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Abstract

We study a constrained contextual linear ban-
dit setting, where the goal of the agent is
to produce a sequence of policies, whose ex-
pected cumulative reward over the course of T
rounds is maximum, and each one of them has
an expected cost below a certain threshold τ .
We propose an upper-confidence bound algo-
rithm for this problem, called optimistic pes-
simistic linear bandit (OPLB), and prove an
Õ( d

√
T

τ−c0 ) bound on its T -round regret, where
the denominator is the difference between the
constraint threshold and the cost of a known
feasible action. Our algorithm balances ex-
ploration and constraint satisfaction using a
novel idea that scales the radii of the reward
and cost confidence sets with different scaling
factors. We further specialize our results to
multi-armed bandits and propose a compu-
tationally efficient algorithm for this setting.
We prove a regret bound of Õ(

√
KT

τ−c0 ) for the re-
sulting algorithm in K-armed bandits, which
is a
√
K improvement over the regret bound

we obtain by simply casting multi-armed ban-
dits as an instance of linear bandits and using
the regret bound of OPLB. We also prove a
lower-bound for the problem studied in the
paper and provide simulations to validate our
theoretical results. Finally, we show how our
algorithm and analysis can be extended to
multiple constraints and to the case when the
cost of the feasible action, c0, is unknown.

1 Introduction

A multi-armed bandit (MAB) (Lai and Robbins, 1985;
Auer et al., 2002; Lattimore and Szepesvári, 2019) is
an online learning problem in which the agent acts
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by pulling arms. After an arm is pulled, the agent
receives its stochastic reward. The goal of the agent is
to maximize its expected cumulative reward without
knowledge of the arms’ distributions. To achieve this
goal, the agent has to balance its exploration and ex-
ploitation: to decide when to explore and learn about
the arms, and when to exploit and pull the arm with
the highest estimated reward thus far. A stochastic
linear bandit (Dani et al., 2008; Rusmevichientong and
Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011) is a gener-
alization of MAB to the setting where each of (possibly)
infinitely many arms is associated with a feature vector.
The mean reward of an arm is the dot product of its fea-
ture vector and an unknown parameter vector, which is
shared by all the arms. This formulation contains time-
varying action (arm) sets and feature vectors, and thus,
includes the linear contextual bandit setting. These
models capture many practical applications spanning
clinical trials (Villar et al., 2015), recommendation sys-
tems (Li et al., 2010; Balakrishnan et al., 2018), wireless
networks (Maghsudi and Hossain, 2016), sensors (Wash-
burn, 2008), and strategy games (Ontanón, 2013). The
most popular exploration strategies in stochastic ban-
dits are optimism in the face of uncertainty (OFU) or
upper confidence bound (UCB) (Auer et al., 2002) and
Thompson sampling (TS) (Thompson, 1933; Agrawal
and Goyal, 2013a; Abeille and Lazaric, 2017; Russo
et al., 2018) that are relatively well understood in both
multi-armed and linear bandits (Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013b).

In many practical problems, the agent requires to sat-
isfy certain operational constraints while maximizing
its cumulative reward. Depending on the form of the
constraints, several constrained stochastic bandit set-
tings have been formulated and analyzed. One such
setting is what is known as knapsack bandits. In this
setting, pulling each arm, in addition to producing
a reward signal, results in a random consumption of
a global budget, and the goal is to maximize the cu-
mulative reward before the budget is fully consumed
(e.g., Badanidiyuru et al. 2013, 2014; Agrawal and De-
vanur 2014; Wu et al. 2015; Agrawal and Devanur 2016).
Another such setting is referred to as conservative ban-
dits. In this setting, there is a baseline arm or policy,
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and the agent, in addition to maximizing its cumu-
lative reward, should ensure that at each round, its
cumulative reward remains above a predefined fraction
of the cumulative reward of the baseline (Wu et al.,
2016; Kazerouni et al., 2017; Garcelon et al., 2020). In
these two settings, the constraint is history-dependent,
i.e., it applies to a cumulative quantity, such as budget
consumption or reward, over the entire run of the algo-
rithm. Thus, the set of feasible actions at each round
is a function of the history of the algorithm.

Another constrained bandit setting is where each arm
is associated with two (unknown) distributions, gener-
ating reward and cost signals. The goal is to maximize
the cumulative reward, while making sure that with
high probability, the expected cost of the arm pulled
at each round is below a certain threshold. Here the
constraint is stage-wise, and unlike the last two set-
tings, is independent of the history. Amani et al. (2019)
and Moradipari et al. (2019) have recently studied this
setting for linear bandits and derived and analyzed
explore-exploit (Amani et al., 2019) and Thompson
sampling (Moradipari et al., 2019) algorithms for it.

In this setting, each action has a context-dependent
(unknown) cost and only actions should be taken, whose
cost is below a certain threshold. This setting has many
applications, for example, a recommendation system
should not suggest an item to a customer that despite
high probability of click (high reward) reduces her
watch-time or her chance of coming back to the website
(bounded cost), or a drug that may help with a certain
symptom (high reward) should not have too many side-
effects (bounded cost). It is important to note that the
reward and cost in this setting can be viewed as different
objectives according to which a recommendation or a
medical diagnosis system are evaluated.

This setting is the closest to the one we study in this
paper. In our setting, we also assume two distribu-
tions for each arm, one for reward and for cost. At
each round the agent constructs a policy according
to which it takes its action. The goal of the agent
is to produce a sequence of policies with maximum
expected cumulative reward, while making sure that
the expected cost of the constructed policy (not the
pulled arm) at each round is below a certain threshold.
This is a linear constraint and can be easily extended
to more constraints by having more cost distributions
associated to each arm (one per each constraint). Com-
pared to the previous setting, our constraint is more
relaxed (from high-probability to expectation), and as
a result, it would be possible for us to obtain a solu-
tion with larger expected cumulative reward. We will
have a detailed discussion on the relationship between
these two settings and the similarities and differences of
our results with those reported in Amani et al. (2019)

and Moradipari et al. (2019) in Section 7.

As discussed above, the setting considered in this paper
is a relaxation of the high probability stage-wise con-
strained setting described earlier. In many constrained
or multi-objective problems, such as recommendation
and medical diagnosis systems, making sure that the
constraints are always satisfied or certain objectives
are always within certain thresholds would result in a
very conservative performance. A common solution to
balance performance and constraint satisfaction is to
replace conservative high probability constraints with
more relaxed expectation ones.

In this paper, we study the above setting for contextual
linear bandits. After defining the setting in Section 2,
we propose an OFU-style algorithm for it, called opti-
mistic pessimistic linear bandit (OPLB), in Section 3.
We prove an Õ( d

√
T

τ−c0 ) bound on the T -round regret of
OPLB in Section 4, where d is the action dimension and
τ − c0 is the safety gap, i.e., the difference between the
constraint threshold and the cost of a known feasible
(safe) action. The action set considered in our contex-
tual linear bandit setting is general enough to include
MAB. However, in Section 5, we further specialize our
results to MAB and propose a computationally efficient
algorithm for this setting, called optimistic pessimistic
bandit (OPB). We show that in the MAB case, there
always exists a feasible optimal policy with probability
mass on at most m+ 1 arms, where m is the number of
constraints. This property plays an important role in
the computational efficiency of OPB. We prove a regret
bound of order Õ(

√
KT

τ−c0 ) for OPB in K-armed bandits,
which is a

√
K improvement over the regret bound we

obtain by simply casting MAB as an instance of contex-
tual linear bandit and using the regret bound of OPLB.
We also prove a lower-bound for the constrained bandit
problem studied in the paper.

In our setting the learner interacts with arms whose
costs are unknown while required to satisfy an upper
bound on its policy’s expected cost. Since the learner
does not know the cost function in advance, she has to
balance three competing objectives: 1) collect reward,
2) satisfy the cost constraint and 3) learn about the cost
and reward functions. At any point in time and given
the learner’s knowledge of the reward and cost function,
objective 2) may prevent her from even considering to
execute the true optimal policy. This precludes the
use of algorithms based solely on the principle of opti-
mism. One of our main technical contributions is the
introduction of a general and simple technique based
on asymmetric confidence intervals that can be used to
easily develop algorithms for bandits or reinforcement
learning problems with unknown constraints.
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2 Problem Formulation

Notation. We adopt the following notation through-
out the paper. We denote by 〈x, y〉 = x>y and
〈x, y〉A = x>Ay, for a positive definite matrix A ∈
Rd×d, the inner-product and weighted inner-product
of the vectors x, y ∈ Rd. Similarly, we denote by
‖x‖ =

√
x>x and ‖x‖A =

√
x>Ax, the `2 and weighted

`2 norms of vector x. For any square matrix A, we
denote by A†, its Moore-Penrose pseudo-inverse. We
represent the set of distributions with support over a
compact set S by ∆S . The set {1, . . . , T} is denoted
by [T ]. Finally, we use Õ for the big-O notation up to
logarithmic factors.

We study the following constrained contextual linear
bandit setting in this paper. In each round t, the agent
is given a decision set At ⊂ Rd from which it has to
choose an action xt. Upon taking action xt ∈ A, it
observes a pair (rt, ct), where rt = 〈xt, θ∗〉+ξrt and ct =
〈xt, µ∗〉+ξct are the reward and cost signals, respectively.
In the reward and cost definitions, θ∗ ∈ Rd and µ∗ ∈ Rd
are the unknown reward and cost parameters, and ξrt
and ξct are reward and cost noise, satisfying conditions
that will be specified in Assumption 1. The agent
selects its action xt ∈ At in each round t according to
its policy πt ∈ ∆At at that round, i.e., xt ∼ πt.

The goal of the agent is to produce a sequence of
policies {πt}Tt=1 with maximum expected cumulative
reward over the course of T rounds, while satisfying
the stage-wise linear constraint

Ex∼πt [〈x, µ∗〉] ≤ τ, ∀t ∈ [T ], (1)

where τ ≥ 0 is referred to as the constraint thresh-
old. Thus, the policy πt that the agent selects in each
round t ∈ [T ] should belong to the set of feasible poli-
cies over the action set At, i.e., Π∗t = {π ∈ ∆At :
Ex∼π[〈x, µ∗〉] ≤ τ}. Maximizing the expected cumu-
lative reward in T rounds is equivalent to minimizing
the T -round constrained pseudo-regret,1

RΠ(T ) =

T∑
t=1

Ex∼π∗t [〈x, θ∗〉]− Ex∼πt [〈x, θ∗〉], (2)

where πt, π
∗
t ∈ Πt, for all t ∈ [T ], and π∗t ∈

maxπ∈Π∗t
Ex∼π[〈x, θ∗〉] is the optimal feasible policy

in round t. The terms Ex∼π[〈x, θ∗〉] and Ex∼π[〈x, µ∗〉]
in (1) and (2) are the expected reward and cost of
policy π, respectively. Thus, a feasible policy is the one
whose expected cost is below the constraint threshold
τ , and the optimal feasible policy is a feasible policy
with maximum expected reward. We use the short-
hand notations xπ := Ex∼π[x], rπ := Ex∼π[〈x, θ∗〉], and

1In the rest of the paper, we simply refer to the T -round
constrained pseudo-regret RΠ(T ) as T -round regret.

cπ := Ex∼π[〈x, µ∗〉] for the expected action, reward,
and cost of a policy π. With these notations, we may
write the T -round regret as RΠ(T ) =

∑T
t=1 rπ∗t − rπt .

We make the following assumptions for our setting. The
first four assumptions are standard in linear bandits
and the fifth one is necessary for constraint satisfaction.
Assumption 1 (sub-Gaussian noise). For all t ∈ [T ],
the reward and cost noise random variables ξrt and ξct
are conditionally R-sub-Gaussian, i.e., for all α ∈ R,

E[ξrt | Ft−1] = 0, E[exp(αξrt ) | Ft−1] ≤ exp(α2R2/2),

E[ξct | Ft−1] = 0, E[exp(αξct ) | Ft−1] ≤ exp(α2R2/2),

where Ft is the filtration that includes all the events
(x1:t+1, ξ

r
1:t, ξ

c
1:t) until the end of round t.

Assumption 2 (bounded parameters). There is a
known constant S > 0, such that ‖θ∗‖ ≤ S and ‖µ∗‖ ≤
S.2

Assumption 3 (bounded actions). The `2-norm of
all actions is bounded, i.e., maxt∈[T ] maxx∈At ‖x‖ ≤ L.
Assumption 4 (bounded rewards and costs). For all
t ∈ [T ] and x ∈ At, the mean rewards and costs are
bounded, i.e., 〈x, θ∗〉 ∈ [0, 1] and 〈x, µ∗〉 ∈ [0, 1].
Assumption 5 (safe action). There is a known safe
action x0 ∈ At, ∀t ∈ [T ] with known cost c0,
i.e., 〈x0, µ∗〉 = c0 < τ .
Remark 1. Knowing a safe action x0 is absolutely
necessary for solving the constrained contextual linear
bandit problem studied in this paper, because it requires
the constraint to be satisfied from the very first round.
However, the assumption of knowing the expected cost
of the safe action c0 can be relaxed. We can think of
the safe action as a baseline policy, the current strategy
(e.g., resource allocation of a company), whose cost is
known and reasonable, but its reward may still be im-
proved. We will discuss how our proposed algorithm will
change if c0 is unknown in Section 3 and Appendix B.4.

Notation. We conclude this section with introducing
another set of notations that will be used in describing
our algorithm and its analysis. We define the nor-
malized safe action as e0 := x0/‖x0‖ and the span of
the safe action as Vo := span(x0) = {ηx0 : η ∈ R}.
We denote by V⊥o , the orthogonal complement of Vo,
i.e., V⊥o = {x ∈ Rd : 〈x, y〉 = 0, ∀y ∈ Vo}.3 We
define the projection of a vector x ∈ Rd into the sub-
space Vo, as xo := 〈x, e0〉e0, and into the sub-space
V⊥o , as xo,⊥ := x− xo. We also define the projection
of a policy π into Vo and V⊥o , as xoπ := Ex∼π[xo] and
xo,⊥π := Ex∼π[xo,⊥], respectively.

2The choice of the same upper-bound S for both θ∗ and
µ∗ is just for simplicity and convenience.

3In the case of x0 = 0 ∈ Rd, we define Vo as the empty
subspace and V⊥o as the whole Rd.
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Algorithm 1 Optimistic-Pessimistic Linear Bandit

1: Input: Horizon T , Confidence Parameter δ, Regular-
ization Parameter λ, Constants αr, αc ≥ 1

2: for t = 1, . . . , T do
3: Compute regularized least-squares estimates θ̂t and

µ̂o,⊥t (Eqs. 3 to 5)
4: Construct sets Crt (αr) and Cct (αc) (Eq. 7)
5: Observe the action set At and construct the feasible

(safe) policy set Πt (Eq. 13)
6: Compute policy

(πt, θ̃t) = arg maxπ∈Πt, θ∈Crt (αr) Ex∼π[〈x, θ〉]
7: Take action xt ∼ πt and observe reward and cost

(rt, ct)
8: end for

3 Algorithm

In this section, we propose a UCB-style algorithm for
the setting described in Section 2. We call our al-
gorithm optimistic-pessimistic linear bandit (OPLB)
because it maintains a pessimistic assessment of the
set of available policies, while acting optimistically
within this set. Algorithm 1 contains the pseudo-code
of OPLB. The novel idea in OPLB is to balance explo-
ration and constraint satisfaction by asymmetrically
scaling the radii of the reward and cost confidence sets
with different scaling factors αr and αc. This will prove
crucial in the regret analysis of OPLB. We now describe
OPLB in details.

Line 3 of OPLB: At each round t ∈ [T ], given the
actions {xs}t−1

s=1, rewards {rs}
t−1
s=1, and costs {cs}t−1

s=1

observed until the end of round t− 1, OPLB first com-
putes the `2-regularized least-squares (RLS) estimates
of θ∗ and µo,⊥∗ (projection of the cost parameter µ∗
into the sub-space V⊥o ) as

θ̂t = Σ−1
t

t−1∑
s=1

rsxs, µ̂o,⊥t = (Σo,⊥t )−1
t−1∑
s=1

co,⊥s xo,⊥s , (3)

where λ > 0 is the regularization parameter, and

Σt = λI +

t−1∑
s=1

xsx
>
s , Σo,⊥t = λIV⊥o +

t−1∑
s=1

xo,⊥s (xo,⊥s )>,

(4)

co,⊥s = cs −
〈xt, e0〉
‖x0‖

c0, IV⊥o = Id×d −
1

‖x0‖2
x0x
>
0 . (5)

In (4), Σt and Σo,⊥t are the Gram matrices of actions
and projection of actions into the sub-space V⊥o . Note
that Σo,⊥t is a rank deficient matrix, but with abuse of
notation, we use (Σo,⊥t )−1 to denote its pseudo-inverse
throughout the paper. In (5), IV⊥o is the projection of
the identity matrix, I, into V⊥o , and co,⊥s (∀s ∈ [t− 1])

is the noisy projection of the cost cs into V⊥o , i.e.,4

co,⊥s = 〈xo,⊥s , µo,⊥∗ 〉+ ξcs = 〈xs, µ∗〉 − 〈xos, µo∗〉+ ξcs

= cs − 〈xos, µo∗〉 = cs −
〈xs, e0〉
‖x0‖

c0. (6)

Line 4: Using the RLS estimates θ̂t and µ̂
o,⊥
t in (3),

OPLB constructs the reward and cost confidence sets

Crt (αr) =
{
θ ∈ Rd : ‖θ − θ̂t‖Σt ≤ αrβt(δ, d)

}
, (7)

Cct (αc) =
{
µ ∈ V⊥o : ‖µ− µ̂o,⊥t ‖Σo,⊥t ≤ αcβt(δ, d− 1)

}
,

where αr, αc ≥ 1 and βt(δ, d) in the radii of these
confidence ellipsoids is defined by the following theorem,
originally proved in Abbasi-Yadkori et al. (2011).
Theorem 1. [Thm. 2 in Abbasi-Yadkori et al. 2011]
Let Assumptions 1 and 2 hold, θ̂t, µ̂

o,⊥
t , Σt, and Σo,⊥t

defined by (3) and (4), and Crt (·) and Cct (·) defined
by (7). Then, for a fixed δ ∈ (0, 1) and

βt(δ, d) = R

√
d log

(1 + (t− 1)L2/λ

δ

)
+
√
λ S, (8)

with probability at least 1− δ and for all t ≥ 1, it holds
that θ∗ ∈ Crt (1) and µo,⊥∗ ∈ Cct (1).

Since αr, αc ≥ 1, for all rounds t ∈ [T ], the sets Crt (αr)
and Cct (αc) also contain θ∗, the reward parameter, and
µo,⊥∗ , the projection of the cost parameter into V⊥o ,
with high probability.

Given these confidence sets, we define the optimistic
reward and pessimistic cost of any policy π in round t
as

r̃π,t := max
θ∈Crt (αr)

Ex∼π[〈x, θ〉], (9)

c̃π,t :=
〈xoπ, e0〉c0
‖x0‖

+ max
µ∈Cct (αc)

Ex∼π[〈x, µ〉]. (10)

We provide closed-form expressions for r̃π,t and c̃π,t in
the following proposition that we report its proof in
Appendix A.1.
Proposition 1. We may write (9) and (10) in closed-
form as

r̃π,t = 〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1
t
, (11)

c̃π,t =
〈xoπ, e0〉c0
‖x0‖

+ 〈xo,⊥π , µ̂o,⊥t 〉 (12)

+ αcβt(δ, d− 1)‖xo,⊥π ‖(Σo,⊥t )−1 .

Line 5: After observing the action set At, OPLB
constructs its feasible (safe) policy set as

Πt = {π ∈ ∆At : c̃π,t ≤ τ}, (13)
4In the derivation of (6), we use the fact that 〈xs, µ∗〉 =

〈xos + xo,⊥s , µo∗ + µo,⊥∗ 〉 = 〈xos, µo∗〉+ 〈xo,⊥s , µo,⊥∗ 〉.
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where c̃π,t is the pessimistic cost of policy π in round t
defined by (12). Note that Πt is an approximation to
Π∗t and that Πt is not empty since π0, the policy that
plays the safe action x0 with probability (w.p.) 1, is
always in Πt. This is because xoπ0

= x0, xo,⊥π0
= 0, and

〈xoπ0
,e0〉c0
‖x0‖ = c0. In the following proposition, whose

proof is reported in Appendix A.2, we prove that all
policies in Πt are feasible with high probability.

Proposition 2. With probability at least 1− δ, for all
rounds t ∈ [T ], all policies in Πt are feasible.

Line 6: The agent computes its policy πt as the one
that is safe (belongs to Πt) and attains the maximum
optimistic reward. We refer to θ̃t as the optimistic re-
ward parameter. Thus, we write the optimistic reward
of policy πt as r̃πt,t = 〈xπt , θ̃t〉.

Line 7: Finally, the agent selects an action xt ∼ πt
and observes the reward-cost pair (rt, ct).

Computational Complexity of OPLB. As shown
in Line 6 of Algorithm 1, in each round t, OPLB solves
the following optimization problem:

max
π∈∆At

〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1
t

(14)

s.t.
〈xoπ, e0〉c0
‖x0‖

+ 〈xo,⊥π , µ̂o,⊥t 〉

+ αcβt(δ, d− 1)‖xo,⊥π ‖(Σo,⊥t )−1 ≤ τ.

However, solving (14) can be challenging. The bottle-
neck is computing the safe policy set Πt, which is the
intersection between ∆At and the ellipsoidal constraint.

Main Challenge in Regret Analysis. The main
challenge in obtaining a regret bound for OPLB is to en-
sure that optimism holds in each round t ∈ [T ], i.e., the
solution (πt, θ̃t) of (14) satisfies r̃πt,t = 〈xπt , θ̃t〉 ≥ rπ∗t .
This is not obvious, since the safe policy set Πt might
have been constructed such that it does not contain the
optimal policy π∗t . Our main algorithmic innovation is
the use of asymmetric confidence intervals Crt (αr) and
Cct (αc) for θ∗ and µ

o,⊥
∗ , which allows us to guarantee

optimism, by appropriately selecting the ratio αr/αc.
Of course, this comes at the cost of scaling the regret
by the same ratio. As we will show in our analysis
in Section 4, αr/αc depends on the inverse safety gap
1/(τ−c0), which indicates that when τ−c0 is small (the
cost of the safe arm is close to the constraint threshold),
the agent will have a difficult time to identify a safe
arm and to compete against the optimal feasible policy
π∗t . We will formalize this in Lemma 4.

Unknown c0. If the cost of the safe arm c0 is un-
known, we start by taking the safe action x0 for T0

rounds to produce a conservative estimate δ̂c of the

safety gap τ − c0 that satisfies δ̂c ≥ τ−c0
2 . We warm

start our estimators for θ∗ and µ∗ using the data col-
lected by playing x0. However, instead of estimating
µo,⊥∗ , we build an estimator for µ∗ over all its directions,
including e0, similar to what OPLB does for θ∗. We
then set αr

αc
= 1/δ̂c and run Algorithm 1 for rounds

t > T0 (see Appendix B.4 for more details).

4 Regret Analysis

In this section, we prove the following regret bound for
our OPLB algorithm.

Theorem 2 (Regret of OPLB). Let αc = 1 and αr =
2+τ−c0
τ−c0 . Then, with probability at least 1−2δ, the regret

of OPLB satisfies

RΠ(T ) ≤ 2L(αr + 1)βT (δ, d)√
λ

√
2T log(1/δ) (15)

+ (αr + 1)βT (δ, d)

√
2Td log(1 +

TL2

λ
).

We start the proof of Theorem 2, by defining the fol-
lowing event that holds w.p. at least 1− δ:

E =
{
‖θ̂t − θ∗‖Σt ≤ βt(δ, d) ∧ (16)

‖µ̂o,⊥t − µo,⊥∗ ‖Σo,⊥t ≤ βt(δ, d− 1), ∀t ∈ [T ]
}
.

The regret RΠ(T ) in (2) can be decomposed as

RΠ(T ) =

T∑
t=1

rπ∗t − r̃πt,t︸ ︷︷ ︸
(I)

+

T∑
t=1

r̃πt,t − rπt︸ ︷︷ ︸
(II)

. (17)

where r̃πt,t is the optimistic reward defined by (9)
and (11). We first bound (II) in (17). To bound (II),
we further decompose it as

(II) =

T∑
t=1

〈xπt , θ̃t〉 − 〈xt, θ̃t〉︸ ︷︷ ︸
(III)

(18)

+

T∑
t=1

〈xt, θ̃t〉 − 〈xt, θ∗〉︸ ︷︷ ︸
(IV)

+

T∑
t=1

〈xt, θ∗〉 − 〈xπt , θ∗〉︸ ︷︷ ︸
(V)

.

In the following lemmas, we first bound the sum of
(III) and (V), and then bound (IV).

Lemma 1. On event E defined by (16), for any γ ∈
(0, 1), with probability at least 1− γ, we have

(III) + (V) ≤ 2L(αr + 1)βT (δ, d)√
λ

·
√

2T log(1/γ) .
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Proof. We write (III) + (V) =
∑T
t=1〈xπt − xt, θ̃t −

θ∗〉. By Cauchy-Schwartz, we have |〈xπt − xt, θ̃t −
θ∗〉| ≤ ‖xπt −xt‖Σ−1

t
‖θ̃t− θ∗‖Σt . Since θ̃t ∈ Crt (αr), on

event E , we have ‖θ̃t − θ∗‖Σt ≤ (αr + 1)βt(δ, d). Also
from the definition of Σt, we have Σt � λI, and thus,
‖xπt − xt‖Σ−1

t
≤ ‖xπt − xt‖/

√
λ ≤ 2L/

√
λ. Hence,

Yt =
∑t
s=1〈xπs − xs, θ̃s − θ∗〉 is a martingale sequence

with |Yt−Yt−1| ≤ 2L(αr+1)βt(δ, d)/
√
λ, for all t ∈ [T ].

By the Azuma–Hoeffding inequality and since βt is an
increasing function of t, i.e., βt(δ, d) ≤ βT (δ, d), for all
t ∈ [T ], w.p. at least 1 − γ, we have P

(
YT ≥ 2L(αr +

1)βT (δ, d)
√

2T log(1/γ)/λ
)
≤ γ, which concludes the

proof.

Lemma 2. On event E, we have (IV) ≤ (αr +

1)βT (δ, d)
√

2Td log
(
1 + TL2

λ

)
.

Proof. We report the proof in Appendix B.1.

After bounding all the terms in (II), we now process the
term (I). Before stating the main result for this term
in Lemma 4, we need to prove the following lemma.

Lemma 3. For any policy π, the following holds:

‖xo,⊥π ‖(Σo,⊥t )−1 ≤ ‖xπ‖Σ−1
t
. (19)

Proof. We report the proof in Appendix B.2.

In the following lemma, we prove that by appropri-
ately setting the scaling parameters αr and αc, we can
guarantee that at each round t ∈ [T ], OPLB selects
an optimistic policy, i.e., a policy πt, whose optimistic
reward, r̃πt,t, is larger than the reward of the optimal
policy rπ∗t , given the event E . This means that with
our choice of parameters αr and αc, the term (I) in (17)
is always non-positive.

Lemma 4. On the event E, if we set αr and αc, such
that αr, αc ≥ 1 and 1 + αc ≤ (τ − c0)(αr − 1), then for
any t ∈ [T ], we have r̃πt,t ≥ rπ∗t .

Here we provide a proof sketch for Lemma 4. The
detailed proof is reported in Appendix B.3.

Proof Sketch. We divide the proof into two cases de-
pending on whether in each round t, the optimal policy
π∗t belongs to the set of feasible policies Πt, or not.

Case 1. If π∗t ∈ Πt, then its optimistic reward is
less than that of the policy πt selected at round t
(by the definition of πt on Line 6 of Algorithm 1),
i.e., r̃π∗t ,t ≤ r̃πt,t. This together with the fact that the
optimistic reward of any policy π is larger than its
expected reward, i.e., r̃π,t ≥ rπ, gives us the desired
result that r̃πt,t ≥ rπ∗t .

Case 2. If π∗t 6∈ Πt, then we define a mixture policy
π̃t = ηtπ

∗
t +(1−ηt)π0, where π0 is the policy that always

selects the safe action x0 and ηt ∈ [0, 1] is the maximum
value of η for which the mixture policy belongs to the
set of feasible policies, i.e., π̃t ∈ Πt. Conceptually, we
can think of ηt as a measure for safety of the optimal
policy π∗t . Mathematically, ηt is the value at which
the pessimistic cost of the mixture policy equals to the
constraint threshold, i.e., c̃π̃t,t = τ . In the rest of the
proof, we first write c̃π̃t,t in terms of the pessimistic cost
of the optimal policy as c̃π̃t,t = (1−ηt)c0 +ηtc̃π∗t ,t (c0 is
the expected cost of the safe action x0), and find a lower-
bound for ηt (see Eq. 26 in Appendix B.3). We then
use the fact that since π̃t ∈ Πt, its optimistic reward
is less than that of πt, i.e., r̃πt,t ≥ r̃π̃t,t, and obtain a
lower-bound for r̃π̃t,t as a function of rπ∗t (see Eq. 27 in
Appendix B.3). Finally, we conclude the proof by using
this lower-bound and finding the relationship between
the parameters αr and αc for which the desired result
r̃πt,t ≥ rπ∗t is obtained, i.e., 1+αc ≤ (τ−c0)(αr−1).

Proof of Theorem 2. The proof follows from the fact
that the term (I) is negative (Lemma 4), and by combin-
ing the upper-bounds on the term (II) from Lemmas 1
and 2, and setting γ = δ.

5 Constrained Multi-Armed Bandits

In this section, we specialize our results for contex-
tual linear bandits to multi-armed bandits (MAB) and
show that the structure of the MAB problem allows a
computationally efficient implementation of our OPLB
algorithm and an improvement in its regret bound.

In the MAB setting, the action set consists of K arms
A = {1, . . . ,K}. Each arm a ∈ [K] has a reward
and a cost distribution with means r̄a, c̄a ∈ [0, 1].
In each round t ∈ [T ], the agent constructs a pol-
icy πt over A, pulls an arm at ∼ πt, and observes
a reward-cost pair (rat , cat) sampled i.i.d. from the
reward and cost distributions of arm at. Similar to
the constrained contextual linear case, the goal of the
agent is to produce a sequence of policies {πt}Tt=1 with
maximum expected cumulative reward over T rounds,
i.e.,

∑T
t=1 Eat∼πt [r̄at ], while satisfying the stage-wise

linear constraint Eat∼πt [c̄at ] ≤ τ, ∀t ∈ [T ]. Moreover,
arm 1 is assumed to be the known safe arm, i.e., c̄1 ≤ τ .

Optimistic Pessimistic Bandit (OPB) Algo-
rithm. Let {Ta(t)}Ka=1 and {r̂a(t), ĉa(t)}Ka=1 be the
total number of times that arm a has been pulled
and the estimated mean reward and cost of arm a
up until round t. In each round t ∈ [T ], OPB relies
on the high-probability upper-bounds on the mean
reward and cost of the arms, i.e., {ura(t), uca(t)}Ka=1,
where ura(t) = r̂a(t) + αrβa(t), uca(t) = ĉa(t) + αcβa(t),
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βa(t) =
√

2 log(1/δ′)/Ta(t), and constants αr, αc ≥ 1.
In order to produce a feasible policy, OPB solves the
following linear program (LP) in each round t ∈ [T ]:

max
π∈∆K

∑
a∈A

πa u
r
a(t), s.t.

∑
a∈A

πa u
c
a(t) ≤ τ. (20)

As shown in (20), OPB selects its policy by being
optimistic about reward (using an upper-bound for r)
and pessimistic about cost (using an upper-bound for
c). We report the details of OPB and its pseudo-code
(Algorithm 2) in Appendix C.1.

Computational Complexity of OPB. Unlike
OPLB, whose optimization problem might be complex
to solve, OPB can be implemented extremely efficiently.
Lemma 5, whose proof we report in Appendix C.2, show
that (20) always has a solution (policy) with support
of at most 2. This property allows us to solve (20) in
closed-form, without a LP solver, and implement OPB
very efficiently.
Lemma 5. There exists a policy that solves (20) and
has at most 2 non-zero entries.

Regret Analysis of OPB. We prove the following
regret-bound for OPB in Appendix C.3.
Theorem 3 (Regret of OPB). Let δ = 4KTδ′, αc = 1,
and αr = 1 + 2/(τ − c̄1). Then, with probability at least
1− δ, the regret of OPB satisfies

RΠ(T ) ≤
(
1 +

2

τ − c̄1
)
×
(

2
√

2KT log(4KT/δ)

+ 4
√
T log(2/δ) log(4KT/δ)

)
.

The main component in the proof of Theorem 3 is
the following lemma, whose proof is reported in Ap-
pendix C.3. This lemma is the analogous to Lemma 4
in the contextual linear bandit case.
Lemma 6. If we set αr and αc, such that αr, αc ≥ 1
and αc ≤ (τ − c̄1)(αr − 1), then with high probability,
for any t ∈ [T ], we have Ea∼πt [ura(t)] ≥ Ea∼π∗ [r̄a].
Remark 2. Our contextual linear bandit formulation is
general enough to include MAB. The regret analysis of
OPLB (Thm. 2) yields a regret bound of order Õ(K

√
T

τ−c̄1 )
for MAB. However, our OPB regret bound in Thm. 3
is of order Õ(

√
KT

τ−c̄1 ), which shows a
√
K improvement

over simply casting MAB as an instance of contextual
linear bandit and using the regret bound of OPLB.

Lower-bound. We also prove a mini-max lower-
bound for our constrained MAB problem. Our lower-
bound shows that no algorithm can attain a regret
better than O

(
max(

√
KT, 1

(τ−c̄1)2 )
)
for this problem.

The formal statement of the lower-bound and its proof
are reported in Appendix C.5.

Figure 1: Regret of OPB for three instances of the randomly generated
constrained multi-armed bandit problems with the number of arms
equal to 5 (left), 10 (middle), and 20 (right).

Extension to Multiple Constraints. In the case
of m constraints, the agent receives m cost signals after
pulling each arm. The cost vector of the safe arm
c1 satisfies c1(i) < τi,∀i ∈ [m], where {τi}mi=1 are the
constraint thresholds. Similar to single-constraint OPB,
multi-constraint OPB is computationally efficient. The
main reason is that the LP of m-constraint OPB has
a solution with at most m + 1 non-zero entries. We
also obtain a regret bound of Õ(

√
KT

mini∈[K](τi−c1(i)) ) for
m-constraint OPB. The proofs and details of this case
are reported in Appendix C.6.

6 Experimental Results

We run a set of experiments to show the behavior of
the OPB algorithm and validate our theoretical results.
We produce random instances of our constrained multi-
armed bandit problem. We select one arm with mean
reward and cost 0 to be the safe arm. We sample the
mean rewards and costs of the rest of the arms uni-
formly at random from the interval [0, 1]. In Figure 1,
we report the regret of OPB for each of the number of
arms K equal to 5 (left), 10 (middle), and 20 (right),
and for three constraint threshold τ values, 0.8 (red),
0.5 (blue), and 0.2 (black). For each parameter setting
we sample 10 random problem instances and report
the average regret curves with a shaded region corre-
sponding to the ±0.5 standard deviation around the
regret. Figure 1 also shows that the regret of OPB
grows inversely with the safety gap.

In the next experiment, we consider a K = 4-armed
bandit problem in which the reward and cost distri-
butions of the arms are Bernoulli with means r̄ =
(0.1, 0.2, 0.4, 0.7) and c̄ = (0, 0.4, 0.5, 0.2). Arm 1 is the
safe arm with the expected cost c̄1 = 0. In Figures 2
to 5, we gradually reduce the constraint threshold τ ,
and as a result, the safety gap τ − c̄1, and show the
regret (left), cost (middle), and reward (right) evolu-
tion of OPB. The cost and reward of OPB are in blue
and the optimal cost and reward are in red. All results
are averaged over 10 runs and the shade is the ±0.5
standard deviation around the regret.

In figures figs. 2 to 5 show that the regret of OPB grows
as we reduce τ , and as a result the safety gap (left).
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Figure 2: Constraint Threshold τ = 0.8. Figure 3: Constraint Threshold τ = 0.6.

Figure 4: Constraint Threshold τ = 0.5. Figure 5: Constraint Threshold τ = 0.2.

Regret (left), cost (middle), and reward (right) evolution of OPB in a 4-armed bandit problem with Bernoulli
reward and cost distributions with means r̄ = (.1, .2, .4, .7) and c̄ = (0, .4, .5, .2). The cost of the safe arm
(Arm 1) is c̄1 = 0.

This is in support of our theories that identified the
safety gap as the complexity of this constrained bandit
problem. The results also indicate that the algorithm
is successful in satisfying the constraint (middle) and
in reaching the optimal reward/performance (right).
In Figure 5, the cost of the best arm (Arm 4) is equal
to the constraint threshold τ = 0.2. Thus, the cost of
the optimal policy (red) and the constraint threshold
(black) overlap in the cost evolution (middle) sub-figure.

7 Related Work

As described in Section 1, our setting is the closest to
the one studied by Amani et al. (2019) and Moradipari
et al. (2019). They study a slightly different setting, in
which the mean cost of the action that the agent takes
should satisfy the constraint, i.e., 〈xt, µ∗〉 ≤ τ , not the
mean cost of the policy it computes, i.e., 〈xπt , µ∗〉 ≤ τ ,
as in our case. As also discussed in Section 1, the setting
studied in our paper is more relaxed, and thus, is ex-
pected to obtain more rewards. Moradipari et al. (2019)
propose a TS algorithm for their setting and prove an
Õ(d3/2

√
T/τ) regret bound for it. They restrict them-

selves to linear bandits, i.e., At = A,∀t ∈ [T ], and
define their action set to be any convex compact subset
of Rd that contains the origin. Therefore, they restrict
their "known" safe action to be the origin, x0 = 0,
with the "known" cost c0 = 0. This is why c0 does not
appear in their bounds. Although later in their proofs,
to guarantee that their algorithm does not violate the
constraint in the first round, they require the action
set to also contain the ball with radius τ/S around
the origin. Therefore, our action set is more general
than theirs. Moreover, unlike us, their action set does
not allows their results to be immediately applicable to
MAB. Our regret bound also has a better dependence
on d and log T than theirs, similar to the best regret

results for UCB vs. TS. However, their algorithm is TS,
and thus, is less complex than ours. Although it can
be still intractable, even when A is convex. Similarly
a TS version of OPLB suitable for our setting can also
be derived whose regret bound will also suffer from a
suboptimal d3/2 scaling.

In Amani et al. (2019), reward and cost have the same
unknown parameter θ∗, and the cost is defined as
ct = x>t Bθ∗ ≤ τ , where B is a known matrix. They
derive and analyze an explore-exploit algorithm for
this setting. Although our rate is better than theirs,
i.e., Õ(T 2/3), our algorithm cannot immediately give a
Õ(
√
T ) regret for their setting, unless in special cases.

8 Conclusions
We derived a UCB-style algorithm for a novel con-
strained contextual linear bandit setting, in which the
goal is to produce a sequence of policies with maxi-
mum expected cumulative reward, while each policy
has an expected cost below a certain threshold τ . We
proved a T -round regret bound of order Õ( d

√
T

τ−c0 ) for
our algorithm, which shows that the difficulty of the
problem depends on the safety gap τ − c0, i.e., the
difference between the constraint threshold and the
cost of a known feasible action. We further specialized
our results to MAB and proposed and analyzed a com-
putationally efficient algorithm for this setting. We
also proved a lower-bound for our constrained bandit
problem, showed how our algorithm and analysis can
be extended to multiple constraints and to the case
when the cost of the safe action, c0, is unknown, and
provided simulations to validate our theoretical results.
A future direction is to use the optimism-pessimism
idea in other constrained bandit settings, including
deriving a UCB-style algorithm for the setting studied
in Amani et al. (2019) and Moradipari et al. (2019).



Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, Heinrich Jiang

Bibliography

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Im-
proved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems
24, pages 2312–2320, 2011.

M. Abeille and A. Lazaric. Linear Thompson sampling
revisited. Electronic Journal of Statistics, 11(2):5165–
5197, 2017.

S. Agrawal and N. Devanur. Bandits with concave
rewards and convex knapsacks. In Proceedings of
the Fifteenth ACM conference on Economics and
computation, pages 989–1006, 2014.

S. Agrawal and N. Devanur. Linear contextual bandits
with knapsacks. In Advances in Neural Information
Processing Systems 29, pages 3450–3458, 2016.

S. Agrawal and N. Goyal. Further optimal regret
bounds for Thompson sampling. In Proceedings
of the 16th International Conference on Artificial
Intelligence and Statistics, pages 99–107, 2013a.

S. Agrawal and N. Goyal. Thompson sampling for
contextual bandits with linear payoffs. In Proceed-
ings of the 30th International Conference on Machine
Learning, pages 127–135, 2013b.

S. Amani, M. Alizadeh, and C. Thrampoulidis. Lin-
ear stochastic bandits under safety constraints. In
Advances in Neural Information Processing Systems,
pages 9252–9262, 2019.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002.

A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Ban-
dits with knapsacks. In IEEE 54th Annual Sym-
posium on Foundations of Computer Science, pages
207–216, 2013.

A. Badanidiyuru, J. Langford, and A. Slivkins. Re-
sourceful contextual bandits. In Proceedings of The
27th Conference on Learning Theory, pages 1109–
1134, 2014.

A. Balakrishnan, D. Bouneffouf, N. Mattei, and
F. Rossi. Using contextual bandits with behavioral
constraints for constrained online movie recommen-
dation. In IJCAI, pages 5802–5804, 2018.

V. Dani, T. Hayes, and S. Kakade. Stochastic linear
optimization under bandit feedback. In Proceedings
of the 21st Annual Conference on Learning Theory,
pages 355–366, 2008.

E. Garcelon, M. Ghavamzadeh, A. Lazaric, and
M. Pirotta. Improved algorithms for conservative
exploration in bandits. In AAAI, 2020.

Emilie Kaufmann, Olivier Cappé, and Aurélien Gariv-
ier. On the complexity of best-arm identification in

multi-armed bandit models. The Journal of Machine
Learning Research, 17(1):1–42, 2016.

A. Kazerouni, M. Ghavamzadeh, Y. Abbasi Yadkori,
and B. Van Roy. Conservative contextual linear ban-
dits. In Advances in Neural Information Processing
Systems, pages 3910–3919, 2017.

T. Lai and H. Robbins. Asymptotically efficient adap-
tive allocation rules. Advances in Applied Mathe-
matics, 6(1):4–22, 1985.

T. Lattimore and C. Szepesvári. Bandit Algorithms.
Cambridge University Press, 2019.

L. Li, W. Chu, J. Langford, and R. Schapire. A
contextual-bandit approach to personalized news ar-
ticle recommendation. In WWW, pages 661–670,
2010.

S. Maghsudi and E. Hossain. Multi-armed bandits
with application to 5G small cells. IEEE Wireless
Communications, 23(3):64–73, 2016.

A. Moradipari, S. Amani, M. Alizadeh, and C. Thram-
poulidis. Safe linear thompson sampling with side
information. preprint arXiv:1911.02156, 2019.

S. Ontanón. The combinatorial multi-armed bandit
problem and its application to real-time strategy
games. In Ninth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2013.

P. Rusmevichientong and J. Tsitsiklis. Linearly pa-
rameterized bandits. Mathematics of Operations
Research, 35(2):395–411, 2010.

D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and
Z. Wen. A tutorial on Thompson sampling. Founda-
tions and Trends in Machine Learning, 11(1):1–96,
2018.

W. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4):285–294, 1933.

S. Villar, J. Bowden, and J. Wason. Multi-armed
bandit models for the optimal design of clinical trials:
Benefits and challenges. Statistical Science, 30(2):
199–215, 2015.

R. Washburn. Application of multi-armed bandits to
sensor management. In Foundations and Applica-
tions of Sensor Management, pages 153–175. Springer,
2008.

H. Wu, R. Srikant, X. Liu, and C. Jiang. Algorithms
with logarithmic or sub-linear regret for constrained
contextual bandits. In Advances in Neural Informa-
tion Processing Systems 28, pages 433–441, 2015.

Y. Wu, R. Shariff, T. Lattimore, and C. Szepesvári.
Conservative bandits. In International Conference
on Machine Learning, pages 1254–1262, 2016.



Stochastic Bandits with Linear Constraints

A Proofs of Section 3

A.1 Proof of Proposition 1

Proof. We only prove the statement for the optimistic reward, r̃π,t. The proof for the pessimistic cost, c̃π,t, is
analogous. From the definition of the confidence set Crt (αr) in (7), any vector θ ∈ Crt (αr) can be written as θ̂t + v,
where v satisfying ‖v‖Σt ≤ αrβt(δ, d). Thus, we may write

r̃π,t = max
θ∈Crt (αr)

Ex∼π[〈x, θ〉] = max
θ∈Crt (αr)

〈xπ, θ〉 = 〈xπ, θ̂t〉+ max
v:‖v‖Σt≤αrβt(δ,d)

〈xπ, v〉

(a)
≤ 〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1

t
.

(a) By Cauchy-Schwartz, for all v, we have 〈xπ, v〉 ≤ ‖xπ‖Σ−1
t
‖v‖Σt . The result follows from the condition on v

in the maximum, i.e., ‖v‖Σt ≤ αrβt(δ, d).

Let us define v∗ :=
αrβt(δ,d)Σ−1

t xπ
‖xπ‖Σ−1

t

. This value of v∗ is feasible because

‖v∗‖Σt =
αrβt(δ, d)

‖xπ‖Σ−1
t

√
x>π Σ−1

t ΣtΣ
−1
t xπ =

αrβt(δ, d)

‖xπ‖Σ−1
t

√
x>π Σ−1

t xπ = αrβt(δ, d).

We now show that v∗ also achieves the upper-bound in the above inequality resulted from Cauchy-Schwartz

〈xπ, v∗〉 =
αrβt(δ, d)x>π Σ−1

t xπ
‖xπ‖Σ−1

t

= αrβt(δ, d)‖xπ‖Σ−1
t
.

Thus, v∗ is the maximizer and we can write

r̃π,t = 〈xπ, θ̂t〉+ 〈xπ, v∗〉 = 〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1
t
,

which concludes the proof.

A.2 Proof of Proposition 2

Proof. Recall that c̃π,t =
〈xoπ,e0〉c0
‖x0‖ + 〈xo,⊥π , t̂o,⊥π 〉+ αcβt(δ, d− 1)‖xo,⊥π ‖(Σo,⊥t )−1 ≤ τ .

Conditioned on the event E as defined in equation 16, it follows that:

|〈xo,⊥π , µ̂o,⊥t − µo,⊥∗ 〉| ≤ ‖µo,⊥∗ − µ̂o,⊥t ‖Σo,⊥t ‖xπ‖(Σo,⊥t )−1

≤ 〈xo,⊥π , µ̂o,⊥t − µo,⊥∗ 〉βt(δ, d− 1)‖xπ‖(Σo,⊥t )−1

And therefore:
0 ≤ 〈xo,⊥π , µ̂o,⊥t − µo,⊥∗ 〉+ βt(δ, d− 1)‖xπ‖(Σo,⊥t )−1 (21)

Observe that:

cπ =
〈xoπ, e0〉c0
‖x0‖

+ 〈xo,⊥π , µo,⊥∗ 〉

≤ 〈x
o
π, e0〉c0
‖x0‖

+ 〈xo,⊥π , µ̂o,⊥t 〉+ αcβt(δ, d− 1)‖xo,⊥π ‖(Σo,⊥t )−1︸ ︷︷ ︸
I

(22)

The last inequality holds by adding Inequality 21 to Inequality 22. Since by assumption for all π ∈ Πt term I ≤ τ ,
we obtain that cπ ≤ τ . The result follows.
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B Proofs of Section 4

B.1 Proof of Lemma 2

We first state the following proposition that is used in the proof of Lemma 2. This proposition is a direct
consequence of Eq. 20.9 and Lemma 19.4 in Lattimore and Szepesvári (2019). Similar result has also been
reported in the appendix of Amani et al. (2019).

Proposition 3. For any sequence of actions (x1, . . . , xt), let Σt be its corresponding Gram matrix defined by (4)
with λ ≥ 1. Then, for all t ∈ [T ], we have

T∑
s=1

‖xs‖Σ−1
s
≤
√

2Td log
(
1 +

TL2

λ

)
.

We now state the proof of Lemma 2.

Proof of Lemma 2. We prove this lemma through the following sequence of inequalities:

T∑
t=1

〈xt, θ̃t〉 − 〈xt, θ∗〉
(a)
≤

T∑
t=1

‖xt‖Σ−1
t
‖θ̃t − θ∗‖Σt

(b)
≤

T∑
t=1

(1 + αr)βt(δ, d)‖xt‖Σ−1
t

(c)
≤ (1 + αr)βT (δ, d)

T∑
t=1

‖xt‖Σ−1
t

(d)
≤ (1 + αr)βT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
(a) This is by Cauchy-Schwartz.

(b) This follows from the fact that θ̃t ∈ Crt (αr) and we are on event E .

(c) This is because βt(δ, d) is an increasing function of t, i.e., βT (δ, d) ≥ βt(δ, d), ∀t ∈ [T ].

(d) This is a direct result of Proposition 3.

B.2 Proof of Lemma 3

Proof. In order to prove the desired result it is enough to show that:

(
xo,⊥π

)> (
Σo,⊥t

)†
xo,⊥π ≤ x>π Σ−1

t xπ

w.l.o.g. we can assume xo = e1, the first basis vector. Notice that in this case Σo,⊥
t can be thought of as a

submatrix of Σt such that Σt[2 :, 2 :] = Σo,⊥t , where Σt[2 :, 2 :] denotes the submatrix with row and column indices
from 2 onwards.

Using the following formula for the inverse of a psd symmetric matrix:

[
Z δ
δ> A

]
=

[
1
D −A

−1δ
D

− δ
>A−1

D A−1 + A1δδ>A−1

D

]

Where D = z − δ>A−1δ. In our case D = Σt[1, 1]− Σt[2 : d]>
(

Σo,⊥t

)−1

Σt[2 : d] ∈ R. Observe that since Σt is
PSD, D ≥ 0. Therefore:

Σ−1
t =

 1/D − (Σo,⊥t )
−1

Σt[2,:d]

D

−Σ>t [2:d](Σo,⊥t )
−1

D

(
Σo,⊥t

)−1

+
(Σo,⊥t )

−1
Σt[2:d]Σt[2:d](Σo,⊥t )

−1

D


Then:
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x>π
(
Σ−1
t

)−1
xπ =

xπ(1)2 − 2xπ(1)Σt[2 : d]>
(

Σo,⊥t

)−1

xπ[2 : d]

D
+

xπ[2 : d]>
(

Σo,⊥t

)−1

Σt[2 : d]Σt[2 : d]>
(

Σo,⊥t

)−1

xπ[2 : d]

D

+ xπ[2 : d]>
(

Σo,⊥t

)−1

xπ[2 : d]

≥ xπ[2 : d]>
(

Σo,⊥t

)−1

xπ[2 : d]

The result follows by noting that xπ[2 : d] = xo,⊥π .

B.3 Proof of Lemma 4

Proof. For any policy π, we have

r̃π,t = max
θ∈Crt (αr)

〈xπ, θ〉 ≥ 〈xπ, θ∗〉 = rπ. (23)

If π∗t ∈ Πt, then by the definition of πt (Line 4 of Algorithm 1), we have

r̃πt,t ≥ r̃π∗t ,t. (24)

Combining (23) and (24), we may conclude that r̃πt,t ≥ rπ∗t as desired.

We now focus on the case that π∗t 6∈ Πt, i.e.,

c̃π∗t ,t =
〈xoπ∗t , e0〉c0
‖x0‖

+ 〈xo,⊥π∗t , µ̂
o,⊥
t 〉+ αcβt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 > τ.

We define a mixture policy π̃t = ηtπ
∗
t + (1− ηt)π0, where π0 is the policy that always selects the safe action x0

and ηt ∈ [0, 1] is the maximum value of η such that
(
ηπ∗t + (1− η)π0

)
∈ Πt. Conceptually, ηt shows how close is

the optimal policy π∗t to the set of safe policies Πt.

By the definition of π̃t, we have

xoπ̃t = ηtx
o
π∗t

+ (1− ηt)x0, xo,⊥π̃t = ηtx
o,⊥
π∗t

, (25)

which allows us to write

c̃π̃t,t =
ηt〈xoπ∗t , e0〉+ (1− ηt)〈x0, e0〉

‖x0‖
· c0 + ηt〈xo,⊥π∗t , µ̂

o,⊥
t 〉+ ηtαcβt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1

=
(1− ηt)〈x0, e0〉c0

‖x0‖
+ ηtc̃π∗t ,t.

From the definition of ηt, we have c̃π̃t,t = (1−ηt)〈x0,e0〉c0
‖x0‖ + ηtc̃π∗t ,t = τ , and thus, we may write

ηt =
τ − 〈x0,e0〉c0

‖x0‖

c̃π∗t ,t −
〈x0,e0〉c0
‖x0‖

=
τ − c0

〈xo
π∗t
,e0〉c0
‖x0‖ + 〈xo,⊥π∗t , µ̂

o,⊥
t 〉+ αcβt(δ, d− 1)‖xo,⊥π∗t ‖(Σ0,⊥

t )−1 − c0

=
τ − c0

〈xo
π∗t
,e0〉c0
‖x0‖ + 〈xo,⊥π∗t , µ∗〉+ 〈xo,⊥π∗t , µ̂

o,⊥
t − µ∗〉+ αcβt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 − c0

(a)
≥ τ − c0
〈xo
π∗t
,e0〉c0
‖x0‖ + 〈xo,⊥π∗t , µ∗〉+ (1 + αc)βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 − c0

(b)
≥ τ − c0

τ + (αc + 1)βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 − c0
. (26)
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(a) This holds because

〈xo,⊥π∗t , µ̂
o,⊥
t − µ∗〉 = 〈xo,⊥π∗t , µ̂

o,⊥
t − µo,⊥∗ 〉 ≤ ‖µ̂

o,⊥
t − µo,⊥∗ ‖Σo,⊥t ‖x

o,⊥
π∗t
‖(Σo,⊥t )−1 ≤ βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 ,

where the last inequality is because we are on the event E .

(b) This passage is due to the fact that the optimal policy π∗t is feasible, and thus, Ex∼π∗t [〈x, µ∗〉] ≤ τ . Therefore,
we may write

Ex∼π∗t [〈x, µ∗〉] = Ex∼π∗t [〈xo, µ∗〉] + 〈xo,⊥π∗t , µ∗〉 = Ex∼π∗t [〈〈x, e0〉e0, µ∗〉] + 〈xo,⊥π∗t , µ∗〉

= Ex∼π∗t [〈〈x, e0〉
x0

‖x0‖
, µ∗〉] + 〈xo,⊥π∗t , µ∗〉 =

c0
‖x0‖

Ex∼π∗t [〈x, e0〉] + 〈xo,⊥π∗t , µ∗〉

=
〈xoπ∗t , e0〉c0
‖x0‖

+ 〈xo,⊥π∗t , µ∗〉 ≤ τ.

Since π̃t ∈ Πt, we have

r̃πt,t ≥ r̃π̃t,t = 〈xπ̃t , θ̂t〉+ αrβt(δ, d)‖xπ̃t‖Σ−1
t

= 〈xπ̃t , θ∗〉+ 〈xπ̃t , θ̂t − θ∗〉+ αrβt(δ, d)‖xπ̃t‖Σ−1
t

(a)
≥ 〈xπ̃t , θ∗〉+ (αr − 1)βt(δ, d)‖xπ̃t‖Σ−1

t

(b)
≥ 〈xπ̃t , θ∗〉+ (αr − 1)βt(δ, d− 1)‖xo,⊥π̃t ‖(Σo,⊥t )−1

(c)
= ηt〈xπ∗ , θ∗〉+ (1− ηt)〈x0, θ∗〉+ ηt(αr − 1)βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1

(d)
≥ ηt〈xπ∗t , θ∗〉+ ηt(αr − 1)βt(δ, d− 1)‖xo,⊥π∗ ‖(Σo,⊥t )−1

(e)
≥
( τ − c0
τ − c0 + (αc + 1)βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1

)(
〈xπ∗t , θ∗〉+ (αr − 1)βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1

)
︸ ︷︷ ︸

C0

. (27)

(a) This is because we may write

|〈xπ̃t , θ̂t − θ∗〉| ≤ ‖θ̂t − θ∗‖Σt‖xπ̃t‖Σ−1
t
≤ βt(δ, d)‖xπ̃t‖Σ−1

t
,

where the last inequality is due to the fact that we are on the event E . Thus, 〈xπ̃t , θ̂t − θ∗〉 ≥ −βt(δ, d)‖xπ̃t‖Σ−1
t
.

(b) This is a consequence of Lemma 3 stated in the paper and proved in Appendix B.2.

(c) This is from the definition of π̃ and Eq. 25.

(d) This is because ηt ∈ [0, 1] and from Assumption 4 we have that all expected rewards are positive (belong to
[0, 1]), and thus, 〈x0, θ∗〉 ≥ 0.

(e) This is by lower-bounding ηt from (26).

Let us define the shorthand notation C1 := βt(δ, d− 1)‖xo,⊥π∗t ‖(Σo,⊥t )−1 . Thus, we may write C0 as

C0 =
τ − c0

τ − c0 + (1 + αc)C1
×
(
〈xπ∗t , θ∗〉+ (αr − 1)C1

)
.

Note that C0 ≥ 〈xπ∗t , θ∗〉 = rπ∗t (and as a results r̃πt,t ≥ rπ∗t as desired) iff:

(τ − c0)rπ∗t + (τ − c0)(αr − 1)C1 ≥ (τ − c0)rπ∗t + (1 + αc)C1rπ∗t ,

which holds iff: (τ − c0)(αr − 1)C1 ≥ (1 + αc)C1rπ∗t .

Since rπ∗t ≤ 1 from Assumption 4, this holds iff: 1 + αc ≤ (τ − c0)(αr − 1). This concludes the proof as for both
cases of π∗t ∈ Πt and π∗t 6∈ Πt, we proved that r̃πt,t ≥ rπ∗t .
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B.4 Unknown c0

In this section we relax Assumption 5, and instead assume we only have the knowledge of a safe arm x0, but
its expected cost c0 is unknown and needs to be learned. If the cost of the safe arm c0 is unknown, we start
by taking the safe action x0 for T0 rounds to produce first an empirical mean estimator ĉ0. Notice that for all
δ ∈ (0, 1), ĉ0 satisfies:

P

ĉ0 ≤ c0 −
√

2 log (1/δ)

T0

 ≤ δ (28)

Let c̃0 = ĉ0 +
√

2 log(1/δ)
T0

. By inequality 28, it follows that with probability at least 1− δ:

c̃0 ≥ c0

We select T0 in an adaptive way. In other words, we do the following:

Let δ = 1
T 2 . And let ĉ0(t) be the sample mean estimator of c0, when using only t samples. Similarly define

c̃0(t) = ĉ0(t) +
√

2 log(1/δ)
t Let’s condition on the event E that for all t ∈ [T ]:

|ĉ0(t)− c0| ≤
√

2 log(1/δ)

t

By assumption P(E) ≥ 1− T2δ = 1− 2
T . Let T0 be the first time that c̃0(T0) + 2

√
2 log(1/δ)

T0
≤ τ .

Notice that in this case and conditioned on E and therefore on c̃0(T0) ≥ c0:√
2 log(1/δ)

T0
≤ τ − c0

2
i.e. T0 ≥

8 log(1/δ)

(τ − c0)2

In other words, this test does not stop until T0 ≥ 8 log(1/δ)
(τ−c0)2 . Now we see it won’t take much longer than that to

stop:

Conversely, let T ′0 ≥
32 log(1/δ)

(τ−c0)2 . For any such T ′0 we observe that by conditioning on E :

c̃0(T ′0) + 2

√
2 log(1/δ)

T ′0
≤ c0 + 4

√
2 log(1/δ)

T ′0
≤ τ

Thus conditioned on E , we conclude 8 log(1/δ)
(τ−c0)2 ≤ T0 ≤ 32 log(1/δ)

(τ−c0)2 . Then,

Therefore δ̂c =
√

8 log(1/δ)
T0

would serve as a conservative estimator for τ−c0
2 satisfying:

τ − c0
2
≤ δ̂c ≤ τ − c0

We proceed by warm starting our estimators for θ∗ and µ∗ using the data collected by playing x0. However,
instead of estimating µo,⊥∗ , we build an estimator for µ∗ over all its directions, including e0, similar to what OPLB
does for θ∗. We then set αr

αc
= 1/δ̂c and run Algorithm 1 for rounds t > T0. Since the scaling of αr w.r.t. αc is

optimal up to constants, the same arguments hold.
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C Constrained Multi-Armed Bandits

C.1 Optimism Pessimism

Here we reproduce the full pseudo-code for OPB:

Algorithm 2 Optimism-Pessimism
Input: Number of arms K, constants αr, αc ≥ 1.
for t = 1, . . . , T do

1. Compute estimates {ura(t)}a∈A, {uca(t)}a∈A.
2. Form the approximate LP (20) using these estimates.
3. Find policy πt by solving (20).
4. Play arm a ∼ πt

Similar to the case of OPLB, we define Πt = {π ∈ ∆A :
∑
a∈A πau

c
a(t) ≤ τ}. We also define βa(0) = 0 for all

a ∈ A.

C.2 The LP Structure

The main purpose of this section is to prove the optimal solutions of the linear program from (20) are supported
on a set of size at most 2. This structural result will prove important to develop simple efficient algorithms to
solve for solving it. Let’s recall the form of the Linear program in (20), i.e.,

max
π∈∆K

∑
a∈A

πau
r
a(t), s.t.

∑
a∈A

πau
c
a(t) ≤ τ.

Let’s start by observing that in the case K = 2 with A = {a1, a2} and uca1
(t) < τ < uca2

(t), the optimal policy π∗
is a mixture policy satisfying:

π∗a1
=

uca2
(t)− τ

uca2
(t)− uca1

(t)
, π∗a2

=
τ − uca1

(t)

uca2
(t)− uca1

(t)
. (29)

The main result in this section is the following Lemma:
Lemma 7 (support of π∗). If (20) is feasible, there exists an optimal solution with at most 2 non-zero entries.

Proof. We start by inspecting the dual problem of (20):

min
λ≥0

max
a

λ(τ − uca(t)) + ura(t) (D)

This formulation is easily interpretable. The quantity τ − uca(t) measures the feasibility gap of arm a, while ura(t)
introduces a dependency on the reward signal. Let λ∗ be the optimal value of the dual variable λ. Define A∗ ⊆ A
as A∗ = arg maxa λ

∗(τ − uca(t)) + ura(t). By complementary slackness the set of nonzero entries of π∗ must be a
subset of A∗.

If |A∗| = 1, complementary slackness immediately implies the desired result. If a1, a2 are two elements of A∗, it
is easy to see that:

ura1
(t)− λ∗uca1

(t) = ura2
(t)− λ∗uca2

(t),

and thus,

λ∗ =
ura2

(t)− ura1
(t)

uca2
(t)− uca1

(t)
. (30)

If λ∗ = 0, the optimal primal value is achieved by concentrating all mass on any of the arms in A∗. Otherwise,
plugging (30) back into the objective of (D) and rearranging the terms, we obtain

(D) = λ∗(τ − uca1
(t)) + ura1

(t) = ura2
(t)

(
τ − uca1

(t)

uca2
(t)− uca1

(t)

)
+ ura1

(t)

(
uca2

(t)− τ
uca2

(t)− uca1
(t)

)
.
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If uca2
(t) ≥ τ ≥ uca1

(t), we obtain a feasible value for the primal variable π∗a1
=

τ−uca1
(t)

uca2
(t)−uca1

(t) , π
∗
a2

=
uca2

(t)−τ
uca2

(t)−uca1
(t)

and zero for all other a ∈ A\{a1, a2}. Since we have assumed (20) to be feasible there must be either one
arm a∗ ∈ A∗ satisfying a∗ = arg maxa∈A∗ u

r
a(t) and uca∗(t) ≤ τ or two such arms a1 and a2 in A∗ that satisfy

uca2
(t) ≥ τ ≥ uca1

(t), since otherwise it would be impossible to produce a feasible primal solution without having
any of its supporting arms a satisfying uca(t) ≤ τ , there must exist an arm a ∈ A∗ with uca(t) < τ . This completes
the proof.

From the proof of Lemma 5 we can conclude the optimal policy is either a delta mass centered at the arm with
the largest reward - whenever this arm is feasible - or it is a strict mixture supported on two arms.

A further consequence of Lemma 7 is that it is possible to find the optimal solution π∗ to problem 20 by
simply enumerating all pairs of arms (ai, aj) and all singletons, compute their optimal policies (if feasible) using
Equation 29 and their values and selecting the feasible pair (or singleton) achieving the largest value. More
sophisticated methods can be developed by taking into account elimination strategies to prune out arms that
can be determined in advance not to be optimal nor to belong to an optimal pair. Overall this method is more
efficient than running a linear programming solver on (20).

If we had instead m constraints, a similar statement to Lemma 5 holds, namely it is possible to show the optimal
policy will have support of size at most m+ 1. The proof is left as an exercise for the reader.

C.3 Regret Analysis

In order to show a regret bound for Algorithm 2, we start with the following regret decomposition:

RΠ(T ) =

T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [r̄a] =

(
T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [ura(t)]

)
︸ ︷︷ ︸

(I)

+

(
T∑
t=1

Ea∼πt [ura(t)]− Ea∼πt [r̄a]

)
︸ ︷︷ ︸

(II)

.

In order to bound RΠ(T ), we independently bound terms (I) and (II). We start by bounding term (I). We proceed
by first proving an Lemma 6, the equivalent version of Lemma 4 for the multi armed bandit problem.

C.4 Proof of Lemma 6

Proof. Throughout this proof we denote as π0 to the delta function over the safe arm 1. We start by noting that
under E , and because αr, αc ≥ 1, then:

(αr − 1)βa(t) ≤ ξra(t) ≤ (αr + 1)βa(t) ∀a and (αc − 1)βa(t) ≤ ξca(t) ≤ (αc + 1)βa(t) ∀a 6= 0. (31)

If π∗ ∈ Πt, it immediately follows that:

Ea∼π∗ [r̄a] ≤ Ea∼π∗ [ura(t)] ≤ Ea∼πt [ura(t)] . (32)

Let’s now assume π∗ 6∈ Πt, i.e., Ea∼π∗ [uca(t)] > τ . Let π∗ = ρ∗π̄∗ + (1− ρ)π0 with π̄∗ ∈ ∆K [2 : K]5.

Consider a mixture policy π̃t = γtπ
∗ + (1− γt)π0 = γtρ

∗π̄∗ + (1− γtρ∗)π0, where γt is the maximum γt ∈ [0, 1]
such that π̃t ∈ Πt. It can be easily established that

γt =
τ − c̄1

ρ∗Ea∼π̄∗ [uca(t)]− ρ∗c̄1
=

τ − c̄1
Ea∼π̄∗ [ρ∗(c̄a + ξca(t))]− ρ∗c̄1

(i)
≥ τ − c̄1
τ − c̄1 + ρ∗(1 + αc)Ea∼π̄∗ [βa(t)]

.

(i) is a consequence of (31) and of the observation that since π∗ is feasible ρ∗Ea∼π̄∗ [c̄a] + (1− ρ∗)c̄1 ≤ τ . Since

5In other words, the support of π̄∗ does not contain the safe arm 1.
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π̃t ∈ Πt, we have

Ea∼πt [ura(t)] ≥ γtEa∼π∗ [ura(t)] + (1− γt)ur0(t)︸ ︷︷ ︸
Ea∼π̃t [ura(t)]

(ii)
≥ τ − c̄1

τ − c̄1 + ρ∗(1 + αc)Ea∼π̄∗ [βa(t)]
× Ea∼π∗ [ura(t)]

=
τ − c̄1

τ − c̄1 + ρ∗(1 + αc)Ea∼π̄∗ [βa(t)]
×
(
Ea∼π∗ [r̄a] + Ea∼π∗ [ξra(t)]

)
(iii)
≥ τ − c̄1

τ − c̄1 + ρ∗(1 + αc)Ea∼π̄∗ [βa(t)]
×
(
Ea∼π∗ [r̄a] + (αr − 1)Ea∼π∗ [βa(t)]

)
(iv)
≥ τ − c̄1

τ − c̄1 + (1 + αc)Ea∼π∗ [βa(t)]
×
(
Ea∼π∗ [r̄a] + (αr − 1)Ea∼π∗ [βa(t)]

)
︸ ︷︷ ︸

C0

.

(ii) holds because ur0(t) ≥ 0. (iii) is a consequence of (31) and (iv) follows because Ea∼π∗ [βa(t)] = ρ∗Ea∼π̄∗ [βa(t)]+
(1− ρ∗)β0(t) ≥ ρ∗Ea∼π̄∗ [βa(t)] since βa(t) ≥ 0 for all a and t.

Let C1 = Ea∼π∗ [βa(t)]. The following holds:

C0 =
τ − c̄1

τ − c̄1 + (1 + αc)C1
×
(
Ea∼π∗ [r̄a] + (αr − 1)C1

)
.

Note that C0 ≥ Ea∼π∗ [r̄a] iff:

(τ − c̄1)Ea∼π∗ [r̄a] + (τ − c̄1)(αr − 1)C1 ≥ (τ − c̄1)Ea∼π∗ [r̄a] + (1 + αc)C1Ea∼π∗ [r̄a] ,

which holds iff:
(τ − c̄1)(αr − 1)C1 ≥ (1 + αc)C1Ea∼π∗ [r̄a].

Since Ea∼π∗ [r̄a] ≤ 1, this holds if 1 + αc ≤ (τ − c̄1)(αr − 1).

Proposition 4. If δ = ε
4KT for ε ∈ (0, 1), αr, αc ≥ 1 with αc ≤ τ(αr − 1), then with probability at least 1− ε

2 ,
we have

T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [ura(t)] ≤ 0

Proof. A simple union bound implies that P(E) ≥ 1− ε
2 . Combining this observation with Lemma 6 yields the

result.

Term (II) can be bounded using the confidence intervals radii:

Proposition 5. If δ = ε
4KT for an ε ∈ (0, 1), then with probability at least 1− ε

2 , we have

T∑
t=1

Ea∼πt [ura(t)]− Ea∼πt [r̄a] ≤ (αr + 1)
(

2
√

2TK log(1/δ) + 4
√
T log(2/ε) log(1/δ)

)
.

Proof. Under these conditions P(E) ≥ 1 − ε
2 . Recall ura(t) = r̂a(t) + αrβa(t) and that conditional on E ,

r̄a ∈ [r̂a(t)− βa(t), r̂a(t) + βa(t)] for all t ∈ [T ] and a ∈ A. Thus, for all t, we have

Ea∼πt [ura(t)]− Ea∼πt [r̄a] ≤ (αr + 1)Ea∼πt [βa(t)].

Let Ft−1 be the sigma algebra defined up to the choice of πt and a′t be a random variable distributed as πt | Ft−1

and conditionally independent from at, i.e., a′t ⊥ at | Ft−1. Note that by definition the following equality holds:

Ea∼πt [βa(t)] = Ea′t∼πt [βa(t) | Ft−1].
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Consider the following random variables At = Ea′t∼πt [βa′t(t) | Ft−1] − βat(t). Note that Mt =
∑t
i=1Ai is a

martingale. Since |At| ≤ 2
√

2 log(1/δ), a simple application of Azuma-Hoeffding6 implies:

P


T∑
t=1

Ea∼πt [βa(t)] ≥
T∑
t=1

βat(t) + 4
√
T log(2/ε) log(1/δ)︸ ︷︷ ︸

EcA

 ≤ ε/2.

We can now upper-bound
∑T
t=1 βat(t). Note that

∑T
t=1 βat(t) =

∑
a∈A

∑T
t=1 1{at = a}βa(t). We start by

bounding for an action a ∈ A:

T∑
t=1

1{at = a}βa(t) =
√

2 log(1/δ)

Ta(T )∑
t=1

1√
t
≤ 2
√

2Ta(T ) log(1/δ).

Since
∑
a∈A Ta(T ) = T and by concavity of

√
·, we have∑

a∈A
2
√

2Ta(T ) log(1/δ) ≤ 2
√

2TK log(1/δ).

Conditioning on the event E ∩ EA whose probability satisfies P(E ∩ EA) ≥ 1− ε yields the result.

We can combine these two results into our main theorem:
Theorem 4 (Main Theorem). If ε ∈ (0, 1), αc = 1 and αr = 2

τ−c̄1 + 1, then with probability at least 1 − ε,
Algorithm 2 satisfies the following regret guarantee:

RΠ(T ) ≤
(

2

τ − c̄1
+ 1

)(
2
√

2TK log(4KT/ε) + 4
√
T log(2/ε) log(4KT/ε)

)
Proof. This result is a direct consequence of Propositions 4 and 5 by setting δ = 4KTε.

C.5 Lower Bound

We start by proving a generalized version of the divergence decomposition lemma for bandits.
Lemma 8. [Divergence decomposition for constrained multi armed bandits] Let ν = ((P1, Q1), · · · , (PK , QK))
be the reward and constraint distributions associated with one instance of the single constraint multi-armed
bandit, and let ν′ = ((P ′1, Q

′
1), · · · , (P ′K , Q′K)) be the reward and constraint distributions associated with another

constrained bandit instance. Fix some algorithm A and let Pν = PνA and Pν′ = Pν′A be the probability measures
on the cannonical bandit model (See section 4.6 of Lattimore and Szepesvári (2019)) induced by the T round
interconnection of A and ν (respectively A and ν′). Then:

KL(Pν ,Pν′) =

K∑
a=1

Eν [Ta(T )]KL((Pa, Qa), (P ′a, Q
′
a))

Where Ta(T ) denotes the number of times arm a was pulled until by A and up to time T .

Proof. The same proof as in Lemma 15.1 from Lattimore and Szepesvári (2019) applies in this case.

The following two lemmas will prove useful as well:
Lemma 9. [Gaussian Divergence ] The divergence between two multivariate normal distributions and means
µ1, µ2 ∈ Rd with spherical identity covariance Id equals:

KL(N (µ1, Id),N (µ2, Id)) =
‖µ1 − µ2‖2

2
6We use the following version of Azuma-Hoeffding: if Xn, n ≥ 1 is a martingale such that |Xi − Xi−1| ≤ di, for

1 ≤ i ≤ n, then for every n ≥ 1, we have P(Xn > r) ≤ exp
(
− r2

2
∑n
i=1 d

2
i

)
.
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Define the binary relative entropy to be:

d(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
and satisfies:

d(x, y) ≥ (1/2) log(1/4y) (33)

for x ∈ [1/2, 1] and y ∈ (0, 1). Adapted from Kaufmann et al. (2016), Lemma 1.
Lemma 10. Let ν, ν′ be two constrained bandit models with K arms. Borrow the setup, definitions and notations
of Lemma 8, then for any measurable event B ∈ FT :

KL(Pν ,Pν′) =

K∑
a=1

Eν [Ta(T )]KL((Pa, Qa), (P ′a, Q
′
a)) ≥ d(Pν(B),Pν′(B)) (34)

We now present a worst-case lower bound for the constrained multi armed bandit problem. We restrict ourselves
to Gaussian instances with mean reward and cost vectors r̄, c̄ ∈ [0, 1]K . Let A be an algorithm for policy selection
in the constrained MAB problem. For the purpose of this section we denote as RΠ(T,A, r̄, c̄) as the constrained
regret of algorithm A in the Gaussian instance N (r̄, I), N (c̄, I). The following theorem holds:

Theorem 5. Let τ, c̄1 ∈ (0, 1), K ≥ 4, and B := max
(

1
27

√
(K − 1)T , 1

6(τ−c̄1)2

)
and assume7 T ≥ max(K −

1, 24eB) and let τ be the maximum allowed cost. Then for any algorithm A there is a pair of mean vectors
r̄, c̄ ∈ [0, 1]K such that:

RΠ(T,A, r̄, c̄) ≥ B

Proof. If max
(

1
27

√
(K − 1)T , 1

6(τ−c̄1)2

)
=
√
KT , then the argument in Theorem 15.2 of Lattimore and Szepesvári

(2019) yields the desired result by noting that the framework of constrained bandits subsumes unconstrained
multi armed bandits when all costs other than c0 equal zero. In this case we conclude there is an instance r̄, c̄
with c̄a = 0 for all a ∈ A satisfying:

RΠ(T,A, r̄, c̄) ≥ 1

27

√
(K − 1)T

Let’s instead focus on the case where B = max
(

1
27

√
(K − 1)T , 1

6(τ−c̄1)2

)
= 1

6(τ−c̄1)2 .

Pick any algorithm. We want to show that the algorithm’s regret on some environment is as large as B. If there
was an instance r̄, c̄ such that RΠ(T,A, r̄, c̄) > B there would be nothing to be proven. Hence without loss of
generality, we can assume that the algorithm satisfies RΠ(T,A, r̄, c̄) ≤ B for all r̄, c̄ ∈ [0, 1]K and having unit
variance Gaussian rewards.

Let c ∈ (0, 1) with c = τ − c̄1. For the reader’s convenience we will use the notation ∆ = 1/2. By treating the
rewards in a symbolic way it is easier to understand the logic of the proof argument. Let’s consider the following
constrained bandit instance inducing measure ν:

c̄1 = (τ − c, τ + 2c, τ − c, τ + 2c, · · · , τ + 2c)

r̄1 = (∆, 8∆, 0, 4∆, · · · , 4∆)

Notice that the optimal policy equals a mixture between arm 1 and 2, where arm 1 is chosen with probability 2/3
and arm 2 with probability 1/3. The value of this optimal policy equals 10/3∆.

Recall we use the notation T̄j(t) denote the total amount of probability mass that A allocated to arm j up to
time t. Notice that the expected reward of all feasible policies that do not have arm 1 in their support have
a gap (w.r.t the optimal feasible policy’s expected reward) of at least 2∆

3 . Since by assumption, A satisfies
RΠ(T,A, r̄1, c̄1) ≤ B, we have

B ≥ RΠ(T,A, r̄1, c̄1) ≥ 2∆

3

(
2

3
T − 1

2
T

)
P
(
T̄1(T ) <

T

2

)
=

∆

9
TP
(
T̄1(T ) <

T

2

)
,

7This constraint on T translates to T ≥ C for some constant C.
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and thus, we may write

P
(
T̄1(T ) ≥ T

2

)
= 1− P

(
T̄1(T ) <

T

2

)
≥ 1− 9B

∆T
≥ 1/2.

The last inequality follows from the assumption T ≥ max(K − 1, 24eB).

Let’s now consider the following constrained bandit instance inducing measure ν′:

c̄2 = (τ − c, τ + 2c, τ − c, τ − c, · · · , τ + 2c)

r̄2 = (∆, 8∆, 0, 4∆, · · · , 4∆)

In this instance the optimal policy is to play arm 4 deterministically, which gets a reward of 4∆. Notice that the
expected reward of any feasible policy that does not contain arm 4 in its support has a gap (w.r.t. the optimal
feasible policy’s expected reward) of at least 2∆

3 . Since by assumption, A satisfies RΠ(T,A, r̄2, c̄2) ≤ B, we have

B ≥ RΠ(T,A, r̄2, c̄2) ≥ 2∆

3

(
1

2
T

)
P
(
T̄1(T ) ≥ T

2

)
=

∆

3
TP
(
T̄1(T ) ≥ T

2

)
,

and thus, we may write

P
(
T̄1(T ) ≥ T

2

)
≤ 3B

∆T
≤ 1

4e
.

The last inequality follows from the assumption T ≥ max(K − 1, 24eB). As a consequence of inequality (33) and
Lemmas 9 and 10, we have

Eν [T4(T )]KL

(
N
((

τ + 2c

4∆

)
, Id
)
,N
((

τ − c
4∆

)
, Id
))

= Eν [T4(T )]2c2 ≥ 1

2
,

and thus, we can conclude that

E[T̄4(T )] = E[T4(T )] ≥ 1

4c2
. (35)

Since in ν, any feasible policy with support in arm 4 and no support in arm 2 has a sub-optimality gap of 4/3∆,
we conclude the regret RΠ(T,A, r̄2, c̄2) must satisfy:

RΠ(T,A, r̄2, c̄2) ≥ ∆

3c2
.

Since ∆ = 1
2 and noting that in this case ∆

3c2 = B. The result follows.

C.6 Multiple Constraints

We consider the problem where the learner must satisfyM constraints with threshold values τ1, . . . , τM . Borrowing
from the notation in the previous sections, we denote by as {r̄a}a∈A the mean reward signals and {c̄(i)a } the mean
cost signals for i = 1, . . . ,M . The full information optimal policy can be obtained by solving the following linear
program:

max
π∈∆K

∑
a∈A

πar̄a, s.t.
∑
a∈A

πac̄
(i)
a ≤ τi, for i = 1, . . . ,M. (P-M)

In order to ensure the learner’s ability to produce a feasible policy at all times, we make the following assumption:

Assumption 6. The learner has knowledge of c̄(i)1 < τi for all i = 1, . . . ,M .

We denote by {r̂a}a∈A and {ĉ(i)a }a∈A, for i = 1, . . . ,M the empirical means of the reward and cost signals. We
call {ura(t)}a∈A to the upper confidence bounds for our reward signal and {uca(t, i)}a∈A, for i = 1, . . . ,M the
costs’ upper confidence bounds:

ura(t) = r̂a(t) + αrβa(t), uca(t, i) = ĉ(i)a (t) + αcβa(t),



Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, Heinrich Jiang

where βa(t) =
√

2 log(1/δ)/Ta(t), δ ∈ (0, 1) as before. A straightforward extension of Algorithm 2 considers
instead the following M−constraints LP:

max
π∈∆K

∑
a∈A

πa u
r
a(t), s.t.

∑
a∈A

πa u
c
a(t, i) ≤ τi, for i = 1, . . . ,M. (P̂ −M)

We now generalize Lemma 6:

Lemma 11. Let αr, αc ≥ 1 satisfying αc ≤ mini(τi − c̄(i)1 )(αr − 1). Conditioning on Ea(t) ensures that with
probability 1− δ:

Ea∼πt [ura(t)] ≥ Ea∼π∗ [r̄a] .

Proof. The same argument as in the proof of Lemma 6 follows through, the main ingredient is to realize that γt
satisfies the sequence of inequalities in the lemma with τ − c̄1 substituted by min τi − c̄(i)1 .

The following result follows:

Theorem 6 (Multiple Constraints Main Theorem). If ε ∈ (0, 1), αc = 1 and αr = 2

mini τi−c̄(i)1

+ 1, then with
probability at least 1− ε, Algorithm 2 satisfies the following regret guarantee:

RΠ(T ) ≤

(
2

mini τi − c̄(i)1

+ 1

)(
2
√

2TK log(4KT/ε) + 4
√
T log(2/ε) log(4KT/ε)

)

Proof. The proof follows the exact same argument we used for the proof of Theorem 3 substituting τ − c̄1 by
mini τi − c̄(i)1 .
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D Extra Experiments

Figure 6: Constraint Threshold τ = 0.8.

Figure 7: Constraint Threshold τ = 0.5.

Figure 8: Constraint Threshold τ = 0.2.

Regret (left), cost (middle), and reward (right) evolution of OPLB in a Linear Problem. The arms are
identified with the rays corresponding to the standard basis vectors [0, e1], [0, e2], [0, e3]. The vector

θ? = (1, .2, .3) and µ? = (1, 0, 0).

In figures figs. 6 to 8 we show the advantages of relaxing the objective to an expectation constraint. In this
problem we let the action set be union of the rays [0, e1], [0, e2] and [0, e3] with reward and cost vectors equal
to θ? = (1, .2, .3) and µ? = (1, 0, 0) and the safe action corresponding to the zero vector 0 and having 0 cost.
In the following table we compare the optimal costs and reward profiles for the optimal policy satisfying the
in-expectation constraint, vs the optimal policy satisfying the cost constraints with probability one for the different
thresholds values τ = .2, .5, .8. The optimal probability-one cost constrained policy always consists of playing a
scaled version of ei for i ∈ {1, 2, 3}. The optimal in-expectation cost constrained policy corresponds to a scaled
point of the 3 dimensional simplex.

Threshold τ Opt Cost Exp Opt Cost High Prob Opt Reward Exp Opt Reward High Prob
0.8 0.8 0.8 0.86 0.8
0.5 0.5 0.5 0.65 0.5
0.2 0.2 0.0 0.44 0.3

We can observe that the optimal reward values can be substantially larger for the optimal in-expectation cost
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constrained policy. Nevertheless, the regret curves of OPLB with an expectation cost constraint or a high
probability cost constraint are comparable. This points to the fact that learning under a relaxed expectation cost
constraint is not substantially harder than under a high probability cost constraint but can allow for much higher
levels of accrued reward.

In order to run OPLB w.r.t a high probability cost constraint we modify the Algorithm 1 so that instead of
constructing a feasible policy set Πt as in Equation 13, we compute a safe action set Ãt defined as:

Ãt = {a ∈ At : c̃a,t ≤ τ}.

The rest of the algorithm remains the same. In order to make the OPLB algorithm computationally feasible
we notice that optimizing a constrained optimistic ellipsoidal reward objective over a ray [0, ei] can be done in
linear time. This is because the sets Ẽi = {a ∈ [0, ei] : c̃a,t ≤ τ} are also rays, and therefore the maximization
problems maxθ∈Crt (αr) maxa∈Ẽi〈x, a〉 are tractable. We approximate the OPLB constrained expectation objective
by sampling 1000 uniform random points {pi}1000

i=1 from the simplex spanned by e1, e2, e3 and adding the 1000
rays (with a start point at 0) to the action set yielding an enlarged action set {[0, e1], [0, e1], [0, e1]}∪ {[0, pi]}1000

i=0 .
We optimize the high probability OPLB objective over this enlarged action set. In figures figs. 6 to 8 we run
each experiment 10 times and report average curves with a shaded region corresponding to the ±0.5 standard
deviation around the regret, cost and reward values.
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