
Robust Locally-Linear Controllable Embedding

Ershad Banijamali1 Rui Shu2 Mohammad Ghavamzadeh3 Hung Bui3 Ali Ghodsi1

1University of Waterloo 2Standford University 3DeepMind

Abstract

Embed-to-control (E2C) [17] is a model
for solving high-dimensional optimal con-
trol problems by combining variational auto-
encoders with locally-optimal controllers.
However, the E2C model suffers from two
major drawbacks: 1) its objective function
does not correspond to the likelihood of the
data sequence and 2) the variational encoder
used for embedding typically has large vari-
ational approximation error, especially when
there is noise in the system dynamics. In this
paper, we present a new model for learning
robust locally-linear controllable embedding
(RCE). Our model directly estimates the pre-
dictive conditional density of the future ob-
servation given the current one, while intro-
ducing the bottleneck [11] between the cur-
rent and future observations. Although the
bottleneck provides a natural embedding can-
didate for control, our RCE model introduces
additional specific structures in the genera-
tive graphical model so that the model dy-
namics can be robustly linearized. We also
propose a principled variational approxima-
tion of the embedding posterior that takes
the future observation into account, and thus,
makes the variational approximation more
robust against the noise. Experimental re-
sults show that RCE outperforms the E2C
model, and does so significantly when the un-
derlying dynamics is noisy.

1 Introduction

Model-based locally optimal control algorithms are
popular in controlling non-linear dynamical systems

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

with continuous state and action spaces. Algorithms
from this class such as differential dynamic program-
ming (DDP) [3], iterative linear quadratic regulator
(iLQR) [8], and iterative linear quadratic Gaussian
(iLQG) [14] have been successfully applied to a va-
riety of complex control problems [1, 13, 7, 9]. The
general idea of these methods is to iteratively linearize
the non-linear dynamics around the current trajectory
and then use linear quadratic methodology to derive
Riccati-like equations to improve the trajectory. How-
ever, these methods assume that the model of the sys-
tem is known and need relatively low-dimensional state
representations. These requirements limit their usage
in control of dynamical systems from raw sensory data
(e.g., image and audio), a scenario often seen in mod-
ern reinforcement learning (RL) systems.

Although both model-based RL and methods to find
low-dimensional representations that are appropriate
for control (see e.g., [2]) have a long history, they have
recently witnessed major improvements due to the ad-
vances in the field of deep learning. Deep autoen-
coders [6, 15] have been used to obtain low-dimensional
representations for control, and deep generative mod-
els have been used to develop new model-based RL al-
gorithms. However, what is desirable in model-based
locally optimal control algorithms is a representation
that can be used for learning a model of the dynam-
ical system and can also be systematically incorpo-
rated into the existing tools for planning and control.
One such model is embed to control (E2C) [17]. E2C
turns the problem of locally optimal control in high-
dimensional non-linear systems into one of identifying
a low-dimensional latent space in which we can easily
perform locally optimal control. The low-dimensional
latent space is learned using a model based on varia-
tional autoencoders (VAEs) [5, 10] and the iLQG al-
gorithm [14] is used for locally optimal control.

While the idea of E2C is intriguing, it suffers from
two major statistical deficiencies. Firstly, to induce
the lower-dimensional embedding, at each time step

Part of the work was done when the first four authors
were at Adobe Research.

Robust Locally-Linear Controllable Embedding

t, E2C models the pair-marginal distribution of two
adjacent observations (xt,xt+1). As a result, its loss
function effectively is the sum over the pair-marginals,
which is clearly not the data likelihood for the entire
trajectory. Moreover, at every time step t, E2C needs
to enforce the consistency between the posterior of the
embedding and the predictive distribution of the fu-
ture embedding by minimizing their KL divergence.
These all indicate that the E2C loss is not a lower-
bound of the likelihood of the data. The practice of
modeling the pair-marginal of (xt,xt+1) using a latent
variable model also imposes a Gaussian prior on the
embedding space, which might be in conflict with the
locally-linear constraint that we would like to impose.
Secondly, the variational inference scheme in E2C
attempts to approximate the posterior of the latent
embedding via a recognition model that does not de-
pend on the future observation xt+1. We believe that
this is done out of necessity, so that the locally-linear
dynamics can be encoded as a constraint in the orig-
inal E2C model. In an environment where the future
is uncertain (e.g., in the presence of noise or other
unknown factors), the future observation carries sig-
nificant information about the true posterior of the
latent embedding. Thus, a variational approximation
family that does not take future observation into ac-
count, while approximating the posterior, will result in
a large variational approximation error, leading to the
learning of a sub-optimal model that underperforms,
especially when the dynamics is noisy.

To address these issues, we take a more systematic
view of the problem. Instead of mechanically apply-
ing VAE to model the pair-marginal density, we build
on the recent bottleneck conditional density estima-
tor (BCDE) [11] and directly model the predictive
conditional density p(xt+1|xt). The BCDE model in-
troduces a bottleneck random variable zt in the mid-
dle of the information flow from xt to xt+1. While
this bottleneck provides a natural embedding candi-
date for control, these embeddings need to be struc-
tured in a way to respect the locally linear constraint
of the dynamics. Our proposed model, robust con-
trollable embedding (RCE), provides a rigorous answer
to this question in the form of a generative graphical
model. A key idea is to explicitly treat the reference
linearization point in the locally-linear model as an
additional random variable. We also propose a princi-
pled variational approximation of the embedding pos-
terior that takes the future observation into account
and optimizes a variational lower-bound of the like-
lihood of the data sequence. This allows our frame-
work to provide a clean separation of the generative
graphical model and the amortized variational infer-
ence mechanism (e.g., the recognition model).

After a brief overview of locally-linear control and E2C
in Section 2, we present our proposed RCE model
in Section 3. Unlike E2C, RCE directly models the
conditional density of the next observation given the
current one via a form of bottleneck conditional den-
sity estimators [11]. In Section 3, we first describe
the RCE’s graphical model in details and then present
the proposed variational approximation of the embed-
ding’s posterior. In Section 4, we apply RCE to four
RL benchmarks from [17] and show that it consis-
tently outperforms E2C in both prediction and plan-
ning. Crucially, we demonstrate the robustness of
RCE, i.e., as we add noise to the dynamics, RCE con-
tinues to perform reasonably well while E2C’s perfor-
mance degrades sharply.

2 Preliminaries

In this section, we first define the non-linear control
problem that we are interested to solve, and then
provide a brief overview of stochastic locally optimal
control and the E2C model. We also motivate our
proposed robust controllable embedding (RCE) model
that will be presented in Section 3.

2.1 Problem Formulation

We are interested in controlling the non-linear dynam-
ical systems of the form

st+1 = fS(st,ut) + nS , (1)

where st ∈ Rns and ut ∈ Rnu denote the state and ac-
tion of the system at time step t, nS ∼ N (0,ΣnS)
is the Gaussian system noise, and fS is a smooth
non-linear system dynamics. Note that in this case
p(st+1|st,ut) would be the multivariate Gaussian dis-
tribution N

(
fS(st,ut),ΣnS

)
. We assume that we

only have access to the high-dimensional observation
xt ∈ Rnx of each state st (ns � nx) and our goal is
to learn a low-dimensional latent state space Z ⊂ Rnz
(nz � nx) in which we perform optimal control.

2.2 Stochastic Locally Optimal Control

Stochastic locally optimal control (SLOC) is based on
the idea of controlling the non-linear system (1), along
a reference trajectory {s̄1, ū1, . . . , s̄H , ūH , s̄H+1}, by
transforming it to a time-varying linear quadratic reg-
ulator (LQR) problem

min
u1:T

E

[
T∑
t=1

(
(st − sf)>Q(st − sf) + u>t Rut

)]
s.t yt+1 = Atyt + Btvt, (2)

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

where sf is the final (goal) state, Q and R are cost
weighting matrices, yt = st − s̄t, vt = ut − ūt, s̄t+1 =
fS(s̄t, ūt), At = ∂fS

∂s (s̄t, ūt), and Bt = ∂fS
∂u (s̄t, ūt).

Eq. 2 indicates that at each time step t, the non-linear
system has been locally approximated with a linear
system around the reference point (s̄t, ūt) as

st+1 ≈ fS(s̄t, ūt) +

[
∂fS
∂s

(s̄t, ūt)

]
(st − s̄t) (3)

+

[
∂fS
∂u

(s̄t, ūt)

]
(ut − ūt).

The RHS of Eq. 2 sometimes contains an offset ct re-
sulted from the linear approximation and/or noise

yt+1 = Atyt + Btvt + ct. (4)

Eq. 4 can be seen as[
yt+1

1

]
=

[
At ct
0 1

] [
yt
1

]
+

[
Bt

0

]
vt,

and thus, can be easily transformed to the standard
form (2) by adding an extra dimension to the state as

y′t =

[
yt
1

]
, A′t =

[
At ct
0 1

]
, B′t =

[
Bt

0

]
.

Locally optimal actions in Eq. 2 can be computed in
closed-form by solving the local LQRs (3) using the
value iteration algorithm.

Since the quality of the control depends on the qual-
ity of the reference trajectory, SLOC algorithms are
usually iterative (e.g., iLQR and iLQG), and at each
iteration generate a better reference trajectory. At the
abstract level, a SLOC algorithm operates as follows:
at each iteration k, a reference trajectory is generated
using the current policy π(k), the LQR approximation
of the non-linear system is computed around this ref-
erence trajectory, and finally the next policy π(k+1) is
computed by solving this LQR. The algorithm stops
after a fixed number of iterations, e.g., 100.

As mentioned in Section 2.1, since we do not have ac-
cess to the true state s, we perform the optimal control
in the low-dimensional latent space z learned from the
observations x. Thus, all the s’s in this section should
be replaced by z in the following sections.

2.3 Embed to Control (E2C) Model

We now return to the assumption that we only ob-
serve a finite number of high-dimensional sensory data
(e.g., images) xt ∈ Rnx from the system. We de-
note the high-dimensional observation sequence by
X = {x1,x2, ...,xN}. Note that the observations are
selected such that the sequence X is Markovian. For

example, x could be a set of buffered observed images
of the system that encodes all the information about
the past. Depending on the system, this set may have
only one or multiple images.

It is clear that direct control in Rnx is complicated be-
cause of its high-dimensional nature. However, when
the true underlying state space is low-dimensional, it
would be possible to embed the high-dimensional ob-
servations in a low-dimensional latent space Z, in a
way that the dynamics of the system can be captured
by a much simpler model, which can then be used for
optimal control. This general strategy is known as
embed to control (E2C) [17]. Note that a suitable em-
bedding function is sufficient for model-based control,
we do not need to recover the true state st.

We denote by zt the low-dimensional embedding of xt.
E2C first introduces a new variable ẑt+1 as the result
of applying ut to the latent dynamics fZ , i.e.,

ẑt+1 = fZ(zt,ut) + nZt , (5)

where nZt denotes the transition noise in the latent
space. E2C employs the pair (zt, ẑt+1) as the latent
variables that model the pair-marginal p(xt,xt+1). It
uses the variational recognition network q(zt|xt), while
forcing q(ẑt+1|zt,ut) to be the generative dynamics of
Eq. 5. This leads to the following lower-bound of the
pair-marginal

log p(xt,xt+1|ut) ≥ Lbound
t (xt,ut,xt+1)

= Eq(zt|xt)q(ẑt+1|zt,ut)
[

log p(xt|zt)
+ log p(xt+1|ẑt+1)

]
−KL

(
q(zt|xt) ‖ p(zt)

)
. (6)

Local linearization of the dynamics is enforced inside
the recognition model q(ẑt+1|zt,ut), where mapping
from a linearization point z̄t to the linearization ma-
trices are estimated via neural networks.

Finally, we want zt+1 to be both the embedding of
xt+1 and the result of applying ut to zt. E2C at-
tempts to enforce this temporal consistency criterion
by encouraging the distributions of ẑt+1 and the next
step embedding zt+1 to be similar (in the KL sense).
Enforcing the temporal consistency leads to the mod-
ified objective

Lt = Lbound
t − λKL

(
q(ẑt+1|zt,ut) ‖ q(zt+1|xt+1)

)
,
(7)

where λ is an additional hyperparameter of the model.
We note that neither of the two objectives

∑
t Lbound

t

and
∑
t Lt is a lower-bound of the data likelihood

p(X). The fact that E2C does not optimize a proper
lower-bound of the data likelihood has also been ob-
served by [4].

Compared to E2C, our method is based on introducing
a graphical model that clearly separates the generative

Robust Locally-Linear Controllable Embedding

model from the variational recognition model. This en-
ables us to handle noise in the system and avoid heuris-
tic terms in the objective functions that need extra hy-
perparameter tuning. Furthermore, we can optimize a
lower-bound on the likelihood of the data sequence us-
ing a better-designed recognition model more robust
w.r.t. noise. Note that our goal is not to purely ob-
tain the best predictive power as in [4], but to design
a predictive model that yields a suitable embedding
representation for locally optimal control. Unlike [4]
that does not report control performance, our experi-
ments focus on the performance of the controller un-
der various noise regimes. In the next section, we de-
scribe our proposed RCE model and demonstrate how
it addresses the aforementioned issues of E2C. We give
a deconstruction of the E2C equations to provide its
graphical model in the appendix C.

3 Model Description

In this section, we first introduce our graphical model
that represents the relation between the observations
and latent variables in our model. We then derive a
lower-bound on the likelihood of the observation se-
quence. The objective of training in our model is to
maximize this lower-bound. Finally, we describe the
details of the method we use for planning in the latent
space learned by our model.

3.1 Graphical Model

We propose to learn an action-conditional density
model of the observations x1:N . Similar to E2C,
we assume that the observation sequence is Marko-
vian. Thus, optimizing the likelihood p(x1:N |u1:N)
reduces to learning an action-conditional generative
model that can be trained via maximum likelihood,
i.e.,

max
θ

log pθ(xt+1|xt,ut), (8)

where the prediction of the next observation xt+1 de-
pends only on the current xt and action ut. Note that
our generative model is parameterized by θ. For nota-
tional simplicity, we shall omit θ in our presentation.

We first discuss how to learn a low-dimensional repre-
sentation of x that adheres to globally linear dynamics
by incorporating several constraints into the structure
of our generative model. First, we introduce the la-
tent variables zt and ẑt+1 that serve as information
bottlenecks between xt and xt+1, such that

p(xt+1, zt, ẑt+1|xt,ut)
= p(zt|xt)p(ẑt+1|zt,ut)p(xt+1|ẑt+1). (9)

Intuitively, it is natural to interpret zt and ẑt+1 to be
stochastic embeddings of xt and xt+1, respectively.

Next, we enforce global linearity of p(ẑt+1|zt,ut) by
restricting it to be a deterministic, linear transition
function of the form

ẑt+1 = Azt + But + c, (10)

where A, B, and c are matrices that respectively define
the state dynamics, control dynamics, and the offset.
To emphasize the deterministic nature of this transi-
tion, we replace all the subsequent mentions of deter-
ministic p(·|·) transitions with δ(·|·).

In order to learn more expressive transition dynam-
ics, we relax the global linearity constraint to a local
one. Unlike global linearity, local linearity requires a
linearization point. To account for this, we introduce
additional variables z̄t and ūt to serve as the lineariza-
tion point, which results in a new generative model
(see the black arrows in Figure 1),

p(xt+1, zt, z̄t, ẑt+1|xt,ut, ūt) =

p(zt|xt)p(z̄t|xt)δ(ẑt+1|zt, z̄t,ut, ūt)p(xt+1|ẑt+1),
(11)

whose corresponding deterministic transition function
for δ(ẑt+1|zt, z̄t,ut, ūt) is

ẑt+1 = At(z̄t, ūt)zt + Bt(z̄t, ūt)ut + ct(z̄t, ūt). (12)

Here, A, B, and c are functions of (z̄t, ūt), and can be
parameterized by neural networks. Since the lineariza-
tion variable z̄t is not known in advance, we treat z̄t as
a random variable with distribution p(z̄t|xt). A natu-
ral consideration for p(z̄t|xt) is to set it to be identical
to p(zt|xt) a priori. This has the effect of making
the iLQR controller robust to stochastic sampling of
zt during planning. The linearization variable ūt can
be obtained from a local perturbation of action ut.

3.2 Deep Variational Learning

Training the generative model in Eq. 11 using max-
imum likelihood is intractable, since it requires the
marginalization of the latent variables. Therefore,
we propose to use deep variational inference [5, 10]
and maximize the variational lower-bound of the log-
likelihood, instead. The variational lower-bound re-
quires us to define a variational approximation to the
true posterior

q(z, z̄t, ẑt+1|xt,xt+1,ut, ūt) ≈ p(z, z̄t, ẑt+1|xt,xt+1,ut, ūt).

In adherence to the interpretation of zt and ẑt+1 as
stochastic embeddings of xt and xt+1, it is important
to enforce consistency between p(ẑt+1|xt,xt+1,ut, ūt)
and the next step probability of the embedding given
the observation p(zt+1|xt+1). Since we do not have

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

access to p(ẑt+1|xt,xt+1,ut, ūt), we instead encour-
age this consistency through posterior regularization
by explicitly setting

qφ(ẑt+1|xt+1) = p(zt+1|xt+1). (13)

Next, we propose a novel factorization of the full vari-
ational posterior as

q(z, z̄t, ẑt+1|xt,xt+1,ut, ūt) (14)

= qφ(ẑt+1|xt+1)qϕ(z̄t|xt, ẑt+1)δ(zt|ẑt+1, z̄t,ut, ūt),

where qϕ(z̄t|xt, ẑt+1) is the backward encoder and
δ(zt|ẑt+1, z̄t,ut, ūt) is the deterministic reverse tran-
sition. Our choice of factorization results in a recog-
nition model that contrasts sharply with that in E2C.
First, our recognition model properly conditions the
inference of ẑt+1 on the observation xt+1. Second,
our recognition model explicitly accounts for the de-
terministic transition in the generative model; infer-
ence of the deterministic transition can be performed
in closed-form using a deterministic reverse transition
that recovers zt as a function of z̄t, ut, ūt, and ẑt+1.
To be consistent with Eq. 12, we require that

zt = A−1
t (z̄t, ūt)

(
ẑt+1 −Bt(z̄t, ūt)ut − ct(z̄t, ūt)

)
.

During the training of the generative model, we only
need to access the inverse of At. As such, we propose
to directly train a network that outputs its inverse
Mt(z̄t, ūt) = A−1

t (z̄t, ūt). To make sure that Mt is
an invertible matrix and to enable efficient estimation,
we restrict Mt to be a rank-one perturbation of the
identity matrix, i.e.,

Mt = Inz + wt(z̄t, ūt) · rt(z̄t, ūt)>, (15)

𝑥𝑡 𝑥𝑡+1

 𝑧𝑡+1 𝑧𝑡

𝑢𝑡𝑧𝑡

Figure 1: RCE graphical model. Left: generative links
and, right: recognition model. Parallel lines mean
deterministic links, while single lines mean stochastic
links (a link that involves in sampling). zt and z̄t are
two samples from p(z|x). We use a single network (the
encoder network) to model the conditional probability
of the links with the hatch marks.

where Inz is the identity matrix of size nz, and wt

and rt are two column vectors in Rnz . We constraint
these vectors to be non-negative using a non-negative
activation at their corresponding output layers.

We now formally define the RCE loss and its lower-
bound property.

Lemma 1. Let LRCE
t be defined as

LRCE
t = Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
(16)

− Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+ H

(
qφ(ẑt+1|xt+1)

)
+ Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
.

Subject to the constraints we explicitly impose on q,
LRCE
t is a lower-bound on the conditional log-likelihood

log p(xt+1|xt,ut, ūt), which in trun defines a lower-
bound on the conditional likelihood of our interest,
i.e., p(xt+1|xt,ut) =

∫
p(xt+1|xt,ut, ūt) p(ūt|ut) dūt.

Proof. See Appendix A.

Figure 1 contains a graphical representation of our
model. It is important to note that unlike the E2C
encoder (Eq. 8 in [17]), our recognition model takes
the future state xt+1 as input. In the case of noisy
dynamics, the future state heavily influences the pos-
terior. Thus, E2C’s failure to incorporate the future
state into the variational approximation of the poste-
rior could be detrimental to the performance of the
system in the noisy regime. We clearly demonstrate
this phenomenon in our experiments.

3.3 Network Structure

For the four problems used in our experiments in Sec-
tion 4, we use feedforward networks for encoding, de-
coding, and transition. Depending on the input im-
age size, the encoder and decoder can have fully-
connected layers or convolutional layers. The transi-
tion networks always have fully-connected layers. Ac-
cording to Eq. 16, we need to model four different
conditional probabilities: p(xt+1|ẑt+1), qφ(ẑt+1|xt+1),
qϕ(z̄t|ẑt+1,xt), and p(zt|xt). Figure 2 shows the high-
level depiction of the networks and the connection be-
tween different variables used in these probabilities.

3.4 Planning

We use the iLQR algorithm to plan in the latent space
Z. A good latent space representation should allow us
not only to reconstruct and predict the images accu-
rately, but also to plan well in this space using fZ .

The inputs to the planning algorithm are the two high-
dimensional observations xi and xf , corresponding to

Robust Locally-Linear Controllable Embedding

µ�

⌃�
sampling

sampling

(a) (b)

(c) (d)

Mt

ct

sampling

Bernoulli

Distribution

encoder

backward

linearization

⌃'

µ'

µ�

⌃�

ūt

Figure 2: Schematic of the networks that are used for modeling the probabilities in our model. The gray boxes
contain input (observable) variables. (a) Encoder network that models qφ(ẑt+1|xt+1) = N

(
µφ(xt+1),Σφ(xt+1)

)
.

(b) Transition network that contains two parts. One part, denoted by “backward encoder”, models
qϕ(z̄t|xt, ẑt+1) = N

(
µϕ(xt, ẑt+1),Σϕ(xt, ẑt+1)

)
, and the other part, denoted by “linearization”, is used to obtain

Mt, Bt, and ct, which are the parameters of the locally linear model in the latent space. (c) Decoder network
that models p(xt+1|ẑt+1). In our experiments we assume that this distribution is Bernoulli. Therefore, we use
sigmoid nonlinearity at the last layer of the decoder. x̄t+1 is the reconstructed version of xt+1. (d) The network
that models p(zt|xt). According to Eq. 13, since p(zt|xt) = qφ(zt|xt) and therefore we tie the parameters of this
network with the encoder network, p(zt|xt) = N (µφ(xt),Σφ(xt)). Note that p(zt|xt) is the same as p(z̄t|xt).
Thus, the KL term in (16) can be written as KL

(
N (µϕ,Σϕ) ‖ N (µφ(xt),Σφ(xt))

)
.

the initial and final (goal) states si and sf . We encode
these two high-dimensional observations to the latent
space observations zi and zf . We sample a random
set of H actions u1:H and apply them to the model we
have learned in the latent space Z, starting from the
initial observation zi. This generates a reference tra-
jectory {z̄1 = zi, ū1 = u1, z̄2, ū2 = u2, . . . , z̄H , ūH =
uH , z̄H+1} of size H. We pass this reference trajectory
to iLQR and it returns the set of actions u∗1:H that has
been iteratively optimized to minimize a quadratic cost
similar to (2) in the latent space Z. We apply u∗1 to
the dynamical system, observe the next state’s obser-
vation x2, and encode it to the latent space observa-
tion z2. We then generate another reference trajectory
by starting from z2 and applying the sequence of H
actions {u∗2, . . . ,u∗H ,uH+1}, where uH+1 is a random
action. We then run iLQR with this trajectory and
apply the first action in the set of H actions it returns
to the system. We continue this process for T (the
planning horizon) steps.

4 Experiments

In this section, we compare the performance of our pro-
posed RCE model with that of E2C in terms of both
prediction and planning in the four domains of [17].
To generate our training and test sets, each consists
of triples (xt,ut,xt+1), we first sample a state st and

generate its corresponding observation xt. We then
take an action ut and add a Gaussian noise with co-
variance ΣnS according to Eq. 1 to obtain the next
state st+1, which is used to generate the next observa-
tion xt+1. We consider both deterministic (ΣnS = 0)
and stochastic scenarios. In the stochastic case, we
add noise to the system with different values of ΣnS

and evaluate the models performance under noise.

In each of the four domains used in our experiments,
we compare the performance of RCE and that of E2C
in terms of four different factors (see Tables 1– 4).
1) Reconstruction Loss is the loss in reconstructing xt
using the encoder and decoder. 2) Prediction Loss
is the loss in predicting xt+1, given xt and ut, using
the encoder, decoder, and transition network. Both
reconstruction and prediction loss are computed based
on binary cross entropy. 3) Planning Loss is computed
based on the following quadratic loss:

J =

T∑
t=1

(st − sf)>Q(st − sf) + u>t Rut. (17)

We apply the sequence of actions returned by iLQR
to the dynamical system and report the value of the
loss in Eq. 17. 4) Success Rate shows the number of
times the agents reaches the goal within the planning
horizon T , and remains near the goal in case it reaches
it in less than T steps. For each of the domains, all

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

the results are averaged over 20 runs. The details of
our implementations, including the network’s struc-
ture, the size of the latent space, and the planning
horizon are specified in Appendix B.

4.1 Planar System

Consider an agent in a surrounded area, whose goal is
to navigate from a corner to the opposite one, while
avoiding the six obstacles in this area. The system is
observed through a set of 40 × 40 pixel images taken
from the top, which specify the agent’s location in the
area. Actions are two-dimensional and specify the di-
rection of the agent’s movement.

Table 1 shows that RCE outperforms E2C in both pre-
diction/reconstruction and planning in this domain.
The Gaussian noise we add to the system has a diag-

onal covariance matrix with equal variance in all di-
mensions. The values mentioned in the table for ΣnS

are the standard deviation in each dimension.

Figure 3 shows the latent space representation of data
points in the planar system dataset for both RCE and
E2C models. RCE has clearly a more robust repre-
sentation against the noise and is able to predict the
defined trajectory with a much higher quality.

4.2 Inverted Pendulum (Acrobat)

This is the classic problem of controlling an inverted
pendulum [16] from 48× 48 pixel images. The goal in
this task is to swing up and balance an underactuated
pendulum from a resting position (pendulum hanging
down). The true state space of the system S has two
dimensions: angle and angular velocity. To keep the

Table 1: RCE and E2C Comparison – Planar System

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 3.6± 1.7 6.2± 2.8 21.4± 2.9 100%
E2C 7.4± 1.7 9.3± 2.8 26.3± 4.9 100%

1
RCE 8.3± 5.5 10.1± 6.2 25.4± 3.6 100%
E2C 19.2± 5.1 28.3± 10.2 34.1± 9.5 95%

2
RCE 12.3± 4.9 17.3± 6.2 36.4± 10.3 95%
E2C 37.1± 10.5 45.8± 13.1 63.7± 16.3 75%

5
RCE 25.2± 6.1 27.3± 8.2 50.3± 14.5 85%
E2C 60.3± 18.2 78.3± 15.0 112.4± 30.2 45%

No Noise

⌃nS = 1

⌃nS = 2

⌃nS = 5

(a)

(b)

True Map

(c)

Figure 3: (a) Left: The true state space of the planar system. Each point on the map corresponds to one image
in the dataset. (a) Right: A random trajectory. Each image is 40 × 40 black and white. The circles show the
obstacles and the square is the agent in the domain. (b) Reconstructed map and predicted trajectory in the
latent space of the E2C model for different noise levels. (c) Reconstructed map and predicted trajectory in the
latent space of the RCE model for different noise levels.

Robust Locally-Linear Controllable Embedding

Table 2: RCE and E2C Comparison – Inverted Pendulum (Acrobat)

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 43.1± 13.2 48.1± 17.2 14.2± 4.6 95%
E2C 73.2± 20.1 79.6± 32.6 16.1± 2.9 90%

1
RCE 61.1± 16.2 70.2± 36.1 17.3± 7.1 85%
E2C 97.1± 34.1 109.7± 58.2 29.9± 9.2 60%

2
RCE 92.11± 35.4 106.4± 53.2 27.5± 6.6 70%
E2C 140.2± 47.1 179.5± 61.1 40.7± 11.8 40%

Markovian property in the observation space, we need
to have two images in each observation xt, since each
image shows only position of the pendulum and does
not have any information about its velocity.

Table 2 contains our results of comparing RCE and
E2C models in this task. Learning the dynamics in
this problem is harder than reconstructing the images.
Therefore, at the beginning of the training we set the
weights of the two middle terms in Eq. 16 to 10, and
eventually decrease them to 1. The results show that
RCE outperforms than E2C, and the difference is sig-
nificant under noisy conditions.

4.3 Cart-pole Balancing

This is the visual version of the classic task of con-
trolling a cart-pole system [12]. The goal in this task
is to balance a pole on a moving cart, while the cart
avoids hitting the left and right boundaries. The con-
trol (action) is 1-dimensional and is the force applied
to the cart. The original state of the system st is 4-
dimensional. The observation xt is a history of two
80×80 pixel images (to maintain the Markovian prop-
erty). Due to the relatively large size of the images,
we use convolutional layers in encoder and decoder.
To make a fair comparison with E2C, we also set the
dimension of the latent space Z to 8.

Table 3 contains our results of comparing RCE and
E2C models in this task. We again observe a similar
trend: RCE outperforms E2C in both noiseless and
noisy settings and is significantly more robust.

4.4 Three-link Robot Arm

The goal in this task is to move a three-link planar
robot arm from an initial position to a final position
(both chosen randomly). The real state of the system
S is 6-dimensional and the actions are 3-dimensional,
representing the force applied to each joint of the arm.
We use two 128 × 128 pixel images of the arm as ob-
servation x. To be consistent with the E2C model, we
choose the latent space Z to be 8-dimensional.

Table 4 contains our results of comparing RCE and
E2C models in this task. Similar to the other domains,
our results show that the RCE model is more robust
to noise than E2C.

5 Conclusions

In summary, we proposed a new method to embed
the high-dimensional observations of a MDP in such
a way that both the embeddings and locally optimal
controllers are robust w.r.t. the noise in the system’s
dynamics. Our RCE model enjoys a clean separation
between the generative graphical model and its recog-
nition model. The RCE’s generative model explic-
itly treats the unknown linearization points as random
variables, while the recognition model is factorized in
reverse direction to take into account the future obser-
vation as well as exploiting determinism in the transi-
tion dynamics. Our experimental results demonstrate
that the RCE’s predictive and planning performance
are better and significantly more robust than that of
E2C in all the four benchmarks where E2C perfor-
mance has been measured [17].

Table 3: RCE and E2C Comparison – Cart-pole Balancing

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 33.2± 15.6 42.1± 26.9 21.2± 6.3 90%
E2C 44.9± 17.0 57.3± 22.9 25.3± 4.8 85%

1
RCE 52.1± 20.3 63.3± 27.2 28.4± 5.5 80%
E2C 70.2± 23.7 90.5± 42.4 39.8± 5.2 70%

2
RCE 77.6± 30.2 88.4± 38.3 42.2± 8.3 70%
E2C 112.6± 39.2 133.0± 56.5 67.2± 9.3 40%

Table 4: RCE and E2C Comparison – Robot Arm

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 60.5± 27.1 69.9± 32.2 81.3± 35.5 90%
E2C 71.3± 19.5 83.4± 28.6 90.23± 47.38 90%

1
RCE 96.5± 34.4 112.6± 42.2 106.2± 50.8 80%
E2C 138.1± 42.5 172.2± 58.3 155.2± 70.1 65%

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

References

[1] C. Atkeson and J. Murimoto. Non-parametric
representations of policies and value functions: A
trajectory-based approach. In Advances in Neural
Information Processing Systems, 2002.

[2] W. Böhmer, J. Springenberg, J. Boedecker,
M. Riedmiller, and K. Obermayer. Autonomous
learning of state representations for control:
An emerging field aims to autonomously learn
state representations for reinforcement learning
agents from their real-world sensor observations.
Künstliche Intelligenz, 29(4):353–362, 2015.

[3] D. Jacobson and D. Mayne. Differential Dynamic
Programming. American Elsevier, 1970.

[4] M. Karl, M. Soelch, J. Bayer, and P. van der
Smagt. Deep variational bayes filters: Unsuper-
vised learning of state space models from raw
data. In Proceedings of ICLR, 2017.

[5] D. Kingma and M. Welling. Auto-encoding vari-
ational Bayes. In Proceedings of ICLR, 2014.

[6] S. Lange and M. Riedmiller. Deep auto-encoder
neural networks in reinforcement learning. In Pro-
ceedings of the International Joint Conference on
Neural Networks, pages 1–8, 2010.

[7] S. Levine and V. Koltun. Variational policy search
via trajectory optimization. In Advances in Neu-
ral Information Processing Systems, 2013.

[8] W. Li and E. Todorov. Iterative linear quadratic
regulator design for nonlinear biological move-
ment systems. In Proceedings of ICINCO, pages
222–229, 2004.

[9] Y. Pan and E. Theodorou. Probabilistic differen-
tial dynamic programming. In Advances in Neural
Information Processing Systems, 2014.

[10] D. Rezende, S. Mohamed, and D. Wierstra.
Stochastic backpropagation and approximate in-
ference in deep generative models. In Proceedings
of the 31st International Conference on Machine
Learning, pages 1278–1286, 2014.

[11] R. Shu, H. Bui, and M. Ghavamzadeh. Bottleneck
conditional density estimation. In Proceedings of
the International Conference on Machine Learn-
ing, 2017.

[12] R. Sutton and A. Barto. Introduction to Rein-
forcement Learning. MIT Press, 1998.

[13] Y. Tassa, T. Erez, and W. Smart. Receding hori-
zon differential dynamic programming. In Ad-
vances in Neural Information Processing Systems,
2008.

[14] E. Todorov and W. Li. A generalized iterative
LQG method for locally-optimal feedback control
of constrained non-linear stochastic systems. In
Proceedings of the American Control Conference,
2005.

[15] N. Wahlström, T. Schön, and M. Desienroth.
From pixels to torques: Policy learning with
deep dynamical models. In arXiv preprint
arXiv:1502.02251, 2015.

[16] H. Wang, K. Tanaka, and M. Griffin. An ap-
proach to fuzzy control of nonlinear systems; sta-
bility and design issues. IEEE Transactions on
Fuzzy Systems, 4(1), 1996.

[17] M. Watter, J. Springenberg, J. Boedecker, and
M. Riedmiller. Embed to control: A locally lin-
ear latent dynamics model for control from raw
images. In Advances in Neural Information Pro-
cessing Systems, pages 2746–2754, 2015.

Robust Locally-Linear Controllable Embedding

A Objective Function

Proof of Lemma 1. We define q∗ = q(zt, z̄t, ẑt+1|xt,xt+1,ut, ūt). Our goal is to define a variational lower-bound
on the conditional log-likelihood log p(xt+1|xt,ut). The likelihood p(xt+1|xt,ut) may be written as

p(xt+1|xt,ut) =

∫
p(xt+1, ūt|xt,ut) dūt =

∫
p(xt+1, ūt,xt,ut)

p(xt,ut)
dūt

=

∫
p(xt+1|ūt,xt,ut) p(ūt|xt,ut) p(xt,ut)

p(xt,ut)
dūt =

∫
p(xt+1|xt,ut, ūt) p(ūt|xt,ut) dūt

=

∫
p(xt+1|xt,ut, ūt) p(ūt|ut) dūt.

Now in order to derive a variational lower-bound on the conditional log-likelihood log p(xt+1|xt,ut), we shall
derive a variational lower-bound on the conditional log-likelihood log p(xt+1|xt,ut, ūt) as

log p(xt+1|xt,ut, ūt) ≥ Eq∗
[

log p(xt+1|zt, z̄t, ẑt+1,xt,ut, ūt)
]
−KL

(
q∗ ‖ p(zt, z̄t, ẑt+1|xt,ut, ūt)

)
= Eq∗

[
log p(xt+1|zt, z̄t, ẑt+1,xt,ut, ūt) + log p(zt, z̄t, ẑt+1|xt,ut, ūt)− log q∗

]
= Eq∗

[
log p(xt+1, zt, z̄t, ẑt+1|xt,ut, ūt)− log q∗

]
(a)
= Eq∗

[
log p(xt+1|ẑt+1) + log p(zt|xt) + log p(z̄t|xt) + log δ(ẑt+1|zt, z̄t,ut, ūt)−
log qφ(ẑt+1|xt+1)− log qϕ(z̄t|xt, ẑt+1)− log δ(zt|z̄t, ẑt+1,ut, ūt)

]
(b)
= Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
+ E qφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
+ E qφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(z̄t|xt)

]
− Eqφ(ẑt+1|xt+1)

[
log qφ(ẑt+1|xt+1)

]︸ ︷︷ ︸
H
(
qφ(ẑt+1|xt+1)

)
− E qφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log qϕ(z̄t|xt, ẑt+1)

]
= Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
+ E qφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p

(
δ(z̄t, ẑt+1,ut, ūt)

)]
+H

(
qφ(ẑt+1|xt+1)

)
− Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|xt, ẑt+1) ‖ p(z̄t|xt)

)]
= LRCE

t .

(a) We replace log p(xt+1, zt, z̄t, ẑt+1|xt,ut, ūt) and q∗ using Equations 11 and 14.

(b) The terms that contain δ(.|.) are zero.

The terms in the variational lower-bound LRCE
t can be written in closed form as

1. Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
Using the reparameterization trick [5], we should first sample from N (µφ(xt+1),Σφ(xt+1)), i.e. we sample
from a standard normal distribution ε ∼ N (0, I) and transform it using µφ(xt+1) and Σφ(xt+1). When
the covariance matrix Σφ(xt+1) = diag(σ2(xt+1)) is diagonal, then the transformation is simply ẑt+1 =
µφ(xt+1) + σφ(xt+1)� ε. Considering a Bernoulli distribution for the posterior of xt+1, the term inside the
expectation is a binary cross entropy.

2. Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
Similar to the previous term, to estimate the expected value we first need to sample from
N (µφ(xt+1),Σφ(xt+1)), using the reparameterization trick. Note that p(z̄t|xt) = p(zt|xt) and p(zt|xt) =
q(zt|xt) = N (µφ(xt),Σφ(xt)). For the qϕ network, which is the transition network in our model, we have
qϕ(z̄t|ẑt+1,xt) = N (µϕ,Σϕ). The KL term can be written as

KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)
=

1

2

(
Tr
(
Σφ(xt)

−1
Σϕ

)
+
(
µφ(xt)− µϕ

)>
Σφ(xt)

−1(
µφ(xt)− µϕ

)
+ log(

|Σφ(xt)|
|Σϕ|

)− nz
)
.

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

3. H
(
qφ(ẑt+1|xt+1)

)
The entropy term for the encoding network can be easily written in closed form as

H
(
qφ(ẑt+1|xt+1)

)
=

1

2
log
(
(2πe)nz |Σφ(xt+1)|

)
. (18)

4. Eqφ(ẑt+1|xt+1)
qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
Here we first need to sample from N (µφ(xt+1),Σφ(xt+1)) and N (µϕ,Σϕ), using the reparameterization
trick. Given that p(zt|xt) = N (µφ(xt),Σφ(xt)), the log term inside the expectation means that we want
the output of transition network to be close to the mean of its distribution, up to some constant.

log p(zt|xt) = −1

2

(
log
(
(2πe)nz |Σφ(xt)|

)
+ (zt − µφ(xt))

>Σφ(xt)
−1

(zt − µφ(xt))
)
. (19)

B Implementation

Transition model structure: xt goes through one hidden layer with `1 units and ẑt+1 goes through one hidden
layer with `2 units. The outputs of the two hidden layers are concatenated and go through a network with two
hidden layers of size `3 and `4, respectively, to build µϕ and Σϕ. z̄t is sampled from this distribution and is
concatenated by the action. The result goes through a three-layer network with `5, `6, and `7 units to build Mt,
Bt, and ct.

In the following we will specify the values for `i’s for each of the four tasks used in our experiments.

B.1 Planar system

Input: 40×40 images (1600 dimensions). 2-dimensional actions. 5000 training samples of the form (xt,ut,xt+1)

Latent space: 2-dimensional

Encoder: 3 Layers: 300 units- 300 units- 4 units (2 for mean and 2 for the variance of the Gaussian distribution)

Decoder: 3 Layers: 300 units- 300 units- 1600 units

Transition: `1 = 100- `2 = 5- `3 = 100- `4 = 4- `5 = 20- `6 = 20- `7 = 10

Number of control actions: or the planning horizon T = 40

B.2 Inverted Pendulum

Input: Two 48 × 48 images (4608 dimensions). 1-dimensional actions. 5000 training samples of the form
(xt,ut,xt+1)

Latent space: 3-dimensional

Encoder: 3 Layers: 500 units- 500 units- 6 units (3 for mean and 3 for the variance of the Gaussian distribution)

Decoder: 3 Layers: 500 units- 500 units- 4608 units

Transition: `1 = 200- `2 = 10- `3 = 200- `4 = 6- `5 = 30- `6 = 30- `7 = 12

Number of control actions: or the planning horizon T = 100

B.3 Cart-pole Balancing

Input: Two 80 × 80 images (12800 dimensions). 1-dimensional actions. 15000 training samples of the form
(xt,ut,xt+1)

Latent space: 8-dimensional

Robust Locally-Linear Controllable Embedding

Encoder: 6 Layers: convolutional layer: 32× 5× 5; stride (1,1) - convolutional layer: 32× 5× 5; stride (2,2) -
convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer: 10× 5× 5; stride (2,2) - 200 units- 16 units (8
for mean and 8 for the variance of the Gaussian distribution)

Decoder: 6 Layers: 200 units- 1000 units- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-
convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)-
Upsampling (2,2)- convolutional layer: 2× 5× 5; stride (1,1)

Transition: `1 = 300- `2 = 10- `3 = 300- `4 = 16- `5 = 40- `6 = 40- `7 = 32

Number of control actions: or the planning horizon T = 100

B.4 Three-Link Robot Arm

Input: Two 128× 128 images (32768 dimensions). 3-dimensional actions. 30000 training samples of the form
(xt,ut,xt+1)

Latent space: 8-dimensional

Encoder: 6 Layers: convolutional layer: 64× 5× 5; stride (1,1) - convolutional layer: 32× 5× 5; stride (2,2) -
convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer: 10× 5× 5; stride (2,2) - 500 units- 16 units (8
for mean and 8 for the variance of the Gaussian distribution)

Decoder: 6 Layers: 500 units- 2560 units- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-
convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)-
Upsampling (2,2)- convolutional layer: 2× 5× 5; stride (1,1)

Transition: `1 = 400- `2 = 10- `3 = 400- `4 = 6- `5 = 40- `6 = 40- `7 = 48

Number of control actions: or the planning horizon T = 100

C E2C Graphical Model

Since the original E2C paper does not provide a graphical model for its generative and recognition models, in
this section, we present a graphical model that faithfully corresponds to the lower-bound reported in Equation 12
of the E2C paper [17].

At high-level, the generative model involves two latent variables zt and ẑt+1, with the joint factorization (note
that we omit the dependency on ut for brevity)

p(xt,xt+1, zt, ẑt+1) = p(xt+1|ẑt+1) p(xt|zt) p(ẑt+1|zt,xt) p(zt).

With the above generative model, any recognition model of the form (note that we borrow the generative
transition dynamic p(ẑt+1|zt,xt))

q(zt, ẑt|xt,xt+1) = q(zt|xt) p(ẑt+1|zt,xt)

gives rise to the following variational lower-bound of the log-pair-marginal

log p(xt,xt+1) ≥ Eq(zt,ẑt+1|xt,xt+1)

{
log

p(xt,xt+1, zt, ẑt+1)

q(zt, ẑt+1|xt,xt+1)

}
= Eq(zt|xt)

[
log p(xt|zt)

]
+ Eq(ẑt+1|xt)

[
log p(xt+1|ẑt+1)

]
−KL

(
q(zt|xt)‖p(zt)

)
. (20)

Note that the form of Equation 20 above is equivalent to the bound in Equation 12 in [17]. The E2C objective
(their Equation 11) includes another auxiliary KL term to maintain the consistency of the embedding as it
evolves over time. This term is not needed in our RCE model.

Next, we give our interpretation of Equations 8 and 10 in [17]. We claim that E2C works with the following
transition dynamics

q(ẑt+1|zt,xt) = p(ẑt+1|zt,xt) =

∫
z̄t

p(ẑt+1|z̄t, zt)p(z̄t|xt)

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi

where z̄t plays the role of the linearization point in the LQR model and p(ẑt+1|z̄t, zt) is deterministic (an added
Gaussian noise can also be handled in a straightforward manner)

ẑt+1 = A(z̄t)zt + B(z̄t)ut + o(z̄t).

Furthermore, the recognition model has an additional constraint q(z̄t|xt) = p(z̄t|xt) = q(zt|xt).

Under these conditions, the implementation of the lower-bound will give rise to exactly their Equations 8 and 10
(minus some typos). We note that there is a typo in their Equation 10: the matrices and offset of the transition
dynamics should be functions of the linearization point z̄t. The first two lines in Equation 8 describe the
sampling of q(ẑt+1|xt): the first line should read as the sampling of the auxiliary variable z̄t. The second line
is the sampling of ẑt+1, where the matrices and offset A,B,o are functions of z̄t, sampled in the first line. The
second line holds due to the fact that given z̄t, zt+1 has a linear dynamics with known coefficients, and zt|xt is
Gaussian N (µt,Σt) under q and hence can be marginalized out.

!" !"#$

%̂"#$%"̅

("%"

!" !"#$

%̂"#$

%"̅ ("

%"

ut

zt

xt xt+1

z̄t

ẑt+1

ut

zt

xt xt+1

z̄t

ẑt+1

Figure 4: E2C Graphical Model- Left: generative model (p) and right: recognition model (q). Note the tying
between the dynamics in p and q, i.e. q(ẑt+1|zt,xt) = p(ẑt+1|zt,xt). Also, note the tying of the decoder
parameters p(xt|zt) and p(xt+1|ẑt+1), which is shown by the hatch marks. The parameter of the networks for
p(z̄t|xt), q(z̄t|xt), and q(zt|xt) are also tied, marked by the dashes on this figure.

	Introduction
	Preliminaries
	Problem Formulation
	Stochastic Locally Optimal Control
	Embed to Control (E2C) Model

	Model Description
	Graphical Model
	Deep Variational Learning
	Network Structure
	Planning

	Experiments
	Planar System
	Inverted Pendulum (Acrobat)
	Cart-pole Balancing
	Three-link Robot Arm

	Conclusions
	Objective Function
	Implementation
	Planar system
	Inverted Pendulum
	Cart-pole Balancing
	Three-Link Robot Arm

	E2C Graphical Model

