchange sets defined by the
disjunction of all pairs of independent decisions. In some
problems, this observation may lead to a much more effi-
cient implementation of our algorithms. For instance, let
us consider a multi-bandit problem [Gabillon et al., 2011]
with M bandits, each composed of K/M arms (see illus-

S T

1

2 6

3 5

4

(a) 2 arm, 3 bandit problem

S
1

2 3

4 5 6 7

9 10

11 12 13 14

8

(b) Planning problem

Figure 4: Examples of learning problems in which our algo-
rithms perform well.

tration in the “sausage graph” in Fig. 4(a) for the three-
bandits, two-arm case). In this problem, the learning
complexity cannot be improved w.r.t. Chen et al. [2014].
Nonetheless, we can exploit the structure of the problem
to match their computational complexity. We first notice
that any two independent sets U and V always differ by
only one arm. In fact, if they differ by more than one arm,
then there always exists more than one way to bring U
closer to V by a one-arm transformation and at the same
time stay in C. As a result, when computing Hi we can di-
rectly compare i with all the arms in the same bandit. For
instance, in Fig. 4(a), computing H1 would normally re-
quire looping over each decision set U including arm 1 and
considering all the other decisions to identify its comple-
ment. Let us consider U = {1, 3, 5}, then its complement
is CU = {2, 3, 5}, which only differs by arm 2. This is the
same for all U containing 1 and thus, when computing H1

we can simply compare it to arm 2 without actually loop-
ing over all the decision sets. As a result, computing the
learning complexity reduces to comparing arms within the
same bandit, thus leading to M independent problems and
a complexity of O(K).
K ≈ |C|, the tree-planning case: Whenever |C| is of
the same order as K, then the computational complexity is
tractable. This means that, for instance, in the illustrative
examples discussed in Sect. 5, we not only enjoy a signif-
icantly smaller learning complexity (e.g., with a reduction
of order O(K2) but we also match the computational com-
plexity of the methods proposed by Chen et al. [2014]. An
even more interesting case is the problem of planning. In
this case, C describes a tree structure of depth m and each
node has the same branching factor a. An arm i is an edge
of the tree with associated weight µi, and a decision set U
is a path from the root to a leaf. The objective is to find
a decision set (i.e., a path) that maximizes the sum of its
weights. This setting corresponds to the open-loop plan-
ning problem of maximizing the expected sum of rewards
over m consecutive actions (chosen in a set of a actions)
from a starting state when the state dynamics is determin-
istic and the reward distributions are unknown. This type
of problem has been previously studied with discounted re-
wards [Bubeck and Munos, 2010, Munos, 2014].

In this problem, 2|C| ≈ K as the number of decisions
(paths) is equal to the number of leaves in the tree. While
this already shows that our computational complexity is
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comparable to previous methods, in the following we push
the comparison even further. In the fixed budget setting,
the CSAR algorithm [Chen et al., 2014] needs to query a
shortest path oracle for each edge i to determine the paths
with largest value including and not including arm i. This
procedure, if implemented naively, leads to an overall com-
plexity of order Õ

(
K2
)

(for each arm the computation re-
quires O(K log(K)) operations using a simplified version
of Dijkstra), which matches our O

(
|C|2

)
complexity. We

conjecture that this computational complexity can be actu-
ally reduced to Km for both our and their algorithm. We
focus on our algorithms and highlight a technique that can
be used to reduce the computational complexity in general.
First, using the Dijkstra algorithm gives the best path from
any node to the corresponding leaves. Our algorithms will
then compute HU,CU

for all U . However, the set of deci-
sions (paths) V 6= U can be clustered into m groups of
sets depending on the first node where they differ from U
among the m possible ones. Since the distance dU,V is
constant within these clusters, identifying the complement
arg minHU,V within each cluster corresponds to finding
the set V with the largest value, which has already been
computed by the Dijkstra algorithm. So for eachU we need
to consider m clusters, which would permit to reduce the
overall complexity to Km. This complexity is of the same
order as for the CLUCB fixed confidence algorithm [Chen
et al., 2014] where just one call to the Dijkstra algorithm is
needed.

Not only in this setting our algorithms can be implemented
efficiently, but we can also show an example where the
learning complexity is significantly improved over [Chen
et al., 2014]. Let us consider the tree in Figure 4(b). If
µi = .9 for all edges except the leaf edges with odd num-
bers 5, 7, 11, 13 for which µi = 0 and µ4 = 1. In this case,
arms 5, 7, 11, 13 belong to only one decision setU each and
thus computing their complexity coincides with finding the
complement CU and computing HU,CU

. Since almost all
paths have the same value, the CU is chosen as the set V
minimizing dU,V , which is simply the path differing from
U for only the last edge, i.e., dU,V = 1. Comparing to H�i ,
which has width(C) = m, for all such arms we have mHi

= O
(
H�i

)
. Since the proportion of this type of arms grows

with the branching factor a, this improvement can reduce
the global complexity H by a factor m.

7 Discussion
We have seen in Section 5 that using the complexity mea-
sure H one can obtain improved results on the learning
complexity. This naturally raises the question whether the
obtained upper bounds for our algorithms are optimal. The
core of the definition of Hi is indeed the complexity HU,V

of discriminating between any two decision sets U and V .
While in Section 3 we gave a constructive definition, Chen
et al. [2014] provide a lower bound on the “cumulative”
number of samples for each exchange set. In particular,

they show that for any arm j ∈ K, there exists an exchange
set b = (b+, b−) such that j ∈ b+ ∪ b− and

E

 ∑
i∈b+∪b−

Ti(t)

 ≥ (|b+|+ |b−|)2

(∆�j )2
log(1/4δ), (8)

where t is the stopping time at which the optimal set is re-
turned w.p. 1− δ. As a result, a proper lower bound in the
fixed confidence setting is derived from the optimization
problem minE[Ti(t)],B

∑
i∈K E

[
Ti(t)

]
log(1/4δ), sub-

ject to the constraints of the form in (8), for all exchange
sets b ∈ B and arms j ∈ b+ ∪ b−. While it is difficult to
have a clear understanding of the resulting overall sample
complexity for the lower bound, we can greatly simplify it
by considering the simple case of C = {U,U∗}, for which
b = (U∗\U,U\U∗), and an algorithm that pulls all the
arms in b+∪b− uniformly. Then, for each arm i ∈ U⊕U∗,
the lower bound of equation (8) becomes

E
[
Ti(t)

]
≥ |b+|+ |b−|

∆2
U∗,U

log(1/4δ), (9)

which strongly resembles our definition of HU,U∗ . We first
notice that the major gap is related to the fact that in HU,U∗

the numerator has the distance squared. We conjecture that
this gap could be filled by using more accurate deviation
inequalities in bounding |µU − µ̂U | so that the confidence
bound has the sum inside the square root. On the other
hand, the major gap resides on the fact that equation (9)
considers a simple uniform allocation over arms in the dis-
junction, while the full lower bound in equation (8) allows
for more sophisticated allocation strategies and considers
the interplay between the constraints imposed by the ex-
change sets in B. Quantifying the resulting gap and deter-
mining whether it can be actually filled remains an open
question. A first step may be to ask whether the complex-
ity could be defined using the asymmetric distance dU,V
between two sets U, V , instead of dU,V . Notice that, as
this distance plays a similar role here as the variance σ2

i of
an arm i in the standard single-bandit best arm identifica-
tion problem, it is already an open question to see whether
in the fixed budget setting the complexity of an arm i is
σ2
i /∆

2
i instead of the standard

(
σ2
i + σ2

i∗
)
/∆2

i , where i∗

is the best arm.
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A Proof of Lemma 1

Proof. Let t̄ be the first time when the condition in equation (2) is met, then at time t̄− 1 we have that

∆̂V,U (t̄− 1)−
∑

i∈U⊕V
βi(t̄− 1) ≤ 0,

which implies that

∆V,U − 2
∑

i∈U⊕V
βi(t̄− 1) ≤ 0,

and thus

∑
i∈U⊕V

√
log 4K′(t̄−1)2

δ

2Ti(t̄− 1)
≥ ∆V,U

2
.

Since the algorithm is selecting arms in U ⊕ V using a round-robin strategy, at any time Ti(t) = Tj(t)± 1 for any pair of
arms i, j. Thus, let j be the least pulled arm at round t̄ − 1 (i.e., j ∈ arg minTi(t̄ − 1)), then the previous inequality can
be written as

dU,V

√
log 4K′(t̄−1)2

δ

2Tj(t̄− 1)
≥ ∆V,U

2
,

which leads to the statement.

B The Complexity in Equation (4) is Well-defined

In order to prove that our complexity measure in equation (4) is well-defined, we have to show that the max operator
actually returns a value, that is, that there exists at least one element in the argument of the max operator. This is done in
the following proposition.

Proposition 1. Let Qi be the set of the decision sets in the argument of the max operator in equation (4), i.e.,

Qi = {U ∈ C : i ∈ U ⊕ CU} . (10)

Then Qi 6= ∅ for all i in K.

Proof. We distinguish the following two cases:

Case 1) i /∈ U∗

According to the assumption we made in Section 2, there exists a decision set V ∈ C such that i ∈ V . Note that i does not
necessarily belong to V ⊕ CV . We construct a sequence of decision sets X = {X1, . . . , Xp} such that X1 = V , for all
j ∈ {1, . . . , p − 1}, i ∈ Xj and Xj+1 = CXj , and i /∈ Xp.8 As a result, setting U = Xp−1 and CU = Xp, we have that
i ∈ U ⊕ CU , and thus, Qi 6= ∅.

Case 2) i ∈ U∗

Let V = arg max
U∈C : i/∈U

µU . Then CV exists, because i ∈ U∗. Moreover i ∈ CV , as otherwise we obtain the contradiction

µCV
> µV = max

U∈C : i/∈U
µU ≥ µCV

. Therefore, i ∈ CV \V , so that V ∈ Qi and Qi 6= ∅.

8Note that X is not only finite but also contains a decision set Xp, such that i /∈ Xp. The first claim comes from the definition of
complement that gives us µXj+1 > µXj , ∀j ∈ {1, . . . , p − 1}, and the fact that C is finite. For the second claim note that as i /∈ U∗,
X has at least two elements.
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C Useful Properties of the Complexity HU,V

In this appendix, we prove several useful properties of the complexity HU,V later, particularly in the proof that our com-
plexity measure is not higher than the measure used by Chen et al. [2014].

The first proposition shows that the distance dU,V between two decision sets U and V follows a triangle inequality.
Proposition 2. For any three distinct decision sets U, V,W ∈ C, we have, U ⊕ V ⊆ (U ⊕W ) ∪ (W ⊕ V ) and dU,V ≤
dU,W + dW,V . Moreover, if (U ⊕W ) ∩ (W ⊕ V ) = ∅ then U ⊕ V = (U ⊕W ) ∪ (W ⊕ V ) and dU,V = dU,W + dW,V .

Proof. To prove the statements for U ⊕ V , we first prove that

U\V =
(
(U\V )\W

)
∪
(
(U\V ) ∩W

)
=
(

(U\W )\
(
(U\W ) ∩ (V \W )

))
∪
(

(W\V )\
(
(W\V ) ∩ (W\U)

))
(11)

⊆ (U\W ) ∪ (W\V ). (12)

Similar to (12), we may prove
V \U ⊆ (V \W ) ∪ (W\U). (13)

Taking the union of (12) and (13) gives

(U\V ) ∪ (V \U) ⊆ (U\W ) ∪ (W\V ) ∪ (V \W ) ∪ (W\U),

and the first claim of the proposition
U ⊕ V ⊆ (U ⊕W ) ∪ (W ⊕ V ). (14)

follows by definition of ⊕. The second claim is straightforward from (14) and the definition of symmetric distance d, i.e.,

dU,V ≤ dU,W + dW,V .

To prove the second part of the proposition, we start from (11), that is,

U\V =
(

(U\W )\
( X︷ ︸︸ ︷

(U\W )∩
Y︷ ︸︸ ︷

(V \W )
)︸ ︷︷ ︸

A

)
∪
(

(W\V )\
( S︷ ︸︸ ︷

(W\V )∩
Z︷ ︸︸ ︷

(W\U)
)︸ ︷︷ ︸

B

)
,

from which by our assumption (U ⊕W ) ∩ (W ⊕ V ) = ∅ we obtain

A ∪B = (X ∪ S) ∩
U⊕W︷ ︸︸ ︷

(X ∪ Z)∩
W⊕V︷ ︸︸ ︷

(Y ∪ S)︸ ︷︷ ︸
∅

∩(Y ∪ Z) = ∅ =⇒ A = ∅ and B = ∅. (15)

From (15), (C) may be written as
U\V = (U\W ) ∪ (W\V ). (16)

Similarly, one can show that
V \U = (V \W ) ∪ (W\U). (17)

Taking union from both sides of (16) and (17), we obtain

U ⊕ V = (U ⊕W ) ∪ (W ⊕ V ),

and as a result dU,V = dU,W + dW,V , which completes the proof of the second part of the proposition.

The next proposition proves useful properties for the complexity of two decision sets.
Proposition 3. For any three decision sets U, V,W ∈ C with µU < µV < µW , we have

HU,W ≤ max (HU,V , HV,W ) . (18)

Furthermore, if (U ⊕ V ) ∩ (V ⊕W ) = ∅, then

HU,W ≥ min (HU,V , HV,W ) , (19)

and finally, the above two inequalities are strict if HU,V 6= HV,W .
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Proof. We write
∆W,U = µW − µU = µW − µV + µV − µU = ∆W,V + ∆V,U . (20)

By assumption, we have µW > µV and µV > µU , and thus, ∆W,V > 0 and ∆V,U > 0. As a result, we may write

dU,W
∆W,U

(a)

≤ dU,V + dV,W
∆W,V + ∆V,U

(b)

≤ max

(
dU,V
∆V,U

,
dV,W
∆W,V

)
, (21)

where (a) follows from Proposition 2 and (20), and (b) follows from the fact that for any positive a, b, c, d ≥ 0, it holds
that a+b

c+d ≤ max
(
a
c ,

b
d

)
.9 From (21), we get

d
2

U,W

∆2
W,U

≤ max

(
d

2

U,V

∆2
V,U

,
d

2

V,W

∆2
W,V

)
,

which gives us (18).

The second statement is similarly proved as

dU,W
∆W,U

(a)
=

dU,V + dV,W
∆W,V + ∆V,U

(b)

≥ min

(
dU,V
∆V,U

,
dV,W
∆W,V

)
, (22)

where (a) is true under the assumption that (V ⊕ U) ∩ (V ⊕W ) = ∅ from Proposition 2, and (b) follows from the fact
that for any positive a, b, c, d ≥ 0, it holds that min

(
a
c ,

b
d

)
≤ a+b

c+d .10 From (22) it follows that

d
2

U,W

∆2
W,U

≥ min

(
d

2

U,V

∆2
V,U

,
d

2

V,W

∆2
W,V

)
,

which gives us (19).

The proof of the very last statement, the strict inequalities, comes directly from the fact that when a
c 6=

b
d , the two

inequalities at step (b) of (21) and (22) become strict.

In the last proposition of this section, we show that the complexity of discriminating between a decision set U 6= U∗ and
its complement V = CU is less than the complexity of discriminating between V = CU and its complement W = CV =
CCU

, provided that the complement of U is not the best decision set U∗, i.e., V = CU 6= U∗.

Proposition 4. For any decision set U 6= U∗ with V = CU 6= U∗ and W = CV = CCU
, it holds that HU,V ≤ HV,W .

Proof. We prove the statement by contradiction. Let us assume that HU,V > HV,W . Since V 6= U∗ and by definition
of complement, we have µU < µV < µW . As a result, HU,W ≤ max (HU,V , HV,W ) from Proposition 3. Note that this
inequality is strict, whenever HU,V 6= HV,W , again according to Proposition 3, and since we assumed that HU,V > HV,W ,
we have HU,W < HU,V . This gives us

HU,V = HU,CU
= min
Z∈C:µZ>µU

HU,Z ≤ HU,W < HU,V ,

which leads to the contradiction that HU,V < HU,V .

D Equivalence of the Different Notions of Arm Complexity

In this section, we give two alternative notions of complexity of an arm that are equivalent to the original definition Hi of
equation 4. In the analysis of the algorithms (see Appendices G and H) we will use the definition of the complexity that
is the most handy. The equivalence proof requires the results of Appendix C, especially Proposition 4. We start with the
definition of the alternative complexity notions and two intermediate results that will be needed for the equivalence proof
given at the end of this section.

9Here is the proof: Assume without loss of generality that a
c
≤ b

d
. Then a+b

c+d
≤ bc/d+b

c+d
= b(c/d+1)

d(c/d+1)
= b

d
= max

(
a
c
, b
d

)
.

10The proof is analogous to the previous footnote: Assume without loss of generality that a
c
≤ b

d
. Then a+b

c+d
≥ a+da/c

c+d
= a(d/c+1)

c(d/c+1)
=

a
c

= min
(
a
c
, b
d

)
.
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Definition 7. Our two notions of complexity for an arm i ∈ K,H1 andH2, are defined as

H1
i =


max

U∈C:i∈U\CU

HU,CU
if i /∈ U∗,

max
U∈C:i∈CU\U

HU,CU
if i ∈ U∗.

H2
i =

 max
U∈C:i∈U

HU,CU
if i /∈ U∗,

max
U∈C:i/∈U

HU,CU
if i ∈ U∗.

The following proposition plays an important role in proving the equivalence H1
i = Hi,∀i ∈ K. It shows that if i ∈

(U ⊕ CU ), thenH1
i ≥ HU,CU

.

Proposition 5. For any decision set U ∈ C such that U 6= U∗, and any arm i ∈ (U ⊕ CU ), we haveH1
i ≥ HU,CU

.

Proof. We consider the following two cases for a fixed arm i ∈ (U ⊕ CU ):

Case 1) i ∈ U∗

If i ∈ CU\U , the result follows directly from the definition of H1
i . If i ∈ U\CU , similar to the proof of Proposition 1 in

Appendix B, we construct a sequence of decision sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p− 1}, i /∈ Xj

and Xj+1 = CXj
, and i ∈ Xp. Note that {X2, . . . , Xp} is a sequence of decision sets and their complements that do not

contain arm i until a set Xp is generated that contains i.11 From Proposition 4, we have that HXj ,Xj+1
≥ HXj−1,Xj

,∀j ∈
{2, . . . , p− 1}. Now starting from the definition ofH1

i , we may write

H1
i = max

Z:i∈CZ\Z
HZ,CZ

(a)
≥ HXp−1,Xp

≥ HX1,X2
= HU,CU

,

which proves the claim of the proposition. Note that (a) comes from the fact that i ∈ CXp−1\Xp−1 by definition of the
sequence.

Case 2) i /∈ U∗

If i ∈ U\CU , the result follows directly from the definition of H1
i . When i ∈ CU\U , we construct a sequence of decision

sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p−1}, i ∈ Xj and Xj+1 = CXj , and i /∈ Xp. This is a sequence
of decision sets and their complements that contain arm i until a set Xp is generated that does not contain i. As a result
i ∈ Xp−1\CXp−1

. From Proposition 4, we have that HXj ,Xj+1
≥ HXj−1,Xj

,∀j ∈ {2, . . . , p− 1}. Now starting from the
definition ofH1

i , we may write

H1
i = max

Z:i∈Z\CZ

HZ,CZ
≥ HXp−1,Xp ≥ HX1,X2 = HU,CU

, (23)

which proves the claim of the proposition.

Proposition 6. For any decision set U ∈ C such that U 6= U∗, and any arm i ∈ (U ⊕ U∗), we haveH1
i ≥ HU,CU

.

Proof. Let us construct a sequence of decision sets {X1, . . . , Xp} such that X1 = U , for all j ∈ {2, . . . , p− 1}, Xj+1 =
CXj

, and Xp = U∗. This sequence is well-defined and has at least two elements, since U 6= U∗ and U∗ is unique. If we
prove that for any j ∈ {2, . . . , p}, we have that for all i ∈ (X1 ⊕Xj), H1

i ≥ HX1,X2
, then j = p will gives us the proof

of the proposition. Now let us prove this statement. The proof is by induction on j.

Base Step: j = 2. In this case, the claim follows directly from Proposition 5.

Inductive Step: Here we assume that for j = j′, we have that H1
i ≥ HX1,X2

,∀i ∈ (X1 ⊕ Xj′), and we want to
show that H1

i ≥ HX1,X2
,∀i ∈ (X1 ⊕ Xj′+1). From Proposition 5 and the construction of the sequence, we have

H1
i ≥ HXj′ ,Xj′+1

,∀i ∈ (Xj′ , Xj′+1). By repeated application of Proposition 4, we can show that ∀i ∈ (X1 ⊕ Xj′) ∪
(Xj′ ⊕ Xj′+1), we have H1

i ≥ min(HX1,Xj′ , HXj′ ,Xj′+1
) ≥ HX1,X2

. Moreover, from Proposition 2, we know that
X1 ⊕Xj′+1 ⊆ (X1 ⊕Xj′) ∪ (Xj′ ⊕Xj′+1), and thus, we obtain ∀i ∈ (X1 ⊕Xj′+1) that H1

i ≥ HX1,X2
, which proves

the inductive step.

We are now ready to prove the main result of this section, the equivalence of the different notions of arm complexity.

Lemma 3. For any arm i ∈ K, we have Hi = H1
i = H2

i .
11Note that such a sequence is finite, because by the definition of complement of a decision set, we have µXj+1 > µXj , the number

of decision sets is finite, and i ∈ U∗.
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Proof. Step 1: We first prove that Hi = H1
i ,∀i ∈ K.

From the definition of H1
i , it is immediate to see that H1

i ≤ max
U∈C:i∈U⊕CU

HU,CU
= Hi, and from Proposition 5, we may

write Hi = max
U∈C:i∈U⊕CU

HU,CU
≤ H1

i . These together prove Step 1.

Step 2: We now want to proveH1
i = H2

i ,∀i ∈ K.

From the definitions of H1
i and H2

i , it is immediate to write H1
i ≤ H2

i . To prove the reverse, we consider the following
two cases:

Case 1) i /∈ U∗

In this case, we may write

H2
i = max

U∈C:i∈U
HU,CU

= max
U∈C:i∈(U⊕U∗)

HU,CU

(a)
≤ H1

i ,

where (a) is from Proposition 6.

Case 2) i ∈ U∗

In this case, we may write

H2
i = max

U∈C:i/∈U
HU,CU

= max
U∈C:i∈(U⊕U∗)

HU,CU

(a)
≤ H1

i ,

where (a) is from Proposition 6.

The two cases together prove Step 2.

E Proof of Lemma 2

Let U ∈ C be a decision set with complement CU . Let b be an exchange set that satisfies constraints (b)–(e) of Definition 2
for the decision set pair (U,CU ). Let V = U ± b be the decision set resulted from applying the transformation b to U . We
now define the exchange set d = (CU\V, V \CU ) as the exchange set that completes the transformation of U to CU after
applying b to U . It is easy to show that d =

(
(CU\U)\b+, (U\CU )\b−

)
. We now prove the following two propositions

that are used in the proof of Lemma 2.
Proposition 7. For any decision set U ∈ C, any exchange set b that satisfies constraints (b)–(e) of Definition 2 for the
decision set pair (U,CU ), and any exchange set d that completes the transformation of U to CU after applying b to U ,
i.e., d =

(
(CU\U)\b+, (U\CU )\b−

)
, we have

∆CU ,U = ∆b+,b− + ∆d+,d− > 0, (24)

dU,CU
= db+,b− + dd+,d− , (25)

so that HU,CU
=

(db+,b−+dd+,d− )2

(∆b+,b−+∆d+,d− )2 .

Proof. We begin with the proof of (24). By definition of CU , µCU
> µU , so that ∆b+,b− and ∆d+,d− cannot be both

negative. Now to prove the equality, first note that µd+ = µCU\U − µb+ and µd− = µU\CU
− µb− from the definition of d

and the fact that b+ ⊆ CU\U . Further we have b− ⊆ U\CU from constraints (b) and (c) of Definition 2. Therefore,

∆CU ,U = µCU
− µU = µCU\U − µU\CU

= (µCU\U − µb+)︸ ︷︷ ︸
µd+

+µb+ − (µU\CU
− µb−)︸ ︷︷ ︸

µd−

−µb− = ∆b+,b− + ∆d+,d− ,

which proves (24).

Now let us turn to showing (25):

db+,b− + dd+,d− = |b+ ⊕ b−|+ |d+ ⊕ d−|
(a)
= |b+|+ |b−|+ |d+|+ |d−|
(b)
= |b+|+ |b−|+ |CU\U\b+|+ |U\CU\b−|
(c)
= |b+|+ |b−|+ |CU\U | − |b+|+ |U\CU | − |b−| = |U ⊕ CU | = dU,CU

,
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where (a) comes from the fact that b+∩b− = d+∩d− = ∅, (b) is from the definition of d, and (c) follows from constraints
(b) and (c) of Definition 2.

We are now ready to prove Lemma 2.

Proof of Lemma 2. The proof is by contradiction. Suppose U 6⊥ CU . Since independence is symmetric, we also have
CU 6⊥ U . This means that there exists a non-empty exchange set b = (b+, b−), different than the independent exchange
set (CU\U,U\CU ) of (U,CU ), that satisfies constraints (b)–(e) of Definition 2. From the exchange set b, we define the
exchange set d that completes the transformation of U to CU after applying b to U as d =

(
(CU\U)\b+, (U\CU )\b−

)
.

Since b satisfies constraints (b) and (c), we may write

µCU∓b = µCU
− µb+ + µb− = µCU

−∆b+,b− ,

which gives
∆CU∓b,U = µCU∓b − µU = ∆CU ,U −∆b+,b− . (26)

Since b is not empty, CU ∓ b is closer to U than CU , and hence, dU,CU∓b < dU,CU
. Now consider the following three cases

(note that as shown in Proposition 7, ∆b+,b− and ∆d+,d− cannot be both negative):

Case 1) ∆b+,b− ≤ 0

In this case, by (26) we may write

HU,CU∓b =
d

2

U,CU∓b

∆2
U,CU∓b

=
d

2

U,CU∓b

(∆U,CU
−∆b+,b−)2

≤
d

2

U,CU∓b

∆2
U,CU

(a)
<

d
2

U,CU

∆2
U,CU

(b)
= min

V ∈C:µV >µU

HU,V , (27)

where (a) comes from the fact that dU,CU∓b < dU,CU
and (b) is from the definition of the complement CU . Moreover, in

this case, from (26), we have ∆CU ,U ≤ ∆CU∓b,U , which gives us µCU
≤ µCU∓b. Since µU < µCU

by definition, we have
that (CU ∓ b) ∈ {V ∈ C : µV > µU} and hence HU,CU∓b ≥ HU,CU

by definition of CU , which contradicts equation (27).

Case 2) ∆b+,b− > 0 and ∆d+,d− ≤ 0

Here we first show that
µU±b = µU\b−∪b+

(a)
= µU − µb− + µb+ = µU + ∆b+,b− ,

where (a) comes from constraints (b) and (c) of Definition 2, which gives us

∆U±b,U = µU±b − µU = ∆b+,b− . (28)

It is also straightforward to see that
dU,U±b = |U ⊕ U ± b| = db+,b− . (29)

Now similar to (27), we may write

HU,U±b =
d

2

U,U±b

∆2
U,U±b

(a)
=

d
2

b+,b−

∆2
b+,b−

(b)
<

(db+,b− + dd+,d−)2

(∆b+,b− + ∆d+,d−)2

(c)
= HU,CU

= min
V ∈C:µV >µU

HU,V , (30)

where (a) comes from (28) and (29), (b) is from the fact that dd+,d− > 0 and ∆d+,d− ≤ 0, and finally (c) is from
Proposition 7. Moreover, since ∆b+,b− > 0, from (28) we have µU < µU±b, which means that (U ± b) ∈ {V ∈ C : µV >
µU}, and thus, HU,U±b should be bigger than or equal to HU,CU

, which contradicts equation (30).

Case 3) ∆b+,b− > 0 and ∆d+,d− > 0

From Proposition 7, we have

HU,CU
=

(db+,b− + dd+,d−)2

(∆b+,b− + ∆d+,d−)2

(a)
≥ min

 d
2

b+,b−

∆2
b+,b−

,
d

2

d+,d−

∆2
d+,d−

 = min(Hb+,b− , Hd+,d−), (31)

where (a) comes from footnote 10 Appendix C. The inequality in (31) is strict whenever Hb+,b− 6= Hd+,d− . We now
consider the following three cases that all end up contradicting that CU = arg min

V ∈C:µV >µu

HU,V .
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Case 3.1) Hb+,b− < Hd+,d−

From equation 31, we have HU,CU
> Hb+,b−

(a)
= HU±b,U , where (a) is from (28) and (29). At the same time we have

HU,CU
= arg min

V :µV >µU

HU,V

(b)
≤ HU±b,U , which leads to a contradiction. Note that (b) holds because ∆b+,b− > 0, and thus,

µU < µU±b from (28).

Case 3.2) Hb+,b− > Hd+,d−

From equation 31, we have HU,CU
> Hd+,d− . Since d− ⊆ U and d+ ∩ U = ∅ from the definition of d, we may write

∆U±d,U = µU±d − µU = µU − µd− + µd+ − µU = ∆d+,d− ,

and
dU±d,U = dd+,d− ,

which gives us HU,CU
> Hd+,d− = HU±d,U . At the same time HU,CU

= arg min
V :µV >µU

HU,V ≤ HU±d,U , which leads to a

contradiction.

Case 3.3) Hb+,b− = Hd+,d−

From equation 31, we have HU,CU
≥ Hb+,b− . If the inequality is strict, then we obtain the contradiction as in Case 3.1.

Thus let us assume that HU,CU
= Hb+,b− . From (28) and (29), we have HU,CU

= Hb+,b− = HU,U±b, and from (28)
and the fact that ∆b+,b− > 0, we have µU±b > µU , and from (25) and (29), we have dU±b,U < dU,CU

. This creates a
contradiction because in case HU,CU

= HU,U±b, according to Definition 4, the tie should be broken in favor of the set with
the smaller symmetric distance, and thus, CU should be U ± b.

F Proof of Theorem 3

We begin this section with the definition of the ∗-complement of a decision set. For this, let Q(U) be the set of decision
sets V such that U ⊥ V and the exchange set b = (V \U,U\V ) satisfies constraints (b)–(e) of Definition 2 for the pair of
decision sets (U,U∗).12

Definition 8. The ∗-complement of a decision set U ∈ C with U 6= U∗, denoted by C∗U , is defined as

C∗U = arg min
V ∈Q(U)

HU,V .

We have to show that the argument of the argmin in Definition 8 is not empty, i.e., Q(U) 6= ∅. For this purpose, we
build a sequence of decision sets {V1, . . . , Vp} such that V1, . . . , Vp−1 are all not independent of U and U ⊥ Vp, that is,
we stop the sequence as soon as we reach a decision set Vp independent from U . To construct such a sequence, we start
with V1 = U∗ and for k ∈ {1, . . . , p − 1}, we generate Vk+1 = U ± bk+1, where b1 = (b1,+, b1,−) = (U∗\U,U\U∗)
and bk+1 = (bk+1,+, bk+1,−) ⊂ bk = (bk,+, bk,−) is an exchange set that satisfies constraints (b)-(e) of Definition 2
for the pair of decision sets (U, Vk). Note that bk+1 exists by definition as Vk is not independent of U and this is why
we can build iteratively the sequence {V1, . . . , Vp} until we find Vp with U ⊥ Vp. Since Vk+1 = U ± bk+1, we have
|Vk+1 ⊕ U | = |(bk+ ⊕ bk−)| < |Vk ⊕ U |, which means that the size of the exchange sets bk is decreasing, and thus, the
sequence eventually has to end. From the construction of the bk’s, it is clear that they are all subsets of b1 = (U∗\U,U\U∗),
and thus, (Vp\U,U\Vp) satisfies constraints (b)–(e) of Definition 2 for the pair of decision sets (U,U∗). This proves that
Q 6= ∅ and the argument of the argmin in Definition 8 is not empty. Also, note that µC∗U

> µU as intuitively C∗U is a
decision set made by replacing parts of U by parts of U∗.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. We only consider the case where i /∈ U∗ in detail, the case i ∈ U∗ is symmetric. Let H∗i and H∗2i
be defined as Hi and H2

i , respectively, but using the ∗-complement C∗U of Definition 8 instead of CU . Then similar to
Lemma 3 one can show the equivalence of the ∗-complement complexities, i.e.,H∗2i = H∗i.

12Note that since U ⊥ V , the exchange set b = (V \U,U\V ) is the only non-empty exchange set that satisfies constraints (b)–(e) of
Definition 2 for the pair of decision sets (U,CU ).
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Therefore, we have the following series of inequalities

Hi
(a)
= H2

i

(b)
= max

U∈C:i∈U
HU,CU

(c)

≤ max
U∈C:i∈U

HU,C∗U

(d)
= max

U∈C:i∈U\C∗U
HU,C∗U

(e)
= HUi,Vi

,

where (a) holds by Lemma 3, (b) uses the definition of H2
i , (c) uses HU,CU

= arg min
V :µV >µU

HU,V ≤ HU,C∗U
as µC∗U

> µU ,

(d) uses the equivalence of complexity based on the ∗-complement, (e) introduces Ui to denote the decision set attaining
the maximum in the above equation and Vi = C∗Ui

. By the definition of the ∗-complement, b′ = (Vi\Ui, Ui\Vi) satisfies
constraints (b)-(e) of Definition 2 for the pair of decision sets (U,U∗). As a result, U∗ ∓ b′ ∈ C and i ∈ U∗ ∓ b′ (see
constraint (e) in Definition 2 and i ∈ b′−). By the definition of b′, we have µUi

= µVi
+µb′+ −µb′− , and thus, we may write

∆Vi,Ui
= µb′+ − µb′− = µ∗ − (µ∗ − µb′+ + µb′−) = ∆U∗,U∗∓b′ ≥ min

U :i∈U
∆U∗,U ,

where the last inequality follows from the fact that i ∈ U∗∓b′. We note that for any independent pair of sets such as Vi, Ui,
any well defined exchange class B should include the (unique) exchange set b′ = (Vi\Ui, Ui\Vi) that allows to move from
one set to another. As a result for any exchange class B, width(B) = max(b+,b−)∈B |b+|+|b−| ≥ |b′+|+|b′−| = |Ui⊕Vi| =
dUi,Vi . Therefore, width(C) = minB∈Exchange(C) width(B) ≥ dUi,Vi , which together with ∆Vi,Ui ≥ min

U :i∈U
∆U∗,U leads to

the desired outcome

Hi ≤
d

2

Ui,Vi

∆2
Vi,Ui

≤ width(C)2

min
U :i∈U

∆2
U∗,U

= H�i .

G Fixed Budget Results: Proof of Theorem 1

In this section, we provide a proof of Theorem 1. In the following, we will mainly work with the complexity H2
i (and the

corresponding simplicity G) as defined in equation (7). Recall that this formulation is equivalent to Hi. In the following,
we use [N ] to denote the set {1, 2, . . . , N}. We also introduce two numerical constants 0 < c1 < 1 and 0 < c2 < 1/2
such that c2 ≥ c1

1−2c2
≥ c2 , whose exact values will be chosen later. Finally, we consider a permutation π of the arms that

orders the arms with respect to the values Gi, that is, Gπ(1) ≥ Gπ(2) ≥ . . . Gπ(K). To simplify notation, in the following,
we will simply write G(i) instead of Gπ(i).

We now introduce a high-probability event which serves as a basis for the proof of the correctness of the algorithm. This
event states that at the end of each phase k the estimated values of the arms will differ from their real values by at most
G(k).

Lemma 4. Let G(1) ≥ G(2) ≥ . . . ≥ G(K) be an ordering of arms by decreasing complexity 13. The event ξ defined as

ξ =
{
∀i ∈ K, k ∈ [K], |µ̂i(k)− µi| ≤ c1G(k)

}
(32)

holds with probability

P(ξ) ≥ 1− 2K2 exp

(
−2c21(n−K)

log(K)H

)
.

Proof. By Hoeffding’s inequality and a union bound, the probability of the complementary event ξ of ξ can be bounded as

13Notice that the i-th simplest arm is the (K + 1− i)-th most complex arm.
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Parameters: number of rounds n, set of arms K, decision set C, and cumulative pulls scheme n0, n1, . . . , nK .
Let K1 = K, k = 1, and Jn = ∅
while |Kk| ≥ 1 do

Pull each arm i ∈ Kk for nk − nk−1 rounds.
Compute Û∗(k) = arg maxU∈C µ̂U (k).
Find jk = maxi∈Kk Ĝi(k).
if jk ∈ Û∗(k) then

The arm jk is accepted and Jn = Jn ∪ {jk}.
end if
Deactivate arms jk, i.e., set Kk+1 = Kk\jk.
k ←− k + 1

end while
Return Jn

Figure 5: The modified fixed budget algorithm.

follows, provided we use the proposed pulls scheme nk =
⌈

n−K
log(K)(K+1−k)

⌉
, k ∈ K:

P(ξ) =

K∑
i=1

K∑
k=1

P
(
|µ̂i(k)− µi| > c1G(k)

)
≤

K∑
i=1

K∑
k=1

2 exp
(
−2nkc

2
1G

2
(k)

)
≤

K∑
i=1

K∑
k=1

2 exp

(
− 2c21(n−K)

log(K)(K + 1− k)H(K+1−k))

)

≤ 2K2 exp

(
−2c21(n−K)

log(K)H

)
.

For the proof of Theorem 1 we analyze a slightly modified algorithm described in Figure 5, where for each arm that is
deactivated it is immediately (and not only after all arms have been deactivated) decided, whether it shall be contained in
the set returned by the algorithm at the end. On the event ξ, the correctness of both algorithms is the same, which can be
deduced from statement (ii) of the induction hypothesis in Definition 9 below.

We will now prove Theorem 1 by showing that on event ξ, the optimal set U∗ is identified at the end of the phases. That
is, the algorithm neither accepts an arm not in U∗, nor is any arm in U∗ rejected.

G.1 The Induction Hypothesis

The proof proceeds by induction over the phases of the algorithm. We first introduce the induction hypothesis.

Definition 9. The induction hypothesis is defined by the two following properties. At the beginning of phase k we have:

(i) All accepted arms belong to the optimal set, i.e., Jn(k − 1) ⊆ U∗, and all rejected arms (i.e., arms which have been
deactivated but never accepted) do not belong to the optimal set, i.e., (Kk\Jn(k − 1)) ∩ U∗ = ∅.

(ii) If arm i /∈ Kk and it has been deactivated during phase l ∈ [k − 1], then Gi ≥ (1− 2c2)G(l).

Statement (i) is the classical desired property, while statement (ii) is specific to our approach and implies that by having
been pulled nl times the arm i has been sampled sufficiently often w.r.t. its complexity. Indeed, recall that a set is not
necessarily compared to the optimal set U∗ whose arms most probably belongs to Kk. Therefore we need to show that an
arm i contained in a set V that is likely to be used as a complement set by some “active” set U has been sampled often
enough (i.e., proportionally to its complexity Hi), especially if it has been removed in a previous phase l < k.

We continue with a few properties implied by the induction hypothesis together with the high-probability event ξ of
Lemma 4. We start with concentration inequalities on event ξ for µ̂, ∆̂, and Ĝ.
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Proposition 8. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then for any arm i ∈ K,

|µ̂i(k)− µi| ≤ c1 max

{
Gi

1− 2c2
, G(k)

}
. (33)

Furthermore for any pair (U, V ) ∈ C2 such that V = CU we have∣∣∣∆̂V,U (k)−∆V,U

∣∣∣ ≤ c2dU,V max{GV,U , G(k)}

and
∣∣∣ĜV,U (k)−GV,U

∣∣∣ ≤ c2 max
{
GV,U , G(k)

}
.

where ∆̂V,U (k) and ĜV,U (k) are the gaps and the simplicity computed at the end of the phase k. Finally, for the special
case of pairs (U∗, U), ∣∣∣∆̂U∗,U (k)−∆U∗,U

∣∣∣ ≤ c2dU,U∗ max{GV,U , G(k)}

and
∣∣∣ĜU∗,U (k)−GU∗,U

∣∣∣ ≤ c2 max{GV,U , G(k)},

with V = CU .

Proof. First note that if i ∈ Kk, then on event ξ we have |µ̂i(k)− µi| ≤ c1G(k). Thus, let us assume that i /∈ Kk. Let l be
the phase at which arm i has been deactivated, with l ∈ {1, . . . , k − 1}. We have

|µ̂i(k)− µi|
(a)

≤ c1G(l)

(b)

≤ c1
1− 2c2

Gi,

where (a) is implied by the event ξ and the fact that µ̂i(k) = µ̂i(l), (b) uses property (ii) of the induction hypothesis.
Summarizing, independent of whether i ∈ Kk or not, we have for any i

|µ̂i(k)− µi| ≤ c1 max

{
Gi

1− 2c2
, G(k)

}
,

which shows the first claim. Let us now focus on a pair of sets U, V such that i ∈ U ⊕ V and V = CU or V = U∗. Then
by the previous inequality,

|µ̂i(k)− µi| ≤ c1 max

{
Gi

1− 2c2
, G(k)

}
(a)

≤ max
{
c2Gi, c1G(k)

}
(b)

≤ c2 max
{
GV,U , G(k)

}
,

where (a) follows from the choice of the constants such that c2 ≥ c1
1−2c2

. For (b) we use Proposition 5 for V = CU , the
definition of GV,U , the fact that ∆V,U > 0 as well as c1 ≤ c2. As a result we obtain∣∣∣∆̂V,U (k)−∆V,U

∣∣∣ ≤ ∑
i∈U⊕V

|µ̂i(k)− µi|

≤ c2dV,U max{GV,U , G(k)},

which proves the first part of the second statement. The second part then simply follows from

ĜV,U (k) =
∆̂V,U (k)

dU,V

(c)

≥
∆V,U − c2dV,U max{GV,U , G(k)}

dV,U

= GV,U − c2 max{GV,U , G(k)},

where (c) follows from the first statement. The missing inequality to conclude the second part of the second statement can
be obtained analogously. Finally, the last statement follows along the same lines, only replacing Proposition 5 in step (b)
above by Proposition 6.
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The following Proposition shows that at the beginning of each phase k there is an arm ak which has a larger simplicity
than the k-th largest simplicity. In the remaining proof this arm will serve as a reference arm, as this is the arm that should
be deactivated at the end of phase k.

Proposition 9. Let

ak = arg min
i∈Kk

Hi = arg max
i∈Kk

Gi

be the simplest arm among those left at the beginning of phase k. Then Gak ≥ G(k).

Proof. At the beginning of phase k, only K − |Kk| = k − 1 arms have been deactivated, i.e., |Kk| = K + 1 − k. Hence
the simplest arm left in Kk (i.e., ak) cannot be more difficult than the arm that would be left if all the k − 1 simpler arms
were deactivated (i.e., G(k)), which gives the claimed G(k) ≤ Gak .

The following Proposition shows that at the end of each phase k, the reference arm ak belongs to Û∗ if and only if it
actually belongs to U∗. This allows us to show that the simplicity of ak can be well estimated at the end of phase k.

Proposition 10. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then ak ∈ U∗ if and only if ak ∈ Û∗(k), where Û∗(k) is the estimated optimal set at the end of phase k.

Proof. We prove in detail that ak /∈ U∗ implies ak /∈ Û∗(k). The reverse can be shown along a similar line of arguments.
The proof is by contradiction. Thus, let us assume that ak /∈ U∗ and ak ∈ Û∗(k). Note that this implies that Û∗(k) 6= U∗.
LetW = CÛ∗(k) be the complement of the estimated optimal set (note thatW exists, since Û∗(k) is not optimal). We have

∆̂W,Û∗(k)(k)
(a)

≥ ∆W,Û∗(k) − c2dW,Û∗(k) max
{
GW,Û∗(k), G(k)

}
= dW,Û∗(k)

(
GW,Û∗(k) − c2 max

{
GW,Û∗(k), G(k)

})
,

where (a) uses Proposition 8. We consider two cases.

Case 1) GW,Û∗(k) ≥ G(k)

In this case,

∆̂W,Û∗(k)(k) ≥ dW,Û∗(k)

(
GW,Û∗(k) − c2GW,Û∗(k)

)
= dW,Û∗(k)GW,Û∗(k)(1− c2) > 0,

where the last inequality follows from the fact that 0 < c2 < 1 and GW,Û∗(k) > 0 by definition of W . It follows that

µ̂Û∗(k)(k) < µ̂W (k), which contradicts that Û∗(k) is the empirical best set.

Case 2) GW,Û∗(k) < G(k))

We write

∆̂W,Û∗(k)(k) ≥ dW,Û∗(k)

(
GW,Û∗(k) − c2G(k)

)
(b)

≥ dW,Û∗(k)

(
Gak − c2G(k)

)
(c)

≥ dW,Û∗(k)G(k)(1− c2) > 0,

where (b) holds since ak ∈ Û∗(k), so that Gak = min
U :ak∈U

max
V :µV >µU

GV,U ≤ max
V :µV >µÛ∗(k)

GV,Û∗(k) = GW,Û∗(k). Concern-

ing (c), this holds by Proposition 9, asGak ≥ G(k). Similar as before we obtain the contradiction µ̂Û∗(k)(k) < µ̂W (k).

The following Proposition gives a lower bound on the estimated simplicity of the reference arm ak at the end of phase k
depending on G(k). This will be used later to show that the algorithm does not remove other arms than ak in each phase k.
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Proposition 11. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Then Ĝak(k) ≥ (1− c2)G(k).

Proof. We give a detailed proof for the case where ak /∈ Û∗(k). The other case follows from symmetric arguments. Let
Uk be a set that defines the estimated simplicity of ak, that is

Uk ∈ arg min
U :ak∈U

ĜĈU (k),U (k),

and let Wk = CUk
. Note that Wk is well-defined because Uk 6= U∗: Indeed, from Proposition 10, since ak /∈ Û∗(k), also

ak /∈ U∗, so that because ak ∈ Uk, we have Uk 6= U∗.

Then we have

Ĝak(k) = ĜĈU (k),Uk
(k)

= max
V :µ̂V (k)>µ̂Uk

(k)
ĜV,Uk

(k)

≥ ĜWk,Uk
(k)

(a)

≥ GWk,Uk
− c2 max

{
GWk,Uk

, G(k)

}
,

where (a) follows from Proposition 8. We have, as ak /∈ U∗, that

Gak = min
U :ak∈U

GCU ,U ≤ GWk,Uk
.

Furthermore, from Proposition 9 we have that G(k) ≤ Gak and thus G(k) ≤ GWk,Uk
. Thus the previous expression

simplifies to

Ĝak(k) ≥ GWk,Uk
− c2GWk,Uk

≥ (1− c2)G(k).

The following lemma is rather technical. It shows that if the estimated simplicity of a sub-optimal decision Uk is defined
with respect to Vk, then this estimated simplicity will be larger than the true simplicity of the decision set Vk. The proof
shows that if the estimated simplicity of Uk were smaller than the true simplicity of Vk, then it would surely be also smaller
than the estimated simplicity of Vk defined with respect to Wk, leading to a contradiction. For notational convenience,
in the following we will drop the dependency of the estimated quantities on the phase k (e.g., write ĜVk,Uk

instead of
ĜVk,Uk

(k)).

Proposition 12. Assume that the induction hypothesis (Definition 9) at the beginning of phase k as well as event ξ hold.
Further assume that Uk, Vk,Wk ∈ C such that Uk 6= Û∗(k), Vk = ĈUk

(k) 6= U∗, Wk = CVk
, and GWk,Vk

≥ G(k). Then
ĜVk,Uk

(k) ≥ (1− c2)GWk,Vk
.

Proof. We start by showing that µ̂Uk
< µ̂Vk

< µ̂Wk
. First, µ̂Uk

< µ̂Vk
comes from the definition of Vk as the (estimated)

complement of Uk. Furthermore,

∆̂Wk,Vk

(a)

≥ ∆Wk,Vk
− c2dWk,Vk

max{GWk,Vk
, G(k)}

(b)

≥ ∆Wk,Vk
− c2dWk,Vk

GWk,Vk

(c)
= ∆Wk,Vk

− c2∆Wk,Vk
> 0,

where (a) follows from Proposition 8 and the fact that ∆Wk,Vk
> 0 (sinceWk is the (exact) complement of Vk), (b) follows

from the assumption that GWk,Vk
≥ G(k), and (c) is obtained from the definition of simplicity GWk,Vk

and the fact that
0 < c2 < 1. This completes the proof of the claim that µ̂Uk

< µ̂Vk
< µ̂Wk

.
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Next, we show that ĜWk,Vk
≤ ĜVk,Uk

. First note that by Proposition 314 we obtain from µ̂Uk
< µ̂Vk

< µ̂Wk
that

ĜWk,Uk
≥ min

{
ĜWk,Vk

, ĜVk,Uk

}
, where the inequality is strict whenever ĜWk,Vk

6= ĜVk,Uk
. Now if we assume that

ĜWk,Vk
> ĜVk,Uk

, the previous inequality becomes strict as ĜWk,Uk
> ĜVk,Uk

. Then we would obtain the contradiction

ĜVk,Uk
= max
V :µ̂V >µ̂U

ĜV,Uk
≥ ĜWk,Uk

> ĜVk,Uk
,

thus implying the claimed ĜWk,Vk
≤ ĜVk,Uk

.

We now can conclude with

ĜVk,Uk
≥ ĜWk,Vk

(a)

≥ GWk,Vk
− c2 max{GWk,Vk

, G(k)}
(b)

≥ GWk,Vk
− c2GWk,Vk

,

where (a) follows from Proposition 8 and the fact that ∆Wk,Vk
> 0 and (b) holds due to the assumption that GWk,Vk

≥
G(k).

G.2 The Induction Step

We now move on to prove the induction step. We do this in two separate lemmas, one for each property in the induction
hypothesis.

Lemma 5. Assume that the induction hypothesis at the beginning of phase k as well as event ξ hold. Then property (i) of
Definition 9 holds at phase k + 1 as well.

Proof. Property (i) states that no error is made until the beginning of phase k. To prove that this is still true at the beginning
of phase k+1 we need to prove that during phase k no error is made. An error occurs when either the algorithm deactivates
and rejects an arm jk ∈ U∗, or the algorithm deactivates and accepts an arm jk /∈ U∗. We show by contradiction that both
cases cannot happen.

We give a detailed proof for the case where jk ∈ U∗ is rejected. The argument for the second source of error, when j /∈ U∗
is accepted, is similar.

The strategy of the proof will be to compare the estimated simplicity of the rejected arm to the simplicity of the arm ak,
that is, the arm with the highest simplicity at the end of phase k, and which should be the targeted arm to be deactivated.
Using Proposition 11, we know that the simplicity of ak is of order of G(k). Therefore it remains to prove that Gjk is
smaller than G(k).

As jk is rejected, jk /∈ Û∗(k) and hence, U∗ 6= Û∗. Furthermore, ak 6= jk, as otherwise Proposition 10 would imply that
jk ∈ Û∗, a contradiction to the assumption that arm jk is rejected.
As jk has been deactivated during phase k, we have Ĝjk ≥ Ĝak , since the algorithm deactivates the arm with the largest
simplicity, that is, jk = arg maxi∈Kk

Ĝi. Let Vk = ĈU∗ be the estimated complement of the optimal set (which exists, as
U∗ 6= Û∗) and Wk = CVk

be the (exact) complement of Vk. Then

Ĝjk = min
U :j∈U

max
V :µ̂V >µ̂U

ĜV,U

(a)

≤ ĜVk,U∗

(b)

≤ GVk,U∗ + c2 max
{
GWk,Vk

, G(k)

}
(c)

≤ c2 max
{
GWk,Vk

, G(k)

}
,

where (a) is because jk ∈ U∗ and Vk is the (estimated) complement of U∗, (b) holds by the last statement of Proposition 8,
and (c) follows from µVk

< µ∗, whence ∆Vk,U∗ < 0 and GVk,U∗ < 0.

14More precisely, we rely on an equivalent version based on estimated values and estimated simplicity.
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We now show by contradiction that GWk,Vk
≤ G(k). Thus, assume that GWk,Vk

> G(k). Then by Proposition 12,
ĜVk,U∗ ≥ (1− c2)GWk,Vk

. Together with the previous inequality this gives

(1− c2)GWk,Vk
≤ ĜVk,U∗ ≤ c2 max{GWk,Vk

, G(k)} ≤ c2GWk,Vk
,

which is a contradiction, since c2 < 1/2, and we conclude that GWk,Vk
≤ G(k).

Now using inequality (c) from before, we get Ĝjk ≤ c2G(k). Using Proposition 11, for ak we have that Ĝak ≥ (1−c2)G(k).
Since c2 < 1/2, it holds that Ĝjk ≤ c2G(k) < (1 − c2)G(k) ≤ Ĝak . As a result Ĝjk < Ĝak , which contradicts the fact
that jk would be the deactivated arm during phase k, as by definition of jk = arg maxi∈Kk

Ĝi. Thus we can conclude that
the algorithm does not reject any arm from U∗.

Lemma 6. Assume that the induction hypothesis at the beginning of phase k as well as event ξ hold. Then property (ii) of
Definition 9 holds at phase k + 1 as well.

Proof. Let jk be the arm which is deactivated at the end of phase k, i.e., jk = arg maxi∈Kk
Ĝi(k). Again, we only

consider the case where jk /∈ U∗, as the proof for the case jk ∈ U∗ is symmetrical. We have to show that jk satisfies
Gjk ≥ (1− 2c2)G(k), which will be done in five steps.

Step 1. We first notice that Lemma 5 implies that no error is made during phase k, since property (i) still holds at the
beginning of phase k + 1. As a result, we have that jk ∈ U∗ if and only if jk ∈ Û∗ which means in our current case that
jk /∈ Û∗. Let Uk and Vk be the sets which define the (exact) simplicity of jk, that is,

Uk = arg min
U :jk∈U

GCU ,U

and Vk = CUk
, so that Gjk = GVk,Uk

. Further, let Wk = ĈUk
, noting that Wk is well defined since Uk 6= Û∗. Indeed,

jk /∈ U∗ and jk ∈ Uk, whence Uk 6= U∗.

We claim that GWk,Uk
≤ Gjk . Indeed, if µWk

≤ µUk
then we trivially have GWk,Uk

≤ 0 ≤ Gjk . Furthermore, if
µWk

> µUk
we have by definition of Uk and Vk,

GWk,Uk
≤ max
W :µW>µUk

GW,Uk
= GVk,Uk

= Gjk ,

which proves our claim GWk,Uk
≤ Gjk .

Step 2. Next, we note that

Ĝjk = min
U :jk∈U

ĜĈU ,U
≤ max
µ̂V >µ̂Uk

ĜV,Uk
= ĜWk,Uk

. (34)

Step 3. Here we show that Gi ≤ max{Gjk , GZk,Wk
} for i ∈Wk ⊕ Uk. We distinguish the following cases:

Case 1) i ∈Wk\Uk
Case 1.1) i ∈ U∗: In this case i ∈ Uk ⊕ U∗ and thus we can apply Proposition 6 to Uk and CUk

= Vk and obtain
Gi ≤ GVk,Uk

= Gjk .
Case 1.2) i /∈ U∗: Let Zk = CWk

, noting that since i is in Wk but not in U∗, we have Wk 6= U∗. Then

Gi = min
U :i∈U

GCU ,U ≤ GCWk
,Wk

= GZk,Wk
,

where the first equality follows from the fact that i /∈ U∗, while the inequality is due to the fact that i ∈Wk.

Case 2) i ∈ Uk\Wk

Case 2.1) i ∈ U∗: Let Zk = CWk
, noting that since i is in U∗ but not in Wk, it holds that Wk 6= U∗. Then

Gi = min
U :i/∈U

GCU ,U ≤ GCWk
,Wk

= GZk,Wk
,
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where the first equality follows from the fact that i ∈ U∗, while the inequality is due to the fact that i /∈Wk.
Case 2.2) i /∈ U∗: In this case we have by definition that

Gi = min
U :i∈U

GCU ,U ≤ GCU ,Uk
= GVk,Uk

= Gjk ,

which completes the proof that Gi ≤ max{Gjk , GZk,Wk
} for i ∈Wk ⊕ Uk.

Step 4. Next, we are going to show that Ĝjk ≤ Gjk + c2 max{Gjk , G(k)}, a version of Proposition 8 for arm jk. We
distinguish two cases:

Case 1) Wk = U∗

In this case, we have

Ĝjk
(a)

≤ ĜWk,Uk

(b)

≤ GWk,Uk
+ c2 max{GVk,Uk

, G(k)}
(c)

≤ Gjk + c2 max
{
Gjk , G(k)

}
,

where (a) is obtained from equation (34), (b) is a result of Proposition 8, and (c) follows from GWk,Uk
≤ Gjk of Step 1.

Case 2) Wk 6= U∗

Let Zk = CWk
. We prove by contradiction thatGZk,Wk

≤ max
{
GVk,Uk

/(1− 2c2), G(k)

}
. Thus, assume thatGZk,Wk

>

max
{
GVk,Uk

/(1− 2c2), G(k)

}
. Then

ĜWk,Uk

(a)

≤ GWk,Uk
+ c1

1

dUk⊕Wk

∑
i∈Uk⊕Wk

max

{
Gi

1− 2c2
, G(k)

}
(b)

≤ GWk,Uk
+ c1 max

{
Gjk

1− 2c2
,
GZk,Wk

1− 2c2
, G(k)

}
(c)

≤ GVk,Uk
+ c1

GZk,Wk

1− 2c2
(d)

≤ GVk,Uk
+ c2GZk,Wk

, (35)

where (a) is using for all i ∈ Uk ⊕ Wk the Equation 33 in Proposition 8, (b) follows from Step 3, and (c) is obtained
by GWk,Uk

≤ Gjk = GVk,Uk
(Step 1) and the assumption on GZk,Wk

, finally (d) is obtained by c1
1−2c2

≤ c2. By

Proposition 12, we have ĜWk,Uk
≥ (1− c2)GZk,Wk

, which together with (35) gives

(1− c2)GZk,Wk
≤ ĜWk,Uk

≤ GVk,Uk
+ c2GZk,Wk

≤ c2GZk,Wk
,

which is a contradiction due to 0 < c2 < 1/2. This finishes the proof of GZk,Wk
≤ max{GVk,Uk

/(1− 2c2), G(k)}.

By (35) and the results of Steps 2 and 1, we finally get

Ĝjk ≤ ĜWk,Uk
≤ GWk,Uk

+ c1 max
{ Gjk

1− 2c2
,
GZk,Wk

1− 2c2
, G(k)

}
≤ Gjk + c2 max

{
Gjk , G(k)

}
.

Step 5. From Proposition 11 and the fact that jk is the deactivated arm (i.e., jk = arg maxi∈Kk
Ĝi) we have

(1− c2)G(k) ≤ Ĝak ≤ Ĝjk ≤ Gjk + c2 max
{
Gjk , G(k)

}
.

We conclude by considering the two possible cases for the max term.
Case 1) Gjk > G(k)

We have (1− c2)G(k) ≤ Gjk + c2Gjk . Since 1−c2
1+c2

≥ 1− 2c2, we get

Gjk ≥
1− c2
1 + c2

G(k) ≥ (1− 2c2)G(k).

Case 2) Gjk ≤ G(k)

Here we have (1− c2)G(k) ≤ Gjk + c2G(k), whence

(1− 2c2)G(k) ≤ Gjk ,

which concludes the proof.
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G.3 Proof of Theorem 1

With the results of the previous sections, the proof of Theorem 1 is immediate. First, assume that event ξ holds. Note
that properties (i) and (ii) of the induction assumption hold for phase k = 1. Lemmas 5 and 6 prove the induction step,
showing that properties (i) and (ii) hold for all phases k. It remains to consider the error probability for event ξ. This is
handled by Lemma 4, where we finally choose c1 = 1/8, c2 = 1/4 so that 0 < c1 < 1, 0 < c2 < 1/2 and c2 ≥ c1

1−2c2
.

H Fixed Confidence Results: Proof of Theorem 2

We first introduce a high-probability event corresponding to the confidence bounds used by our algorithm.

Lemma 7. The event ξ defined as

ξ = {∀i ∈ K,∀t > 0, |µ̂i(t)− µi| ≤ βi(t− 1)} (36)

holds with probability 1− δ, where

µ̂i(t) =
1

Ti(t)

Ti(t)∑
t=1

Xi,t and βi(t− 1) =

√
log 4Kt2

δ

2Ti(t)
.

Proof. By Chernoff-Hoeffding’s inequality, the definition of the confidence intervals βi(t− 1), and a union bound over all
Ti(t) ∈ {0, . . . , t}, t = 1, . . . ,∞.

Recall that
U ′t =

{
U : ∀V ∈ C, ∆̂+

U,V (t) > −dU,V max
W∈C

Ĝ+
W,U (t)/2

}
and

Ĝ+(t) = max
U∈U ′t,V ∈C

Ĝ+
V,U (t) and (Ut, Vt) = arg max

U∈U ′t,V ∈C,U 6=V
Ĝ+
V,U (t).

The following lemma gives a lower bound on Ĝ+(t).

Lemma 8. On the event ξ, for all time steps t, Ĝ+(t) ≥ 1
2GI(t).

Proof. First note that on event ξ, for any t and any pair of decisions U, V ∈ C, we have ∆̂+
U,V (t) ≥ ∆U,V and consequently

Ĝ+
U,V ≥ GU,V . The proof proceeds by distinguishing two main cases. We show the details for the case when I(t) /∈ U∗.

The case I(t) ∈ U∗ can be dealt with using similar arguments.

Case 1) I(t) ∈ Ut
We introduce Wt = CUt , which exists since Ut 6= U∗, as I(t) /∈ U∗ and I(t) ∈ Ut. We have

Ĝ+(t) = max
U∈U ′t,V ∈C

Ĝ+
V,U (t) ≥ Ĝ+

Wt,Ut
(t) =

∆̂+
Wt,Ut

(t)

dUt,Wt

≥ ∆Wt,Ut

dUt,Wt

(a)

≥ min
U :I(t)∈U

∆CU ,U

dU,CU

(b)
= GI(t),

where (a) follows from the fact that Wt = CUt and I(t) ∈ Ut, and (b) is due to I(t) /∈ U∗ so that its complexity is defined
as the minimum over decisions U to which it belongs.

Case 2) I(t) ∈ Vt
Let Wt = CVt

, noting that Wt is well-defined since Vt 6= U∗, as I(t) /∈ U∗ and I(t) ∈ Vt.
Case 2.1) Vt ∈ U ′t: Similar to Case 1, we have

Ĝ+(t) = max
U∈U ′t,V ∈C

Ĝ+
V,U (t)

(a)

≥ Ĝ+
Wt,Vt

(t) =
∆̂+
Wt,Vt

(t)

dVt,Wt

≥ ∆Wt,Vt

dVt,Wt

(b)

≥ min
U :I(t)∈U

∆CU ,U

dU,CU

(c)
= GI(t),
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where (a) holds by Vt ∈ U ′t and the definition of Ĝ+(t), (b) follows from Wt = CVt and our assumption I(t) ∈ Vt, and
(c) is due to I(t) /∈ U∗ so that its complexity is defined as the minimum over decisions U to which it belongs.
Case 2.2) Vt /∈ U ′t: In this case, by definition of U ′(t) there exists a decision set Zt such that Ĝ+

Vt,Zt
(t) ≤

− 1
2 max
W∈C

Ĝ+
W,Vt

(t). Therefore, we have

Ĝ+
Vt,Zt

(t) ≤ −1

2
max
W∈C

Ĝ+
W,Vt

(t) ≤ −1

2
Ĝ+
Wt,Vt

(t) (37)

≤ −1

2
GWt,Vt ≤ −

1

2
GI(t), (38)

where the last equality follows from the fact that I(t) /∈ U∗ and the definition of GI(t) in that case. We now focus on the
three decision sets Vt, Ut, Zt and define the value µ̇i associated to arms i ∈ Vt ∪ Ut ∪ Zt as

µ̇i =

{
µ̂−i (t) if i ∈ Ut,
µ̂+
i (t) if i ∈ (Vt ∪ Zt)\Ut.

We also define ĠZt,Ut
, ĠVt,Ut

, ĠZt,Vt
as well as ∆̇Zt,Ut

, ∆̇Vt,Ut
, ∆̇Zt,Vt

obtained by using µ̇i instead of µi in their
computation. Then we get

∆̇Zt,Vt
(t) =

∑
i∈Zt\Vt

µ̇i −
∑

i∈Vt\Zt

µ̇i =
∑

i∈(Zt\Vt)\Ut

µ̇i +
∑

i∈(Zt\Vt)∩Ut

µ̇i −
∑

i∈(Vt\Zt)\Ut

µ̇i −
∑

i∈(Vt\Zt)∩Ut

µ̇i

=
∑

i∈(Zt\Vt)\Ut

µ̂+
i (t) +

∑
i∈(Zt\Vt)∩Ut

µ̂−i (t)−
∑

i∈(Vt\Zt)\Ut

µ̂+
i (t)−

∑
i∈(Vt\Zt)∩Ut

µ̂−i (t)

≥
∑

i∈(Zt\Vt)\Ut

µ̂−i (t) +
∑

i∈(Zt\Vt)∩Ut

µ̂−i (t)−
∑

i∈(Vt\Zt)\Ut

µ̂+
i (t)−

∑
i∈(Vt\Zt)∩Ut

µ̂+
i (t)

= −

 ∑
i∈(Vt\Zt)\Ut

µ̂+
i (t) +

∑
i∈(Vt\Zt)∩Ut

µ̂+
i (t)−

∑
i∈(Zt\Vt)\Ut

µ̂−i (t)−
∑

i∈(Zt\Vt)∩Ut

µ̂−i (t)


= −∆+

Vt,Zt
(t). (39)

Furthermore,

Ĝ+
Zt,Ut

(t)
(a)
= ĠZt,Ut

(b)

≥ min
(
ĠZt,Vt

, ĠVt,Ut

)
(40)

(c)

≥ min
(
ĠZt,Vt

, Ĝ+
Vt,Ut

(t)
)

(41)

(d)

≥ min
(
−Ĝ+

Vt,Zt
(t), Ĝ+

Vt,Ut
(t)
)

(42)

(e)

≥ min

(
1

2
GI(t), Ĝ

+
Vt,Ut

(t)

)
,

where (a) and (c) are obtained by the definition Ġ, (b) follows from µ̇Ut < µ̇Vt < µ̇Zt and an analogue of Proposition 3
with strict inequality in case of ĠVt,Ut 6= ĠZt,Vt , (d) uses equation (39), and (e) is by equation (37).

Now let us assume Ĝ+(t) = Ĝ+
Vt,Ut

(t) < 1
2GI(t), from which we will derive a contradiction. From equation (37) and

by definition of Ġ, we have Ĝ+(t) = Ĝ+
Vt,Ut

(t) < 1
2GI(t) ≤ ĠZt,Vt

, so we have strict inequality in (b) of equation (40).
Consequently, we can derive from (40) the contradiction

Ĝ+
Zt,Ut

(t) > min

(
Ĝ+
Vt,Ut

(t),
1

2
GI(t)

)
≥ Ĝ+

Vt,Ut
(t) = max

V ∈C
Ĝ+
V,Ut

(t),

which completes the proof of Ĝ+(t) ≥ 1
2GI(t).

The following Lemma shows that any set U in Ut also is in U ′t .
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Lemma 9. On the event ξ, for all time steps t, Ut ⊂ U ′t .

Proof. It is obviously sufficient to show that the threshold −TU,V (t) ≤ 0. On the event ξ, we have max
W∈C

Ĝ+
W,U (t) ≥

Ĝ+
U∗,U (t) ≥ GU∗,U ≥ 0. By definition of TU,V (t), this implies that −TU,V (t) ≤ 0.

The following Lemma gives an upper bound on Ĝ+(t).

Lemma 10. Assume that event ξ holds. Then 8βI(t)(t− 1) ≥ Ĝ+(t) for all t.

Proof. First note that

Ĝ+
Ut,Vt

(t)
(a)
> −1

2
max
W∈C

Ĝ+
W,Ut

(t)
(b)
= −1

2
Ĝ+
Vt,Ut

(t), (43)

where (a) follows from Ut ∈ U ′t and the definition of U ′t and (b) from the definition of Ut and Vt. Moreover, we have

Ĝ+
Vt,Ut

(t)
(a)
=

2

dUt,Vt

∑
i∈Ut⊕Vt

βi(t− 1)− Ĝ+
Ut,Vt

(t)

(b)

≤ 2

dUt,Vt

∑
i∈Ut⊕Vt

βi(t− 1) +
1

2
Ĝ+
Vt,Ut

(t),

where (a) is because ∆̂+
Vt,Ut

(t) + ∆+
Ut,Vt

(t) = 2
∑

i∈Ut⊕Vt

βi(t− 1), and (b) is because of equation (43). Hence, we obtain

Ĝ+(t) = Ĝ+
Vt,Ut

(t) ≤ 4

dUt,Vt

∑
i∈Ut⊕Vt

βi(t− 1). (44)

Moreover, as we will demonstrate in the following, we have

1

dUt,Vt

∑
i∈Ut⊕Vt

βi(t− 1) ≤ 2βI(t)(t− 1). (45)

We show this in detail for the case when I(t) ∈ Ut, the case I(t) ∈ Vt is similar. For I(t) ∈ Ut, we have
∑

i∈Ut\Vt

βi(t−1) ≥∑
i∈Vt\Ut

βi(t− 1) and consequently,

∑
i∈Ut⊕Vt

βi(t− 1) =
∑

i∈Ut\Vt

βi(t− 1) +
∑

i∈Vt\Ut

βi(t− 1) ≤ 2
∑

i∈Ut\Vt

βi(t− 1).

Since for I(t) ∈ Ut, we have for all i ∈ Ut\Vt that βi(t− 1) ≤ βI(t)(t− 1), we therefore obtain∑
i∈Ut⊕Vt

βi(t− 1) ≤ 2
∑

i∈Ut\Vt

βi(t− 1) ≤ 2dUt,Vt
βI(t)(t− 1)

and consequently,

1

dUt,Vt

∑
i∈Ut⊕Vt

βi(t− 1) ≤ 2
dUt,Vt

dUt,Vt

βI(t)(t− 1) ≤ 2βI(t)(t− 1),

which proves equation (45). Finally, combining (44) and (45) gives the claim of the lemma.

Finally, we are ready to give the proof of Theorem 2.
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Proof of Theorem 2. First note that by Lemma 9, on event ξ we have Ut ⊆ U ′t , so the algorithm is well-defined, since as
long as |Ut| > 1 also |U ′t| > 1 and there is always an arm to be pulled.

Next, we show that with probability of at least 1− δ, the algorithm returns the optimal set U∗. Indeed, assume that ξ holds
and that U∗ is rejected from Ut at some step t. Then there exists a set V such that 0 ≥ ∆̂+

U∗,V (t) = µ+
U∗(t) − µ

−
V (t) ≥

µU∗ − µV > 0, which is a contradiction. Hence, the claim follows from Lemma 7.

Finally, let us consider the sample complexity of our algorithm. By Lemma 10 and Lemma 8 we have for any pulled arm i
that 8βi(t) ≥ Ĝ+(t) ≥ 1

2Gi. Summing over all arms i ∈ K, this gives for each t that Ti(t) ≤ 128Hi log(4Kt2/δ).
Therefore, ∑

i∈K
Ti(t) = t ≤

∑
i∈K

128Hi log(4Kt2/δ) ≤ 128H log(4Kt2/δ).

Thus, as soon as t reaches t ≥ 128H log(4Kt2/δ), the algorithm stops. Denoting this step by ñ and using Lemma 8
of Antos et al. [2010] in order to solve this equation gives ñ ≤ O (H log(HK/δ)).
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