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Abstract

This work studies multiple hypothesis testing
in the setting when we obtain data sequen-
tially and may choose when to stop sampling.
We summarize the notion of a sequential p-
value (one that can be continually updated
and still maintain a type I error guarantee)
and provide several examples from the litera-
ture. This tool allows us to convert fixed-
horizon step-up or step-down multiple hy-
pothesis testing procedures (which includes
Benjamini-Hochberg, Holm, and Bonferroni)
into a sequential version that allows the statis-
tician to reject a hypothesis as soon as the
sequential p-value reaches a threshold while
maintaining type I error control. We show
that if the original procedure has a type I error
guarantee in a certain family (including FDR
and FWER), then the sequential conversion
inherits an analogous guarantee. The con-
version also allows for allocating samples in
a data-dependent way, and we provide simu-
lated experiments demonstrating an increased
number of rejections when compared to the
fixed-horizon setting.

1 Introduction

Hypothesis testing (HT) is a statistically rigorous pro-
cedure that makes decision about the truth of a hy-
pothesis is a way that allows the probability of error
to be carefully controlled. Specifically, given a null hy-
pothesis and an alternative hypothesis, the statistician
decides when to reject the null hypothesis such that the
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type I error, the probability of falsely rejecting the null
hypothesis, is bounded. A second goal is to minimize
the probability type II error, which occurs when the
statistician erroneously fails to reject the null (when
the alternative is indeed true). HT is a fundamental
problem in statistical inference that arises in numer-
ous fields. Examples include online marketing [6] and
pharmaceutical studies [20].

HT has been traditionally studied in the fixed-horizon
setting. The desired parameters such as type I error
and power are used to calculate a lower bound on the
necessary sample size, the requisite number of samples
are collected, and then a decision is made. In particular,
one must wait until the minimum sample size is reached
or the type I error guarantee is forgone. While this
approach provides rigorous statistical guarantees in
accuracy and robustness, it usually takes a long time to
conclude a test and also its offline nature possesses huge
limitations to emerging applications, such as digital
marketing, where data is streaming in a sequential
fashion and a data-efficient approach is crucial to allow
real-time adaption to user’s preferences.

Multiple hypothesis testing (MHT) is a natural exten-
sion of HT to control error across multiple hypotheses.
While type I and type II errors are straightforward in
single tests, there are many ways one could penalize
incorrect decisions in MHT. The two most widely used
notions are family-wise error rate (FWER), which is the
probability of at least one false rejection, and false dis-
covery rate (FDR), which is the expected proportion of
the rejections that are false. Generally, the statistician
would like to reject as many tests as possible while still
controlling the number of false positives.

Recent advances in the scale and rate of data collec-
tion have increased the need for sequential hypothesis
testing; in this framework, the data arrives sequentially
and the statistician may make decisions after observing
partial data, such as deciding when to stop collecting
data or from which populations to collect data from.
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Large clinical trials and Hypothesis testing in social
networks, mobile applications, and large internet sys-
tems are examples where sequential HT is desirable.
In contrast, in fixed-horizon setting all the data are
collected a priori.

Of course, such data-dependent decision introduce de-
pendencies between future data and past data, and
the statistician must be more careful designing proce-
dures if type I error control is desired. For example,
a common goal in sequential hypothesis testing is to
observe the data sequence and stop at the statisticians
choosing. However, if the statistician were to follow the
evolution of a statistic in the traditional fixed-horizon
HT and reject the null hypothesis as soon as it crosses
the fixed-horizon decision boundary, the type I error
would be greatly inflated [18] and many erroneous re-
jections would be made. We survey some alternative
hypothesis testing procedures that provide a type I
error guarantee in the sequential setting, but our work
will use the existence of such sequential tests as a start-
ing point. Our goal will be to use sequential hypothesis
tests to adapt multiple hypothesis testing procedures
into sequential variants that can enjoy the benefits of
data-depending sampling and early stopping.

1.1 Related Work

Sequential hypothesis testing has a long history [30,
20, 24], but its extension to multiple hypotheses and
tests is more recent. Several recent papers study the
mechanics of statistics that allow for uniform type I
error guarantees for any stopping time [1, 15, 28, 29].

Bartroff and co-authors have established several scenar-
ios where sequential MHT has type I error in the cases
of all simple hypotheses with FWER [2] and FDR con-
trol [3]. Similarly, De and Baron [10] proposed a sequen-
tial MHT algorithm that guarantees the overall type
I error. However since this algorithm is based on the
Bonferroni correction [9], the power of rejecting alterna-
tive hypotheses has been empirically shown to be low.
Fellouris and Tartakovsky [14] also studied the sequen-
tial testing problem of a simple null hypothesis vs. a
composite alternative hypothesis, for which the decision
boundaries were derived using both mixture-based and
weighted-generalized likelihood ratio statistics. While
they have shown asymptotic optimally of such a sequen-
tial testing procedure, their proposed method requires
high-dimensional hyper-parameter tuning and cannot
be easily extended to multiple hypothesis testing. Ze-
hetmayer and collaborators [31, 32] looked at control-
ling FDR when the p-values are modeled as Gaussian.

Similar to our results, the approach of [18] relies on
sequential p-values. Our work extends their results
by allowing each test to be stopped individually. This

dynamic allocation property allows us to conclude more
tests (than their static/uniform allocation scenario) at
each time-step during the lifespan of the procedure.
Moreover, our framework is more flexible and allows
control of FDR, FWER, and a host of other metrics, in
contrast to only controlling FDR.

1.2 Our Contributions

We first describe a framework that fits most
fixed-horizon hypothesis test procedures, including
all step-up procedures (e.g., Hochberg [16] and
Benjamini-Hochberg [7]) and step-down procedures
(e.g., Holm’s [17]) with an accompanying family of type
I errors that includes FWER and FDR. By leveraging
the powerful tool of sequential p-values, we propose
a method for converting any fixed-horizon MHT into
a sequential MHT and show that the fixed-horizon
guarantees generalizes to the sequential setting in Sec-
tion 5.2. Further, our sequential MHT can stop tests
early in a data-dependent manner, and therefore stops
easier hypotheses first and potentially allowing more
samples for difficult hypotheses. We discuss this dy-
namic allocation property and demonstrate that it does
lead to more rejected tests on synthetic data in Sec-
tion 7. Additionally, Section 6 discusses controlling
type II errors and provides a sequential calculator for
estimating a minimum sample size to control both FDR
and false non-discovery rate (FNR) in sequential MHT.

2 Hypothesis Testing

In hypothesis testing (HT), the statistician tests a
null hypothesis H0 against an alternative hypothesis H1.
The goal is to design a procedure that controls the
type I error α, the probability of erroneously rejecting
H0, while simultaneously minimizing the type II error
β, the probability of failing to reject H0 when it is
false. A prototypical example is A/B testing with
baseline option A and alternative option B; the null
and alternative hypotheses are H0 : µA = µB and
H1 : µA 6= µB, where µA and µB are the mean values
(e.g., conversion rates or click through rates).

Multiple hypothesis testing (MHT) is an extension of
HT to a finite number of tests m. Examples are a
base option A against a set of m alternative options
A1, . . . , Am, a single null hypothesis against a set of
alternative hypotheses [23, 5], and a test with a set of
nested hypotheses [19]. When the test stops, the MHT
procedure rejects R tests, out of which V are rejected by
mistake, and does not reject m−R tests, out of which
W should have been rejected. Table 1 summarizes
these quantities. The decision of the MHT procedure
to reject/not-reject a test is a random quantity, because
it depends on the test sample that is random. Thus, all



Alan Malek, Sumeet Katariya, Yinlam Chow, and Mohammad Ghavamzadeh

not-rejected rejected total
H0 true U V m0

H0 false W S m−m0

total m−R R m

Table 1: MHT Error Quantities.

the elements in Table 1, except m and m0 are random
variables.

Unlike HT, there is no single notion of type I error
for multiple hypotheses. The two common are family-
wised error rate (FWER) and false discovery rate (FDR)
that are defined as1

FWER := P (V ≥ 1) and FDR := E
[

V

R ∨ 1

]
. (1)

The goal is usually to control these metrics at the
level of q. FWER, first introduced by Bonferroni [9],
is the probability of making at least one false positive.
As the number of tests grows, requiring FWER con-
trol quickly makes rejection very difficult. Therefore,
FDR [7], which controls the expected proportion of
false discoveries, has become a popular alternative as
it allows the number of false positives to grow with the
number of tests. This notion has been expanded to de-
pendent tests [8] and to variations such as γ-FDR [21].

One can also ask for guarantees on the type II error
(see e.g., [26, 27]) by defining

FWER II :=P (W ≥1) and FNR :=E
[

W

(m−R)∨1

]
.

We do not consider procedures with type II error
bounds in this paper, as they require strong assump-
tions on the distributions of the statistics under the
alternative hypothesis.

2.1 Fixed-Horizon Hypothesis Testing

Fixed-horizon is the traditional approach to HT that is
widely used in industry. In the fixed-horizon HT, the
statistician calculates the minimum necessary sample
size for some desired type I and type II errors (plus
some information that depends on the hypotheses being
tested). The test should be continued until this horizon
is reached. At this point, a typical fixed-horizon HT
procedure first computes the test statistic from the
observations and then uses it to calculate the p-value of
the test, i.e., the probability under the null hypothesis
of sampling a test statistic at least as extreme as the
one that was observed. Finally, it rejects the null
hypothesis if the p-value is less than or equal to the
desired type I error, i.e. p ≤ α.

1We denote by ∨ the maximum operator, e.g., R ∨ 1 =
max{R, 1}.

The most common procedure for fixed-horizon multi-
ple hypothesis testing is to pick sample sizes, gather
the samples and compute the p-values of the m tests,
then determine, as a whole, which null hypotheses to
reject. The most common MHT procedure to control
FWER is Bonferroni [9], which controls FWER at the
level q by applying the union bound and only rejecting
the tests whose p-values are smaller than q/m. How-
ever, Bonferroni procedure lacks power and is overly
conservative, especially when the number of hypotheses
is large or the test statistics are highly correlated [22].
Popular alternatives to Bonferroni to control FWER
are Holm’s step-down procedure [17] that has larger
power than Bonferroni with the same type I guaran-
tee, and Hochberg’s step-up procedure [16] that rejects
even more tests than Holm’s with the same guarantees.
FDR is typically controlled by Benjamini-Hochberg’s
procedure [7], which is step-up. Formally,

Definition 2.1 (MHT Procedures). A MHT procedure
P consisting of m tests is a mapping [0, 1]m → {0, 1}m
from the set of p-values of the individual tests to m
reject/not-reject decisions.

Denote the ascending p-values of the tests by p(1) ≤
. . . ≤ p(m). We say that P is a step-up procedure, if
for some sequence of decision thresholds α1, . . . , αm, P
rejects tests (1), . . . , (k∗) for

k∗ = max{k : p(k) ≤ αk}.

Similarly, P is a step-down procedure, if for some
sequence of decision thresholds α1, . . . , αm, P rejects
tests (1), . . . , (k∗ − 1) for

k∗ = min{k : p(k) > αk}.

Finally, we will call P a monotonic test procedure, if
it is either step-up or step-down.

The step-up procedures Hochberg and Benjamini-
Hochberg set their decision thresholds to αk = q

m−k
and αk = kq

m , respectively, and the step-down proce-
dure Holm sets its decision threshold to αk = q

m−k .
Note that q is the desired FWER level in Hochberg
and Holm procedures, and the desired FDR level in
Benjamini-Hochberg.

The following definition encapsulate a large set of MHT
type I metrics for different functions f . This unified
formulation will help us with our analysis in Section 5.2.

Definition 2.2 (Error Guarantee). Let f : R2 → R+

be a monotonically increasing function in its first ar-
gument and the error level q > 0 be a positive real
number. We say that a test procedure P has an (f, q)
error guarantee if

E
[
f(V, S)

]
≤ q (2)
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for all values of m and m0, and all distributions of
true rejections S, assuming that the distributions of
the p-values corresponding to the m0 true null hypothe-
ses pπ(1), . . . , pπ(m0) are marginally uniform on [0, 1],
where π is any arbitrary permutation of 1, . . . ,m0.

If Eq. 2 holds only when pπ(1), . . . , pπ(m0) are i.i.d. uni-
form, we will say that P has an (f, q) error guarantee
under independence (a weaker condition).

For the well-known MHT type I error metrics FWER
and FDR, function f is equal to f(V, S) = 1[V > 0]
and f(V, S) = V

(V+S) ∨ 1 , respectively.

3 Problem Formulation

Consider testing the null hypothesis H0 against the
alternative hypothesis H1 with type I error α. Let
X ∈ X be the random variable of test samples and x
be a realization of this random variable. We start by
defining the notion of sequential p-value, the crucial
tool that we make use of throughout the paper.

Definition 3.1. A sequential p-value for testing the
null hypothesis H0 against the alternative hypothe-
sis H1, denoted by {pt}, is a sequence of mappings
pt : X t 7→ [0, 1], t ≥ 1 that satisfy the following two
properties under the null hypothesis:2

1. (super-uniform) For any δ ∈ [0, 1] and any t ≥ 1,
we have

P

(
sup
s≤t

ps(X1, . . . , Xs) ≤ δ
)
≤ δ. (3)

2. (non-increasing) For any fixed realization
{xt}t≥1 ∈ X∞ and any t ≥ 1, we have

pt(x1, . . . , xt) ≥ pt+1(x1, . . . , xt+1).

Sequential p-value allows “peeking” into the test, i.e.
rejecting the null hypothesis without violating the type
I error guarantee. If we reject H0 as soon as pt ≤ α,
the super-uniform property guarantees that the type I
error remains below α. Note that unlike the sequential
setting, peeking in fixed-horizon hypothesis testing can
greatly increase the type I error. This is due to the fact
that in this class of tests, the p-value has been designed
to hold only at the test horizon and not uniformly
across the entire sample path.

Our framework is agnostic to the hypothesis test as long
as we have access to a sequential p-value for the test.
There is an extensive literature on creating sequential
p-values for hypothesis tests. While this is not the focus

2Note that a sequential p-value is a sequence of random
variables whose randomness comes from the samples X.

of the paper, we present a few examples in Section 4
that include Wald’s sequential probability ratio test,
and Bayes factor under a simple null hypothesis.

Problem definition: We can now state the problem
that we study. Suppose that the statistician has a
family of m simultaneous sequential hypothesis tests
and her goal is to establish a procedure for rejecting
tests while controlling the type I error across the whole
family. For the hypothesis test k, we denote by Hk

0

the null hypothesis, Hk
1 the alternative hypothesis, and

{pkt } the sequential p-value. At each time t during
the test, the statistician has access to the sequential
p-values of all the m tests, {p1

t}, . . . , {pmt }, and can
generate new samples and update p-values arbitrarily.
Her goal is to select samples in order to maximize the
number of rejected null hypotheses without violating
the considered notion of type I error over the family of
tests (e.g., FWER or FDR).

4 Examples of Sequential P -value

In the previous section, we defined sequential p-values
without arguing about their existence. This section
describes several sequential p-values and provides the
reader with more references. We also prove some im-
portant properties.

4.1 Sequential Probability Ratio Tests

The sequential probability ratio tests (SPRT) [30] was
one of the first sequential hypothesis testing frameworks
where only two hypotheses are taken into the account.
In order to extend the aforementioned SPRT techniques
to address the sequential multiple hypothesis testing
problem, Robbins and Siegmund [25] developed the
M−ary sequential probability ratio test (MSPRT) pro-
cedure that leverages the notion of mixture posterior
probabilities in the likelihood ratio test. In particu-
lar, the stopping rule effectively picks one of the M
hypotheses that has the largest posterior probability,
given all the previous samples observed. More recent
work on the extension of MSPRT can also be found
in [5, 12, 11].

Recall the infinite sequence of independent and identi-
cally distributed (i.i.d.) random variables X1, X2, . . .
with an underlying probability density function f .
Also let Hj be the hypothesis that f = fj , for
j ∈ {1, . . . ,M}, such that fk 6= fj , almost surely for all
j 6= k. We further assume that the prior probabilities
of the hypotheses are known, and let πj denote the
prior probability of hypothesis Hj for each j. There-
fore, given a sequence of thresholds {A1, . . . , AM} that
characterizes the false discovery rate of each hypothesis,
the stopping time T for the MSPRT can be described
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as the minimum sample n ≥ 1 such that

πk
∏n
i=1 fk(Xi)∑M

j=1 πj
∏n
i=1 fj(Xi)

>
1

1 +Ak
.

for some k ∈ {1, . . . ,M}. Correspondingly, the final
decision is defined as δ = Hk.

For comparison, Let A0 and A1 > 0 be the specific
parameters that characterize the type-I and type-II
error guarantees of a sequential two hypothesis testing
procedure, we have the SPRT [30] stopping time T
defined as the minimum sample n ≥ 1 such that

Ln =

∏n
i=1 f1(Xi)∏n
i=1 f0(Xi)

6∈ [A0, A1].

Here the final decision is given by δ = H1 if Ln >
A1, and it is given by δ = H0 if Ln < A0. It is
straightforward to show that the MSPRT with M = 2
is identical to the SPRT with parameters π0A0/π1 and
π0/(π1A1). This implies that for the SPRT, the prior
probabilities can be incorporated into the parameters
A0 and B′.

4.2 Test Martingales

The construction of p–tests is an important problem but
not the focus of this paper. We refer the reader to [29,
15] for a more thorough treatment but will include a
few examples below. We are particularly interested in
test super-martingales, which are nonnegative super-
martingales Xt ≥ 0 for any t that satisfy E[X0] ≤ 1,
and test martingales, which are martingales that are
nonnegative and satisfy E[X0] = 1. We require test
martingales have initial value 1. A simple application
of the optional stopping theorem yields the following
well known result, often called the maximal inequality.
See Appendix A for a proof.

Lemma 4.1. For any test martingale Xt, we have
P (suptXt > b) ≤ 1

b .

This inequality shows that Xt can take the value ∞
only with probability zero. Now we will connect the
notion of test super-martingale and sequential p-value
by showing that the inverse of a supremum of a test
super-martingale is indeed a sequential p−value. This
statement is true when the supremum is taken over all
time points, and its proof can be found in Appendix A.

Corollary 4.2. If the test-statistic Λt is a positive
test super-martingale, then 1

supn′≤t Λn′
is a sequential

p-value.

While the above result shows that a sequential p−value
can be easily derived from a test super-martingale,
in many likelihood ratio based sequential hypothesis

testing (i.e. SPRT) procedures, finding a test super-
martingale is still a non-trivial task. In order to have
a more natural construction of the sequential p−value
in many of such tests, we will introduce the concept
of Bayes factor and draw some important connections
between Bayes factor, test super-martingale and the
sequential p−value. Consider an arbitrary probability
space (Ω,F , P ), a non-negative measurable function
B : Ω → [0,∞] is known as a Bayes factor for prob-
ability measure P if

∫
(1/B)dP ≤ 1. A Bayes factor

B is said to be precise if
∫

(1/B)dP = 1. In order
to relate this definition of Bayes factor with the tra-
ditional definition of a likelihood ratio, we note first
that whenever Q is a probability measure on (Ω,F),
the Radon-Nikodym derivative (or the likelihood ratio)
dQ/dP will satisfy (dQ/dP )dP ≤ 1, with equality if Q
is absolutely continuous with respect to P . Therefore,
by definition B = 1/(dQ/dP ) is a Bayes factor for P .
The Bayes factor B will be precise if Q is absolutely
continuous with respect to P . In this case B will be a
version of the Radon-Nikodym derivative dP/dQ.

Equipped with the mathematical definition of a Bayes
factor, we now provide the following result that shows
for a sequential hypothesis test (A/B test) with a simple
null-hypothesis, the Bayes factor defined under the null
hypothesis is a test martingale.

Corollary 4.3. Consider any sequential hypothesis
tests with an alternative hypothesis H1 and a simple null
hypothesis H0. Both the likelihood ratio under H0 : θ0

and Bayes factor under H0 : θ0 are test martingales.

The proof of this corollary can be found in Appendix A.
Combining this result with the aforementioned one
from Corollary 4.2, one concludes that the reciprocal
of the supremum of Bayes factor (or likelihood ratio)
over all time points is a sequential p−value.

4.3 Empirical Approaches

Besides using MSPRT or test martingales to construct
decision boundaries for sequential hypothesis testing,
one can also construct non-parametric methods for se-
quential A/B testing [1]. By keeping track of a single
scalar test statistic that is derived based on a zero-
mean random walk process under the null hypothesis,
this non-parametric procedure tests the null hypothesis
whenever a new data point is processed, and once a
hypothesis is rejected it controls the type I error by
utilizing the classical probability result of the law of
the iterated logarithm (LIL). Since this procedure is
sequential, by nature it only takes linear time and con-
stant space to compute the decision at each step. Fur-
thermore, by using the empirical Bernstein-LIL-based
analysis from the above paper, it has also been shown
that this algorithm has the same power guarantee as
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its non-sequential counterpart.

5 Algorithms for Sequential Multiple
Hypothesis Testing

Now that we have presented a framework for fixed-
horizon MHT and sequential p-values, we can describe
our procedure for conducting MHT in the sequential
setting. Here, we assume that, for each hypothesis k,
the decision maker has access to a sequential p-value
pk1 , p

k
2 , . . .. In the fixed horizon MHT, the statistician

collects samples from each hypothesis, calculated the
corresponding p-value, then applies a testing procedure;
we would like to applying a rejection procedure before
all the samples are collected with the hope that easier
tests can be concluded early. The intuition is that,
because sequential p-values pkt are valid for all t and
non-decreasing, we may apply any monotonic rejection
procedure iteratively without distorting which tests are
rejected. Hence, we need only sample from the tests
that have not been rejected. This section is devoted
to proving that this intuition does hold, and indeed
the sequential procedure inherits the same (f, q) error
guarantee as the fixed-horizon procedure.

Specifically, we begin by defining the sequential analog
of a test procedure and then show how sequential p-
values can be used to upgrade a fixed horizon procedure
with a (f, q)-guarantee into a sequential test procedure
with an analogous guarantee. This result is the main
theorem of this paper and is presented in Section 5.2.

Definition 5.1 (Sequential Test Procedure). Given m
sequential p-values {p1

t , . . . , p
m
t }t≥1, a sequential test

procedure consists of, for every round t = 1, 2, . . .,

• Samplers St : {pks}s≤t−1,1≤k≤m 7→ {0, 1}m to de-
cide which hypothesis tests to sample from during
round t,

• A stopping time T with respect to the filtration
generated by {p1

t , . . . , p
m
t } (i.e. T is measurable

w.r.t. this filtration) that determines when to stop
sampling, and

• A mapping P : [0, 1]m×∞ 7→ {0, 1}m from histories
of sequential p-values to reject/not-reject decisions.

In words, the sequential test procedure (St, T,P) dic-
tates what hypotheses to sample from, when to stop,
and what hypotheses to reject once stopped.

Further, the analogous quantities to U, V, and R in Fig-
ure 1 will be denoted as UT , VT , and RT to emphasize
that these are the random variables evaluated when the
testing procedure finishes at stopping time T .

Fixed-horizon The fixed-horizon multiple hypothe-
sis test with horizon N corresponds to the sequential
procedure with pkt = pkN (the p-values are constant),
St = 1m (every test is sampled every round), and
T = N (the stopping time is deterministic).

Our definition of sequential test procedure provides an
easy extension of the (f, q) guarantee for fixed-horizon:

Definition 5.2. Given a function f : R2 → R+ that
is monotonically increasing in the first argument and
a real number q > 0, we say that a sequential test
procedure (St, T,P) has an (f, q) error guarantee if

E[f(VT , ST )] ≤ q (4)

for all m0 and all distributions of true rejections S,
assuming that pkt is a sequential p-values for every true
null hypothesis.

If E[f(VT , ST )] ≤ q only holds when the sequential p-
values corresponding to the true null hypothesis are
independent, we will say that (St, T,P) has a error
guarantee under independence (a weaker condition).

5.1 The Sequential Conversion

We now have an idea of what a sequential test proce-
dure consists of and what type of error guarantee we
can hope to achieve. This section describes a method to
transform a fixed-horizon test procedure into a sequen-
tial test procedure, and the next section shows that this
sequential conversion method transforms fixed-horizon
procedures with (f, q)-guarantees into sequential pro-
cedures with (fT , q)-guarantees.

Let Ft be the filtration generated by {p1
t , . . . , p

m
t } and

consider a test procedure P. By a slight abuse of
notation, we say that i ∈ B, where B ∈ {0, 1}m is some
binary vector, if Bi = 1. The sequential conversion C
of P is defined as follows.

Definition 5.3. Assume we have sequential p-values
p1
t , . . . , p

m
t , and some stopping time T with respect to

Ft with finite expectation. The sequential conversion
of the test procedure P, which we label C = (S ′t, T,P ′),
is defined to be

• For round t, we sample S ′t = P(p1
t−1, . . . , p

m
t−1)

• If k ∈ S ′t, sample from the hypothesis and update
the sequential p-value; otherwise, pkt = pkt−1.

• At the end of the test, we reject P ′ =
P(p1

T , . . . , p
m
T ).

Intuitively, C applies the fixed-horizon procedure P
at every round to the sequential p-values and does
not sample from the already rejected hypotheses. The
pseudocode for C is presented in Algorithm 1.
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Without the use of sequential p-values, using C to
conduct a hypothesis test would greatly inflated type
I errors for the same reasons that peeking invalidates
type I error guarantees in single hypothesis testing.
However, if P is of a certain form and we use sequential
p-values, we maintain error control in a strong sense:
the (f, q) guarantee of P translates exactly into an
(f, q) guarantee of C. This results is precisely stated
and proven in the next section. We would like to
emphasize that the algorithm allows the user to stop
each test once they have reached a significance level
while still maintaining a type 1 error guarantee.

Algorithm 1 Sequential Conversion C
1: Input: stopping time T , rejection procedure P,

Type 1 error α
2: Initialize p1

0, . . . , p
m
0 to 1

3: for t = 1, 2, . . . , do
4: Set St = P(p1

t−1, . . . , p
m
t−1)

5: For each k /∈ St, draw a sample and update pkt
6: For each k ∈ St−1, set pkt = pkt−1

7: if Stopping time T is reached or St = ∅ then
8: break
9: end if

10: end for
11: Return rejected tests ST∨t

5.2 Main Result

Theorem 5.4. Let P be a monotonic test procedure
with a (f, q) guarantee. Then its sequential conver-
sion C of P given by Definition 5.3 also has an (f, q)
guarantee. That is,

E[f(VT , ST )] ≤ q.

Furthermore, if P only has an independent (f, q) guar-
antee, then C only has an independent (f, q)-guarantee.

Before the proof, we give two lemmas. First, we ar-
gue that applying a test procedure P to sequential
p–values instead of offline p–values retains the same
error guarantee (at the potential cost of lower power).
Second, we show that the sequential procedure with
early stopping, as described in Algorithm 1, produces
the same decisions as the procedure where all sequen-
tial statistics are run to the same length. Putting these
two facts together, we have that the early stopping
sequential procedure inherits the same error guarantee
as the test procedure P. Proofs for both lemmas are
in the appendix.

Lemma 5.5. Consider a monotonic rejection proce-
dure P with an (f, q) guarantee, sequential p–values
p1
t , . . . , p

m
t , and a stopping time T with respect to Ft.

Let R = P(p1
T , . . . , p

m
T ), i.e. the results of applying P

to the p–tests at time T . Denoting VT = |{Rk = 1 : k ∈
H0}| and ST = m0−|{Rk = 1 : k ∈ H0}| ( the number
of false positives and true positives, respectively), we
have

E[f(VT , ST )] ≤ q. (5)

Furthermore, if P has only an independent (f, q) guar-
antee, then (5) holds when the p–tests are independent.

Lemma 5.6. Under the same setting as Lemma 5.5,
consider C, the sequential test procedure defined the
sequential conversion in Definition 5.3, and C′, defined
to be the sequential test procedure that is identical except
with T = N . Then, for every realization of p1

t , . . . , p
m
t ,

C and C′ reject the same tests.

Proof of Theorem 5.4. Consider C and C′ as in
Lemma 5.6; let VT and ST be the random variables
corresponding to S(P) and V ′N , S

′
N the the random

variables corresponding to S ′(P).

From Lemma 5.5, we have that E[f(V ′N , S
′
N )] ≤ q. On

the other hand, Lemma 5.6 implies that the decision
of both procedures are exactly the same, and hence
VT = V ′N and ST = S′N almost surely. Combining
these, we have E[f(VT , ST )] ≤ q.

6 Sequential Calculator for FWER

Even for the sequential setting, it is desirable to have
an an estimate of the number of samples required.
While it is standard to estimate the effective horizon
in a fixed-horizon setting [13], effective horizon calcula-
tions for sequential tests are underdeveloped. There-
fore, we propose a sequential calculator for the general
MHT procedure. Consider the case when there are m
tests with corresponding sequential p-values given by
p1
t , . . . , p

m
t . Equipped with the following parameters:

1) FWER α, and 2) FWER II β, the problem is to find
a deterministic horizon N∗ such that both FWER and
FWER II are guaranteed, while similar performance
guarantees are seen in SPRT-based algorithms such
as [4] for simple hypotheses.

6.1 Bonferroni Correction

Recall from the case of an A/B test with statistic
Λt, where the stopping time T is the random time at
which the gap first crosses the decision boundary, i.e.,
T = inft{Λt ≥ 1/α}.

We can use the Bonferroni correction to extend this
property to multiple hypothesis testing and obtain a
stopping condition that guarantees a total FWER of
α: Λkt ≥ m/α, ∀k ∈ {1, . . . ,m}. Here the term m/α
corresponds to the union bound with FWER guarantee,
and T k is the stopping time of test k.
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Let K be set of tests with a true alternative hypothesis.
We wish to find the smallest horizon N∗ such that
P(T k ≤ N∗, ∀k ∈ K|K) ≥ 1− β. Because the underly-
ing hypothesis of each test is generally unknown, we
cannot solve for N∗ exactly and must choose N∗ to
hold for all possible values of K. By the union bound
for intersection of events, we have that

P
(
T k ≤ t,∀k∈K|K

)
= P

(⋂
k∈K

{T k≤ t}|K

)
≥
∑
k∈K

P(T k ≤ t|K)− (|K| − 1)

=
∑
k∈K

P(T k ≤ t|Hk
1 )− (|K| − 1),

where last equality is due to the independence of tests.
When t = Ñ∗, we have that∑
k∈K

P(T k ≤ Ñ∗|Hk
1 )− (|K|−1) ≥ 1−|K|β/m ≥ 1−β,

which by definition of N∗ implies Ñ∗ ≥ N∗. Uti-
lizing this property, one can approximate the effec-
tive horizon by upper bounding N∗ as follows: Ñ∗ =
maxk∈{1,...,m}N

∗,k such that

N∗,k = inf

{
t : P(T k ≤ t|Hk

1 ) ≥ 1− β

m

}
.

7 Experiments

One of the primary advantages of dynamic allocation is
that we can stop easy tests early. Consider the scenario
when we have a limit on the number of samples but
can allocate them to arbitrary hypotheses. In the non-
sequential framework, the budget is uniformly allocated
to each test, a p-value is computed, and the Benjamini-
Hochberg procedure is applied at the end. However,
our sequential framework allows sampling to cease for
a test that will certainly be rejected at the end of the
sequential procedure, a property we refer to as dynamic
allocation. Thus, our procedure can use proportionally
more samples on harder tests.

We tested 1000 simple vs. composite hypotheses where
the null is a zero-mean Gaussian and the alterna-
tives are non-zero mean Gaussians. Of these tests,
800 are true alternatives with means uniformly chosen
from [−10, 10] and the other 200 are true nulls (with
zero mean). We compare the performance of our se-
quential algorithm against the classical non-sequential
Benjamini-Hochberg procedure [7]. This entire proce-
dure was repeated over 1000 independent instantiations
and the results were averaged. The p-values for the non-
sequential test were calculated using the independent
two-sample t-test for groups with equal variance. The
sequential p-values were calculated using the sequential
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Figure 1: Experiments for sequential vs. fixed-horizon
MHT, plotted against thousands of samples.

p-value in Corollary 4.2. The simulation results are
presented in Fig. 1. The top plot shows the number of
rejected tests per thousand sample points; the perfect
algorithm (with unlimited data) would reject all 800
true alternatives. We see that the sequential does lead
to more rejections, as desired. The FDR and FNR are
plotted against budget in the bottom left and right
plots, respectively. The sequential algorithm has bet-
ter performance in both metrics: it makes fewer false
positives and false negatives.

8 Conclusion and Future Work

We introduced a unified framework for sequential multi-
ple hypothesis testing that includes most of the known
common error notions such as Family-Wised Error
Rate (FWER) and False Discovery Rate (FDR). Af-
ter familiarizing the reader with sequential p-values
and providing several examples, we showed how the
MHT procedure can be successively applied to the se-
quential p-values to create a sequential procedure that
dynamically allocates samples, stops as soon as enough
evidence is obtained, and retains the same false positive
control. We then discussed type II error and provided
some experimental validation.

There are many interesting directions. Type II errors
are still not well-understood beyond the simple vs. sim-
ple hypothesis case; what classes of hypotheses are
compatible with guarantees on type II error? We have
sacrificed performance for generality by using sequen-
tial p-values as our starting point; we would like to
investigate when we can exploit the structure of spe-
cific sequential p-values to obtain tighter type I error
guarantees. Lastly, our (f, q)-guarantee encompasses
most known type I error criteria, but there likely exist
looser notions that are more amenable to providing
error guarantees in the sequential setting.
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A Proofs

Proof of Lemma 4.1. Let Tb be the smallest t at which
the positive martingale Λt ≥ b, with Tb = ∞ if the
threshold is never crossed. Then Tb is a stopping time.
For some number of visitors t, we have

Λmin{Tb,t} ≥

{
b Tb ≤ t,
0 Tb > t.

Therefore, we may write

1 = E[Λmin{Tb,t}] ≥ bP (Tb ≤ t),

where the equality comes from the optional stopping
theorem. Taking t→∞ bounds the probability of ever
crossing the threshold at P (Tb ≤ ∞) ≤ 1/b, which
means P (∃ t such that Λt ≥ b) ≤ 1/b. This completes
the proof of this lemma.

Proof of Corollary 4.2. Based on fundamental argu-
ments in probability theory, we have the following
chain of inequalities:

P
(

1

maxn′≤t Λn′
≤ δ
)

= P
(

max
n′≤t

Λn′ ≥ 1/δ

)
≤ P (∃ t such that Λt ≥ 1/δ)

≤ δ

where the last step follows from Lemma 4.1. This
completes the proof of this corollary.

Proof of Corollary 4.3. We first show that the likeli-
hood ratio is a positive martingale under the simple
null hypothesis H0 : θ0. If we take the expectation
under the null hypothesis H0 from the likelihood ratio
Λt, i.e.,

Λt =
Pr(Dt|θ∗1)

Pr(Dt|θ∗0)

i.i.d.
=

∏n
t=1 P (xt|θ∗1)∏n
t=1 P (xt|θ∗0)

conditioned on whatever observed up to time t − 1,
i.e., Ft−1, we have

E0[Λt|Ft−1] = E0

[
P (xt|θ∗1)

P (xt|θ∗0)

] t−1∏
t=1

P (xt|θ∗1)

P (xt|θ∗0)

= Λt−1

∫
P (xt|θ∗1)

P (xt|θ∗0)
P (xt|θ∗0)dxt︸ ︷︷ ︸

=1

= Λt−1

where E0 is the expectation under the null hypothesis
H0.

We then show that the Bayes factor is also a
test martingale if the null hypothesis is simple.

To start with, since the null hypothesis is simple,∫
P (θ0|M0)P (Dn|θ0,M0)dθ0 = P (Dn|M0, θ0). Hence

we may write the Bayes factor as

Λn =

∫
Pr(θ1|M1) Pr(Dn|θ1,M1)dθ1∫
Pr(θ0|M0) Pr(Dn|θ0,M0)dθ0

=

∫
P (θ1|M1)

∏n
t=1 P (xt|θ1,M1)dθ1∏n

t=1 P (xt|θ0,M0)

The expectation under the null hypothesis H0 from Λn
conditioned on whatever observed up to time n − 1,
i.e., Fn−1, we have

E0[Λn|Fn−1]

= E0

[∫
P (θ1|M1)P (xn|θ1,M1)

∏n−1
t=1 P (xt|θ1,M1)

P (xn|M0)
∏n−1
t=1 P (xt|M0)

dθ1

]

=

∫
P (θ1|M1)E0

[
P (xn|θ1,M1)

P (xn|M0)

]
︸ ︷︷ ︸

=1

∏n−1
t=1 P (xt|θ1,M1)∏n−1
t=1 P (xt|M0)

dθ1

=

∫
P (θ1|M1)

∏n−1
t=1 P (xt|θ1,M1)∏n−1
t=1 P (xt|M0)

dθ1

=

∫
P (θ1|M1)P (Dn−1|θ1,M1)dθ1

P (Dn−1|M0)
= Λn−1

Proof of Lemma 5.5. Recall that m0 is the number of
true null hypotheses which we assume have indices
1, . . . ,m0; thus, p1

T , . . . , p
m0

T are all sequential p-values.
This implies that there must exist an increasing func-
tion gk with gk(x) ≤ x such that Pr(gk(pkT ) ≤ δ) = δ;
thus, gk(pkT ) ∼ Uniform[0, 1]. If pkT is discrete, then we
may need to allow g to be random, e.g. gk(pkT ) + ξ,
where ξ is chosen to interpolate between subsequent
values of pkT .

Define V =
∣∣P (g1(p1

T ), . . . , gm(pmt )
)
∩ {1, . . . ,m0}

∣∣ as
the number of true hypotheses rejected by P on the
modified p-values. We will argue that VT ≤ V almost
surely.

First, suppose that P is a step-up procedure and V = i;
this implies that g(k)(p(k)) ≤ αi for all k ≤ i and
αi < g(k)(p(k)) for all k > i. Since g(p) ≤ p, we must
have

αi < g(k)(p(k)) ≤ p(k) ∀k < i

and hence Vt ≤ V a.s.. This implies that E[f(VT , s)] ≤
E[f(V, s)], and using the the guarantee of P on f(V, s)
implies E[f(VT , s)] ≤ E[f(V, s)] ≤ q for all s, which
yields the theorem statement by linearity of expecta-
tion.

If P only have an independent guarantee, note
that if p1

T , . . . , p
m0

T are independent, then so are
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g1(p1
T ), . . . , gm0(pm0

T ) and we can apply the same rea-
soning as above to imply the (f, q) guarantee in the
independent case.

Proof of Lemma 5.6. Let M = R(p1
T1
, . . . , pmTm

),
M′ = R(p1

N , . . . , p
m
N ) be the tests rejected by S(P)

and S ′(P) and R = |M|, R′ = |M′| be their cardinally,
respectively.

Consider the case when P is a step-up procedure. We
show that R = R′. The monotonicity of the sequential
p–values implies that pkTk

≤ pkN for all k, and thus
R ≤ R′; if pkTk

is rejected, then pkN must be as well. We
also argue that R ≥ R′; suppose, instead, that R < R′,
which implies that p(R)

T(R)
≤ αR < p

(R′)
N ≤ αR′ , which is

a contradiction since Tk = N for all k that were not
already stopped. Hence, R = R′.

If the two procedures both reject R tests, then αR <
p

(V+1)
N , . . . , p

(m)
N and αR < p

(R+1)
T(R+1)

, . . . , p
(m)
T(m)

corre-
spond to the tests that have not been rejected. But we
have T(R+1), . . . , T(m) = N , soM =M′.

Now consider the case when P is a step-down proce-
dure. If R tests are rejected by S(P), then p

(1)
T(1)
≤

α1, . . . , p
(R)
T(R)
≤ αR. Since p(k)

N ≤ p
(k)
T(k)

, we must have
M⊆M′. Now, suppose there exists an index k such
that test k is rejected by S ′(P) but not S(P). This
implies that pkN ≤ αR′ but pkTk

> αR′ . However, by
construction of Tk, we have that Tk < N only if test
k is rejected, which implies that pkTk

> αR′ cannot
happen. Thus, we have M = M′ for the step-down
case as well.


