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Abstract

We study two randomized algorithms for gener-
alized linear bandits. The first, GLM-TSL, sam-
ples a generalized linear model (GLM) from the
Laplace approximation to the posterior distribu-
tion. The second, GLM-FPL, fits a GLM to a ran-
domly perturbed history of past rewards. We an-
alyze both algorithms and derive Õ(d

√
n logK)

upper bounds on their n-round regret, where d is
the number of features and K is the number of
arms. The former improves on prior work while
the latter is the first for Gaussian noise perturba-
tions in non-linear models. We empirically eval-
uate both GLM-TSL and GLM-FPL in logistic ban-
dits, and apply GLM-FPL to neural network ban-
dits. Our work showcases the role of randomiza-
tion, beyond posterior sampling, in exploration.

1 Introduction

A multi-armed bandit [Lai and Robbins, 1985, Auer et al.,
2002, Lattimore and Szepesvari, 2019] is an online learn-
ing problem where actions of the learning agent are repre-
sented by arms. The arms can be treatments in a clinical
trial or ads on a website. After an arm is pulled, the agent
receives a stochastic reward. The agent aims to maximize
its expected cumulative reward. Since the agent does not
know the mean rewards of the arms in advance, it faces the
exploration-exploitation dilemma: explore, and learn more
about the reward distributions of the arms; or exploit, and
pull the arm with the highest estimated reward thus far.

A generalized linear bandit [Filippi et al., 2010, Zhang
et al., 2016, Li et al., 2017, Jun et al., 2017] is a variant
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of the multi-armed bandit where the expected rewards of
arms are modeled using a generalized linear model (GLM)
[McCullagh and Nelder, 1989]. Specifically, the expected
reward is a known function µ, such as a sigmoid, of the dot
product of a known feature vector and an unknown param-
eter vector. In the earlier clinical example, the feature and
parameter vectors could be treatment indicators and effects
of individual treatments, respectively.

Most existing algorithms for generalized linear bandits are
based on upper confidence bounds (UCBs). Motivated by
the superior performance of randomized GLM algorithms
[Chapelle and Li, 2012, Russo et al., 2018], we study two
randomized algorithms for this class of problems, GLM-TSL
and GLM-FPL. GLM-TSL samples a GLM from the Laplace
approximation to the posterior distribution. GLM-FPL fits a
GLM to a randomly perturbed history of past rewards.

We analyze GLM-TSL and GLM-FPL, and prove that their n-
round regret is Õ(d

√
n logK), where d is the number of

features and K is the number of arms. The regret bound of
GLM-TSL improves on the best prior regret bound [Abeille
and Lazaric, 2017] by a multiplicative factor of

√
d/ logK

in the finite arm setting and matches it in the infinite arm
setting. The regret bound of GLM-FPL is the first for Gaus-
sian noise perturbations in non-linear models, although we
derive it under an additional assumption on arm features.

We also evaluate GLM-TSL and GLM-FPL empirically. Both
have a state-of-the-art performance in logistic bandits, the
most important practical use case of GLM bandits. Just as
importantly, the perturbation scheme in GLM-FPL general-
izes straightforwardly to complex reward models, such as a
neural network. To demonstrate this, we apply GLM-FPL to
high-dimensional classification problems and show that it
can learn complex neural network mappings from features
to rewards. The simplicity of GLM-FPL suggests that it may
find broad application in the future.
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Algorithm 1 General randomized exploration in general-
ized linear bandits.

1: Inputs: Number of exploration rounds τ

2: for t = 1, . . . , n do
3: if t > τ then
4: θ̃t ← Randomized MLE on {(X`, Y`)}t−1

`=1

5: It ← arg max i∈[K] x
>
i θ̃t

6: else
7: Choose It based on {X`}t−1

`=1

8: Pull arm It and get reward YIt,t
9: Xt ← xIt , Yt ← YIt,t

2 Setting

We adopt the following notation. The set {1, . . . , n} is de-
noted by [n]. All vectors are column vectors. For any pos-
itive semi-definite (PSD) matrix M , λmin(M) ≥ 0 is the
minimum eigenvalue of M . For any n × n PSD matrices
M1 and M2, M1 � M2 if and only if x>M1x ≤ x>M2x
for all x ∈ Rd. We let ‖x‖M =

√
x>Mx and Ber(p) be

the Bernoulli distribution with mean p. The indicator that
event E occurs is 1{E}. We use Õ for the big-O notation
up to logarithmic factors in horizon n.

A generalized linear model (GLM) is a probabilistic model
where observation Y given feature vector x ∈ Rd has an
exponential-family distribution with mean µ(x>θ), where
µ is the mean function and θ ∈ Rd are model parameters
[McCullagh and Nelder, 1989]. Let D = {(x`, y`)}n`=1 be
a set of n observations, where x` ∈ Rd and y` ∈ R. The
negative log likelihood of D under model parameters θ is

L(D; θ) =

|D|∑
`=1

b(x>` θ)− y`x>` θ − c(y`) ,

where c is a real function, and b is twice continuously dif-
ferentiable and its derivative is the mean function, ḃ = µ.
The gradient and Hessian of L(D; θ) with respect to θ are

∇L(D; θ) =

|D|∑
`=1

(µ(x>` θ)− y`)x` , (1)

∇2L(D; θ) =

|D|∑
`=1

µ̇(x>` θ)x`x
>
` , (2)

where µ̇ denotes the derivative of µ. The mean function µ
is increasing and therefore its derivative µ̇ is positive. The
maximum likelihood estimate (MLE) of model parameters
is a vector θ ∈ Rd such that∇L(D; θ) = 0.

A stochastic GLM bandit [Filippi et al., 2010] is an online
learning problem where the rewards of arms are generated
by some underlying GLM. Let K be the number of arms,
xi ∈ Rd be the feature vector of arm i ∈ [K], and θ∗ ∈ Rd

be an unknown parameter vector. Then the reward of arm
i in round t ∈ [n], Yi,t, is drawn i.i.d. from a distribution
with mean µi = µ(x>i θ∗). We assume that ηi,t = Yi,t −
µ(x>i θ∗) is σ2-sub-Gaussian. That is,

E [exp[ληi,t]] ≤ exp[λ2σ2/2]

holds for all arms i, rounds t, and λ ≥ 0. In round t, the
agent pulls arm It ∈ [K] and observes its reward YIt,t. The
goal of the agent is to maximize its expected cumulative
reward in n rounds. To simplify notation, we denote the
feature vector of arm It by Xt = xIt and its stochastic
reward by Yt = YIt,t.

Without loss of generality, we assume that arm 1 is the
unique optimal arm, that is µ1 > maxi>1 µi. Let ∆i =
µ1 − µi be the suboptimality gap of arm i. Maximization
of the expected cumulative reward over n rounds is equiv-
alent to minimizing the expected n-round regret, which is
defined as

R(n) =

K∑
i=2

∆iE

[
n∑
t=1

1{It = i}

]
. (3)

3 Algorithms

Our GLM bandit algorithms follow the template in Algo-
rithm 1. They explore initially in τ rounds, so that the esti-
mated parameters in subsequent rounds have “good” prop-
erties. The exploration strategy is detailed in Section 4.5.
After the initial exploration, they act greedily with respect
to randomized parameter vectors θ̃t. Specifically, they pull
arm It = arg max i∈[K] x

>
i θ̃t in round t. If this maximum

is not unique, any tie breaking can be used.

3.1 Algorithm GLM-TSL

We study two algorithms. The first algorithm, GLM-TSL, is
a variant of Thompson sampling [Thompson, 1933] where
the posterior of θ∗ is approximated by its Laplace approxi-
mation. The randomized parameter vector is sampled from
the Laplace approximation

θ̃t ∼ N (θ̄t, a
2H−1

t ) , (4)

where

θ̄t = arg min
θ∈Rd

L({(X`, Y`)}t−1
`=1 ; θ) ,

Ht =

t−1∑
`=1

µ̇(X>` θ̄t)X`X
>
` ,

(5)

and a > 0 is a tunable parameter. Chapelle and Li [2012]
and Russo et al. [2018] evaluated GLM-TSL empirically. In
addition, Abeille and Lazaric [2017] proved that GLM-TSL
has Õ(d

3
2
√
n) regret in the infinite arm setting. We prove

that GLM-TSL has Õ(d
√
n logK) regret when the number

of arms is K.
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3.2 Algorithm GLM-FPL

We also propose a follow-the-perturbed-leader (FPL) al-
gorithm, GLM-FPL. In GLM-FPL, the randomized parameter
vector is the MLE from past t − 1 rewards perturbed with
Gaussian noise,

θ̃t = arg min
θ∈Rd

L({(X`, Y` + Z`)}t−1
`=1 ; θ) , (6)

where Z` ∼ N (0, a2) are normal random variables that are
resampled in each round, independently of each other and
the history, and a > 0 is a tunable parameter. Surprisingly,
this perturbation does not change the parameter estimation
problem. In particular, it only shifts the gradient of the log
likelihood in (1) by Z`X` and the Hessian in (2) remains
positive semi-definite. In this work, we show that GLM-FPL
has Õ(d

√
n logK) regret when the number of arms is K,

under an additional assumption on arm features.

The design of GLM-FPL is motivated by the equivalence of
posterior sampling and perturbations by Gaussian noise in
linear models [Lu and Van Roy, 2017], when the prior of
θ∗ and rewards are Gaussian. In GLMs, these two are not
equivalent. Thus GLM-TSL and GLM-FPL are different algo-
rithms. GLM-FPL can be also viewed as an instance of ran-
domized least-squares value iteration [Osband et al., 2016]
applied to bandits. The specific instance in this work, ad-
ditive Gaussian noise in a GLM, is novel. Finally, we note
that the perturbation in (6) can be directly applied to more
complex models, such as neural networks (Section 5). This
is arguably its most attractive property.

3.3 Computationally-Efficient Implementations

The MLEs in (4) and (6) can be computed by iteratively
reweighted least squares (IRLS) [Wolke and Schwetlick,
1988], which uses Newton’s method. Roughly speaking,
each step of IRLS multiplies the inverse of (2) and (1). If
(2) and (1) can be expressed independently of round t, the
computational cost of an IRLS step does not increase with
t. This is viable for any set of feature vectors X using∑

x∈X (Nxµ(xT θ)− Yx)x ,
∑
x∈X Nxµ̇(xT θ)xxT ,

where Nx is the number of times that x appears in history
D, and Yx is the sum of its rewards. Both Nx and Yx can
be updated incrementally. Finally, adding N (0, a2) noise
to each reward in (6) is equivalent to adding N (0, Nxa

2)
noise to each Yx above.

The pulled arm in line 5 of Algorithm 1 can be computed
efficiently even when the arm space is infinite, such as an
intersection of half spaces. This is true of prior GLM ban-
dit algorithms (Section 6). The MLE in line 4 cannot be
computed efficiently in general, independently of round t,
as in all prior algorithms except that of Jun et al. [2017].
We study one approximation empirically in Section 5.2.

4 Analysis

Our analysis is organized as follows. In Section 4.1, we
review technical challenges that arise in analyzing GLM
bandits and their solutions. In Section 4.2, we outline our
analysis. In Sections 4.3 and 4.4, we prove regret bounds
for GLM-TSL and GLM-FPL. We discuss them in Section 4.5.

4.1 Technical Challenges

One challenge in analyzing GLMs is that they do not have
closed-form solutions. Nevertheless, their solutions can be
expressed using the gradient and Hessian of the log like-
lihood (Section 2). This is the key idea in the analyses of
GLM bandits [Filippi et al., 2010, Li et al., 2017] and we
present it below.

Lemma 1. Let D1 = {(x`, y`,1)}n`=1 be a set of n obser-
vations and D2 = {(x`, y`,2)}n`=1 have the same features
as D1. Let θ1 be the minimizer of L(D1; θ) and θ2 be the
minimizer of L(D2; θ). Then

n∑
`=1

(y`,2 − y`,1)x` = ∇2L(D1; θ′)(θ2 − θ1) ,

where θ′ = αθ1 + (1− α)θ2 for some α ∈ [0, 1].

Proof. By the definition of the gradient in (1),

∇L(D1; θ)−∇L(D2; θ) =

n∑
`=1

(y`,2 − y`,1)x`

holds for any θ. Moreover, from the definitions of θ1 and
θ2, ∇L(D1; θ1) = ∇L(D2; θ2) = 0. Now we apply these
identities and obtain

n∑
`=1

(y`,2 − y`,1)x` = ∇L(D1; θ2)−∇L(D2; θ2)

= ∇L(D1; θ2)−∇L(D1; θ1)

= ∇2L(D1; θ′)(θ2 − θ1) .

where θ′ is defined in the claim.

Another challenge is µ̇(x>` θ) in (2). To apply ideas from
linear bandit analyses, it must be eliminated. We do so as
follows. Let G =

∑|D|
`=1 x`x

>
` be an unweighted Hessian

with the same features as (2). Let cmin ≤ µ̇(x>` θ) ≤ cmax

for some cmin and cmax, and for all ` ∈ [|D|]. Then from
the definition of (2), cminG � ∇2L(D; θ) � cmaxG and
c−1
minG

−1 � (∇2L(D; θ))−1 � c−1
maxG

−1. Because of this,
the derivatives of µ must be controlled.

To control the derivatives of µ at θ̄t and θ̃t (Section 3), we
initially explore so that θ̄t and θ̃t are in the unit ball cen-
tered at θ∗ with a high probability. This gives rise to

µ̇min = min‖x‖2≤1, ‖θ−θ∗‖2≤1 µ̇(x>θ)
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in our regret bounds, the minimum derivative of µ in the
unit ball centered at θ∗. This trick [Li et al., 2017] requires
that ‖xi‖2 ≤ 1 for all arms i, and we assume this in our
analysis. We define the maximum derivative of µ as

µ̇max = max‖x‖2≤1, θ∈Rd µ̇(x>θ) .

This factor is typically easy to control. In logistic regres-
sion, for instance, µ̇max = 1/4.

4.2 Outline of Our Analyses

Let θ∗ be the unknown parameter vector, θ̄t be its MLE
in round t, and θ̃t be the randomized MLE in round t. At
a high level, we bound the regret under assumptions that
θ̄t → θ∗, θ̃t → θ̄t, and θ̃t is optimistic. We show that the
corresponding favorable conditions hold with a high prob-
ability and define the corresponding events below.

Let Ft = σ(I1, . . . , It, Y1, . . . , Yt) be the σ-algebra gen-
erated by the pulled arms and their rewards by the end of
round t ∈ [n]. We let F0 = {∅,Ω}, where Ω is the sample
space of the probability space that holds all random vari-
ables. Then (Ft)t is a filtration. Let

Pt (·) = P (· | Ft−1) , Et [·] = E [· | Ft−1] ,

be the conditional probability and expectation, given the
history at the beginning of round t, Ft−1, respectively. Let
Gt =

∑t−1
`=1X`X

>
` be the unweighted Hessian in round t

and ∆max = maxi∈[K] ∆i be the maximum regret.

To argue that θ̄t → θ∗, we define

E1,t =
{
∀i ∈ [K] :

∣∣x>i θ̄t − x>i θ∗∣∣ ≤ c1‖xi‖G−1
t

}
, (7)

the event that x>i θ̄t and x>i θ∗ are “close” for all arms i in
round t, where c1 > 0 is tuned later such that event E1,t

is likely. Specifically, let Ē1,t be the complement of E1,t.
Then we set c1 such that P

(
Ē1,t

)
= O(1/n).

The upper bound on P
(
Ē1,t

)
is motivated by Lemma 3 in

Li et al. [2017]. We reprove the lemma since it contains a
subtle error. In particular, the proof that ‖θ̄t − θ∗‖2 ≤ 1
holds with a high probability assumes that the agent does
not act adaptively up to round t, which it clearly does for
any t > τ .

To argue that θ̃t → θ̄t, we define

E2,t =
{
∀i ∈ [K] :

∣∣∣x>i θ̃t − x>i θ̄t∣∣∣ ≤ c2‖xi‖G−1
t

}
, (8)

the event that x>i θ̃t and x>i θ̄t are “close” for all arms i in
round t, where c2 > 0 is tuned later such that event E2,t

is likely given any past. Specifically, let Ē2,t be the com-
plement of E2,t. Then we set c2 such that Pt

(
Ē2,t

)
=

O(1/n). This part of the analysis relies on the properties
of our perturbations and is novel.

Finally, to argue that θ̃t is sufficiently optimistic given any
past, we define event

E3,t =
{
x>1 θ̃t − x>1 θ̄t > c1‖x1‖G−1

t

}
. (9)

To obtain Pt (E3,t) = O(1), we set parameter a in (4) and
(6). This part of the analysis relies on the properties of our
perturbations and is novel.

Our analysis is sufficiently general, so that it can be used
to analyze different randomized algorithms. To show this,
we use it to analyze both GLM-TSL and GLM-FPL. The cen-
tral part of the analysis is an upper bound on the expected
per-round regret of any randomized algorithm whose per-
turbed solution in round t is a function of its history. The
corresponding lemma is stated below.

Lemma 2. Let p2 ≥ Pt
(
Ē2,t

)
, p3 ≤ Pt (E3,t), and p3 >

p2. Then on event E1,t,

Et [∆It ] ≤ µ̇max(c1 + c2)

(
1 +

2

p3 − p2

)
×

Et
[
‖xIt‖G−1

t

]
+ ∆max p2 .

The hardest part in the analyses of GLM-TSL and GLM-FPL
is to bound p2 and p3 in Lemma 2.

4.3 Analysis of GLM-TSL

Now we are ready to analyze GLM-TSL and GLM-FPL. The
regret bound of GLM-TSL is stated below.

Theorem 3. The n-round regret of GLM-TSL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 1/n

)
×√

2dn log(2n/d) + (τ + 3)∆max ,

where

a = c1
√
µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1

√
2µ̇−1

min µ̇max log(Kn) ,

and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max
{
σ2µ̇−2

min(d log(n/d) + 2 log n), 1
}
.

Proof. The claim is proved in Appendix A.

The proof has three key steps. First, we bound the proba-
bility of event Ē1,t from above (Lemma 8 in Appendix B).
Second, we choose parameter a such that the probabilities
of events Ē2,t and E3,t are bounded for any history Ft−1

(Lemma 4). Finally, we set the number of initial explo-
ration rounds τ such that ‖θ̄t − θ∗‖2 ≤ 1 is likely in any
round t ≥ τ (Lemma 9 in Appendix B).
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The above regret bound is Õ(d
√
n logK). We derive the

key concentration and anti-concentration lemma below.

Lemma 4. Let

a = c1
√
µ̇max , c2 = c1

√
2µ̇−1

min µ̇max log(Kn) .

Let E =
{
‖θ̄t − θ∗‖2 ≤ 1

}
. Then Pt

(
Ē2,t

)
≤ 1/n holds

on event E and Pt (E3,t) ≥ 0.15.

Proof. By the design of GLM-TSL in (4),

x>θ̃t − x>θ̄t ∼ N (0, a2‖x‖2
H−1
t

)

for any vector x ∈ Rd, where matrix Ht is defined in (5).
Let U = x>θ̃t − x>θ̄t. Because U ∼ N (0, a2‖x‖2

H−1
t

) is
a normal random variable, we have that

Pt
(
U ≥ a‖x‖H−1

t

)
≥ 0.15 ,

Pt
(
U ≥ c‖x‖H−1

t

)
≤ exp

[
− c2

2a2

]
,

for any c > 0.

Now note that Ht � µ̇maxGt. As a result,

0.15 ≤ Pt
(
U ≥ a‖x‖H−1

t

)
≤ Pt

(
U ≥ a

√
µ̇−1

max‖x‖G−1
t

)
.

For a = c1
√
µ̇max and x = x1, we get that event E3,t in

(9) occurs with probability at least 0.15.

Moreover, Ht � µ̇minGt on event E, which yields

exp

[
− c2

2a2

]
≥ Pt

(
U ≥ c‖x‖H−1

t

)
≥ Pt

(
U ≥ c

√
µ̇−1

min‖x‖G−1
t

)
.

For c = a
√

2 log(Kn), x = xi, and by the union bound
over all K arms, we get that event Ē2,t in (8) occurs with
probability at most 1/n.

4.4 Analysis of GLM-FPL

The regret bound of GLM-FPL is stated below. The analysis
assumes that all feature vectors xi have at most one non-
zero entry. This assumption is discussed in Section 4.5.

Theorem 5. The n-round regret of GLM-FPL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 2/n

)
×√

2dn log(2n/d) + (τ + 4)∆max ,

where

a = c1µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1µ̇
−1
min µ̇max

√
2 log(Kn) ,

and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max{4σ2µ̇−2
min(d log(n/d) + 2 log n),

8a2µ̇−2
min log n, 1} .

Proof. The claim is proved in Appendix A.

The proof has three key steps. First, we bound the proba-
bility of event Ē1,t from above (Lemma 8 in Appendix B).
Second, we choose parameter a such that the probabilities
of events Ē2,t and E3,t are bounded for any history Ft−1

(Lemma 6). Finally, we set the number of initial explo-
ration rounds τ such that ‖θ̄t − θ∗‖2 ≤ 1/2 is likely and
‖θ̃t − θ∗‖2 ≤ 1 is conditionally likely given Ft−1, in any
round t ≥ τ (Lemma 10 in Appendix B).

The above regret bound is also Õ(d
√
n logK). The key

concentration and anti-concentration lemma follows.

Lemma 6. Let

a = c1µ̇max , c2 = c1µ̇
−1
min µ̇max

√
2 log(Kn) .

Let E =
{
‖θ̄t − θ∗‖2 ≤ 1/2

}
, E′ = {‖θ̃t − θ∗‖2 ≤ 1},

and Pt
(
Ē′
)
≤ 1/n on event E. Then Pt

(
Ē2,t

)
≤ 2/n on

event E and Pt (E3,t) ≥ 0.15.

Proof. Fix any history Ft−1. By Lemma 1, where D1 =
{(X`, Y`)}t−1

`=1 and D2 = {(X`, Y` + Z`)}t−1
`=1, we get

t−1∑
`=1

Z`X` = H̃t(θ̃t − θ̄t) ,

where Z` ∈ N (0, a2) are i.i.d. normal random variables,

H̃t =

t−1∑
`=1

µ̇(X>` θ
′
t)X`X

>
` ,

and θ′t = αθ̄t + (1 − α)θ̃t for some α ∈ [0, 1]. Fix any
x ∈ Rd and let U = x>G−1

t

∑t−1
`=1 Z`X`. Then

x>G−1
t H̃t(θ̃t − θ̄t) = U ∼ N (0, a2‖x‖2

G−1
t

) .

Since U is a normal random variable, we have that

Pt
(
U ≥ a‖x‖G−1

t

)
≥ 0.15 ,

Pt
(
U ≥ c‖x‖G−1

t

)
≤ exp

[
− c2

2a2

]
,
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for any c > 0.

Since all feature vectors have at most one non-zero entry,
G−1
t and H̃t are diagonal, as is G−1

t H̃t. By the definitions
of Gt and H̃t, diagonal entries of G−1

t H̃t are non-negative
and at most µ̇max. Let x have at most one non-zero entry.
Then x>(θ̃t − θ̄t) and x>G−1

t H̃t(θ̃t − θ̄t) have the same
sign, which we use to derive

0.15 ≤ Pt
(
U ≥ a‖x‖G−1

t

)
≤ Pt

(
µ̇max x

>(θ̃t − θ̄t) ≥ a‖x‖G−1
t

)
= Pt

(
x>(θ̃t − θ̄t) ≥ aµ̇−1

max‖x‖G−1
t

)
.

For a = c1µ̇max and x = x1, we get that event E3,t in (9)
occurs with probability at least 0.15.

The diagonal entries of G−1
t H̃t are non-negative, and also

at least µ̇min on events E and E′. So, on event E,

exp

[
− c2

2a2

]
≥ Pt

(
U ≥ c‖x‖G−1

t

)
≥ Pt

(
U ≥ c‖x‖G−1

t
, E′ occurs

)
≥ Pt

(
µ̇min x

>(θ̃t − θ̄t) ≥ c‖x‖G−1
t

)
− 1

n

= Pt
(
x>(θ̃t − θ̄t) ≥ cµ̇−1

min‖x‖G−1
t

)
− 1

n
.

For c = a
√

2 log(Kn), x = xi, and by the union bound
over all K arms, we get that event Ē2,t in (8) occurs with
probability at most 2/n.

4.5 Discussion

The regret of GLM-TSL is Õ(d
√
n logK) (Theorem 3). Up

to the factor of
√

logK, this matches the gap-free bounds
of GLM-UCB [Filippi et al., 2010] and UCB-GLM [Li et al.,
2017]. As in Agrawal and Goyal [2013b], the key idea in
our analysis is to achieve optimism by inflating the covari-
ance matrix in GLM-TSL by a = O(

√
d log n). This setting

is too conservative in practice. Thus, in Section 5, we also
experiment with a = O(1), which is known to work well
in practice [Chapelle and Li, 2012, Russo et al., 2018].

The regret of GLM-FPL is Õ(d
√
n logK) (Theorem 5). Al-

though the bound scales with K, d, and n similarly to that
in Theorem 3, it is worse in constant factors. For instance,

c2 is additionally multiplied by
√
µ̇−1

min µ̇max. The number
of initial exploration rounds is also higher, since we need
to guarantee that θ̃t and θ∗ are close with a high probabil-
ity given any Ft−1. As in GLM-TSL, the suggested value of
a = O(

√
d log n) is too conservative in practice. Thus, we

also experiment with a = O(1) in Section 5.

The regret bound of GLM-FPL is proved under the assump-
tion that feature vectors have at most one non-zero entry.

We need this assumption for the following reason. We es-
tablish in Lemma 6 that

U = x>G−1
t H̃t(θ̃t − θ̄t) ∼ N (0, a2‖x‖2

G−1
t

) .

Since a‖x‖G−1
t

is one standard deviation of U , event U >

a‖x‖G−1
t

is likely. But we need event U ′ = x>(θ̃t − θ̄t) >
a‖x‖G−1

t
to be likely. If G−1

t and H̃t have different eigen-
vectors, U and U ′ can have different signs, and it is hard to
relate them due to potential rotations by G−1

t H̃t. Our as-
sumption guarantees that the eigenvectors of G−1

t and H̃t

are identical. We leave the elimination of this assumption
for future work.

The initial exploration in GLM-TSL and GLM-FPL can be im-
plemented as follows. Let {vi}di=1 ⊆ {xi}

K
i=1 be any basis

in Rd and M =
∑d
i=1 v

>
i vi. Then, to satisfy assumptions

λmin(Gτ ) ≥ C in Theorems 3 and 5, each arm in the basis
is pulled Cλ−1

min(M) times.

5 Experiments

We conduct two sets of experiments. In Section 5.1, we
assess the empirical regret of GLM-TSL and GLM-FPL in lo-
gistic bandits. Because of its simplicity and generality, the
perturbation mechanism in GLM-FPL can be easily applied
to more complex models. We assess it on contextual bandit
problems with neural networks in Section 5.2.

5.1 Logistic Bandit

The goal of this experiment is to show that our proposed
algorithms perform well. We experiment with a logistic
bandit, a GLM bandit where µ(v) = 1/(1 + exp[−v]) and
Yi,t ∼ Ber(µ(x>i θ∗)). The number of arms is K = 100.
To avoid bias in choosing problem instances, we generate
them randomly: the feature vector of arm i is drawn uni-
formly at random from [−1, 1]d and the parameter vector
is θ∗ ∼ N (0, 3d−2Id), where Id is a d× d identity matrix.
By design, var

[
x>i θ∗

]
= 1, and so x>i θ∗ ∈ [−4, 4] with

a high probability. We vary the number of features d from
5 to 20. The horizon is n = 50 000 rounds and our results
are averaged over 100 problem instances.

Our baselines are two UCB algorithms, GLM-UCB [Filippi
et al., 2010] and UCB-GLM [Li et al., 2017]. We experiment
with two designs for each evaluated algorithm, theory (as
analyzed) and informal (practical). For GLM-TSL, we use a
from Theorem 3 and a = 1, for which (4) reduces to sam-
pling from the Laplace approximation. For GLM-FPL, we
use a from Theorem 5 and a = 0.5. We choose the latter
since a in Theorem 5 is half that in Theorem 3 in logistic
models, since µ̇max = 0.25. We also implement GLM-UCB
and UCB-GLM with tighter confidence intervals, 0.5‖x‖G−1 ,
where x is the feature vector of the arm, G is the sample
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Figure 1: Evaluation of GLM-TSL and GLM-FPL in logistic bandits. The n-round regret is shown as a function of n. The
solid and dotted lines represented theory-suggested and informal designs, respectively.

covariance matrix, and 0.5 is the maximum standard devi-
ation of rewards in logistic models. All algorithms pull d
linearly independent arms initially and µ̇min is set to the
most optimistic value of 0.25.

Our results are shown in Figure 1. We observe that theory
GLM-TSL and GLM-FPL outperform theory GLM-UCB, but not
theory UCB-GLM. The latter is known from prior algorithm
designs. In particular, when LinTS [Agrawal and Goyal,
2013b] is implemented as analyzed, it fails to outperform
LinUCB [Abbasi-Yadkori et al., 2011]; but it does outper-
form it when the theory-suggested posterior scaling is re-
laxed. This is indeed how LinTS is usually implemented.
Informal GLM-UCB and UCB-GLM fail, and have linear regret
in n. On the other hand, informal GLM-TSL and GLM-FPL
have low regret, sublinear in n. We conclude that GLM-TSL
and GLM-FPL have state-of-the-art performance in logistic
bandits.

5.2 Deep Bandit

The second experiment is on contextual bandit problems,
which are generated as follows. We fix a supervised learn-
ing dataset D and a target label c. The examples with la-
bel c have random rewards Ber(0.75) while the other ex-
amples have random rewards Ber(0.25). In round t, the
agent is presented K = 10 random examples xi,t from D,
which are arms. The agent learns a single generalization
model that maps feature vector xi,t to its expected reward.
The goal of the agent is to learn a good mapping quickly.
Since our generalization models are imperfect, our evalu-
ation metric is the average per-round reward in n rounds,
which we define as

∑n
t=1 Yt/n.

We experiment with two large-scale datasets: MNIST and
Fashion MNIST. MNIST [Lecun et al., 1998] is a dataset
of 60 thousand 28 × 28 gray-scale images of handwritten
digits, from 0 to 9. Fashion MNIST [Xiao et al., 2017] is
a dataset of 60 thousand 28 × 28 gray-scale images in 10
fashion categories. We generate 500 bandit instances for
each dataset, 50 for each class in that dataset. The horizon
is n = 10 000 rounds and we report the average reward
over all instances in each dataset.

We implement GLM-FPL with the neural network general-
ization in Keras [Chollet et al., 2015]. The neural network
has a single fully-connected hidden layer with 50 units.
The output layer is a sigmoid. We experiment with both
ReLU and tanh activation functions in the hidden layer.
The output layer is a sigmoid. In each round, the model is
updated using the adaptive optimizer Adam [Kingma and
Ba, 2015], where the learning rate is 0.001 and the mini-
batch contains 32 most recent examples. These settings are
default in Keras. Yogi [Zaheer et al., 2018] could be used
instead of Adam. The rewards of the training examples are
perturbed with i.i.d. N (0, a2) noise where a = 1. We call
this algorithm DeepFPL.

We consider two baselines. The first is a follow-the-leader
variant of DeepFPL where a = 0. We call it DeepFL. The
second is a variant of Neural Linear, the best method in a
recent large empirical study [Riquelme et al., 2018]. This
approach learns a representation separately of the bandit
problem and applies an existing bandit algorithm to it. We
learn the representation in m percent of initial rounds by
exploring randomly. The representation is the same neural
network as in DeepFPL. After learning, we chop its head
off and use the rest to embed feature vectors. The bandit
algorithm is GLM-FPL and we call this combined approach
repGLM-FPL. We experiment with m from 1% to 20%.

Our results are reported in Figure 2. We observe three ma-
jor trends. First, DeepFPL achieves high average rewards
of at least 0.5, which is close to the theoretical optimum
0.25 (1/K)K + 0.75 (1 − (1/K)K) ≈ 0.576 in both our
problems. Second, DeepFPL outperforms DeepFL. This
shows that exploration is beneficial, since the only differ-
ence between DeepFPL and DeepFL is that DeepFPL per-
turbs rewards to explore. Third, DeepFPL outperforms all
variants of repGLM-FPL. This shows that interleaving of
representation learning and exploration is beneficial. Also
note that the best setting of m in repGLM-FPL depends on
the problem. For instance, at n = 10 000 rounds, 1% and
5% exploration is comparable in the first two plots, while
5% exploration is superior in the last plot. DeepFPL does
not need any such tunable parameter.
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Figure 2: Evaluation of DeepFPL on contextual bandit problems in Section 5.2.

This experiment shows that GLM-FPL generalizes easily to
complex models and works well. While it does not have
regret guarantees in these models, it should be of interest
to practitioners.

6 Related Work

In the infinite arm setting, Abeille and Lazaric [2017]
proved that the regret of GLM-TSL is Õ(d

3
2
√
n). We prove

that it is Õ(d
√
n logK) when the number of arms is K.

This is an improvement of
√
d/ logK in our setting. We

also match the result of Abeille and Lazaric [2017] in the
infinite arm setting. Specifically, if the space of arms was
discretized on an ε-grid, and this discretization would not
change the order of the regret, the number of arms would
be K = ε−d and

√
logK =

√
d log(1/ε). Our analysis is

different from Abeille and Lazaric [2017] and is more like
that of Agrawal and Goyal [2013b]. We also match, up to
the factor of

√
logK, the bounds of most non-randomized

GLM bandit algorithms [Filippi et al., 2010, Zhang et al.,
2016, Li et al., 2017, Jun et al., 2017], which are Õ(d

√
n).

Dong et al. [2019] proved that the n-round Bayes regret of
GLM-TSL is Õ(d

√
n). This bound is for a weaker perfor-

mance metric than in this work, the Bayes regret; applies
only to logistic bandits; and makes strong assumptions on
the features of arms and θ∗. However, it does not depend
on µ̇min, which is a significant advance.

Similarly to GLM-TSL, we prove that the regret of GLM-FPL
is Õ(d

√
n logK). This regret bound is under the assump-

tion that feature vectors have at most one non-zero entry.
Although limited, this result is non-trivial since the num-
ber of potentially optimal arms is 2d, two per dimension.
This is the first frequentist regret bound for exploration by
Gaussian noise perturbations in a non-linear model. The
good empirical performance of GLM-FPL (Section 5) sug-
gests that the regret bound should hold in general, and we
leave the more general analysis as future work.

GLM-TSL is a variant of Thompson sampling. Thompson
sampling [Thompson, 1933, Agrawal and Goyal, 2013a,
Russo et al., 2018] is relatively well understood in linear
bandits [Agrawal and Goyal, 2013b, Valko et al., 2014].

However, it is difficult to extend it to non-linear problems
because their posterior distributions are complex and have
to be approximated. In general, posterior approximations
in bandits are computationally costly and lack regret guar-
antees [Gopalan et al., 2014, Kawale et al., 2015, Lu and
Van Roy, 2017, Riquelme et al., 2018, Lipton et al., 2018,
Liu et al., 2018]. We provide guarantees in this work.

GLM-FPL is a follow-the-perturbed-leader algorithm [Han-
nan, 1957, Kalai and Vempala, 2005]. We can also view it
as randomized least-squares value iteration [Osband et al.,
2016] applied to bandits. Our instance, additive Gaussian
noise in a GLM, is novel. GLM-FPL is also closely related
to perturbed-history exploration [Kveton et al., 2019c,a,b].
Kveton et al. [2019b] proposed a logistic bandit algorithm
that explores by perturbing its history with Bernoulli noise.
This algorithm was not analyzed and is less general than
GLM-FPL, as it is only for logistic bandits.

7 Conclusions

We study two randomized algorithms for GLM bandits,
GLM-TSL and GLM-FPL. The key idea in both algorithms is
to explore by perturbing the maximum likelihood estimate
in round t. We analyze GLM-TSL and GLM-FPL, and prove
that their n-round regret is Õ(d

√
n logK). Both GLM-TSL

and GLM-FPL perform well empirically in logistic bandits.
GLM-FPL can be easily generalized to more complex prob-
lems. Our experiments with neural networks are very en-
couraging, and indicate that GLM-FPL can be analyzed be-
yond GLM bandits. We plan to conduct such analyses in
future work.

Our analysis is under the assumption that the feature vec-
tors of arms are fixed and do not change over time. This
assumption can be lifted. The only part of the proof that
changes is that the number of initial exploration rounds τ
after which λmin(Gτ ) (Theorems 3 and 5) is large enough
becomes a random variable. Li et al. [2017] analyzed this
random variable and we can directly reuse their result.
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References

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari.
Improved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems 24,
pages 2312–2320, 2011.

Marc Abeille and Alessandro Lazaric. Linear Thompson
sampling revisited. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2017.

Shipra Agrawal and Navin Goyal. Further optimal regret
bounds for Thompson sampling. In Proceedings of the
16th International Conference on Artificial Intelligence
and Statistics, pages 99–107, 2013a.

Shipra Agrawal and Navin Goyal. Thompson sampling for
contextual bandits with linear payoffs. In Proceedings of
the 30th International Conference on Machine Learning,
pages 127–135, 2013b.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47:235–256, 2002.

Olivier Chapelle and Lihong Li. An empirical evaluation of
Thompson sampling. In Advances in Neural Information
Processing Systems 24, pages 2249–2257, 2012.

Kani Chen, Inchi Hu, and Zhiliang Ying. Strong consis-
tency of maximum quasi-likelihood estimators in gener-
alized linear models with fixed and adaptive designs. The
Annals of Statistics, 27(4):1155–1163, 1999.

Francois Chollet et al. Keras. https://keras.io,
2015.

Shi Dong, Tengyu Ma, and Benjamin Van Roy. On the per-
formance of thompson sampling on logistic bandits. In
Proceedings of the 32nd Annual Conference on Learning
Theory, 2019.

Sarah Filippi, Olivier Cappe, Aurelien Garivier, and Csaba
Szepesvari. Parametric bandits: The generalized linear
case. In Advances in Neural Information Processing Sys-
tems 23, pages 586–594, 2010.

Aditya Gopalan, Shie Mannor, and Yishay Mansour.
Thompson sampling for complex online problems. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pages 100–108, 2014.

James Hannan. Approximation to Bayes risk in repeated
play. In Contributions to the Theory of Games, volume 3,
pages 97–140. Princeton University Press, Princeton,
NJ, 1957.

Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak,
and Rebecca Willett. Scalable generalized linear ban-
dits: Online computation and hashing. In Advances in
Neural Information Processing Systems 30, pages 98–
108, 2017.

Adam Kalai and Santosh Vempala. Efficient algorithms
for online decision problems. Journal of Computer and
System Sciences, 71(3):291–307, 2005.

Jaya Kawale, Hung Bui, Branislav Kveton, Long Tran-
Thanh, and Sanjay Chawla. Efficient Thompson sam-
pling for online matrix-factorization recommendation.
In Advances in Neural Information Processing Systems
28, pages 1297–1305, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd Inter-
national Conference on Learning Representations, 2015.

Branislav Kveton, Csaba Szepesvari, Mohammad
Ghavamzadeh, and Craig Boutilier. Perturbed-history
exploration in stochastic multi-armed bandits. In
Proceedings of the 28th International Joint Conference
on Artificial Intelligence, 2019a.

Branislav Kveton, Csaba Szepesvari, Mohammad
Ghavamzadeh, and Craig Boutilier. Perturbed-history
exploration in stochastic linear bandits. In Proceedings
of the 35th Conference on Uncertainty in Artificial
Intelligence, 2019b.

Branislav Kveton, Csaba Szepesvari, Sharan Vaswani,
Zheng Wen, Mohammad Ghavamzadeh, and Tor Latti-
more. Garbage in, reward out: Bootstrapping explo-
ration in multi-armed bandits. In Proceedings of the 36th
International Conference on Machine Learning, pages
3601–3610, 2019c.

T. L. Lai and Herbert Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathe-
matics, 6(1):4–22, 1985.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms.
Cambridge University Press, 2019.

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–
2324, 1998.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably opti-
mal algorithms for generalized linear contextual bandits.
In Proceedings of the 34th International Conference on
Machine Learning, pages 2071–2080, 2017.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal
Ahmed, and Li Deng. BBQ-networks: Efficient explo-
ration in deep reinforcement learning for task-oriented
dialogue systems. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 5237–5244,
2018.

Bing Liu, Tong Yu, Ian Lane, and Ole Mengshoel. Cus-
tomized nonlinear bandits for online response selection
in neural conversation models. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence, pages
5245–5252, 2018.

https://keras.io


Randomized Exploration in Generalized Linear Bandits

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling.
In Advances in Neural Information Processing Systems
30, pages 3258–3266, 2017.

P. McCullagh and J. A. Nelder. Generalized Linear Models.
Chapman & Hall, 1989.

Ian Osband, Benjamin Van Roy, and Zheng Wen. General-
ization and exploration via randomized value functions.
In Proceedings of the 33rd International Conference on
Machine Learning, pages 2377–2386, 2016.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep
Bayesian bandits showdown: An empirical compari-
son of Bayesian deep networks for Thompson sampling.
In Proceedings of the 6th International Conference on
Learning Representations, 2018.

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian
Osband, and Zheng Wen. A tutorial on Thompson sam-
pling. Foundations and Trends in Machine Learning, 11
(1):1–96, 2018.

William R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Michal Valko, Remi Munos, Branislav Kveton, and Tomas
Kocak. Spectral bandits for smooth graph functions. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pages 46–54, 2014.

R. Wolke and H. Schwetlick. Iteratively reweighted least
squares: Algorithms, convergence analysis, and numeri-
cal comparisons. SIAM Journal on Scientific and Statis-
tical Computing, 9(5):907–921, 1988.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: A novel image dataset for benchmarking ma-
chine learning algorithms. CoRR, abs/1708.07747, 2017.
URL http://arxiv.org/abs/1708.07747.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen
Kale, and Sanjiv Kumar. Adaptive methods for noncon-
vex optimization. In Advances in Neural Information
Processing Systems 31, pages 9793–9803, 2018.

Lijun Zhang, Tianbao Yang, Rong Jin, Yichi Xiao, and Zhi-
Hua Zhou. Online stochastic linear optimization under
one-bit feedback. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning, pages 392–401,
2016.

http://arxiv.org/abs/1708.07747


Branislav Kveton, Manzil Zaheer, Csaba Szepesvári, Lihong Li

A Regret Bounds

The following lemma bounds the expected per-round regret of any randomized algorithm that chooses the perturbed solu-
tion in round t, θ̃t, as a function of the history.

Lemma 2. Let p2 ≥ Pt
(
Ē2,t

)
, p3 ≤ Pt (E3,t), and p3 > p2. Then on event E1,t,

Et [∆It ] ≤ µ̇max(c1 + c2)

(
1 +

2

p3 − p2

)
×

Et
[
‖xIt‖G−1

t

]
+ ∆max p2 .

Proof. Let ∆̃i = x>1 θ∗ − x>i θ∗ and c = c1 + c2. Let

S̄t =
{
i ∈ [K] : c‖xi‖G−1

t
≥ ∆̃i

}
be the set of undersampled arms in round t. Note that 1 ∈ S̄t by definition. We define the set of sufficiently sampled arms
as St = [K] \ S̄t. Let Jt = arg min i∈S̄t ‖xi‖G−1

t
be the least uncertain undersampled arm in round t.

In all steps below, we assume that event E1,t occurs. In round t on event E2,t,

∆It ≤ µ̇max ∆̃It = µ̇max

(
∆̃Jt + x>Jtθ∗ − x

>
Itθ∗

)
≤ µ̇max

(
∆̃Jt + x>Jt θ̃t − x

>
It θ̃t + c (‖xIt‖G−1

t
+ ‖xJt‖G−1

t
)
)

≤ µ̇max c
(
‖xIt‖G−1

t
+ 2‖xJt‖G−1

t

)
,

where the first inequality holds because µ̇max is the maximum derivative of µ, the second is by the definitions of events
E1,t and E2,t, and the last follows from the definitions of It and Jt. Now we take the expectation of both sides and get

Et [∆It ] = Et [∆It1{E2,t}] + Et
[
∆It1

{
Ē2,t

}]
≤ µ̇max cEt

[
‖xIt‖G−1

t
+ 2‖xJt‖G−1

t

]
+ ∆max Pt

(
Ē2,t

)
.

The last step is to replace Et
[
‖xJt‖G−1

t

]
with Et

[
‖xIt‖G−1

t

]
. To do so, observe that

Et
[
‖xIt‖G−1

t

]
≥ Et

[
‖xIt‖G−1

t

∣∣∣ It ∈ S̄t]Pt (It ∈ S̄t) ≥ ‖xJt‖G−1
t

Pt
(
It ∈ S̄t

)
,

where the last inequality follows from the definition of Jt and that S̄t is Ft−1-measurable. We rearrange the inequality as
‖xJt‖G−1

t
≤ Et

[
‖xIt‖G−1

t

]
/ Pt

(
It ∈ S̄t

)
and bound Pt

(
It ∈ S̄t

)
from below next.

In particular, on event E1,t,

Pt
(
It ∈ S̄t

)
≥ Pt

(
∃i ∈ S̄t : x>i θ̃t > max

j∈St
x>j θ̃t

)
≥ Pt

(
x>1 θ̃t > max

j∈St
x>j θ̃t

)
≥ Pt

(
x>1 θ̃t > max

j∈St
x>j θ̃t, E2,t occurs

)
≥ Pt

(
x>1 θ̃t > x>1 θ∗, E2,t occurs

)
≥ Pt

(
x>1 θ̃t > x>1 θ∗

)
− Pt

(
Ē2,t

)
≥ Pt

(
x>1 θ̃t − x>1 θ̄t > c1‖x1‖G−1

t

)
− Pt

(
Ē2,t

)
.

Note that we require a sharp inequality because It ∈ S̄t is not guaranteed on event
{
∃i ∈ S̄t : x>i θ̃t ≥ maxj∈St x

>
j θ̃t

}
.

The fourth inequality holds because on event E1,t ∩ E2,t,

x>j θ̃t ≤ x>j θ∗ + c‖xj‖G−1
t
< x>j θ∗ + ∆̃j = x>1 θ∗

holds for any j ∈ St. The last inequality holds because x>1 θ∗ ≤ x>1 θ̄t + c1‖x1‖G−1
t

holds on event E1,t. Finally, we use
the definitions of p2 and p3 to complete the proof.

The regret bound of GLM-TSL is proved below.
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Theorem 3. The n-round regret of GLM-TSL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 1/n

)
×√

2dn log(2n/d) + (τ + 3)∆max ,

where

a = c1
√
µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1

√
2µ̇−1

min µ̇max log(Kn) ,

and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max
{
σ2µ̇−2

min(d log(n/d) + 2 log n), 1
}
.

Proof. Fix τ ∈ [n]. Let

E4,t =
{
‖θ̄t − θ∗‖2 ≤ 1

}
and p4 ≥ P

(
Ē4,t

)
for t ≥ τ . Let p1 ≥ P

(
Ē1,t, E4,t

)
, p2 ≥ Pt

(
Ē2,t

)
on event E4,t, and p3 ≤ Pt (E3,t). By elementary

algebra, we get

R(n) ≤
n∑
t=τ

E [∆It ] + τ∆max

≤
n∑
t=τ

E [∆It1{E4,t}] + (τ + p4n)∆max

≤
n∑
t=τ

E [∆It1{E1,t, E4,t}] + (τ + (p1 + p4)n)∆max

=

n∑
t=τ

E [Et [∆It ]1{E1,t, E4,t}] + (τ + (p1 + p4)n)∆max .

To get p1 ≤ 1/n, we set c1 as in Lemma 8. Now we apply Lemma 2 to Et [∆It ]1{E1,t, E4,t} and get

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

p3 − p2

)
E

[
n∑
t=τ

‖xIt‖G−1
t

]
+ (τ + (p1 + p2 + p4)n)∆max ,

where a and c2 are set as in Lemma 4. For these settings, p2 ≤ 1/n and p3 ≥ 0.15. To bound
∑n
t=τ ‖xIt‖G−1

t
, we use

Lemma 2 in Li et al. [2017]. Finally, to get p4 ≤ 1/n, we choose τ as in Lemma 9.

The regret bound of GLM-FPL is proved below.

Theorem 5. The n-round regret of GLM-FPL is bounded as

R(n) ≤ µ̇max(c1 + c2)

(
1 +

2

0.15− 2/n

)
×√

2dn log(2n/d) + (τ + 4)∆max ,

where

a = c1µ̇max ,

c1 = σµ̇−1
min

√
d log(n/d) + 2 log n ,

c2 = c1µ̇
−1
min µ̇max

√
2 log(Kn) ,
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and the number of exploration rounds τ satisfies

λmin(Gτ ) ≥ max{4σ2µ̇−2
min(d log(n/d) + 2 log n),

8a2µ̇−2
min log n, 1} .

Proof. The proof is almost identical to that of Theorem 3. There are two main differences. First, a and c2 are set as in
Lemma 6. For these settings, p2 ≤ 2/n and p3 ≥ 0.15. Second, τ is set as in Lemma 10.

B Technical Lemmas

We need an extension of Theorem 1 in Abbasi-Yadkori et al. [2011], which is concerned with concentration of a certain
vector-valued martingale. The setup of the claim is as follows. Let (Ft)t≥0 be a filtration, (ηt)t≥1 be a stochastic process
such that ηt is real-valued and Ft-measurable, and (Xt)t≥1 be another stochastic process such that Xt is Rd-valued and
Ft−1-measurable. We also assume that (ηt)t is conditionally R2-sub-Gaussian, that is

∀λ ∈ R : E [exp[ληt] | Ft−1] ≤ exp

[
λ2R2

2

]
. (10)

We call the triplet ((Xt)t, (ηt)t,F) “nice” when these conditions hold. The modified claim is stated and proved below.

Lemma 7. Let ((Xt)t, (ηt)t,F) be a “nice” triplet, St =
∑t
s=1 ηsXs, Vt =

∑t
s=1XsX

>
s ; and for V � 0, let τ0 =

min {t ≥ 1 : Vt � V }. Then for any δ ∈ (0, 1) and F-stopping time τ ≥ 1 such that τ ≥ τ0 holds almost surely, with
probability at least 1− δ,

‖Sτ‖2V −1
τ
≤ 2R2 log

(
det(Vτ )

1
2 det(Vτ0)−

1
2

δ

)
.

Proof. The proof in Abbasi-Yadkori et al. [2011] can easily adjusted as follows. If ((Xt)t, (ηt)t,F) is a “nice” triplet, then
for any δ ∈ (0, 1), F0-measurable matrix V � 0, and stopping time τ ≥ 1,

P

(
‖Sτ‖2V −1

τ
≤ 2R2 log

(
det(Vτ )

1
2 det(Vτ0)−

1
2

δ

)∣∣∣∣∣F0

)
≥ 1− δ . (11)

Now, for t ≥ 0, let X ′t = Xτ0+t, η′t = ητ0+t, and F ′t = Fτ0+t. Then ((X ′t)t≥1, (η′t)t≥1, (F ′t)t≥0) is a nice triplet and the
result follows from (11).

We use the last lemma to prove the following result.

Lemma 8. Let c1 = σµ̇−1
min

√
d log(n/d) + 2 log n and τ be any round such that λmin(Gτ ) ≥ 1. Then for any t ≥ τ ,

P
(
Ē1,t occurs, ‖θ̄t − θ∗‖2 ≤ 1

)
≤ 1/n .

Proof. Let St =
∑t−1
`=1(Y` − µ(X>` θ∗))X`. By Lemma 1, where D1 =

{
(X`, µ(X>` θ∗))

}t−1

`=1
and D2 = {(X`, Y`)}t−1

`=1,
we have that

St = ∇2L(D1; θ′)︸ ︷︷ ︸
V

(θ̄t − θ∗) ,

where θ′ = αθ∗ + (1− α)θ̄t for α ∈ [0, 1]. We rearrange the equality as V −1St = θ̄t − θ∗ and note that µ̇minGt � V on
‖θ̄t − θ∗‖2 ≤ 1. Now fix arm i. By the Cauchy-Schwarz inequality and from the above discussion,∣∣x>i θ̄t − x>i θ∗∣∣ ≤ ‖θ̄t − θ∗‖Gt‖xi‖G−1

t
= (θ̄t − θ∗)>Gt(θ̄t − θ∗)‖xi‖G−1

t

= S>t V
−1GtV

−1St‖xi‖G−1
t
≤ µ̇−2

min‖St‖G−1
t
‖xi‖G−1

t
.

By (13) in Lemma 9, which is derived using Lemma 7, ‖St‖G−1
t
≤ σ

√
d log(n/d) + 2 log n holds with probability at least

1 − 1/n in any round t ≥ τ . In this case, event E1,t is guaranteed to occur when c1 is set as in the claim. It follows that
Ē1,t occurs on ‖θ̄t − θ∗‖2 ≤ 1 with probability of at most 1/n.
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The number of initial exploration rounds in GLM-TSL is set below.

Lemma 9. Let τ be any round such that

λmin(Gτ ) ≥ max
{
σ2µ̇−2

min(d log(n/d) + 2 log n), 1
}
.

Then for any t ≥ τ , P
(
‖θ̄t − θ∗‖2 > 1

)
≤ 1/n.

Proof. Fix round t and let St =
∑t−1
`=1(Y`−µ(X>` θ∗))X`. By the same argument as in the proof of Theorem 1 in Li et al.

[2017], who use Lemma A of Chen et al. [1999], we have that

‖St‖G−1
t
≤ µ̇min

√
λmin(Gt) =⇒ ‖θ̄t − θ∗‖2 ≤ 1

Now fix τ such that λmin(Gτ ) ≥ 1. For any t ≥ τ , Gt � Gτ and thus

‖St‖G−1
t
≤ µ̇min

√
λmin(Gτ ) =⇒ ‖θ̄t − θ∗‖2 ≤ 1 . (12)

In the next step, we bound ‖St‖G−1
t

from above. By Lemma 7,

‖St‖2G−1
t
≤ 2σ2 log(det(Gt)

1
2 det(Gτ )−

1
2n)

holds jointly in all rounds t ≥ τ with probability at least 1− 1/n. By Lemma 11 in Abbasi-Yadkori et al. [2011] and from
‖Xt‖2 ≤ 1, we get log det(Gt) ≤ d log(n/d). By the choice of τ , det(Gτ )−1 ≤ 1. It follows that

‖St‖2G−1
t
≤ σ2(d log(n/d) + 2 log n) (13)

for any t ≥ τ with probability at least 1− 1/n. Now we combine this claim with (12) and have that ‖θ̄t − θ∗‖2 ≤ 1 holds
with probability at least 1− 1/n when

λmin(Gτ ) ≥ σ2µ̇−2
min(d log(n/d) + 2 log n) .

This concludes the proof.

The number of initial exploration rounds in GLM-FPL is set below.

Lemma 10. Let τ be any round such that

λmin(Gτ ) ≥ max
{

4σ2µ̇−2
min(d log(n/d) + 2 log n), 8a2µ̇−2

min log n, 1
}
.

Then for any t ≥ τ , P
(
‖θ̄t − θ∗‖2 > 1/2

)
≤ 1/n and Pt

(
‖θ̃t − θ∗‖2 > 1

)
≤ 1/n on event ‖θ̄t − θ∗‖2 ≤ 1/2.

Proof. Fix round t. Let St be defined as in Lemma 9 and τ1 be any round such that

λmin(Gτ1) ≥ min
{

4σ2µ̇−2
min(d log(n/d) + 2 log n), 1

}
.

Then by the same argument as in Lemma 9, P
(
‖θ̄t − θ∗‖2 > 1/2

)
≤ 1/n holds for any t ≥ τ1.

Now fix round t, history Ft−1, and assume that ‖θ̄t − θ∗‖2 ≤ 1/2 holds. Let

S̄t =

t−1∑
`=1

(Y` + Z` − µ(X>` θ̄t))X` =

t−1∑
`=1

Z`X` ,

where the last equality holds because
∑t−1
`=1(Y` − µ(X>` θ̄t))X` = 0. Since ‖θ̄t − θ∗‖2 ≤ 1/2, the 0.5-ball centered at θ̄t

is within the unit ball centered at θ∗. So, the minimum derivative of µ in the 0.5-ball is not larger than that in the unit ball,
and we have by a similar argument to Lemma 9 that

‖S̄t‖G−1
t
≤ 1

2
µ̇min

√
λmin(Gt) =⇒ ‖θ̃t − θ̄t‖2 ≤

1

2
. (14)
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By definition, ‖S̄t‖G−1
t

= ‖U‖2 for U = G
− 1

2
t

∑t−1
`=1 Z`X`. Since Z` are i.i.d. random variables that are resampled in

each round, we have U ∼ N (0, a2Id) given Ft−1, and that ‖U‖2 ≤ a
√

2 log n holds with probability at least 1 − 1/n
given Ft−1. Now we combine this claim with (14) and have that ‖θ̃t − θ̄t‖2 ≤ 1/2 holds with probability at least 1− 1/n
for any round t such that

λmin(Gt) ≥ 8a2µ̇−2
min log n.

For any such round, when ‖θ̄t − θ∗‖2 ≤ 1/2 holds, Pt
(
‖θ̃t − θ∗‖2 ≤ 1

)
≥ 1− 1/n. This concludes our proof.


