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Abstract

We study risk-sensitive imitation learning
where the agent’s goal is to perform at least
as well as the expert in terms of a risk profile.
We first formulate our risk-sensitive imita-
tion learning setting. We consider the genera-
tive adversarial approach to imitation learn-
ing (GAIL) and derive an optimization prob-
lem for our formulation, which we call it risk-
sensitive GAIL (RS-GAIL). We then derive
two different versions of our RS-GAIL opti-
mization problem that aim at matching the
risk profiles of the agent and the expert w.r.t.
Jensen-Shannon (JS) divergence and Wasser-
stein distance, and develop risk-sensitive gen-
erative adversarial imitation learning algo-
rithms based on these optimization problems.
We evaluate the performance of our algo-
rithms and compare them with GAIL and
the risk-averse imitation learning (RAIL) al-
gorithms in two MuJoCo and two OpenAI
classical control tasks.

1 Introduction

We study imitation learning, i.e., the problem of learn-
ing to perform a task from the sample trajectories gen-
erated by an expert. There are three main approaches
to this problem: 1) behavioral cloning (e.g., Pomerleau
[1991]) in which the agent learns a policy by solving a
supervised learning problem over the state-action pairs
of the expert’s trajectories, 2) inverse reinforcement
learning (IRL) (e.g., Ng and Russell [2000]) followed by
reinforcement learning (RL), a process also referred to
as RL◦IRL, where we first find a cost function under
which the expert is optimal (IRL) and then return the
optimal policy w.r.t. this cost function (RL), and 3)
generative adversarial imitation learning (GAIL) [Ho
and Ermon, 2016a] that frames the imitation learning
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problem as occupancy measure matching w.r.t. either
the Jensen-Shannon divergence (GAIL) [Ho and Er-
mon, 2016a] or the Wasserstein distance (InfoGAIL) [Li
et al., 2017]. Behavioral cloning algorithms are simple
but often need a large amount of data to be successful.
IRL does not suffer from the main problems of behav-
ioral cloning [Ross and Bagnell, 2010, Ross et al., 2011],
since it takes entire trajectories into account (instead
of single time-step decisions) when learning a cost func-
tion. However, IRL algorithms are often expensive to
run as they require solving a RL problem in their inner
loop. This issue had restricted the use of IRL to small
problems for a long while and only recently scalable IRL
algorithms have been developed [Levine and Koltun,
2012, Finn et al., 2016]. On the other hand, the nice
feature of the GAIL approach to imitation learning is
that it bypasses the intermediate IRL step and directly
learns a policy from data, as if it were obtained by
RL◦IRL. The resulting algorithm is closely related to
generative adversarial networks (GAN) [Goodfellow
et al., 2014] that has recently gained attention in the
deep learning community.

In many applications, we may prefer to optimize some
measure of risk in addition to the standard optimization
criterion, i.e., the expected sum of (discounted) costs.
In such cases, we would like to use a criterion that
incorporates a penalty for the variability (due to the
stochastic nature of the system) induced by a given pol-
icy. Several risk-sensitive criteria have been studied in
the literature of risk-sensitive Markov decision processes
(MDPs) [Howard and Matheson, 1972] including the
expected exponential utility (e.g., Howard and Mathe-
son [1972], Borkar [2001]), a variance-related measure
(e.g., Sobel [1982], Tamar et al. [2012], Prashanth and
Ghavamzadeh [2013, 2016]), or the tail-related mea-
sures like value-at-risk (VaR) and conditional value-
at-risk (CVaR) (e.g., Rockafellar and Uryasev [2002],
Chow and Ghavamzadeh [2014], Tamar et al. [2015b]).

In risk-sensitive imitation learning, the agent’s goal is to
perform at least as well as the expert in terms of one or
more risk-sensitive objective(s), e.g., mean + λCVaRα,
for one or more values of λ ≥ 0. This goal cannot be
satisfied by risk-neutral imitation learning. As we will
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show in Section 3.3, if we use GAIL to minimize the
Wasserstein distance between the occupancy measures
of the agent and the expert, the distance between
their CVaRs could be still large. Santara et al. [2017a]
recently showed empirically that the policy learned
by GAIL does not have the desirable tail properties,
such as VaR and CVaR, and proposed a modification
of GAIL, called risk-averse imitation learning (RAIL),
to address this issue. We will discuss about RAIL in
more details in Section 5 as it is probably the closest
work to us in the literature. Another related work is
by Singh et al. [2018] on risk-sensitive IRL in which the
proposed algorithm infers not only the expert’s cost
function but her underlying risk measure, for a rich
class of static and dynamic risk measures (coherent
risk measures). The agent then learns a policy by
optimizing the inferred risk-sensitive objective.

In this paper, we study an imitation learning setting
in which the agent’s goal is to learn a policy with min-
imum expected sum of (discounted) costs and with
CVaRα that is at least as well as that of the expert.
We first provide a mathematical formulation for this
setting and derive a GAIL-like optimization problem
for our formulation, which we call it risk-sensitive GAIL
(RS-GAIL), in Section 3.1. In Sections 3.2 and 3.3, we
define cost function regularizers that when we com-
pute their convex conjugates and plug them into our
RS-GAIL objective function, the resulting optimiza-
tion problems aim at learning the expert’s policy by
matching occupancy measures w.r.t. Jensen-Shannon
(JS) divergence and Wasserstein distance, respectively.
We call the resulting optimization problems JS-RS-
GAIL and W-RS-GAIL and propose our risk-sensitive
generative adversarial imitation learning algorithms
based on these optimization problems in Section 4. It
is important to note that unlike the risk-neutral case in
which the occupancy measure of the agent is matched
with that of the expert, here in the risk-sensitive case,
we match two sets of occupancy measures that encode
the risk profile of the agent and the expert. This will
become more clear in Section 3. We present our under-
standing of RAIL and how it is related to our work in
Section 5. In Section 6, we evaluate the performance
of our algorithms and compare them with GAIL and
RAIL in two MuJoCo tasks [Todorov et al., 2012a]
that have also been used in the GAIL [Ho and Ermon,
2016a] and RAIL [Santara et al., 2017a] papers, as well
as two OpenAI classical control problems [Brockman
et al., 2016]. Finally in Section 7, we conclude the
paper and list a number of future directions.

2 Preliminaries
We consider the scenario in which the agent’s interac-
tion with the environment is modeled as a Markov
decision process (MDP). A MDP is a tuple M =

{S,A, c, p, p0, γ}, where S and A are state and action
spaces; c : S ×A → R and p : S ×A → ∆S are the cost
function and transition probability distribution, with
c(s, a) and p(·|s, a) being the cost and next state prob-
ability of taking action a in state s; p0 : S → ∆S is the
initial state distribution; and γ ∈ [0, 1) is a discounting
factor. A stationary stochastic policy π : S → ∆A is
a mapping from states to a distribution over actions.
We denote by Π the set of all such policies. We de-
note by τ = (s0, a0, s1, a1, . . . , sT ) ∈ Γ, where at ∼
π(·|st), ∀t ∈ {0, . . . , T − 1}, a trajectory of the fixed
horizon T generated by policy π, by Γ the set of all such
trajectories, and by C(τ) =

∑T−1
t=0 γtc(st, at) the loss of

trajectory τ . The probability of trajectory τ is given by
P(τ |π) = pπ(τ) = p0(s0)

∏T−1
t=0 π(at|st)p(st+1|st, at).

We denote by Cπ the random variable of the loss of
policy π. Thus, when τ ∼ pπ, C(τ) is an instantiation
of the random variable Cπ. The performance of a pol-
icy π is usually measured by a quantity related to the
loss of the trajectories it generates, the most common
would be its expectation, i.e., E[Cπ] = Eτ∼pπ [C(τ)].
We define the occupancy measure of policy π as
dπ(s, a) =

∑T
t=0 γ

tP(st = s, at = a|π), which can be
interpreted as the unnormalized distribution of the
state-action pairs visited by the agent under policy π.
Using occupancy measure, we may write the policy’s
performance as E[Cπ] = Epπ [C(τ)] = Edπ [c(s, a)] =∑
s,a d

π(s, a)c(s, a).

2.1 Risk-sensitive MDPs

In risk-sensitive decision-making, in addition to opti-
mizing the expectation of the loss, it is also impor-
tant to control the variability of this random vari-
able. This variability is often measured by the vari-
ance or tail-related quantities such as value-at-risk
(VaR) and conditional value-at-risk (CVaR). Given
a policy π and a confidence level α ∈ (0, 1], we de-
fine the VaR at level α of the loss random variable
Cπ as its (left-side) (1 − α)-quantile, i.e., να[Cπ] :=
inf{t ∈ R | P(Cπ ≤ t) ≥ 1− α} and its CVaR at level
α as ρα[Cπ] = infν∈R

{
ν + 1

αE
[
(Cπ − ν)+

]}
, where

x+ = max(x, 0). We also define the risk envelope
Uπ =

{
ζ : Γπ → [0, 1

α ] |
∑
τ∈Γ ζ(τ) · pπ(τ) = 1

}
, which

is a compact, convex, and bounded set. The quantities
pπζ = ζ · pπ, ζ ∈ Uπ are called distorted probability
distributions, and we denote by Pπζ =

{
pπζ | ζ ∈ Uπ

}
the set of such distributions. The set Pπζ induces a
set of distorted occupancy measures Dπζ , where each
element of Dπζ is the occupancy measure induced by a
distorted probability distribution in Pπζ . The sets Pπζ
and Dπζ characterize the risk of policy π. Given the
risk envelope Uπ, we may define the dual representa-
tion of CVaR as ρα[Cπ] = supζ∈Uπ Eτ∼pπ

[
ζ(τ)C(τ)

]
,

where the supremum is attained at the density ζ∗(τ) =
1
α1{C(τ)≥να[Cπ ]}. Hence, CVaR can be considered as
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the expectation of the loss random variable, when the
trajectories are generated from the distorted distribu-
tion pπζ∗ = ζ∗ · pπ, i.e., ρα[Cπ] = Eτ∼pπ

ζ∗
[C(τ)]. If

we denote by dπζ∗ ∈ Dπζ the distorted occupancy mea-
sure induced by pπζ∗ , then we may write the CVaR as
ρα[Cπ] = Epπ

ζ∗
[C(τ)] = Edπ

ζ∗
[c(s, a)].

2.2 Generative Adversarial Imitation
Learning

As discussed in Section 1, generative adversarial im-
itation learning (GAIL) [Ho and Ermon, 2016a] is a
framework for directly extracting a policy from the
trajectories generated by an expert policy πE , as if
it were obtained by inverse RL (IRL) followed by
RL, i.e., RL◦IRL(πE). The main idea behind GAIL
is to formulate imitation learning as occupancy mea-
sure matching w.r.t. the Jensen-Shannon divergence
DJS, i.e., minπ

(
DJS(dπ, dπE )−λH(π)

)
, where H(π) =

E(s,a)∼dπ [− log π(a|s)] is the γ-discounted causal en-
tropy of policy π, λ ≥ 0 is a regularization parameter,
and DJS(dπ, dπE ) := supf :S×A→(0,1) Edπ [log f(s, a)] +
EdπE [log(1 − f(s, a))]. Li et al. [2017] proposed Info-
GAIL by reformulating GAIL and replacing the Jensen-
Shannon divergence DJS(dπ, dπE ) with the Wasser-
stein distance W (dπ, dπE ) := supf∈F1

Edπ [f(s, a)] −
EdπE [f(s, a)], where F1 is the set of 1-Lipschitz func-
tions over S ×A.

3 Risk-sensitive Imitation Learning
In this section, we describe the risk-sensitive imitation
learning formulation studied in the paper and derive the
optimization problems that our proposed algorithms
solve to learn a risk-sensitive policy from the expert’s
trajectories.

3.1 Problem Formulation

As described in Section 1, we consider the risk-sensitive
imitation learning setting in which the agent’s goal is
to learn a policy with minimum loss and with CVaR
that is at least as well as that of the expert. Thus, the
agent solves the optimization problem

min
π

E[Cπ] , s.t. ρα[Cπ] ≤ ρα[CπE ], (1)

where Cπ is the loss of policy π w.r.t. the expert’s
cost function c that is unknown to the agent. The
optimization problem (1) without the loss of optimality
is equivalent to the unconstrained problem

min
π

sup
λ≥0

E[Cπ]−E[CπE ]+λ
(
ρα[Cπ]−ρα[CπE ]

)
. (2)

Note that πE is a solution of both (1) and (2). How-
ever, since the expert’s cost function is unknown, the
agent cannot directly solve (2), and thus, considers the
surrogate problem

min
π

sup
f∈C

sup
λ≥0

E[Cπf ]−E[CπEf ]+λ
(
ρα[Cπf ]−ρα[CπEf ]

)
, (3)

where C = {f : S×A → R} and Cπf is the loss of policy
π w.r.t. the cost function f . We employ the Lagrangian
relaxation procedure [Bertsekas, 1999] to swap the inner
maximization over λ with the minimization over π and
convert (3) to the problem

sup
λ≥0

min
π

sup
f∈C

E[Cπf ]−E[CπEf ]+λ
(
ρα[Cπf ]−ρα[CπEf ]

)
. (4)

In order to enforce exploration of the imitation learning
agent, we adopt maximum causal entropy IRL formula-
tion [Ziebart et al., 2008, 2010] and add −H(π) to the
optimization problem (4). Moreover, since C is large,
to avoid overfitting when we are provided with a finite
set of expert’s trajectories, we add the negative of a
convex regularizer ψ : C → R ∪ {∞} to the optimiza-
tion problem (4). As a result we obtain the following
optimization problem for our risk-sensitive imitation
learning setting, which we call it RS-GAIL:

(RS-GAIL) sup
λ≥0

min
π
−H(π) + Lλ(π, πE), (5)

where Lλ(π, πE) := supf∈C (1+λ)
(
ρλα[Cπf ]−ρλα[CπEf ]

)
−

ψ(f), with ρλα[Cπf ] :=
E[Cπf ]+λρα[Cπf ]

1+λ being the coherent
risk measure for policy π corresponding to mean-CVaR
with the risk parameter λ. The parameter λ can be
interpreted as the tradeoff between the mean perfor-
mance and risk-sensitivity of the policy. The objective
function Lλ(π, πE) can be decomposed into three terms:
1) the difference between the agent and the expert in
terms of mean performance, E[Cπf ]−E[CπEf ], which cor-
responds to the standard generative imitation learning
objective, 2) the difference between the agent and the
expert in terms of risk ρα[Cπf ]− ρα[CπEf ], and 3) the
convex regularizer ψ(f) that encodes our belief about
the expert cost function f .

For the risk-sensitive quantity ρλα[Cπ], we define the
distorted probability distributions pπξ = ξ · pπ, where
ξ = 1+λζ

1+λ , ζ ∈ U
π. We denote by Pπξ the set of such

distorted distributions and by Dπξ the set of distorted
occupancy measures induced by the elements of Pπξ .
Similar to CVaR in Section 2.1, we may write the risk-
sensitive quantity ρλα[Cπ] as the expectation ρλα[Cπ] =

Epπ
ξ∗

[C(τ)] = Edπ
ξ∗

[c(s, a)], where ξ∗ = 1+λζ∗

1+λ with ζ∗

defined in Section 2.1 and dπξ∗ ∈ Dπξ is the distorted
occupancy measure induced by pπξ∗ ∈ Pπξ .

In Theorem 1, we show that the maximization problem
Lλ(π, πE) over the cost function f ∈ C can be rewrit-
ten as a sup-inf problem over the distorted occupancy
measures d ∈ Dπξ and d′ ∈ DπEξ .
Theorem 1. Let ψ : C → R ∪ {∞} be a convex cost
function regularizer. Then,

Lλ(π, πE) = sup
f∈C

(1 + λ)
(
ρλα[Cπf ]− ρλα[CπEf ]

)
− ψ(f)

= sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗
(
(1 + λ)(d− d′)

)
, (6)
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where ψ∗ is the convex conjugate function of ψ,
i.e., ψ∗(d) = supf∈C d

>f − ψ(f).

Proof. See Appendix A.

From Theorem 1, we may write the RS-GAIL optimiza-
tion problem (5) as

(RS-GAIL) sup
λ≥0

min
π
−H(π) (7)

+ sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗
(
(1 + λ)(d− d′)

)
.

The main difference between the RS-GAIL optimization
problem (7) and that of GAIL (Eq. 4 in Ho and Ermon
[2016a]) is the supDπξ infDπEξ

in (7). In the risk-neutral
case, λ = 0, thus, the two sets of distorted occupancy
measures Dπξ and DπEξ are singleton, and the RS-GAIL
optimization problem is reduced to that of GAIL.

Example 1. Let ψ(f) =

{
0 if ||f ||∞ ≤ 1

+∞ otherwise
, then

Lλ(π, πE) = 2(1 + λ) supd∈Dπξ infd′∈DπEξ
||d − d′||TV,

where ||d−d′||TV is the total variation distance between
d and d′. Note that similar to GAIL, our optimization
problem aims at learning the expert’s policy by matching
occupancy measures. However, in order to take risk
into account, it now involves matching two sets of
occupancy measures (w.r.t. the total variation distance)
that encode the risk profile of each policy.

3.2 Risk-sensitive GAIL with
Jensen-Shannon Divergence

In this section, we derive RS-GAIL using
occupation measure matching via Jensen-
Shannon (JS) divergence. We define the
difference-of-convex cost function regularizer

ψ(f) :=

{
(1 + λ)

(
− ρλα[CπEf ] + ρλα[GπEf ]

)
if f < 0

+∞ otherwise
,

where CπEf and GπEf are the loss random vari-
ables of policy πE w.r.t. the cost functions
c(s, a) = f(s, a) and c(s, a) = g

(
f(s, a)

)
, respec-

tively, with g(x) :=

{
− log(1− ex) if x < 0

+∞ otherwise
. To

clarify, GπEf is a random variable whose instantiations
are Gf (τ) =

∑T−1
t=0 γtg

(
f(st, at)

)
, where τ ∼ pπE

is a trajectory generated by the expert policy πE .
Similar to the description in Ho and Ermon [2016a],
this regularizer places low penalty on cost functions
f that assign negative cost to expert’s state-action
pairs. However, if f assigns large costs (close to zero,
which is the upper-bound of the regularizer) to the
expert, then ψ will heavily penalize f . In the following
theorems, whose proofs are reported in Appendix B,

we derive the optimization problem of the JS version
of our RS-GAIL algorithm by computing (6) for the
above choice of the cost function regularizer ψ(f). We
prove the following results directly from the RS-GAIL
optimization problem (5).
Theorem 2. With the cost function regularizer ψ(f)
defined above, we may write

Lλ(π, πE) = (1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ],

(8)
where Fπ1 and FπE2 are the loss random variables of
policies π and πE w.r.t. the cost functions c(s, a) =
log f(s, a) and c(s, a) = log

(
1− f(s, a)

)
, respectively.

Corollary 1. We may write Lλ(π, πE) in terms of the
Jensen-Shannon (JS) divergence as

Lλ(π, πE) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′). (9)

From Theorem 2, we write the optimization problem
of the JS version of our RS-GAIL algorithm as

(JS-RS-GAIL) sup
λ≥0

min
π
−H(π) (10)

+ (1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ].

Hence in JS-RS-GAIL, instead of minimizing the orig-
inal GAIL objective, we solve the optimization prob-
lem (10) that aims at matching the sets Dπξ and DπEξ
w.r.t. the JS divergence.

3.3 Risk-sensitive GAIL with Wasserstein
Distance

In this section, we derive RS-GAIL using occupa-
tion measure matching via the Wasserstein distance.
We define the cost function regularizer ψ(f) :={

0 if f ∈ F1

+∞ otherwise
.

Corollary 2. For the cost function regularizer ψ(f)
defined above, we may write

Lλ(π, πE) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

W (d, d′). (11)

Proof. See Appendix C.

From (6) and the cost function regularizer ψ(f) defined
above, we have Lλ(π, πE) = supf∈F1

ρλα[Cπf ]−ρλα[CπEf ],
which gives the following optimization problem for the
Wasserstein version of our RS-GAIL algorithm:

(W-RS-GAIL) sup
λ≥0

min
π
−H(π) (12)

+ (1 + λ) sup
f∈F1

ρλα[Cπf ]− ρλα[CπEf ].
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We conclude this section with a theorem that shows if
we use a risk-neutral imitation learning algorithm to
minimize the Wasserstein distance between the occu-
pancy measures of the agent and the expert, the dis-
tance between their CVaRs could be still large. Thus,
new algorithms, such as those developed in this paper,
are needed for risk-sensitive imitation learning.
Theorem 3. Let ∆ be the worst-case risk difference
between the agent and the expert, given that their occu-
pancy measures are δ-close (δ > 0), i.e.,

∆ = sup
π,p,p0

sup
f∈F1

ρα[Cπf ]− ρα[CπEf ], s.t. W (dπ, dπE ) ≤ δ.

Then, ∆ ≥ δ
α .

Theorem 3, whose proof has been reported in Ap-
pendix C, indicates that the difference between the
risks can be 1/α-times larger than that between the
occupancy measures (in terms of Wasserstein distance).

4 Risk-sensitive Imitation Learning
Algorithms

Algorithm 1 contains the pseudocode of our JS-based
and Wasserstein-based risk-sensitive imitation learning
algorithms. The algorithms aim at finding a saddle-
point (π, f) of the objective function (5). We use the pa-
rameterizations for the policy θ 7→ πθ and cost function
(discriminator) w 7→ fw. Similar to GAIL [Ho and Er-
mon, 2016a], the algorithm is TRPO-based [Schulman
et al., 2015] and alternates between an Adam [Kingma
and Ba, 2014] gradient ascent step for the cost function
parameter w and a KL-constrained gradient descent
step w.r.t. a linear approximation of the objective. The
details about the algorithm, including the estimation of
the gradients and the VaRs are reported in Appendix D.

In the implementation of our algorithms, we use a
grid search and optimize over a finite number of the
Lagrangian parameters λ. This can be seen as the
agent selects among a finite number of risk profiles of
the form (mean+ λCVaRα) when she matches her risk
profile to that of the expert.

5 Discussion about RAIL
We start this section by comparing the RAIL optimiza-
tion problem (Eq. 9 in Santara et al. [2017a]) with that
of our JS-RS-GAIL reported in Eq. 10, i.e.,
(RAIL) min

π
−H(π)

+ (1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− E[−FπE2,f ],

(JS-RS-GAIL) min
π
−H(π)

+ (1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ].

If we write the above optimization problems in terms
of the JS divergence, we obtain

Algorithm 1 Pseudocode of JS-RS-GAIL and W-RS-
GAIL Algorithms.
1: Input: Expert trajectories {τEj }NEj=1 ∼ p

πE , Risk level
α ∈ (0, 1], Initial policy and cost function parameters
θ0 and w0.

2: for i = 0, 1, 2, . . . do
3: Generate N trajectories using the current policy

πθi , i.e., {τj}
N
j=1 ∼ pπθi

4: Estimate VaRs ν̂α(Fπ1,fwi ) and ν̂α(−FπE2,fwi
) (JS)

5: Estimate VaRs ν̂α(Cπfwi ) and ν̂α(CπEfwi
) (W)

6: Update the discriminator parameter by computing
a gradient ascent step w.r.t. the objective

wi+1 7→ (1 + λ)
(
ρλα[F

πθi
1,fwi

]− ρλα[−FπE2,fwi
]
)

(JS)

wi+1 7→ (1 + λ)
(
ρλα[C

πθi
fwi

]− ρλα[CπEfwi
]
)

(W)

7: Update the policy parameter using a KL-
constrained gradient descent step w.r.t. the objective

θi+1 7→ −H(πθi) + (1 + λ)ρλα[F
πθi
1,fwi+1

] (JS)

θi+1 7→ −H(πθi) + (1 + λ)ρλα[C
πθi
fwi+1

] (W)

8: end for

(RAIL) min
π
−H(π) (13)

+ (1 + λ) sup
d∈Dπξ

DJS(d, dπE ),

(JS-RS-GAIL) min
π
−H(π) (14)

+ (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′) (see Eq. 9).

Note that while the JS in (14) matches the distorted
occupancy measures (risk profiles) of the agent and
the expert, the JS in (13) matches the distorted oc-
cupancy measure (risk profile) of the agent with the
occupancy measure (mean) of the expert. This means
that RAIL does not take the expert’s risk into account
in its optimization.

Moreover, the results reported in Santara et al. [2017a]
indicate that GAIL optimizes the risk (VaR and CVaR)
poorly. By looking at the RAIL’s GitHub [Santara
et al., 2017b], it seems they used the GAIL implementa-
tion from its GitHub [Ho and Ermon, 2016b]. Although
we used the same GAIL implementation, we did not
observe such a poor performance for GAIL, which is
not that surprising since the MuJoCo domains used in
the GAIL and RAIL papers are all deterministic and
the policies are the only source of randomness there.
This is why in our MuJoCo experiments in Section 6,
we inject noise to the reward function of the problems.
Finally, the gradient of the objective function reported
in Eq. (A.3) of Santara et al. [2017a] is a scalar, which
does not seem to be correct. We corrected this in our
implementation of RAIL in Section 6.
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6 Experiments

In this section, we evaluate the performance of our JS
and Wasserstein-based algorithms and compare them
with GAIL and RAIL algorithms in two MuJoCo and
two OpenAI classical control tasks.

6.1 Task Specification

In our experiments, we use two OpenAI classical control
tasks: CartPole and Pendulum [Brockman et al., 2016],
and two MuJoCo tasks: Hopper and Walker [Todorov
et al., 2012b]. Since these tasks are deterministic and
the notion of risk-sensitive decision-making is closely
related to the uncertainty in the system, we incorporate
stochasticity into the original implementations of these
tasks, as described below.

In the OpenAI classical control tasks, we inject stochas-
ticity to the system by adding noise to the actions,
which in turn adds noise to both the reward function
and the transitions. In the MuJoCo tasks, we first learn
a policy by running a RL agent with TRPO [Schulman
et al., 2015] on the risk-neutral version of the original
implementation, and then add noise to the costs as
a function of the occupancy measure of the learned
policy (see Appendix E for details).

CartPole: Our CartPole task is based on the CartPole-
v1 environment in Brockman et al. [2016] in which at
each step the agent can choose one of the two actions:
either applying the force Fx (action a = 1) or the force
−Fx (action a = 0). In our implementation, if the
agent selects action a = 0, it applies the force −Fx
w.p. 0.8 and the force −K Fx, where K is an integer
uniformly drawn from {0, . . . , 8}, w.p. 0.2.

Pendulum: Our Pendulum task is based on the
Pendulum-v0 environment in Brockman et al. [2016]
in which the action space consists of 3 different torque
values {−2, 0, 2} that are applied to the pendulum. In
our implementation, we first extend the number of
torque values to 5, and then when the agent selects
an action with the torque value u ∈ {−2,−1, 0, 1, 2},
w.p. 0.2, the value u is multiplied by (1 + |Z|), where
Z ∼ N (0, 1) is a standard Gaussian random variable
truncated to be bounded between −3 and 3.

Hopper: Our Hopper task is based on Hopper-v1, a
physics-based continuous control task simulated with
MuJoCo [Todorov et al., 2012b], which consists of
an 11-dimensional observation space, a 3-dimensional
action space, a deterministic reward function r(s, a),
and deterministic dynamics. The goal in Hopper is to
make a one-legged robot hop forward as fast as possible.

Walker2d-v1: Our Walker task is based on Walker2d-
v1, a physics-based continuous control task simulated
with MuJoCo [Todorov et al., 2012b], which consists

of a 17-dimensional observation space, a 6-dimensional
action space, a deterministic reward function r(s, a),
and deterministic dynamics. The goal in Walker is to
make a bipedal robot walk forward as fast as possible.

6.2 Experimental Setup

In the OpenAI classical control tasks, the risk-sensitive
objective is set to ρλα = Mean + 0.5× CVaR0.3, which
means that the risk-sensitive parameters have been set
to α = 0.3 and λ = 0.5. We set the expert’s policy to
that learned by the CVaR policy gradient algorithm
of Tamar et al. [2015b], which is the standard RE-
INFORCE algorithm [Williams, 1992] adapted to the
CVaR criteria. In the MuJoCo tasks, the risk-sensitive
objective is set to ρλα = Mean + 0.05 × CVaR0.3 and
the expert policy is learned by TRPO on the standard
(deterministic) implementations of these problems.

In our experiments, we use two different policy (gra-
dient) optimization algorithms for the policy step of
RAIL and our JS-RS-GAIL and W-RS-GAIL algo-
rithms: 1) the REINFORCE policy gradient algorithm
in Tamar et al. [2015b], and 2) the algorithm imple-
mented in Santara et al. [2017a], which is an extension
of TRPO (using KL-constrained gradient step) to risk-
sensitive policy optimization. Note that the policy step
of GAIL uses TRPO [Schulman et al., 2015]. In the
OpenAI classical control tasks, using either of these
two algorithms in the policy step of RAIL and JS-RS-
GAIL did not change their performance. However, in
the CartPole task, we did not obtain good results using
the REINFORCE policy gradient algorithm in Tamar
et al. [2015b] for the policy step of W-RS-GAIL, and
thus, we conducted the experiments with the extended
TRPO. In the MuJoCo tasks, we only obtained good
results with the extended TRPO for all the algorithms.
We conjecture that this is due to the high variance of
REINFORCE gradient estimate.

We use 100 expert trajectories to train all the algo-
rithms, which is a higher number than that used in
the experiments of the GAIL paper [Ho and Ermon,
2016a] (between 1 and 20 trajectories). This is normal
because the risk-sensitive algorithms require more sam-
ples than their risk-neutral counterparts, particularly
those that optimize tail-related risk criteria, such as
VaR and CVaR. Sample efficiency is one of the most
important problems of the tail-related risk-sensitive
optimization algorithms and has been reported in the
literature (Chow and Ghavamzadeh [2014], Tamar et al.
[2015b], Chow et al. [2018]), and it is mainly due to the
fact that these algorithms require to learn a tail-related
quantity, often VaR, for which only the trajectories
whose return belongs to the tail can be used. There
have been work to address this issue and to use the
trajectories whose return does not belong to the tail to
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learn about tail-related quantities (Bardou et al. [2009],
Tamar et al. [2015b]), but this is still an open problem
and we do not use any of these techniques in this paper.

We pre-train the risk-sensitive algorithms RAIL and JS-
RS-GAIL with 100 iterations of GAIL. As it was noted
by Tamar et al. [2015b], pre-training risk-sensitive pol-
icy gradient algorithms with their risk-neutral counter-
part is a useful technique to avoid getting stuck in local
minima. In these algorithms, we use the same network
architecture as in Ho and Ermon [2016a] and Santara
et al. [2017a], which consists of 2 hidden layers with 32
units each in the OpenAI tasks, with 100 units each in
the MuJoCo tasks, and, tanh activations, for both the
policy and discriminator networks. At each iteration,
all the algorithms are given the same amount of interac-
tion with the environment by sampling 100 trajectories.
Our algorithms and RAIL use 1 update step for both
the generator and discriminator at each iteration, while
GAIL uses 3 update steps for the generator and 1 for
the discriminator. We found these hyper-parameters
by grid search for each algorithm.

We do not pre-train W-RS-GAIL, as we did not observe
any improvement due to pre-training, but train it with
the same number of iterations (pre-train + train) as the
other algorithms. We use a more complex architecture
for both the policy and discriminator networks in the
Wasserstein-based algorithms: W-GAIL1 and W-RS-
GAIL. This architecture consists of 3 hidden layers
with 64, 64, and 32 units, tanh activation, and clipping
thresholds of −0.05 and 0.05.

6.3 Experimental Results

In this section, we compare the performance of our algo-
rithm JS-RS-GAIL with RAIL and GAIL (Tables 1–4),
and our algorithm W-RS-GAIL with W-GAIL (Ta-
ble 5) in terms of their mean, VaRα, CVaRα, and more
importantly ρλα, which is the main target of our risk-
sensitive algorithms. In all of these algorithms, we
aim at minimizing the sum of the costs (the lower the
better). We also report the performance of the expert
and a random policy for reference.

We report the performance of the algorithms in terms of
each criterion for the OpenAI control tasks in Table 1.
For each task, we run each algorithm for a fixed number
of iterations, 200 for CartPole and 300 for Pendulum
(after 100 pre-training iterations). After that we run the
algorithm for another 100 iterations and evaluate the
performance of each of these 100 policies by generating
300 trajectories from that policy. We then average each
performance criterion over the 100 policies. We average
over 100 policies generated after our algorithms stop to

1Note that the W-GAIL algorithm in our experiments
is just the Wasserstein version of GAIL and is simpler than
InfoGAIL [Li et al., 2017].

show how well each algorithm converges in terms of each
performance criterion. We repeat this process for 10
random seeds and take the average. We then report the
average and 95% confidence interval (empirical mean±
1.96× empirical standard deviation/

√
n = 10).

Table 2 contains the exact same results for CartPole
and Pendulum, except this time we first average each
performance criterion over the top 10 policies of the
last 100 policies (instead of averaging over the last 100
policies). Note that the top 10 policies are different for
each performance criterion.

The results of Tables 1 and 2 show that JS-RS-GAIL
achieves the best performance (compared to GAIL and
RAIL) in terms of the risk-sensitive criteria, in particu-
lar ρλα. This advantage becomes statistically significant
when we average over the top 10 policies (see Table 2).
We conjecture that if we average over more (than 10)
random seeds, we will see statistically significant advan-
tage for JS-RS-GAIL even when we average over the
last 100 iterations. Note that in Pendulum, none of the
algorithms achieve the expert’s performance, but they
perform better than the random policy. This means
that they are learning and expert’s performance can be
achieved with more iterations and parameter tuning.

Tables 3 and 4 contain the exact same results as in Ta-
bles 1 and 2 for the MuJoCo tasks: Hopper and Walker.
Similar to the OpenAI classical control problems, here
JS-RS-GAIL also achieves the best performance in
terms of the risk-sensitive criteria and the advantage
becomes statistically significant when we average over
the top 10 policies (see Table 4).

Table 5 shows the performance of W-RS-GAIL and
compares it with that of W-GAIL in the CartPole
problem. We do not compare the Wasserstein-based
algorithms with the JS-based ones because they are
solving different optimization problems. However, our
results indicate that the JS-based algorithms perform
better than their Wasserstein-based counterparts in
terms of the relevant criteria (mean for GAIL and ρλα
for RS-GAIL algorithms). We conjecture that the rea-
son is the small size of the networks. When we use
Wasserstein with a small network, we end up having
a very limited representation power due to clipping
the weights at certain thresholds in order to maintain
the Lipschitz smoothness of the network. This is why
we think that the Wasserstein-based algorithms could
perform better in more complex problems that require
more complex networks. Verifying this conjecture re-
quires more experiments that we leave as a future work.

7 Conclusions and Future Work

In this paper, we first formulated a risk-sensitive imita-
tion learning setting in which the agent’s goal is to have
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Table 1: Performance of the policies learned by the algorithms for α = 0.3 and λ = 0.5. Results are averaged over the last
100 iterations and 10 random seeds.

Criteria Random Expert GAIL RAIL JS-RS-GAIL Random Expert GAIL RAIL JS-RS-GAIL

CartPole Pendulum

Mean -12 -333 -296±12 -315±3 -319±3 1410 162 907±41 1150±81 908±89
VaRα -3 -301 -151±37 -193±19 -231±16 1760 341 1485±44 1517±59 1409±60
CVaRα -2 -294 -109±36 -163±19 -208±17 1812 401 1495±46 1527±56 1419±58
ρλα -13 -479 -350±31 -398±11 -425±11 2296 362 1656±63 1973±106 1616±109

Table 2: Performance of the policies learned by the algorithms for α = 0.3 and λ = 0.5. Results are averaged over the top
10 policies of the last 100 iterations and 10 random seeds.

Criteria Random Expert GAIL RAIL JS-RS-GAIL Random Expert GAIL RAIL JS-RS-GAIL

CartPole Pendulum

Mean -12 -333 -326±3 -319±6 -325±4 1410 162 656±54 961±135 436±84
VaRα -3 -301 -269±6 -249±30 -282±7 1760 341 1403±27 1325±74 1152±69
CVaRα -2 -294 -258±8 -229±32 -278±8 1812 401 1411±26 1335±81 1175±85
ρλα -13 -479 -451±6 -434±21 -465±6 2296 362 1362±68 1629±188 1023±138

Table 3: Performance of the policies learned by the algorithms for α = 0.3 and λ = 0.05. Results are averaged over the
last 100 iterations and 10 random seeds.
Criteria Random Expert GAIL RAIL JS-RS-GAIL Random Expert GAIL RAIL JS-RS-GAIL

Hopper Walker

Mean -10 -6096 -5428±191 -5638±220 -5622±198 -1 -7651 -6542±252 -6894±241 -6921±230
VaRα -5 -6129 -5576±228 -5621±202 -5709±210 0 -7875 -6674±187 -6605±201 -6702±199
CVaRα - 3 -5590 -4913±231 -5141±215 -5202±222 0 -6440 -5341±352 -6012±215 -6111±202
ρλα -10 -6375 -5673±202 -5895±231 -5882±209 1 -7973 -6809±269 -7194±251 -7226±239

Table 4: Performance of the policies learned by the algorithms for α = 0.3 and λ = 0.05. Results are averaged over the
top 10 policies of the last 100 iterations and 10 random seeds.

Criteria Random Expert GAIL RAIL JS-RS-GAIL Random Expert GAIL RAIL JS-RS-GAIL

Hopper Walker

Mean -10 -6096 -5743±145 -6049±60 -6032±51 -1 -7651 -7221±214 -7405±65 -7621±63
VaRα -5 -6129 -6130±91 -6268±10 -6355±13 0 -7875 -7377±133 -7535±30 -7925±30
CVaRα -3 -5590 -5361±226 -5541±96 -5595±83 0 -6440 -5590±335 -6172±136 -6451±129
ρλα -10 -6375 -6011±156 -6340±64 -6325±55 -1 -7973 -7527±230 -7714±72 -7953±70

Table 5: Performance of the policies learned by the algorithms for α = 0.3 and λ = 0.5. Results are averaged over the
last 100 iterations and 10 random seeds (W-GAIL1 and W-RS-GAIL1), as well as over the top 10 policies of the last 100
iterations and 10 random seeds (W-GAIL2 and W-RS-GAIL2).

Criteria Random Expert W-GAIL1 W-RS-GAIL1 W-GAIL2 W-RS-GAIL2

CartPole

Mean -12 -333 -275±8 -282±8 -284±5 -309±4
VaRα -3 -301 -43±26 -89±32 -71±22 -171±31
CVaRα -2 -294 -30±14 -59±27 -60±17 -149±31
ρλα -13 -479 -290±14 -312±12 -314±9 -384±10

a risk profile as good as the expert’s. We then derived
a GAIL-like optimization problem for our formulation,
which we termed it risk-sensitive GAIL (RS-GAIL).
We proposed two risk-sensitive generative adversarial
imitation learning algorithms based on two variations
of RS-GAIL that match the agent’s and the expert’s
risk profiles w.r.t. Jensen-Shannon (JS) divergence and
Wasserstein distance. We experimented with our algo-
rithms and compared their performance with that of
GAIL [Ho and Ermon, 2016a] and RAIL [Santara et al.,
2017a] in two MuJoCo and two OpenAI control tasks.

Future directions include 1) extending our results to
other popular risk measures, such as expected expo-
nential utility and the more general class of coherent
risk measures, 2) investigating other risk-sensitive imi-
tation learning settings, especially those in which the
agent can tune its risk profile w.r.t. the expert, e.g., be-
ing a more risk averse/seeking version of the expert,
3) reducing variance of the gradient estimate in ex-
tended TRPO, and 4) more experiments, particularly
with our Wasserstein-based algorithm, in more complex
problems and in problems with intrinsic stochasticity.
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A Proof of Theorem 1

Before proving the theorem, we first state and prove the following two technical lemmas that we will later use
them in the proof of Theoren 1.
Lemma 1 (Minimax). For any fixed policy π and any member of the risk envelop ζ ∈ Uπ such that ξ = 1+λζ

1+λ , let
Λ(f, ξ) = Eπ[ξFf ]−EπE [ξFf ] be the difference between the expected cumulative costs. Then, the following equality
holds:

sup
f∈C

inf
ζ∈Uπ

Λ

(
f,

1 + λζ

1 + λ

)
= inf
ζ∈Uπ

sup
f∈C

Λ

(
f,

1 + λζ

1 + λ

)
.

Proof. The function (f, ξ) 7→ Λ(f, ξ) is linear and continuous over C, and ξ is a linear function of ζ and is linear
and continuous over Uπ. Since C is convex and Uπ is nonempty, convex, and weakly compact, the result follows
from the Von Neumann-Fan minimax theorem [Borwein, 2016].

The result of Lemma 1 allows us to swap the min and max operators between the cost and risk envelops.

We now prove the following technical lemma that justifies the duality between the distorted occupation measure
and the risk-sensitive probability distribution pπξ = ξ · pπ over trajectories, for ξ = 1+λζ

1+λ , when ζ ∈ Uπ is any
element of the risk envelop.
Lemma 2. For any arbitrary pair (f, ξ) such that ζ ∈ Uπ, ξ = 1+λζ

1+λ , and f ∈ C, the following equality holds:

Eπ[ξ(τ)Cπf (τ)] =

∫
Γ

dπξ (s, a)f(s, a)ds da,

where dπξ is the γ-discounted ξ-distorted occupation measure of policy π.

Proof. See Theorem 3.1 in Altman [1999].

Using Lemma 1, for any arbitrary policy π, the following chain of equalities holds for the loss function of RS-GAIL:

Lλ(π, πE) = (1 + λ) sup
f∈C

ρλα[Cπf ]− ρλα[CπEf ]− ψ(f)

= (1 + λ) sup
f∈C

sup
ζ∈Uπ

E
[

1 + λζ

1 + λ
Cπf

]
− sup
ζ′∈UπE

E
[

1 + λζ ′

1 + λ
CπEf

]
− ψ(f)

= (1 + λ) sup
f∈C

sup
ζ∈Uπ

inf
ζ′∈UπE

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
CπEf

]
− ψ(f)

= (1 + λ) sup
ζ∈Uπ

sup
f∈C

inf
ζ′∈UπE

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
CπEf

]
− ψ(f).

By applying Lemma 1 to the last expression, the loss function in RS-GAIL can be expressed as

Lλ(π, πE) = sup
ζ∈Uπ

inf
ζ′∈UπE

sup
f∈C

(1 + λ) ·
(
E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
Cπf

])
− ψ(f).

Furthermore, from Lemma 2, we deduce that for any ζ ∈ Uπ, ζ ′ ∈ UπE , and ξ = 1+λζ
1+λ , ξ′ = 1+λζ′

1+λ , the following
equality holds:

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
Cπf

]
=

∫
Γ

(
dπξ (s, a)− dπEξ′ (s, a)

)
f(s, a) ds da.

Combining the above results with the definitions of distorted occupation measure w.r.t. radon-nikodem derivative
ξ and policies π and πE , i.e., Dπξ and DπEξ , we finally obtain the following desired result:

Lλ(π, πE) = sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗C((1 + λ)(d− d′)),

where the convex conjugate function with respect ψ∗C : RS×A → R is defined as

ψ∗C(d) = sup
f∈C
〈d, f〉 − ψ(f).
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B Proofs of RS-GAIL with Jensen Shannon Divergence

In this section, we aim to derive RS-GAIL using occupation measure matching via Jensen Shannon divergence.
Consider the original RS-GAIL formulation of Eq. 4 with fixed λ ≥ 0, i.e.,

(1 + λ) min
π

sup
f∈C

ρλα[Cπf ]− ρλα[CπEf ]. (15)

Following the derivation of the GAIL paper, we replace (15) with the following formulation:

min
π
−H(π) + sup

f∈C
ρλα[Cπf ]− ρλα[CπEf ]− ψ(f), (16)

where the entropy regularizer term H(π) incentivizes exploration in policy learning and the cost regularizer ψ(f)
regularizes the inverse reinforcement learning problem.

We first want to find the cost regularizer ψ(·) that leads to the Jensen Shannon divergence loss function between
the occupation measures. To proceed, we revisit the following technical lemma from Ho and Ermon [2016a]
about reformulating occupation measure matching as a general f−divergence minimization problem, where the
corresponding f−divergence is induced by a given strictly decreasing convex surrogate function φ.

Lemma 3. Let φ : R → R be a strictly decreasing convex function and Φ be the range of −φ. We define
ψφ : RS×A → R as

ψφ(f) =

{
(1 + λ)

(
−ρλα[CπEf ] + ρλα[GπEφ,f ]

)
if f(s, a) ∈ Φ, ∀s, a

∞ otherwise
, (17)

where GπEφ,f is the γ-discounted cumulative cost function GπEφ,f = −
∑∞
t=0 γ

tφ
(
− φ−1

(
− f(st, at)

))
that is induced

by policy πE. Then, ψφ is closed, proper, and convex. Using ψ = ψφ as the cost regularizer, the optimization
problem (5) is equivalent to

sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′),

where Rλ,φ is the minimum expected risk induced by the surrogate loss function φ, i.e., Rλ,φ(d, d′) = (1 +
λ)
∑
s,a minγ∈R d(s, a)φ(γ) + d′(s, a)φ(−γ).

Proof. From (5), recall the following inner objective function of RS-GAIL:

Lλ(π, πE) = sup
f∈C

(1 + λ)
(
ρλα[Cπf ]− ρλα[CπEf ]− ψ(f)

)
.

Using the definition of the above regularizer (which is a difference of convex function in f), we have the following
chain of inequalities:

sup
d∈Dπξ

(1 + λ)
(
ρλα[Cπf ]− ρλα[CπEf ]

)
− ψφ(f) = (1 + λ) sup

f∈Φ
ρλα[Cπf ]− ρλα[GπEφ,f ]

= (1 + λ) sup
d∈Dπξ

sup
f∈Φ
〈d, f〉 − ρλα[GπEφ,f ]

(a)
= (1 + λ) sup

d∈Dπξ
sup
f∈Φ

inf
d′∈DπEξ

〈d, f〉 −
〈
d′, φ

(
− φ−1(−f)

)〉
(b)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈Φ
〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
,

where the first and second equalities follow from the definitions of ψφ and the dual representation theorem of
the coherent risk measure ρλα[CπEφ,f ]. (a) is based on the dual representation theorem of coherent risk ρλα[GπEφ,f ] =

supd′∈DπEξ

〈
d′,−φ

(
− φ−1(−f)

)〉
. (b) is based on strong duality, i.e., κd(d′, f) = 〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
is
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concave in f and is convex in d′, and both DπEξ and Φ are convex sets. Utilizing the arguments from Proposition
A.1 in Ho and Ermon [2016a], the above expression can be further rewritten as

(1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

sup
f∈Φ
〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
(a)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ

∑
s,a

sup
f̃∈Φ

[
d(s, a)f̃ − d′(s, a)φ

(
− φ−1(−f̃)

)]
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ

∑
s,a

sup
γ∈R

[
d(s, a)

(
− φ(γ)

)
− d′(s, a)φ(−γ)

]
, where f = −φ(γ)

= sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′).

(a) is due to the fact that the outer maximization on the first line is w.r.t. the cost function f , and the inner
maximization on the second line is w.r.t. an element of the cost function (which is denoted by f̃). The second
equality is due to the one-to-one mapping of f = −φ(γ). The third equality follows from the definition of
Rλ,φ(d, d′). This completes the proof.

B.1 Proof of Theorem 2

We now turn to the main result of this section. The following theorem transforms the loss function of RS-
GAIL into a Jensen Shannon divergence loss function using the cost regularizer in (17), with the logistic loss
φ(x) = log(1 + exp(−x)), as suggested by the discussions in Section 2.1.4 of Nguyen et al. [2009].

Recall from Lemma 3 that the inner problem of RS-GAIL (i.e., the problem in Eq. 6) can be rewritten as

sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′).

Therefore, we can reformulate the objective function −Rφ(d, d′) in this problem as

−Rλ,φ(d, d′) = (1 + λ)
∑
s,a

max
γ∈R

d(s, a) log

(
1

1 + exp(−γ)

)
+ d′(s, a) log

(
1

1 + exp(γ)

)
= (1 + λ)

∑
s,a

max
γ∈R

d(s, a) log
(
σ(γ)

)
+ d′(s, a) log

(
1− σ(γ)

)
= (1 + λ) sup

f :S×A→(0,1)

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
,

where σ(γ) = 1/
(
1 + exp(−γ)

)
is a sigmoid function, and since its range is (0, 1), one can further express the

inner optimization problem using the discriminator form given in the third equality.

Now consider the objective function
∑
s,a d(s, a) log

(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
. This objective function is

concave in f and linear in d and d′. Using the minimax theorem in Lemma 1, one can swap the infd′∈DπEξ
and

supf :S×A→(0,1) operators in (6), i.e.,

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ) · sup
d∈Dπξ

sup
f :S×A→(0,1)

inf
d′∈DπEξ

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
= (1 + λ) · sup

f :S×A→(0,1)

sup
d∈Dπξ

inf
d′∈DπEξ

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
.

Furthermore, using the equivalence of supremum (or infimum) between the set of distorted occupation measure
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Dπξ (or DπEξ ) and the set of risk envelop Uπ (or UπE ), we can show the following chain of equalities:

1

1 + λ
· sup
ζ∈Uπ :ξ= 1+λζ

1+λ

inf
ζ′∈UπE :ξ′= 1+λζ′

1+λ

−Rφ(dπξ , d
πE
ξ′ )

= sup
f :S×A→(0,1)

sup
ζ∈Uπ :ξ= 1+λζ

1+λ

inf
ζ′∈UπE :ξ′= 1+λζ′

1+λ

∑
s,a

dπξ (s, a) log
(
f(s, a)

)
+ dπEξ′ (s, a) log

(
1− f(s, a)

)
= sup
f :S×A→(0,1)

sup
ζ∈Uπ :ξ= 1+λζ

1+λ

∑
s,a

dπξ (s, a) log
(
f(s, a)

)
− sup
ζ′∈UπE :ξ′= 1+λζ′

1+λ

∑
s,a

dπEξ′ (s, a)
(
− log

(
1− f(s, a)

))
= sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ],

where the first and second equalities follow from basic arguments in optimization theory, and the third equality
follows from the dual representation theory of the coherent risk measures ρλα[Fπ1,f ] and ρλα[−FπE2,f ].

Combining this result with the original problem formulation in (16) completes the proof.

B.2 Proof of Corollary 1

In order to show the following equality:

(1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ] = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′),

we utilize the fact that the left-hand-side is equal to

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′).

In proving Corollary 1, we instead show that the following equality holds:

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′). (18)

For any d ∈ Dπξ and d′ ∈ DπEξ , consider the optimization problem∑
s,a

max
f̃∈(0,1)

d(s, a) log(f̃) + d′(s, a) log(1− f̃). (19)

For each state-action pair (s, a), since the optimization problem has a concave objective function, by the first
order optimality, f̃∗ can be found as

(1− f̃∗)d(s, a)− f̃∗d′(s, a) = 0 =⇒ f̃∗ =
d(s, a)

d(s, a) + d′(s, a)
∈ (0, 1).

By putting the optimizer back to the problem, one can show that (19) may be rewritten as∑
s,a

d(s, a) log

(
d(s, a)

d(s, a) + d′(s, a)

)
+ d′(s, a) log

(
d′(s, a)

d(s, a) + d′(s, a)

)
.

Then by putting this result back to (18), one may show that

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ)
(
− log(4) + sup

d∈Dπξ
inf

d′∈DπEξ
DJS(d, d′)

)
,

which completes the proof.
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C Proofs of RS-GAIL with Wasserstein Distance

C.1 Proof of Corollary 2

Corollary 2. For the cost function regularizer ψ(f) :=

{
0 if f ∈ F1

+∞ otherwise
, we may write

Lλ(π, πE) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

W (d, d′).

Proof. From Eq. 6, we may write

Lλ(π, πE) = sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗
(
(1 + λ)(d− d′)

)
(a)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈C

(d− d′)>f − ψ(f)

(b)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈F1

(d− d′)>f

= (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

sup
f∈F1

Ed[f(s, a)]− Ed′ [f(s, a)]

(c)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
W (d, d′),

(a) is from the definition of ψ∗, (b) is from the definition of ψ(f), and (c) is from the definition of the Wasserstein
distance.

C.2 Proof of Theorem 3

Theorem 3. Let ∆ be the worst-case risk difference between the agent and the expert, given that their occupancy
measures are δ-close (δ > 0), i.e.,

∆ = sup
p,p0,π

sup
f∈F1

ρα[Cπf ]− ρα[CπEf ], s.t. W (dπ, dπE ) ≤ δ.

Then, ∆ ≥ δ
α .

Proof. Let ‖ · ‖ be a norm on the state-action space S ×A and denote by Γ the set of all trajectories with horizon
T . For a trajectory τ = (s0, a0, s1, . . . , sT , aT ) ∈ Γ, we define ‖τ‖Γ =

∑T
t=0 γ

t‖(st, at)‖. The function ‖ · ‖Γ
defines a norm on the trajectory space Γ. Let G1 be the space of 1-Lipschitz functions over Γ w.r.t. ‖ · ‖Γ. In
particular, for f ∈ F1 and trajectories τ and τ ′, we have

|Cf (τ)− Cf (τ ′)| = |
T∑
t=0

γt (f(st, at)− f(s′t, a
′
t)) |

≤
T∑
t=0

γt|f(st, at)− f(s′t, a
′
t)|

(a)
≤

T∑
t=0

γt‖(st, at)− (s′t, a
′
t)‖

= ‖τ − τ ′‖Γ,

where (a) holds because f is 1-Lipschitz over S ×A. Hence, for f ∈ F1, we have Cf ∈ G1. This implies that{
(π, p, p0) |W (pπ, pπE ) ≤ δ

}
⊆
{

(π, p, p0) |W (dπ, dπE ) ≤ δ
}
, (20)
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where pπ and pπE denote the distributions over Γ induced by (π, p, p0) and (πE , p, p0), respectively. Indeed, if
(π, p, p0) ∈

{
(π, p, p0) |W (pπ, pπE ) ≤ δ

}
, then for any G ∈ G1, we have

Epπ
[
G(τ)

]
− EpπE

[
G(τ)

]
≤ δ.

For f ∈ F1, since Cf ∈ G1, we obtain Epπ
[
Cf (τ)

]
− EpπE

[
Cf (τ)

]
≤ δ, which proves (20). Therefore, we can

lower-bound ∆ as
∆ ≥ ∆̃ := sup

f∈F1

sup
(π,p,p0);W (pπ,pπE )≤δ

ρα[Cπf ]− ρα[CπEf ]. (21)

Using Theorem 15 in Pichler [2013], we have that ∆̃ ≥ δ
α , which concludes the proof.
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D Algorithmic Details

D.1 JS-RS-GAIL

D.1.1 Gradient Formulas

In order to derive the expression of the gradients for JS-RS-GAIL, we first make the following assumption
regarding the uniqueness of the quantiles of the random cumulative cost w.r.t. any cost and policy parameters.
Assumption 1. For any α ∈ (0, 1), θ ∈ Θ, and w ∈ W, there exists a unique zθα ∈ R (respectively zπEα ∈ R) such
that P[Fπθ1,fw

≤ zθα] = 1− α (respectively P[−FπE2,fw
≤ zπEα ] = 1− α).

Lemma 4. Let θ ∈ Θ and w ∈ W. Then,

1. ρα[Fπθ1,fw
] = infν∈R

(
ν + 1

αE[Fπθ1,fw
− ν]+

)
, where x+ = max(x, 0).

2. There exists a unique ν∗ ∈ R such that ρα[Fπθ1,fw
] = ν∗ + 1

αE[Fπθ1,fw
− ν∗]+.

3. ν∗ = να(Fπθ1,fw
).

Proof. The first item is a standard result about the Conditional-Value-at-Risk (see Shapiro et al. [2014]). The
second and third items stem from Assumption 1 and Theorem 6.2 in Shapiro et al. [2014].

Lemma 5. For any θ ∈ Θ and any w ∈ W, we have

∇wρα[Fπθ1,fw
] =

1

α
E
[
1{Fπθ1,w(τ)≥να(F

πθ
1,w)}∇wF

πθ
1,w(τ)

]
,

∇wρα[−FπE2,fw
] = − 1

α
E
[
1{−FπE2,w(τ)≥να(−FπE2,w)}∇wF

πE
2,w(τ)

]
.

Proof. From Lemma 4, for any ε > 0, we have

ρα[Fπθ1,fw
] = inf

ν∈[ν∗w−ε,ν∗w+ε]

(
ν +

1

α
E[Fπθ1,fw

− ν]+

)
, (22)

where ν∗ = να(Fπθ1,fw
). The set of minimizers Λ of the RHS of (22) is the singleton {ν∗w}. The in-

terval [ν∗ − ε, ν∗ + ε] is nonempty and compact. Using Assumption 1, for any ν ∈ R, the function
w 7→ ν + 1

αE[Fπθ1,fw
− ν]+ is differentiable and the function (w, ν) 7→ ∇w

(
ν + 1

αE[Fπθ1,fw
− ν]+

)
is continuous.

Therefore, we can apply Danskin’s theorem [Shapiro et al., 2014] to deduce that w 7→ ρα[Fπθ1,fw
] is differentiable

and ∇wρα[Fπθ1,fw
] = ∇w

(
ν∗ + 1

αE[Fπθ1,fw
− ν∗]+

)
. It is immediately observed that ∇w

(
ν∗ + 1

αE[Ffw − ν∗]+
)

=

Eθ
[

1
α1{Fπθ1,fw

(τ)≥να(F
πθ
1,fw

)}∇wF
πθ
1,fw

(τ)
]
. Similar steps can be carried out to show that ∇wρα[−FπE2,fw

] =

− 1
αE
[
1{−FπE2,fw

(τ)≥να(−FπE2,fw
)}∇wF

πE
2,fw

(τ)
]
.

Lemma 6. For any θ ∈ Θ, the causal entropy gradient is given by

∇θH(πθ) = Edπθ
[
∇θ log πθ(a | s)Qlog(s, a)

]
, (23)

where Qlog(s̄, ā) = Edπθ
[
− log πθ(a | s) | s0 = s̄, a0 = ā

]
.

Proof. We refer to the proof of Lemma A.1 in Ho and Ermon [2016a].

Lemma 7. For any θ ∈ Θ and w ∈ W, we have

∇θρα[Fπθ1,fw
] =

1

α
E
[
∇θ log πθ(τ)

(
Fπθ1,fw

(τ)− να(Fπθ1,fw
)
)

+

]
, (24)

where ∇θ log πθ(τ) =
∑T
t=0∇θ log πθ(at | st) with τ = (s0, a0, . . . , sT , aT ).

Proof. We refer the reader to the proof in Tamar et al. [2015a, 2017].
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D.1.2 Estimation of the VaR and Gradients

Estimation of the VaR
Corollary 3. Let {τj}Nj=1 be trajectories sampled independently from πθ. Given a cost function parameter w ∈ W,

let
(
Fπθ1,fw

(τ(1)), . . . , F
πθ
1,fw

(τ(N))
)
be the order statistic of the sampled trajectories, i.e.,

Fπθ1,fw
(τ(1)) ≤ . . . ≤ Fπθ1,fw

(τ(N)).

Then, a consistent estimator ν̂α(Fπθ1,fw
) of the Value-at-Risk να(Fπθ1,fw

) is given by the (1−α)-quantile of the order

statistic
(
Fπθ1,fw

(τ(1)), . . . , F
πθ
1,fw

(τ(N))
)
.

Similarly, let {τEj }Nj=1 be trajectories sampled independently from πE. If
(
−FπE2,fw

(τE(1)), . . . ,−F
πE
2,fw

(τE(N))
)
is the

order statistic of the sampled expert trajectories, then a consistent estimator ν̂α(−FπE2,fw
) of the Value-at-Risk

να(−FπE2,fw
) is given by the (1− α)-quantile of the order statistic

(
−FπE2,fw

(τE(1)), . . . ,−F
πE
2,fw

(τE(N))
)
.

Estimation of the Gradients
Corollary 4. Given trajectories {τj}Nj=1 sampled from πθ, trajectories {τEj }

NE
j=1 sampled from πE, and a cost

function parameter w ∈ W, a consistent estimator of the gradient of (1 + λ)
(
ρλα[Fπθ1,fw

]− ρλα[−FπE2,fw
]
)
w.r.t. w is

given by

1

αN

N∑
j=1

(
α+ λ1{

F
πθ
1,fw

(τj)≥ν̂α(F
πθ
1,fw

)
})∇wFπθ1,fw

(τj) +
1

αNE

NE∑
j=1

(
α+ λ1{

−FπE2,fw
(τEj )≥ν̂α(−FπE2,fw

)
})∇wFπE2,fw

(τEj ).

The two other gradients are estimated using standard Monte-Carlo techniques from the reinforcement learning
literature [Sutton et al., 2000, Ziebart et al., 2008].

D.2 W-RS-GAIL

D.2.1 Gradient Formulas

Using similar assumptions and technical arguments as for JS-RS-GAIL, we obtain the following expressions for
the gradients of W-RS-GAIL.
Theorem 4 (W-RS-GAIL, gradient w.r.t. the cost function parameter).

∇w(1 + λ)
(
ρλα[Cπθfw ]− ρλα[CπEfw ]

)
=

1

α
E
[(
α+ λ1{

C
πθ
fw

(τ)≥να(C
πθ
fw

)
})∇wCπθfw(τ)

]
− 1

α
E
[(
α+ λ1{

C
πE
fw

(τ)≥να(C
πE
fw

)
})∇wCπEfw (τ)

]
.

Theorem 5 (W-RS-GAIL, gradient w.r.t. the policy parameter).

∇θρλα[Cπθfw ] =
1

α
E
[
∇θ log πθ(τ)

(
Cπθfw(τ)− να(Cπθfw)

)
+

]
.

D.2.2 Estimation of the VaR and Gradients

Estimation of the VaR
Corollary 5. Let {τj}Nj=1 be trajectories sampled independently from πθ. Given a cost function parameter w ∈ W,

let
(
Cπθfw(τ(1)), . . . , C

πθ
fw

(τ(N))
)
be the order statistic of the sampled trajectories, i.e.,

Cπθfw(τ(1)) ≤ . . . ≤ Cπθfw(τ(N)).

Then, a consistent estimator ν̂α(Cπθfw) of the Value-at-Risk να(Cπθfw) is given by the (1− α)-quantile of the order

statistic
(
Cπθfw(τ(1)), . . . , C

πθ
fw

(τ(N))
)
.
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Similarly, let {τEj }Nj=1 be trajectories sampled independently from πE. If
(
CπEfw (τE(1)), . . . , C

πE
fw

(τE(N))
)
is the order

statistic of the sampled expert trajectories, then a consistent estimator ν̂α(CπEfw ) of the Value-at-Risk να(CπEfw ) is

given by the (1− α)-quantile of the order statistic
(
CπEfw (τE(1)), . . . , C

πE
fw

(τE(N))
)
.

Estimation of the Gradients

Corollary 6. Given trajectories {τj}Nj=1 sampled from πθ, trajectories {τEj }
NE
j=1 sampled from πE, and a cost

function parameter w ∈ W, a consistent estimator of ∇w(1 + λ)
(
ρλα[Cπθfw ]− ρλα[CπEfw ]

)
is given by

1

αN

N∑
j=1

(
α+ λ1{

C
πθ
fw

(τj)≥ν̂α(C
πθ
fw

)
})∇wCπθfw(τj)−

1

αNE

NE∑
j=1

(
α+ λ1{

C
πE
fw

(τEj )≥ν̂α(C
πE
fw

)
})∇wCπEfw (τEj ).

The two other gradients are estimated using standard Monte-Carlo techniques from the reinforcement learning
literature [Sutton et al., 2000, Ziebart et al., 2008].
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E Adding Noise to the Cost Function of Hopper and Walker

For each (deterministic) environment, we pre-train an expert’s policy πE using TRPO. We introduce stochasticity
in the cost function in a way that (i) increases the risk-sensitivity of the expert policy πE w.r.t. the modified cost
function and (ii) makes the environment stochastic enough to have a meaningful assessment of risk in terms of
tail performance.

Hopper: Given the deterministic cost function c(s, a) of the original implementation, we introduce randomness
into c(s, a) as follows: We generate 500 trajectories from the expert’s policy πE . Then, we run a K-Means
clustering algorithm with K = 15 over the set of collected state-action pairs D. We set {wi}K=15

i=1 to be the
relative proportion of the expert’s state-action pairs in the i-th cluster. These weights give us a rough estimate of
the occupancy measure of the expert’s policy. For any other (unobserved in the expert’s trajectories) state-action
pair (s, a) ∈ S ×A, we compute the closest observed state-action pair w.r.t. the Euclidean distance, i.e., (ŝ, â) ∈ D.
Let j be the index of the cluster that (ŝ, â) belongs to. We define the noisy cost function crandom(s, a) to be

crandom(s, a) :=
1

0.2 +
√
wj
|Z| c(s, a),

where Z ∼ N (0, 1) is a standard Gaussian random variable truncated between −10 and 10. The lower the value
of wj (i.e., the less ’time’ the expert spends in the region of the state-action space around (s, a)), the higher the
random gain 1

0.2+
√
wj
|Z|. Therefore, a low value of wj , combined with the random cost crandom(s, a), corresponds,

a posteriori, to a region the expert considers as risky.

Walker: We use the exact same procedure as in Hopper for Walker, with the cost function crandom defined as

crandom(s, a) :=
0.4√

max(0.01, wj − 0.02)
|Z| c(s, a),

where Z ∼ N (0, 1) is a standard Gaussian random variable truncated between −10 and 10.

The numerical values defined the modified cost functions cN (s, a) were chosen before running any imitation
learning algorithm.
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