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Abstract

We study Thompson sampling (TS) in online
decision making, where the uncertain envi-
ronment is sampled from a mixture distribu-
tion. This is relevant in multi-task learning,
where a learning agent faces different classes
of problems. We incorporate this structure in
a natural way by initializing TS with a mix-
ture prior, and call the resulting algorithm
MixTS. To analyze MixTS, we develop a novel
and general proof technique for analyzing the
concentration of mixture distributions. We
use it to prove Bayes regret bounds for MixTS
in both linear bandits and finite-horizon rein-
forcement learning. Our bounds capture the
structure of the prior, depend on the number
of mixture components and their widths. We
also demonstrate the empirical effectiveness
of MixTS in synthetic and real-world experi-
ments.

1 INTRODUCTION

Thompson sampling (TS) (Agrawal and Goyal, 2012)
is arguably the most popular and practical class of ex-
ploration algorithms for stochastic bandits (Lattimore
and Szepesvári, 2019; Agrawal and Goyal, 2012) and
reinforcement learning (RL) (Barto and Sutton, 2018;
Osband et al., 2013). However, in both settings, TS is
almost exclusively applied with a unimodal prior over
model parameters (Agrawal and Goyal, 2012, 2013;
Osband et al., 2013). This is extremely limiting in a
variety of settings, for instance, in a multi-task setting
where a learning agent faces one of L classes of bandit
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problems, each with a different distribution of model
parameters. If this prior knowledge was expressed by
a single unimodal distribution, it would generally be
“wide” (hence uninformative), which can dramatically
slow convergence of TS.

In this work, we incorporate mixture models into TS
for both stochastic bandits and RL. The idea behind
mixture models is using latent variables to make a
model more expressive (Bishop, 2006). In supervised
learning, a more expressive model can better capture
a complex population of sub-populations with simi-
lar features. For instance, Gaussian mixture models
(GMMs) (Macqueen, 1967) are commonly used to clus-
ter features in financial markets (Wang, 2001) and to
identify classes of images (Bishop, 2006). Topic mod-
els (Blei et al., 2003), which are mixtures of categorical
distributions, are often used to analyze text data. Sim-
ilarly, in online learning, algorithms can be more ex-
pressive by conditioning on a latent state (Jordan and
Jacobs, 1994). In multi-task learning, where an agent
faces a collection of tasks related through latent struc-
ture, we believe that TS can be substantially improved
by using a more expressive prior.

We study TS with a mixture prior, which is a joint
probability distribution over an unobserved discrete
latent state and model parameters. It is unclear a pri-
ori if efficient algorithms exist for this problem class.
From the computational perspective, the posterior dis-
tribution may not have a closed form; and thus may
be hard to update efficiently. This is one reason why
existing TS implementations use simple priors. Apart
from computational issues, we might hope to exploit
the problem structure to derive tighter regret bounds.
The challenge is that the learning agent never observes
the latent state. We address both challenges.

We make the following contributions. First, we pro-
pose a general algorithm, mixture Thompson sampling
(MixTS), for a mixture prior with L discrete latent
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states. MixTS first samples a latent state from its pos-
terior and then samples model parameters conditioned
on that state. By explicitly modeling the latent state,
the posterior can be efficiently maintained for common
reward distributions, such as Bernoulli and Gaussian,
using conjugacy. Second, we bound the n-round Bayes
regret of MixTS using a novel general analysis tech-
nique that accounts for jointly learning the model pa-
rameters and identifying the latent state; without ever
observing it. We apply our technique in two settings:
contextual linear bandit and finite-horizon RL. Finally,
we evaluate MixTS empirically in synthetic bandit and
RL tasks, and in a task based on image classification
using the CIFAR-100 dataset (Krizhevsky, 2009).

The main theoretical contribution of this work are the
first Bayes regret bounds for TS with a mixture prior
that are (i) sublinear in the number of rounds and (ii)
depend on how informative the prior is. Specifically,
the bounds depend on the structure of the prior, the
number of mixture components and their width. When
the prior is unimodal, L = 1, our bounds match the re-
gret bounds of classical TS (Agrawal and Goyal, 2012,
2013). On the other hand, when the mixture compo-
nents have low width, the regret is determined by the
cost of identifying the correct latent state (Hong et al.,
2020). Hong et al. (2020) studied the same algorithm
as MixTS in bandits, but proved a linear regret bound
for non-zero mixture component widths. In RL, we are
the first to consider and analyze a mixture prior.

2 SETTING

We consider an online decision-making problem where
a learning agent interacts with an unknown environ-
ment sequentially over n rounds. We start with a multi-
armed bandit setting and extend it to RL in Section 5.
We adopt the following notation. Random variables
are capitalized. The i-th entry of vector v is vi; if a
vector vi is already indexed, then we denote its j-th
entry by (vi)j . We use Õ for the big O notation up to
logarithmic factors.

Our setting is defined as follows. In round t ∈ [n], the
agent takes an action At from an action set At and
observes reward Yt ∈ R. The reward Yt is drawn i.i.d.
from reward distribution P (· | At; θ). The distribution
depends on the taken action At and model parameters
θ ∈ Θ, where Θ is a set of feasible model parameters.
We denote by µθ(a) = EY∼P (·|a;θ) [Y ] the mean re-
ward of action a under model θ, and assume that all
rewards are σ2-sub-Gaussian. We subscript the action
set by t as At. This allows us to have changing action
sets, which provides additional flexibility. Specifically,
in contextual bandits, the context Xt in round t may
influence which actions are possible, a dependence cap-
tured in At.

We denote by θ∗ the true model parameters. In this
work, we assume that θ∗ is sampled from a mixture
prior P0. The mixture prior is represented using a fi-
nite set of latent states S, where |S| = L. Each latent
state corresponds to a separate “hypothesis” for the
parameter distribution. The model parameters θ∗ are
sampled as follows. First the true latent state is sam-
pled as S∗ ∼ P0 from the latent state prior, then the
model parameters are sampled as θ∗ ∼ P0(· | S∗) from
the model parameter prior. Formally, the distribution
of θ∗ is P (θ∗ = θ) =

∑
s∈S P0(θ | s)P0(s).

In multi-armed bandits, a typical goal is to maximize
the expected n-round reward, or equivalently minimize
the expected n-round regret

R(n; θ∗) = E

[
n∑
t=1

µ∗(At,∗)− µ∗(At) | θ∗

]
,

where µ∗(a) = µθ∗(a) is the true mean reward of ac-
tion a, At,∗ = maxa∈At µ∗(a) is the optimal action in
round t, and the expectation is taken over both the
randomness in the bandit algorithm and environment.
Note that θ∗ is fixed in R(n, θ∗). In this work, we fo-
cus on an average performance over multiple problems,
each corresponding to different model parameters sam-
pled from the prior. This is to capture the structure
of the stochastic generative process in our analysis.
By taking an expectation over S∗ and θ∗, we obtain
the n-round Bayes regret (Russo and Van Roy, 2013)
BR(n) = E [R(n; θ∗)].

3 ALGORITHM

Thompson sampling (Agrawal and Goyal, 2012; Russo
and Van Roy, 2013) is an algorithm that takes actions
proportionally to being optimal under the posterior.
This is usually implemented by first sampling model
parameters θt from the posterior, then taking action
At = arg maxa∈At µθt(a) that maximizes the mean re-
ward under θt. The posterior captures agent’s uncer-
tainty over the true model parameters θ∗ conditioned
on history. We denote the observation history up to
round t by Ht = (A1, Y1, . . . , At−1, Yt−1), and denote
the respective conditional probability and expectation
by Pt (·) = P (· | Ht) and Et [·] = E [· | Ht].

Now we describe how Thompson sampling with a mix-
ture prior works. We first note that the posterior
over model parameters at round t can be obtained by
marginalizing over the latent state as Pt (θ∗ = θ) =∑
s∈S Pt (θ∗ = θ | S∗ = s)Pt (S∗ = s). Because of this

structure, explicit modeling of the latent state allows
for tractable sampling from and updates to the pos-
terior. We denote the posterior by Pt, where Pt(s) =
Pt (S∗ = s) and Pt(θ | s) = Pt (θ∗ = θ | S∗ = s). Sam-
pling θ∗ from the posterior is straightforward: first a
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Algorithm 1 TS with a mixture prior (MixTS)

1: Input: Latent state prior P0

2: model parameters priors {P0(· | s)}s∈S
3: Initialize P1 ← P0

4: for t← 1, . . . , n do
5: Sample St ∼ Pt and θt ∼ Pt(· | St)
6: Select At ← arg maxa∈At

µθt(a).
7: Observe Yt and update
8: Pt+1(θ | s) ∝ Pt(θ | s)P (Yt | At; θ) , ∀s ∈ S
9: Pt+1(s) ∝ P0(s)

∫
θ
Pt+1(θ | s) dθ

latent state St ∼ Pt is sampled, then θt ∼ Pt(· | St) is
sampled conditioned on St. We show that each com-
ponent of the posterior can be computed tractably.

The key insight is that each model parameter poste-
rior has form Pt(θ | s) ∝ P0(θ | s)

∏t−1
`=1 P (Yt | At; θ),

and thus has a closed form when P0(· | s) is conju-
gate to the reward distribution. This holds in many
settings, such as Bernoulli rewards with a beta prior,
and Gaussian rewards with a Gaussian prior. More-
over, we note that the latent state posterior can be
written as Pt(s) ∝ P0(s)

∫
θ
Pt(θ | s) dθ. The integral is

the posterior predictive probability and can be com-
puted efficiently when P0(· | s) is conjugate to the
reward distribution. The normalizing constant P (Ht)
is the same for all latent states. Since S is finite, we
normalize Pt(s) by dividing it with

∑L
s=1 Pt(s).

Based on the above, TS with a mixture prior can be
implemented efficiently for many problems of interest.
The resulting algorithm, MixTS (Algorithm 1), uses in-
cremental posterior updates. In the bandit setting, our
algorithm is an instance of mmTS (Hong et al., 2020)
for latent bandits. Since MixTS has a mixture prior, all
model parameters live in the same parameter space, a
key difference from Hong et al. (2020) that allows us
to analyze the concentration of the mixture posterior.
In addition, we extend MixTS to RL in Section 5.

4 BAYES REGRET ANALYSIS

In this section, we prove a Bayes regret bound with
a mixture prior. In Section 4.1, we provide a general
analysis outline for MixTS. We specialize it to contex-
tual linear bandits in Section 4.2 and extend it to RL
in Section 5.

Bandit algorithms with latent variables are rare, and
often lack a regret bound. The key step in our analysis
is a novel construction of confidence intervals around
latent variables. This is challenging because the latent
variables are unobserved. Our analysis outline can be
applied to any model, simply by specifying the confi-
dence intervals. This shows the modularity and gener-
ality of our approach.

4.1 General Analysis Outline

Recall that S∗ and θ∗ are the true latent state and
model parameters, and let µ∗(a) = µθ∗(a). To simplify
the sketch, we assume that µ∗(a) ∈ [0, 1]; but Theo-
rem 1 does not assume this.

Let µ̄t(a, s) = Eθ∼Pt(·|s) [µθ(a)] be the posterior
mean reward of action a under latent state s, and
σt(a, s) be a high-probability confidence width for
the model parameter posteriors Pt(· | s), that is
Pt (|µ∗(a)− µ̄t(a, s)| ≥ σt(a, s)) ≤ 1/n. At a high
level, our Bayes regret bounds include two terms. The
first is due to concentration of the model parameter
posteriors, and is bounded by the sum of confidence
widths

∑n
t=1 σt(At, St). The second captures the iden-

tification of the latent state, and scales with
√
Ln.

Let At,∗ = maxa∈At µ∗(a) be the optimal action in
round t. From Russo and Van Roy (2013), we can write
the Bayes regret as

BR(n) = E

[
n∑
t=1

Et [µ∗(At,∗)− µ̄t(At,∗, S∗)]

]
+ (1)

E

[
n∑
t=1

Et [µ̄t(At, St)− µ∗(At)]

]
,

where we use that µ̄t is a deterministic function of
history Ht, and that At, St and At,∗, S∗ are i.i.d. given
Ht. To bound the Bayes regret, we can bound each
term individually as follows.

Step 1. Bound the first term of (1). For round t, let
event

Et = {∀a ∈ A : |µ∗(a)− µ̄t(a, S∗)| ≤ σt(a, S∗)}

denote that the true mean is close to the posterior
mean. Then

Et [µ∗(At,∗)− µ̄t(At,∗, S∗, )] (2)

≤ Et
[
(µ∗(At,∗)−µ̄t(At,∗, S∗))1

{
Ēt
}]

+Et [σt(At,∗, S∗)]

where (µ∗(At,∗) − µ̄t(At,∗, S∗))1{Et} ≤ σt(At,∗, S∗)
is by definition of Et. The first term of (2) can be
bounded using the fact that event Ēt is unlikely con-
ditioned on Ht. The second term can be rewritten as
Et [σt(At,∗, S∗)] = Et [σt(At, St)], using that At, St and
At,∗, S∗ are i.i.d. conditioned on Ht. Finally, we sum
over all rounds t ∈ [n].

Step 2. We want to bound the second term of (1). To
do so, we first need to define confidence sets over latent
states. Formally, for each round t, we construct Ct such
that S∗ ∈ Ct holds with a high probability. Since the
latent state is unobserved, we use a frequentist con-
struction with a proxy statistic for how well the model
parameter posterior of each latent state predicts the
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rewards. Let Nt(s) =
∑t−1
`=1 1{S` = s} be the number

of times s was sampled from posterior up to round t,
and

Gt(s) =

t−1∑
`=1

1{S` = s} (µ̄`(A`, s)− ησ`(A`, s)− Y`)

be the total reward “excess” with respect to the pos-
terior mean, where η ∈ R, η > 0 is a scaling factor. Let
Ct = {s ∈ S : Gt(s) ≤ ε} be the set of latent states
with at most ε excess. We want to prove that S∗ lies
in Ct in round t with a high probability,

P

(
n⋃
t=1

{S∗ 6∈ Ct}

)
≤

n∑
t=1

P (S∗ 6∈ Ct) = O(1) .

The key idea in the proof is that each µ̄t(A`, S∗) −
ησt(A`, S∗) − Y` < 0 holds with a high probability
conditioned on any history Ht, since we subtract the
reward from its lower confidence bound. Since µ∗(A`)
is unknown, we substitute it with reward Y`. We set
ε = O(

√
Nt(s) log n) in Ct to correct for reward noise.

Hong et al. (2020) consider a similar construction, but
used prior means and widths. We achieve better regret
bounds by using the posterior.

Step 3. Now, we are ready to bound the second term
of (1). Since regret at any round is trivially bounded
by 1, we have

E

[
n∑
t=1

µ̄t(At, St)− µ∗(At)

]
≤ E

[
n∑
t=1

1{St 6∈ Ct}

]
+

E

[
n∑
t=1

(µ̄t(At, St)− µ∗(At))1{St ∈ Ct}

]
.

Note that the first term can be bounded as

E

[
n∑
t=1

1{St 6∈ Ct}

]
=

n∑
t=1

E [Pt (St 6∈ Ct)]

=

n∑
t=1

E [Pt (S∗ 6∈ Ct)]

=

n∑
t=1

P (S∗ 6∈ Ct) = O(1) ,

where we use that St and S∗ are i.i.d. conditioned on
Ht for the first equality, and the bound derived in Step
2 for the second. Finally, we have

E

[
n∑
t=1

(µ̄t(At, St)− µ∗(At))1{St ∈ Ct}

]
(3)

≤ ηE

[
n∑
t=1

σt(At, St)

]
+

E

[
n∑
t=1

(µ̄t(At, St)− ησt(At, St)− Yt)1{St ∈ Ct}

]
,

where we use that Et [Yt | At, θ∗] = Et [µ∗(At)]. The
first term of (3) is a sum of confidence widths, which
decrease over time as the posterior concentrates. The
second term of (3) can be bounded by the sum
of the excesss

∑
s∈S Gn+1(s), which is bounded by

O(
√
Ln log n + L) after we trivially bound the regret

in the last round where each latent state is sampled.
This is because in the last round t where St = s, it
must be true that s ∈ Ct, and thus Gt(s) is bounded.

4.2 Linear Bandits

The above general analysis technique can be applied
in various settings. Here we specialize it to a linear
bandit with d dimensions. In each round t ∈ [n], a
learning agent has a potentially changing action set
At ⊆ Rd and takes action At ∈ At. The agent ob-
serves reward Yt = A>t θ∗ + ηt, where θ∗ ∈ Rd is the
unknown model parameter vector and ηt ∼ N (0, σ2)
is a Gaussian noise. We assume that ‖a‖2 ≤ κ for all
rounds t and a ∈ At.

The prior is a mixture with L components, indexed by
latent states s ∈ S. For each s, the model parameter
prior is a Gaussian P0(· | s) = N (·; θ0,s,Σ0,s), and we
assume that θ0,s is bounded as ‖θ0,s‖2 ≤ 1. This is
a weaker assumption than in prior works, which typ-
ically assume that ‖θ∗‖2 is bounded (Abbasi-yadkori
et al., 2011; Russo and Van Roy, 2013). In round t,
MixTS samples St ∼ Pt and then θt ∼ N (θ̄t,St

,Σt,St
).

Here θ̄t,s and Σt,s are the posterior mean model pa-
rameter and its covariance, respectively, under latent
state s and are defined as

Σt,s = (Σ−1
0,s + σ−2Vt)

−1 ,

θ̄t,s = Σt,s(Σ
−1
0,sθ0,s + σ−2Bt) , (4)

where Vt =
∑t−1
`=1A`A

>
` and Bt =

∑t−1
`=1A`Y`. The

posterior mean reward of action a and its confidence
width are given by

µ̄t(a, s) = a>θ̄s,t, σt(a, s) =
√

2d log(dn) ‖a‖Σt,s
.

We can bound the Bayes regret of MixTS in this set-
ting using the technique in Section 4.1. The proof is in
Appendix A and we state the bound below.

Theorem 1. Let λ0,max = maxs∈S λmax(Σ0,s), where
λmax(Σ0,s) is the maximum eigenvalue of Σ0,s for la-
tent state s. Let maxa∈At ‖a‖2 ≤ κ hold in all rounds
t ∈ [n]. Then the n-round Bayes regret of MixTS is
bounded as

BR(n)≤6σd
√
c1n log(dn) + 2σ

√
Ln log n+ c2 , (5)

where

c1 =

(
1 +

κ2λ0,max

σ2

)
log

(
1+

κ2λ0,max n

σ2d

)
,

and c2 is poly-logarithmic in n.
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4.3 Discussion

The bound has two main components: the regret for
learning model parameters (Term 1) under the as-
sumption that the latent state is known, and the re-
gret for identifying the latent state (Term 2). Term
1 is Õ(d

√
c1n) and is of the same order as in linear

TS (Russo and Van Roy, 2013). The key difference is
a prior-dependent constant c1. Through c1, Term 1 is
linear in the maximum component width of the mix-
ture prior

√
λ0,max. Term 2 is Õ(

√
Ln) and is of the

same order as identifying the true latent state among
L known models (Hong et al., 2020).

Our bound does not depend on the latent state prior
P0. This is a shortcoming of our analysis, which con-
structs worst-case confidence sets for latent states, and
is frequentist in this respect. We defer refinements of
the analysis to future work. Another shortcoming is
that we do not provide a matching lower bound. Al-
though a Bayes regret lower bound exists for K-armed
bandits (Lai, 1987), it is unclear how to apply it to
structured problems. Seminal works on Bayes regret
minimization (Russo and Van Roy, 2013, 2016) also
only derive upper bounds. We view deriving lower
bounds as another avenue for future work.

Our analysis improves upon that of Hong et al. (2020)
by analyzing concentration of the model parameter
posteriors. We attain Õ(d

√
c1n+

√
Ln) regret that is

fully sublinear in n. In contrast, Hong et al. (2020)
have a regret bound Õ(c′n+

√
Ln), where c′ is a con-

stant proportional to the maximum component width√
λ0,max. This is because their analysis is agnostic to

posterior improvements and treats prior uncertainty
as a penalty, resulting in a linear regret bound.

Another natural comparison is to TS without the mix-
ture prior. Since Bayes regret bounds are proved un-
der the assumption of a correct prior, there are no
other comparable Bayes regret bounds. However, we
can compare to frequentist worst-case regret bounds,
which hold even when the prior is misspecified. A
state-of-the-art regret bound for LinTS is Õ(d3/2

√
n)

(Abeille and Lazaric, 2017). In contrast, our bound is
Õ(d
√
c1n+

√
Ln), where c1 scales with the maximum

component width of the mixture prior
√
λ0,max and L

denotes the number of latent states. With a sufficiently
informative prior, c1 < d; and with a small number of
mixture components,

√
L < d3/2; our bound improves

over frequentist regret bounds for LinTS.

5 FINITE-HORIZON RL

Next we extend our results to reinforcement learn-
ing (RL) (Barto and Sutton, 2018) in finite-horizon
Markov decision processes (MDPs) (Bellman, 1957).

First, we formalize RL with a mixture prior. Then,
in Section 5.1, we extend the general analysis outline
from Section 4.1. Finally, in Section 5.2, we apply the
outline to derive a Bayes regret bound for MixTS in a
finite-horizon tabular MDP.

We have n episodes indexed by t ∈ [n]. In each episode,
a learning agent interacts with an MDP for h steps.
We refer to h as the horizon. We denote a finite-
horizon MDP by M = (X ,A, R, T, h, ρ), where X is
the state space, A is the action space, RM (x, a) ∈ [0, 1]
is the mean reward when selecting action a in state
x, TM (x, a, x′) = P (Xi+1 = x′ | Xi = x,Ai = a;M) is
the probability of transitioning to state x′ if action a
is taken at state x, h is the horizon, and ρ the initial
state distribution. We consider the special case of tab-
ular MDPs, where both X and A are finite sets. As
a shorthand, let TM (x, a) = (TM (x, a, x′))x′∈X be a
vector for all transitions.

A policy π = (πi)hi=1 is a vector, one per step, where
each πi : X → A maps states to actions. We de-
fine the value of policy π in MDP M as VM (π) =

E
[∑h

i=1RM (Xi, Ai) |M,π
]
, where X1 ∼ ρ, Ai =

πi(Xi), and Xi+1 ∼ Cat(· | TM (Xi, Ai)). The value
is the expected total reward of acting under π in M .

Let M∗ be the true MDP and π∗ be the optimal pol-
icy π∗ = arg maxπ VM∗(π) (Burnetas and Katehakis,
1997). We assume that M∗ is sampled hierarchically
from a mixture prior P0: first a latent state S∗ ∼ P0

is sampled, then the MDP M∗ ∼ P0(· | S∗). This gen-
eralizes prior work on TS in RL (Osband et al., 2013;
Agrawal and Jia, 2017), where the mixture prior is
not considered. Recently, Ayoub et al. (2020) stud-
ied MDPs whose mean rewards and transition prob-
abilities are linear mixtures, but assume the mean
rewards and probabilities per component are known.
As a shorthand, we subscript by ∗ to denote statis-
tics related to the true MDP M∗, such as V∗ = VM∗ ,
and equivalently for R∗ and T∗. The Bayes regret of
an algorithm over n episodes is given by BR(n) =
E [
∑n
t=1 V∗(π∗)− V∗(πt)], where πt is the policy cho-

sen by the algorithm in episode t, and the random-
ness is over MDP M∗, policies selected by the learning
agent, and observations. The history is given by Ht =
((X`,i, A`,i, R`,i))i∈[h], `∈[t−1], where X`,i, A`,i, R`,i are
the state, action and reward for step i of episode `.
The reward of an episode is Yt =

∑h
i=1Rt,i.

5.1 General Analysis Outline

In finite-horizon RL, MixTS operates as Algorithm 1,
but with MDP Mt instead of parameters θt and policy
πt instead of action At. That is, MixTS in episode t
first samples latent state St ∼ Pt, then the MDP con-
ditioned on the sampled latent state Mt ∼ Pt(· | St).
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Finally, the chosen policy in episode t maximizes the
value πt = arg maxπ VMt

(π). This algorithm is a gener-
alization of PSRL (Osband et al., 2013), where a mix-
ture prior is used. While bandit analyses can be often
adapted to RL, we make a notable deviation. Prior
works construct confidence intervals for each state of
an MDP (Osband et al., 2013; Lu and Van Roy, 2019).
This cannot be done with latent variables, which are
shared by all states. Therefore, we construct the inter-
vals over entire MDP trajectories.

For episode t, let V t(π, s) = EM∼Pt(·|s) [VM (π)] be the
expected value of policy π conditioned on s and Ht.
We have the following Bayes regret decomposition,

BR(n) = E

[
n∑
t=1

Et
[
V∗(π∗)− V t(π∗, S∗)

]]
+ (6)

E

[
n∑
t=1

Et
[
V t(πt, St)− V∗(πt)

]]
,

where we use that St, πt are distributed identically to
S∗, π∗ conditioned on Ht.

The proof sketch is similar to the one in Section 4.1,
but differs in two notable aspects. We list the main
differences and defer the full sketch to Appendix B.
First, the expected value of a policy under a latent
state V t(π, s) is used in place of the mean reward
µ̄t(a, s). Second, in order to construct a confidence in-
terval around V t(π, s), we use the sum of confidence
widths over steps of a trajectory. Specifically, for any
policy π, we have with high probability,

VMt(π)− V t(π, s) = EM∼Pt(·|s) [VMt(π)− VM (π)]

≤ Et

[
h

h∑
i=1

ct(Xt,i, At,i, s) + φt(Xt,i, At,i, s)

]
,

where we use the value difference lemma (Osband
et al., 2013). Here, we define a high-probability con-
fidence intervals around the mean reward and tran-
sition probabilities, ct(x, a, s) and φt(x, a, s), respec-
tively, for all state-action pairs x, a. For r̄t(x, a, s) =
EM∼Pt(·|s) [RM (x, a)] as the posterior mean reward, we
have Pt (|RM (x, a)− r̄t(x, a, s)| ≥ ct(x, a, s)) ≤ 1/n.
Similarly, for p̄t(x, a, x

′, s) = EM∼Pt(·|s) [TM (x, a, x′)]
as the posterior mean transition probability to
state x′, and p̄t(x, a, s) as a vector of such
probabilities over all states x′ ∈ X , we have
Pt (‖TM (x, a)− p̄t(x, a, s)‖1 ≥ φt(x, a, s)) ≤ 1/n. The
sum over ct(Xt,i, At,i, s) and φt(Xt,i, At,i, s) is used in
place of σt(At, St).

5.2 Finite-Horizon Tabular MDPs

We consider finite-horizon tabular MDPs M with
Bernoulli rewards. In particular, for step i of episode

t, reward Rt,i is sampled from a Bernoulli with mean
RM (Xt,i, At,i).

Recall that MDP M = (X ,A, R, T, h, ρ) has both
mean rewards and transition probabilities. Let RM =
(RM (x, a))x,a and TM = (TM (x, a))x,a be their re-
spective concatenations across all state-action pairs.
For true MDP M∗, which is unknown to the learn-
ing agent, let R∗, T∗ be these quantities. We con-
sider the following generative process in sampling M∗.
First a latent state S∗ ∼ P0 is sampled. Then, the
mean reward for state-action x, a follows a beta prior
R∗(x, a) ∼ Beta(αR0,S∗(x, a)) with αR0,s(x, a) ∈ R2

+ for
any latent state s, and the transition probabilities fol-
low a Dirichlet prior T∗(x, a) ∼ Dir(αT0,S∗(x, a)) with

αT0,s(x, a) ∈ R|X |+ . Here R+ denotes the space of posi-
tive reals. Finally, M∗ = (X ,A, R∗, T∗, h, ρ) uses these
sampled quantities.

Recall that in episode t ∈ [n], MixTS samples latent
state St ∼ Pt, then MDPMt ∼ Pt(· | St). SamplingMt

consists of independently sampling, for each x, a, mean
rewards RMt

(x, a) ∼ Beta(αRt,St
(x, a)) and transition

probabilities TMt(x, a) ∼ Dir(αTt,St
(x, a)). For latent

state s, we denote by αRt,s(x, a), αTt,s(x, a) the parame-
ters of the respective Dirichlet posteriors. Specifically,

r̄t(x, a, s) =
(αRt,s(x, a))1∥∥αRt,s(x, a)

∥∥
1

, (7)

ct(x, a, s) =

√
2 log(2|X ||A|n)∥∥αRt,s(x, a)

∥∥
1

+ 1
,

are the posterior mean and confidence width for the
mean reward under x, a. Similarly, we have

p̄t(x, a, x
′, s) =

(αTt,s(x, a))x′∥∥αTt,s(x, a)
∥∥

1

, (8)

φt(x, a, s) =

√
4|X | log(4|X ||A|n)∥∥αTt,s(x, a)

∥∥
1

+ 1
,

for the transition probabilities. We simply state the
Bayes regret bound and defer a full proof to Ap-
pendix B.

Theorem 2. Let

Λ0,s = min

{
min
x,a

∥∥αR0,s(x, a)
∥∥

1
,min
x,a

∥∥αT0,s(x, a)
∥∥

1

}
represent how concentrated the reward and transition
priors are for latent state s, where higher values corre-
spond to lower prior widths. Let Λ0,min = mins∈S Λ0,s.
Then the n-episode Bayes regret of MixTS is bounded

BR(n) ≤

6|X |h3/2
√
c1|A|n log(4|X ||A|n)+

√
Lhn log n+c2 .
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where

c1 = log

(
1 +

hn

2|X ||A|Λ0,min

)
,

and c2 is poly-logarithmic in n.

Similarly to Theorem 1, the above regret bound de-
composes into the regret due to learning the MDP
under the assumption that the latent state is known
(Term 1), and the regret due to identifying the correct
latent state (Term 2). Term 1 is Õ(|X |h3/2

√
c1|A|n)

and matches classical TS bounds (Osband et al., 2013).
The prior width is captured by Λ0,min in c1, which
represents the minimum pseudo-counts in our beta
and Dirichlet priors. Roughly speaking, the variance
of beta and Dirichlet distributions is bounded by the
reciprocal of these counts (Marchal and Arbel, 2017).
So, when Λ0,min is large, the beta and Dirichlet priors
over mean rewards and transitions have low widths.
Through c1, Term 1 goes to zero in this regime. Then
the regret is dominated by Term 2, which is Õ(

√
Lhn)

for identifying the correct latent state.

6 EXPERIMENTS

We evaluate MixTS in a synthetic and real-world prob-
lems. The goals of our experiments are the following:
(1) assess the degree to which the Bayes regret bounds
in Theorems 1 and 2 match the actual regret, (2) show
that MixTS outperforms TS with a less-informative
unimodal prior and other online model selection al-
gorithms in a challenging real-world problem, and (3)
show that MixTS still performs well when extended to
RL settings.

6.1 Synthetic Linear Bandit

We begin with a synthetic d-dimensional Gaussian lin-
ear bandit where d = 30. We consider up to L =
30 latent states. The latent state prior is uniform,
P0(s) = 1/L for each s. The model parameter prior
is an isotropic Gaussian P0(· | s) = N (·; θ0,s, σ

2
0Id).

The i-th entry of θ0,s is 0.9 when i = s, and 0.1
otherwise. The action set is constant over all rounds
At = A ⊆ Rd and consists of all d-dimensional indica-
tor vectors. The reward for action At is sampled from a
Gaussian Yt ∼ N (A>t θ∗, σ

2) with σ = 0.1. The horizon
is n = 1, 000 rounds. We run MixTS 200 times, with S∗
and θ∗ sampled from the prior at the beginning of each
run. We vary two quantities in Theorem 1, the prior
width σ0 = λ0,max and number of latent states L, and
assess their effect on regret.

For each σ0 and L, we use the mean regret over mul-
tiple runs, where in each run, model parameters are
drawn as θ∗ ∼ P0, to approximate the Bayes regret.

The regret is reported in Figure 1, together with the
upper bound in Theorem 1. The upper bound is mul-
tiplied by 1/30, which changes the scale but preserves
the shape. We observe that our bound correctly esti-
mates the shape of the empirical regret as a function
of σ0. In a similar experiment, where σ0 = 0.05 is fixed
and we vary the number of latent states L, we again
observe that our bound correctly estimates the shape
of the empirical regret as a function of L. We conclude
that Theorem 1 scales correctly with the parameters
of our problem class.

6.2 Image Classification

In our second experiment, we consider an image classi-
fication problem with a mixture of high-level tasks. We
use the CIFAR-100 dataset (Krizhevsky, 2009), which
consists of 60, 000 images of size 32 × 32. There are
50, 000 training and 10, 000 test images. Each image
belongs to one of L = 100 classes (image labels).

We treat each class as a task, so that images in class
s have high reward when the task is s. At the be-
ginning of each run, a class is sampled as S∗ ∼ P0,
where P0(s) = 1/L for all s. In round t, the action
set At consists of 10 randomly chosen images from
the CIFAR-100 test set, where one image is guaran-
teed to be from class S∗. The reward of an image from
class S∗ is Ber(0.9) and for all other classes is Ber(0.1).
The horizon is n = 500 rounds. For such short hori-
zons, the effect of the prior is more noticeable. We
cast this problem as a linear bandit with features from
a state-of-the-art EfficientNet-L2 network Xie et al.
(2020); Tan and Le (2019); Foret et al. (2021). This is
a convolutional neural network pretrained on both Im-
ageNet (Russakovsky et al., 2015) and unlabeled JFT-
300M (Sun et al., 2017) with input resolution 475, and
fine-tuned on the CIFAR-100 training set. Each ac-
tion a ∈ At is a 100-dimensional feature vector, the
embedding after applying the network.

The mixture prior is obtained by clustering similar
tasks from the CIFAR-100 training set. This is done as
follows. First, we sample 1000 random datasets of size
n = 500 from the training set. For each dataset, we
randomly choose the class S∗ ∼ P0, and assign reward
one to images from class S∗ and zero otherwise. Sec-
ond, we fit a linear model to each dataset, where the
image features are generated as above. Finally, we fit
a GMM with L components to the parameter vectors
of the trained linear models, generating cluster means
and covariances (θ0,s,Σ0,s)s∈S . The model parameter
prior for s is P0(· | s) = N (·; θ0,s,Σ0,s).

We compare MixTS to four baselines: TS, UniTS, Exp4
(Auer et al., 2002), and CorralExp4. TS is Thomp-
son sampling with an uninformative Gaussian prior
N (0, Id) over model parameters. UniTS is TS with a
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unimodal Gaussian prior fit to the same data as the
GMM. This baseline shows the importance of using
mixtures, as opposing to just using past data. Exp4

uses the prior means (θ0,s)s∈S as L experts, where the
action of expert s is arg maxa∈At

a>θ0,s. The actions
are a weighted vote of the experts, where better ex-
perts have higher weights. Finally, CorralExp4 uses
Exp4 to track experts, but additionally adapts the pa-
rameters of each expert so that in round t, the action
of expert s is arg maxa∈At a

>θ̄t,s, where θ̄t,s is defined
as in (4). CorralExp4 is an instance of a corralling
bandit algorithm (Maillard and Munos, 2011; Agarwal
et al., 2017; Arora et al., 2021), where a master (Exp4)
switches between base algorithms (linear regressors).
We measure the mean reward of each method, aver-
aged over 100 independent runs. Note that all TS algo-
rithms are misspecified in this experiment, because the
models are not linear and the reward noise is not Gaus-
sian. We use σ = 0.5 since the rewards are in [0, 1]. As
shown in Figure 1, MixTS greatly outperforms UniTS

and TS, especially during the cold-start regime, due to
using a strong mixture prior fitted to existing data.
MixTS also outperforms Exp4 and CorralExp4 by ex-
plicitly leveraging the latent state posterior to switch
between models. Although CorralExp4 uses the same
model updates, it switches between the models using
an adversarial algorithm.

6.3 Synthetic MDP

In our final experiment, we consider a synthetic finite-
horizon MDP based on the RiverSwim environment
(Osband et al., 2013). RiverSwim consists of |X | states
arranged in a chain. The agent starts at the state in
the middle and at every time step, can choose to swim
right or left, |A| = 2. The environment is parameter-
ized by a latent state that denotes the direction of the
current, which can be right or left, L = 2. At a high
level, swimming with the current is always successful,
but swimming against the current likely fails. If the
current is to the left, the agent receives a small reward
for swimming left at the leftmost state, but receives a
much larger reward for swimming right at the right-
most state; if the current is to the right, the opposite
holds. The optimal policy involves swimming against
the current to receive the large reward. The prior mean
MDP when the current is to the left is shown in Fig-
ure 2. The MDP when the current is to the right is
symmetric.

In our experiments, we consider |X | = 10 and horizon
h = 20. The latent state prior is uniform, P0(s) = 1/2
for s as left or right. The MDP prior, conditioned on
each latent state, consists of beta and Dirichlet pri-
ors for the mean reward and transition probabilities
for each state-action pair (x, a), such that the mean
MDP under the prior matches the values in Figure 2.

The number of episodes is n = 1, 000 episodes, and
we run MixTS 500 times on independent samples of
the MDP from the prior. In Figure 2, we compare
the mean regret over the 500 runs of MixTS against
PSRL (Osband et al., 2013), which is a TS algorithm
that uses a uniform prior over rewards and transitions.
MixTS greatly outperforms PSRL because it identifies
the correct latent state, or direction of the current,
much more quickly than PSRL learns the reward and
transitions from scratch.

7 RELATED WORK

Thompson sampling. Thompson sampling is known
for its computational efficiency and strong empirical
performance (Agrawal and Goyal, 2012; Chapelle and
Li, 2012; Agrawal and Goyal, 2013). Russo and Van
Roy (2013) derived first Bayes regret bounds for TS
in bandits and RL (Osband et al., 2013). We build
on these works by considering a mixture prior. By ex-
plicitly modeling a latent state, we can implement TS
efficiently, as well as derive improved prior-dependent
Bayes regret bounds. Alternatively, information theory
has been used to derive Bayes regret bounds (Russo
and Van Roy, 2016; Lu and Van Roy, 2019). These
proofs rely on the entropy of posterior distributions,
which do not have closed forms for mixtures. Recent
works applied approximate TS to complex structured
problems (Gopalan et al., 2014; Yu et al., 2020). Such
algorithms are general, but can only be analyzed in
limited settings with strong assumptions. We consider
a special prior structure, and derive improved regret
bounds for bandits and RL.

A related work on TS with mixture distributions is
Urteaga and Wiggins (2018). The setting of this work
is completely different because they study a mixture
reward distribution. In comparison, we study a mix-
ture of model parameters. To make this distinction
clear, consider a linear bandit. Urteaga and Wig-
gins (2018) would have non-Gaussian rewards sampled
from a Gaussian mixture model (GMM). We would
have Gaussian rewards with model parameters sam-
pled from a GMM. More recently, Urteaga and Wig-
gins (2021) proposed a non-parametric GMM over the
rewards in the bandit setting. This is another instance
of a mixture reward distribution.

Online model selection. Our work is also related
to online model selection, as each latent state corre-
sponds to a different hypothesis for the distribution
of the environment. Identifying the true latent state is
analogous to selecting the best-performing base model.
Exp4 (Auer et al., 2002) is one of the earliest algo-
rithms for solving this problem in adversarial environ-
ments. Bayesian policy-reuse (BPR) (Rosman et al.,
2016) could be used in stochastic environments but it
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Figure 1: Left : Bayes regret as function of prior width σ0. Middle: Bayes regret as function of the number of
latent states L. Right : Mean reward on a CIFAR-100 classification bandit.
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Figure 2: Left: RiverSwim with |X | = 5 and current to the left. Solid and dashed arrows represent transitions
under actions “left” and “right”, respectively. Numbers denote the mean reward and transition probabilities of
the mean MDP M̄ under the prior. Right: Mean regret on finite-horizon RiverSwim environment.

does not have theoretical guarantees. More recently,
in corralling bandits, a master algorithm learns the
best-performing base bandit algorithm. Maillard and
Munos (2011) proposed a modified version of Exp4 as
the master. Corralling algorithms have also been ex-
tended to the stochastic setting (Agarwal et al., 2017;
Arora et al., 2021; J. Foster et al., 2019). In all above
works, the base algorithm is updated only when se-
lected by the master. In our work, because of the full
Bayesian treatment, all mixture components are al-
ways updated, which increases statistical efficiency. As
shown in Section 6, MixTS outperforms multiple online
model selection baselines.

Latent bandits. Our setting is also an instance of
latent bandits, where bandit instances are parameter-
ized by a finite set of latent states, and each one cor-
responds to a different hypothesis over reward mod-
els (Maillard and Mannor, 2014; Zhou and Brunskill,
2016; Hong et al., 2020). In such structured environ-
ments, it is natural to consider a mixture prior that
is learned from existing data, each component of the
prior being a model distribution. However, most pre-
vious works only considered a single fixed model per
latent state (Maillard and Mannor, 2014). The closest
work is Hong et al. (2020), who proposed a TS algo-
rithm mmTS. In a bandit, MixTS is an instance of mmTS
where the conditional models are mixture components

and share the same parameter space. This distinction
is important, as we explicitly analyze the concentra-
tion of the mixture posterior to derive sublinear regret
bounds. The regret bounds of Hong et al. (2020) are
agnostic to posterior improvements and can be linear.
We also apply MixTS to reinforcement learning, which
in turn generalizes mmTS.

8 CONCLUSIONS

We propose Thompson sampling with a mixture prior
(MixTS) for online decision making. The mixture prior
is parameterized by a discrete latent state, and yields
a general and tractable algorithm that can be broadly
analyzed, in both bandit and RL settings. Our regret
bounds reflect the structure of the prior, the number
of mixture components and their widths. We evaluate
MixTS on both synthetic and an image classification
problems, and demonstrate that it performs well.

This work is a step towards analyzing TS in realistic
models with latent variables. Our regret bounds de-
pend on the number and width of the prior mixture
components, but not on the latent state prior, which
leaves room for improvement. We also only consider a
flat discrete latent state. More expressive latent struc-
tures are an interesting direction for future work.
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Cambridge University Press, 2019. doi: 10.1017/
9781108571401.

X. Lu and B. Van Roy. Information-theoretic con-
fidence bounds for reinforcement learning. In
NeurIPS, 2019.

J. Macqueen. Some methods for classification and
analysis of multivariate observations. In Berkeley
Symposium on Mathematical Statistics and Proba-
bility, 1967.

O.-A. Maillard and S. Mannor. Latent bandits. In
ICML, 2014.

O.-A. Maillard and R. Munos. Adaptive bandits: To-
wards the best history-dependent strategy. In AIS-
TATS, 2011.

O. Marchal and J. Arbel. On the sub-Gaussianity
of the Beta and Dirichlet distributions. CoRR,
abs/1705.00048, 2017.

I. Osband, B. Van Roy, and D. Russo. (More) efficient
reinforcement learning via posterior sampling. In
NeurIPS, 2013.

B. Rosman, M. Hawasly, and S. Ramamoorthy.
Bayesian policy reuse. Machine Learning, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vi-
sion (IJCV), 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

D. Russo and B. Van Roy. Learning to optimize via
posterior sampling. CoRR, abs/1301.2609, 2013.

D. Russo and B. Van Roy. An information-theoretic
analysis of thompson sampling. In Journal of Ma-
chine Learning Research, 2016.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Re-
visiting unreasonable effectiveness of data in deep
learning era. In 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pages 843–852,
2017. doi: 10.1109/ICCV.2017.97.

M. Tan and Q. Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In ICML,
pages 6105–6114, 2019.



Joey Hong, Branislav Kveton, Manzil Zaheer

I. Urteaga and C. H. Wiggins. Variational inference for
the multi-armed contextual bandit. In AISTATS,
2018.

I. Urteaga and C. H. Wiggins. Nonparametric Gaus-
sian mixture models for the multi-armed contextual
bandit. CoRR, abs/1808.02932, 2021.

J. Wang. Generating daily changes in market vari-
ables using a multivariate mixture of normal distri-
butions. In Proceedings of the 33rd Winter Confer-
ence on Simulation, 2001.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-
training with noisy student improves imagenet clas-
sification. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), June 2020.

T. Yu, B. Kveton, Z. Wen, R. Zhang, and O. J. Meng-
shoel. Graphical models meet bandits: A variational
Thompson sampling approach. In ICML, 2020.

L. Zhou and E. Brunskill. Latent contextual bandits
and their application to personalized recommenda-
tions for new users. In IJCAI, 2016.



Thompson Sampling with a Mixture Prior

A Linear Bandit Proofs

A.1 Useful Lemmas

Lemma 1. Let X ∈ Rd be a random vector sampled from the multivariate Gaussian X ∼ N (0,Σ). For any
ε ≥ 0, define event E = {‖X‖Σ−1 ≥ ε}. Then,

E [‖X‖Σ−1 1{E}] ≤
1√
2π
d3/2 exp

(
− ε

2

2d

)

Proof. Using that X ∼ N (0,Σ), we can conclude that Σ−1/2X ∼ N (0, Id) has independent Gaussian entries.
We have

E [‖X‖Σ−1 1{E}] = E
[∥∥∥Σ−1/2X

∥∥∥
2
1{E}

]
≤
√
dE
[∥∥∥Σ−1/2X

∥∥∥
∞
1{E}

]
≤
√
d

d∑
i=1

1√
2π

∫ ∞
u=ε/

√
d

u exp

(
−u

2

2

)
du

=
√
d

d∑
i=1

− 1√
2π

∫ ∞
u=ε/

√
d

(
exp

(
−u

2

2

))′
du

=
1√
2π
d3/2 exp

(
− ε

2

2d

)
,

where we use that
∥∥Σ−1/2X

∥∥
2
≥ ε implies

∥∥Σ−1/2X
∥∥
∞ ≥ ε/

√
d, and consider each entry of Σ−1/2X separately.

Lemma 2. For round t and latent state s, let θt,s,Σt,s be defined as in (4). If ‖At‖2 ≤ κ for all t, then for any
C > 0 such that λmax(Σ0,s) ≤ σ2C/κ2, then

n∑
t=1

‖At‖2Σt,s
≤ σ2(1 + C) log

det
(
Σ−1
n+1,s

)
det
(
Σ−1

0,s

) .

Proof. The proof is similar to that done for Lemma 11 of Abbasi-yadkori et al. (2011). Instead, we consider the
norm with respect to posterior covariance Σt,s rather than empirical covariance V −1

t .

We have,

det
(
Σ−1
n+1,s

)
= det

(
Σ−1
n,s + σ−2AnA

>
n

)
= det

(
Σ−1
n,s

) (
1 +

∥∥σ−2An
∥∥2

Σn,s

)
= det

(
Σ−1

0,s

) n∏
t=1

(
1 + σ−2 ‖At‖2Σt,s

)
,

where we use the matrix determinant lemma, which says det
(
A+ uu>

)
= det (A)

(
1 + ‖u‖2A−1

)
for matrix A

and vector u. Note that

‖At‖2Σt,s
≤ λmax(Σt,s) ‖At‖22 ≤ κ

2λmax(Σ0,s) ,

so if λmax(Σ0,s) ≤ σ2C/κ2, then σ−2 ‖At‖2Σt,s
≤ C. Using that x ≤ (1 + C) log(1 + x) for x ∈ [0, C], we get,

n∑
t=1

σ−2 ‖At,s‖2Σt,s
≤ (1 + C)

n∑
t=1

log
(

1 + σ−2 ‖At,s‖2Σt,s

)
≤ (1 + C) log

det
(
Σ−1
n+1,s

)
det
(
Σ−1

0,s

) .
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This yields

n∑
t=1

‖At‖2Σt,s
≤ σ2(1 + C) log

det
(
Σ−1
n+1,s

)
det
(
Σ−1

0,s

) ,

as desired.

A.2 Proof of Theorem 1

In the outline, we were able to trivially bound the regret of each round by 1; this is no longer the case since θ∗
is a sample from a Gaussian. To handle this, we introduce event

E0 =
{
‖θ∗ − θ0,S∗‖Σ−1

0,S∗
≤
√

2d log(dn)
}
,

which occurs when θ∗ is not far from its prior mean. We can bound the regret by,

E

[
n∑
t=1

A>t,∗θ∗ −A>t θ∗

]
≤ E

[
n∑
t=1

(A>t,∗θ∗ −A>t θ∗)1{E0}

]
+ E

[
n∑
t=1

(A>t,∗θ∗ −A>t θ∗)1
{
Ē0

}]
.

When Ē0 occurs, the regret for a round can be arbitrarily large; to handle this, we factor in that Ē0 is unlikely.
Fix round t. We bound the regret in round t as

Et
[
(A>t,∗θ∗ −A>t θ∗)1

{
Ē0

}]
≤ Et

[
A>t,∗(θ∗ − θ0,S∗)1

{
Ē0

}]
+ Et

[
A>t,∗θ0,S∗1

{
Ē0

}]
≤ Et

[
‖At,∗‖Σ0,S∗

‖θ∗ − θ0,S∗‖Σ−1
0,S∗

1
{
Ē0

}]
+ Et

[
‖At,∗‖2 ‖θ0,S∗‖2 1

{
Ē0

}]
≤
√
κ2λ0,max E

[
‖θ∗ − θ0,S∗‖Σ−1

0,S∗
1
{
Ē0

}]
+ κP

(
Ē0

)
,

where we use the Cauchy-Schwartz inequality, and ‖a‖Σ0,s
≤
√
λmax(Σ0,s) ‖a‖2 ≤

√
κ2λ0,max for any action a

and latent state s. Since θ∗ − θ0,S∗ ∼ N (0,Σ0,S∗), we have P
(
Ē0

)
≤ n−1 and

E
[
‖θ∗ − θ0,S∗‖Σ−1

0,S∗
1
{
Ē0

}]
≤
√

d

2π
n−1 ,

where we apply Lemma 1 with ε =
√

2d log(dn). Hence, we can bound the Bayes regret as

E

[
n∑
t=1

A>t,∗θ∗ −A>t θ∗

]
≤ E

[
n∑
t=1

(A>t,∗θ∗ −A>t θ∗)1{E0}

]
+

√
κ2λ0,maxd

2π
+ κ .

When E0 occurs, we have M =
√

2κ2λ0,maxd log(dn) + κ is an upper-bound on regret for a round. We use
〈·〉M = min{·,M}.

From here, we can follow the analysis outline in Section 4.1 using µ̄t, σt defined as

µ̄t(a, s) = a>θ̄s,t, σt(a, s) = ‖a‖Σt,s

√
2d log(dn) .

Using Equation (1), we can decompose the Bayes regret in a linear bandit as

E

[
n∑
t=1

(A>t,∗θ∗ −A>t θ∗)1{E0}

]

≤ E

[
n∑
t=1

Et
[
(A>t,∗θ∗ −A>t,∗θ̄t,S∗)1{E0}

]]
+ E

[
n∑
t=1

Et
[
(A>t θ̄t,St

−A>t θ∗)1{E0}
]]

. (9)

We bound each term individually.
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Step 1. Let us first consider the first term of (9). Fix round t. Let us define event

Et =
{∥∥θ∗ − θ̄t,S∗∥∥Σ−1

t,S∗
≤
√

2d log(dn)
}
,

which occurs when θ∗ is not far from the mean of conditional posterior Pt(· | S∗) = N (θ̄t,S∗ ,Σt,S∗). Note that
E1 = E0 from earlier. We can bound

Et
[
A>t,∗θ∗ −A>t,∗θ̄t,S∗

]
= Et

[(
A>t,∗θ∗ −A>t,∗θ̄t,S∗

)
1{Et}

]
+ Et

[(
A>t,∗θ∗ −A>t,∗θ̄t,S∗)

)
1
{
Ēt
}]

≤ Et
[
‖At,∗‖Σt,S∗

√
2d log(dn)

]
+ Et

[(
A>t,∗θ∗ −A>t,∗θ̄t,S∗

)
1
{
Ēt
}]

,

where we use that when Et occurs, we have

(A>t,∗θ∗ −A>t,∗θ̄t,S∗)1{Et} ≤ ‖At,∗‖Σt,S∗

∥∥θ∗ − θ̄t,s∥∥Σ−1
t,S∗

1{Et} ≤ ‖At,∗‖Σt,S∗

√
2d log(dn) .

Now, when Ēt occurs, we have

Et
[(
A>t,∗θ∗ −A>t,∗θ̄t,S∗

)
1
{
Ēt
}]
≤ κ

√
λ0,max Et

[∥∥θ∗ − θ̄t,S∗∥∥Σ−1
t,S∗

1
{
Ēt
}]

,

where we again use Cauchy-Schwartz and ‖a‖Σt,s
≤
√
κ2λ0,max for any action a and latent state s.

Using that that θ∗ − θ̄t,s | Ht ∼ N (0,Σt,s), we can use Lemma 1 with ε =
√

2d log(dn) to bound

Et
[∥∥θ∗ − θ̄t,S∗∥∥Σ−1

t,S∗
1
{
Ēt
}]
≤
√

d

2π
n−1 .

Hence, we can bound the first term of (9) by

E

[
n∑
t=1

Et
[
A>t,∗θ∗ −A>t,∗θ̄t,S∗

]]
≤
√

2d log(dn)E

[
n∑
t=1

‖At,∗‖Σt,S∗

]
+

√
κ2λ0,maxd

2π
.

Step 2. We define Ct as a high-probability set around latent states using the following construction:

Ct =
{
s ∈ S : Gt(s) ≤ 2σ

√
Nt(s) log n

}
,

where Nt(s) =
∑t−1
`=1 1{St = s} and

Gt(s) =

t−1∑
`=1

1{St = s}
(
A>t θ̄t,s − ‖At‖Σt,s

√
2d log n− Yt

)
is the “over-estimation” of the predicted rewards under a latent state and the realized reward. We show that
S∗ ∈ Ct holds with high probability for any round via the following lemma.

Lemma 3. For any round t, P (S∗ 6∈ Ct) ≤ 2Ln−1.

Proof. We know that S∗ ∈ Ct occurs if Gt(S∗) is not too large. On a high-level, our goal is to upper-bound
Gt(S∗) by a martingale with respect to history, then bound the probability that Gt(S∗) is too large using
Azuma’s inequality for concentration of martingales.

For ` < t, we know that θ∗ − θ̄`,s | H` ∼ N (0,Σ`,s). Let us define

E` =
{∥∥θ∗ − θ̄`,S∗∥∥Σ−1

`,S∗
≤ 2
√
d log n,

}
as the event that θ∗ is not too far from its posterior mean. Let E = ∩t−1

`=1{E`} be the event that this holds for all
rounds up to round t and Ē be the complement. We know that

1{S∗ 6∈ Ct} = 1
{
Gt(S∗) ≥ 2σ

√
Nt(S∗) log n

}
≤ 1

{
Ē
}

+ 1{E}1
{
Gt(S∗) ≥ 2σ

√
Nt(S∗) log n

}
,
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which implies that

P (S∗ 6∈ Ct) ≤ P
(
Ē
)

+ P
(
Gt(S∗)1{E} ≥ 2σ

√
Nt(S∗) log n

)
. (10)

We will bound each probability individually. For the first probability of (10), we simply have

P
(
Ē
)
≤
∑
s∈S

t−1∑
`=1

E
[
P`
(∥∥θ∗ − θ̄`,s∥∥Σ−1

`,s

≥ 2
√
d log n

)]
≤ Ln−1 ,

where we use that for S∗ = s and round `, we have
∥∥θ∗ − θ̄`,s∥∥Σ−1

`,s

| H` is the sum of independent Gaussians.

Then, we take an expectation over histories, and use a union bound over latent states and rounds.

Now, consider the second probability in (10). Fix S∗ = s, and let Tt,s = {` < t : S` = s} be the rounds where s is
sampled up to round t. Also, let Z` = A>` θ∗ − Y`. Observe that Z` ∼ N (0, σ2), so that (Z`)t∈Tt,s is a martingale
difference sequence with respect to histories (H`)t∈Tt,s . We have

(A>` θ̄t,` − ‖A`‖Σt,`

√
2d log n− Y`)1{E`}

= (A>` θ∗ +A>` (θ̄t,` − θ∗)− ‖A`‖Σt,`

√
2d log n− Y`)1{E`}

≤ (A>` θ∗ + ‖A`‖Σt,`

∥∥θ̄t,` − θ∗∥∥Σ−1
t,`

− 2 ‖A`‖Σt,`

√
d log n− Y`)1{E`} ≤ Z` ,

where we use Cauchy-Schwartz in the inequality. This implies that

Gt(s)1{E} =
∑
`∈Tt,s

(A>` θ̄t,` − 2 ‖A`‖Σt,`

√
d log n− Y`)1{E`} ≤

∑
`∈Tt,s

Z` .

For any round t, and latent state s, we have that Tt,s is a random quantity. First, we fix |Tt,s| = Nt(s) = u where
u < t and yield the following due to Azuma’s inequality,

P
(
Gt(s)1{E} ≥ 2σ

√
u log n

)
≤ P

 ∑
`∈Tt,s

Z`(s) ≥ 2σ
√
u log n

 ≤ exp [−2 log n] = n−2 .

Finally, by the union bound, we have

P
(
Gt(S∗)1{E} ≥ 2σ

√
Nt(S∗) log n

)
≤
∑
s∈S

t−1∑
u=1

P
(
Gt(s)1{E} ≥ 2σ

√
u log n

)
≤ Ln−1 .

Combining the two bounds completes the proof.

Step 3. Now, we consider the second term of (9). We have,

E

[
n∑
t=1

〈A>t θ̄t,St
−A>t θ∗〉M

]
≤M

n∑
t=1

P (St 6∈ Ct) + E

[
n∑
t=1

〈A>t θ̄t,St
−A>t θ∗〉M1{St ∈ Ct}

]

≤M
n∑
t=1

P (S∗ 6∈ Ct) + E

[
n∑
t=1

〈A>t θ̄t,St −A>t θ∗〉M1{St ∈ Ct}

]

where we use that conditioned on Ht, St, S∗ are i.i.d. to get P (St ∈ Ct) = E [Pt (St ∈ Ct)] = E [Pt (S∗ ∈ Ct)] =
P (S∗ ∈ Ct) From Lemma 3, the first term is 2LM . From the outline in Section 4.1, we have

E

[
n∑
t=1

〈A>t θ̄t,St
−A>t θ∗〉M1{St ∈ Ct}

]

≤ 2
√
d log(dn)E

[
n∑
t=1

‖At‖Σt,St

]
+ E

[
n∑
t=1

〈A>t θ̄t,St − 2 ‖At‖Σt,St

√
d log(dn)− Yt〉M1{St ∈ Ct}

]
.



Thompson Sampling with a Mixture Prior

The last term can be bounded as

n∑
t=1

〈A>t θ̄t,St − 2 ‖At‖Σt,St

√
d log(dn)− Yt〉M1{St ∈ Ct} ≤

∑
s∈S

Gn(s) + LM ≤ 2σ
√
Ln log n+ LM ,

where for latent state s, and t′ = maxt∈[n]{St = s} as the last round that a latent state s is acted upon, we use
that there is an upper-bound on Gt′(s) ≤ Gn(s) by definition of s ∈ Ct. We trivially bound the regret by M for
the last round s is acted upon.

Hence, we can bound the second term of (9) by

E

[
n∑
t=1

Et
[
(A>t θ̄t,St

−A>t θ∗)1{E0}
]]
≤ 2
√
d log nE

[
n∑
t=1

‖At‖Σt,St

]
+ 2σ

√
Ln log n+ 3LM .

What remains is bounding the sum of confidence widths. We have

n∑
t=1

‖At‖Σt,St
≤

n∑
t=1

max
s∈S
‖At‖Σt,s

≤ max
s∈S

√√√√n
n∑
t=1

‖At‖2Σt,s

≤ max
s∈S

√√√√σ2

(
1 +

κ2λ0,max

σ2

)
n log

(
det
(
Σ−1
n+1,s

)
det
(
Σ−1

0,s

) )

≤

√
σ2

(
1 +

κ2λ0,max

σ2

)
nd log

(
1 + n

κ2λ0,max

σ2d

)
,

where we first use that ‖At‖Σt,s
for latent states s differ among one another only through their prior, and then

use Lemma 2 to bound the sum of norms. We use the determinant-trace inequality to bound,

log

(
det
(
Σ−1
n+1,s

)
det
(
Σ−1

0,s

) ) ≤ d log

(
trace

(
Σ−1

0,s

)
+ nσ−2κ2

trace
(
Σ−1

0,s

) )
≤ d log

(
1 + n

κ2λ0,max

σ2d

)
,

where we use that

trace
(
Σ−1

0,s

)
≥ λmin(Σ−1

0,s)d = λ−1
max(Σ0,s)d ≥ λ−1

0,maxd .

Combining the bounds across all steps yields

BR(n) ≤ 4d

√
σ2

(
1 +

κ2λ0,max

σ2

)
n log(dn) log

(
1 + n

κ2λ0,max

σ2d

)
+ 2
√
σ2Ln log n

+ 3L
√

2κ2λ0,maxd log(dn) + 2

√
κ2λ0,maxd

2π
+ 4Lκ .
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B Tabular MDP Proofs

B.1 Useful Lemmas

Lemma 4 (Theorem 1 and 3 of Marchal and Arbel (2017)). Let X ∼ Beta(α, β) for α, β > 0. Then X − E [X]
is σ2-sub-Gaussian with σ2 = 1/(4(α + β + 1)). Similarly, let X ∼ Dir(α) for α ∈ Rd+. Then X − E [X] is
σ2-sub-Gaussian with σ2 = 1/(4(‖α‖1 + 1)).

Lemma 5 (Value difference lemma). For any MDPs M ′, M , and policy π,

VM ′(π)− VM (π) ≤ E

[
h∑
i=1

RM ′(Xi, Ai)−RM (Xi, Ai)h ‖TM ′(Xi, Ai)− TM (Xi, Ai)‖1

]
.

Lemma 6. For episode t and state s, let βt(s, x, a) = ct(s, x, a) + φt(s, x, a) for any (x, a) as in (7), (8),
respectively. Let Λ0,s = min{minx,a

∥∥αR0,s(x, a)
∥∥

1
,minx,a

∥∥αT0,s(x, a)
∥∥

1
} represent at least how concentrated the

reward and transition priors are for latent state s, where higher values correspond to lower prior widths. Then
we have that

h

n∑
t=1

h∑
i=1

βt(Xt,i, At,i, s) ≤ 4|X |h

√
|A|nh log(4|X ||A|n) log

(
1 +

nh

2|X ||A|Λ0,s

)
+ |X ||A|h2 .

Proof. The proof is similar to that done in Osband et al. (2013). However, we use prior-dependent definitions

for the confidence width βt. First, we define Nt(x, a) =
∑t−1
`=1

∑h
i=1 1{X`,i = x,A`,i = a} as the number of times

x, a were sampled up to episode t. We can decompose the sum as

n∑
t=1

h∑
i=1

βt(Xt,i, At,i, s) ≤
n∑
t=1

h∑
i=1

1{Nt(Xt,i, At,i) ≤ h}+

n∑
t=1

h∑
i=1

1{Nt(Xt,i, At,i) > h}βt(Xt,i, At,i, s) ,

where we trivially bound the regret in a step of an episode by 1. Therefore, the first term is bounded as |X ||A|h.

For the second term, let us additionally define Nt,i(x, a) = Nt(x, a) +
∑i−1
k=1 1{Xt,k = x,At,k = a} as the number

of times x, a were sampled up to step i of episode t. Now, if Nt(x, a) > h, then we know that Nt,i(x, a) ≤
Nt(x, a) + h ≤ 2Nt(x, a). We consider ct, φt of βt individually. We have

n∑
t=1

h∑
i=1

1{Nt(Xt,i, At,i) > h} ct(Xt,i, At,i, s)

=

n∑
t=1

h∑
i=1

1{Nt(Xt,i, At,i) > h}
√

2 log(2|X ||A|n)∥∥αRt,s(x, a)
∥∥

1
+ 1

=
∑
x,a

n∑
t=1

h∑
i=1

1{Nt(x, a) > h}
√

2 log(2|X ||A|n)∥∥αR0,s(x, a)
∥∥

1
+Nt(x, a) + 1

≤
∑
x,a

n∑
t=1

h∑
i=1

√
4 log(2|X ||A|n)

2
∥∥αR0,s(x, a)

∥∥
1

+Nt,i(x, a)

≤ 2
√

log(2|X ||A|n)
∑
x,a

√√√√Nn+1(x, a)

Nn+1(x,a)∑
u=1

1

2
∥∥αR0,s(x, a)

∥∥
1

+ u

≤ 2
√
|X ||A|nh log(2|X ||A|n)

√√√√nh/|X ||A|∑
u=1

1

2Λ0,s + u

≤ 2

√
|X ||A|nh log(2|X ||A|n) log

(
1 +

nh

2|X ||A|Λ0,s

)
,
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where for the last inequality, we use that for any x > 0,

nh/|X ||A|∑
u=1

1

x+ u
≤
∫ x+nh/|X ||A|

u=x

u−1du ≤ log

(
1 +

nh

|X ||A|x

)
.

Similarly, we have

n∑
t=1

h∑
i=1

1{Nt(Xt,i, At,i) > h}φt(s,Xt,i, At,i)

≤ 2|X |h

√
2|A|nh log(4|X ||A|n) log

(
1 +

nh

2|X ||A|Λ0,s

)
.

Combining the two bounds yields

h

n∑
t=1

h∑
i=1

βt(s,Xt,i, At,i) ≤ 4|X |h

√
2|A|nh log(4|X ||A|n) log

(
1 +

nh

2|X ||A|Λ0,s

)
+ |X ||A|h2 .

B.2 General Analysis Outline

Step 1. Bound the Bayes regret due to the first term of (6). For episode t, we introduce event

Et = {∀(x, a) : |RMt(x, a)− r̄t(x, a, St)| ≤ ct(x, a, St) , ‖TMt(x, a)− p̄t(x, a, St)‖1 ≤ φt(x, a, St)}

to denote when the sampled mean rewards and transitions are not far from their posterior means for all state-
action pairs. Using Lemma 5, we know that

Et
[
V∗(π∗)− V t(π∗, S∗)

]
= Et

[
EM∼Pt(·|S∗) [V∗(π∗)− VM (π∗)]

]
≤ Et

[
h∑
i=1

(R∗(Xt,i, At,i)− rt(Xt,i, At,i, S∗)) + h ‖T∗(Xt,i, At,i)− p̄t(Xt,i, At,i, S∗)‖1

]

≤ Et

[
h

h∑
i=1

(R∗(Xt,i, At,i)− rt(Xt,i, At,i, S∗) + ‖T∗(Xt,i, At,i)− p̄t(Xt,i, At,i, S∗)‖1)1
{
Ēt
}]

+ Et

[
h

h∑
i=1

βt(Xt,i, At,i, St)

]
,

where βt(x, a, s) = ct(x, a, s) + φt(x, a, s). Here, we take an expectation over MDPs to apply Lemma 5, then
condition on Et occurring. The second term can be bounded as a sum of confidence widths, and the remaining
term can be bounded by using that conditioned on Ht, Ēt is unlikely.

Step 2. For each episode t, construct Ct such that S∗ ∈ Ct with high probability. To do so, we define Nt(s) =∑k−1
`=1 1{S` = s} as the number of times s was acted upon and

Gt(s) =

t−1∑
`=1

1{S` = s}

(
V t(πt, s)− ηh

h∑
i=1

β`(X`,i, A`,i, s)−
h∑
i=1

R`,i

)
as the total over-estimation of observed returns by assuming that s is the true latent state, where η ∈ R is a
scaling factor. Here, we use the shorthand βt(x, a, s) = ct(x, a, s) + φt(x, a, s). Then we define Ct as containing
all latent states s where Gt(s) = O(

√
Nt(s)h log n). Note that we scale by an additional O(

√
h) over the outline

for bandits in Section 4.1 to account for taking the summation over a trajectory. We show that for any episode
t, P (S∗ 6∈ Ct) = O(1/n). This means that with high probability, the true latent state lies in Ct.
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Step 4. We can decompose the second term of (6) as

E

[
n∑
t=1

V t(πt, St)− V∗(πt)

]
≤ E

[
n∑
t=1

Et
[
(V t(πt, St)− V∗(πt))1{St ∈ Ct}

]]
+ h

n∑
t=1

P (St 6∈ Ct)

≤ E

[
n∑
t=1

Et
[
(V t(πt, St)− V∗(πt))1{St ∈ Ct}

]]
+ h

n∑
t=1

P (S∗ 6∈ Ct) ,

where we use that conditioned on Ht, latent states S∗, St are identically distributed. From Step 1 and 2, we know
that the second term is bounded as 2Lh. Finally, the remaining term can be bounded as

E

[
n∑
t=1

(V t(πt, St)− V∗(πt))1{St ∈ Ct}

]

= ηhE

[
n∑
t=1

h∑
i=1

βt(Xt,i, At,i, St)

]
+ E

[
n∑
t=1

(
V t(πt, St)− ηh

h∑
i=1

βt(Xt,i, At,i, St)−
h∑
i=1

Rt,i

)
1{St ∈ Ct}

]
,

where we use that Et
[∑h

i=1Rt,i | πt,M∗
]

= Et [V∗(πt)]. The second can be bounded as the sum of confidence

widths, which concentrate over time. The remaining term can be bounded by the sum of gaps
∑
s∈S Gn+1(s),

which we know is bounded by O(
√
Lnh log n+ Lh) after trivially bounding the regret the last time each latent

state is acted upon by h.

B.3 Proof of Theorem 2

Recall from the proof sketch in Section 5.1 that V t(s, π) = EM∼p̄t(·|s) [VM (π)] is the expected value of a policy
under state s, marginalized over MDPs sampled from its conditional posterior for episode t. We want to bound
each term of the regret decomposition in (6) separately.

Step 1. For episode t, let

Et = {∀(x, a) : |RMt
(x, a)− r̄t(x, a, St)| ≤ ct(x, a, St) , ‖TMt

(x, a)− p̄t(x, a, St)‖1 ≤ φt(x, a, St)}

denote the event that the sampled mean rewards and transitions are not far from their posterior means for all
state-action pairs. From the sketch in Appendix B.2, we rewrite the first term of (6) as

Et
[
VMt

(πt)− V t(πt, St)
]

≤ h
h∑
i=1

Et
[
(RMt(Xt,i, At,i)− r̄t(Xt,i, At,i, St) + ‖TMt(Xt,i, At,i)− p̄t(Xt,i, At,i, St)‖1)1

{
Ēt
}]

+ h

h∑
i=1

Et [βt(Xt,i, At,i, St)] .

For each episode t, we can use that RMt
(x, a) | Ht ∼ Beta(αRt,St

(x, a)) to yield

Et
[
(RMt

(Xt,i, At,i)− r̄t(Xt,i, At,i, St))1
{
Ēt
}]
≤
∑
x,a

∫ ∞
r=ct(St,x,a)

rPt (RMt
(x, a)− r̄t(x, a, St) = r) dr

≤
∑
x,a

Pt (RMt
(x, a)− r̄t(x, a, St) ≥ ct(x, a, St))

≤
∑
x,a

exp

− ct(x, a, St)
2

2/
(

4
(∥∥∥αRt,St

(x, a)
∥∥∥

1
+ 1
))


≤ 1/(2n) ,
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where the second inequality uses that RMt(x, a) ≤ 1 and the third uses the sub-Gaussian parameter given in
Lemma 4. Similarly, since TMt

(x, a) | Ht ∼ Dir(αTk,St
(x, a)), we have

Et
[
‖TMt(Xt,i, At,i)− p̄t(Xt,i, At,i, St)‖1 1

{
Ēt
}]

≤ |X |Et
[
max
x
|TMt(Xt,i, At,i, x)− p̄t(Xt,i, At,i, x, St)|1

{
Ēt
}]

.

Now, using Lemma 4 for Dirichlet distributions, we have

Et
[
max
x
|TMt(Xt,i, At,i, x)− p̄t(Xt,i, At,i, x, St)|1

{
Ēt
}]

≤
∑

(x,a,x′)

∫ ∞
p=φt(x,a,St)/

√
|X |

pPt (|TMt
(x, a, x′)− p̄t(x, a, x′, St)| = p) dp

≤
∑

(x,a,x′)

2Pt
(
|TMt(x, a, x

′)− p̄t(x, a, x′, St)| ≥ φt(x, a, St)/
√
|X |
)

≤
∑

(x,a,x′)

2 exp

− φt(x, a, St)
2

2|X |/
(

4
(∥∥∥αTk,St

(x, a)
∥∥∥

1
+ 1
))


≤ 1/(2n) ,

So, we can bound the first term of (6) by

E

[
n∑
t=1

Et
[
VMt

(πt)− V t(St, πt)
]]
≤ |X |h2 + h

n∑
t=1

h∑
i=1

Et [βt(Xt,i, At,i, St)] .

Step 2. For each episode t, we define Ct as follows:

Ct =
{
s ∈ S : Gt(s) ≤

√
hNt(s) log n

}
,

where Nt(s) =
∑t−1
`=1 1{S` = s} is the number of times s was sampled from the posterior and Gt(s) is defined as

Gt(s) =

k−1∑
`=1

1{S` = s}

(
V t(πt, s)− h

√
2

h∑
t=1

βt(X`,t, A`,t, s)−
h−1∑
t=0

R`,t

)
.

We show that S∗ ∈ Ct holds with high probability for any episode via the following lemma.

Lemma 7. For any episode t, P (S∗ 6∈ Ct) ≤ 2Lhn−1.

Proof. Fix S∗ = s. We know that s ∈ Ct occurs as long as Gt(s) is not too large. Let us define Tt,s = {` < t :
S` = s} as the episodes where s is sampled until episode t. We want to upper-bound Gt(s) by a martingale with
respect to history, then bound the probability that Gt(s) is too large using Azuma’s inequality for concentration
of martingales.

Let us define

Et,i =
{
|r̄t(Xt,i, At,i, St)−RMt(Xt,i, At,i)| ≤

√
2ct(Xt,i, At,i, St) ,

‖p̄t(Xt,i, At,i, St)− TMt
(Xt,i, At,i)‖1 ≤

√
2φt(Xt,i, At,i, St)

}
as the event that the mean reward and transition probabilities for episode t of episode k are not far from their
posterior means. Let E = ∩nt=1 ∩hi=1 Et,i be the event that this holds for all episodes and steps and Ē be the
complement. We know that

P
(
Ē
)
≤

n∑
t=1

h∑
i=1

∑
s∈S

∑
x,a

E [Pt (Et,i)] ≤
n∑
t=1

h∑
i=1

∑
s∈S

∑
x,a

(|X ||A|n)
−2 ≤ Lhn−1 ,
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where we use that we have RMt(x, a) and TMt(x, a) follow a Beta and Dirichlet distribution, respectively, which
are sub-Gaussian from Lemma 4.

For episode ` ∈ Tt,s, let Z` = V∗(π`) −
∑h
i=1R`,t. Observe that E` [Z`] = 0, so that (Z`)`∈Tt,s is a martingale

difference sequence with respect to histories (H`)`∈Tt,s . Also note that since Z` the sum of h Bernoulli random
variables and is therefore σ2-sub-Gaussian with σ2 = h/4. We know that conditioned on H`,

V `(π`, s)− h
√

2

h∑
t=1

β`(X`,t, A`,t, s)1{E`,t} −
h−1∑
t=0

R`,t ≤ V∗(π`)−
h−1∑
t=0

R`,t = Z`

where we use Lemma 5 to bound V∗(π`)− V `(π`, s). This implies that conditioned on (H`)`∈Tt,s , we have

Gt(s)1{E} =
∑
`∈Tt,s

(
V `(s, π`)− h

√
2

h∑
t=1

β`(s,X`,t, A`,t)1{E`,t} −
h−1∑
t=0

R`,t

)
≤
∑
`∈Tt,s

Z` .

For any episode t, we have that Tt,s is a random quantity. First, we fix |Tt,s| = Nt(s) = u where u < t and yield
the following due to Azuma’s inequality,

Pt
(
Gt(s)1{E} ≥

√
4(h/4)u log n

)
≤ P

 ∑
`∈Tt,s

Z` ≥
√

4(h/4)u log n

 ≤ exp [−2 log n] = n−2 .

Finally, by the union bound, we have

P (S∗ 6∈ Ct) ≤
∑
s∈S

t−1∑
u=1

P
(
Gt(s) ≥

√
hu log n

)
≤ P

(
Ē
)

+
∑
s∈S

t−1∑
u=1

P
(
Gt(s)1{E} ≥

√
hu log n

)
≤ 2Lhn−1 .

This completes the proof.

Step 4. Following the sketch of Appendix B.2, we can rewrite the second term of (6) as

E

[
n∑
t=1

Et
[
V t(St, πt)− VM∗(πt)

]]
≤ E

[
n∑
t=1

(V t(St, πt)− VM∗(πt))1{St ∈ Ct}

]
+ h

n∑
t=1

P (S∗ 6∈ Ct) .

From Step 1 and 2, the second term is bounded as 2Lh. Finally, the remaining term can be bounded as

E

[
n∑
t=1

(V t(St, πt)− VM∗(πt)1{St ∈ Ct}

]

= h
√

2E

[
n∑
t=1

h∑
t=1

βt(Xt,i, At,i, St)

]
+ E

[
n∑
t=1

(
V t(St, πt)− h

√
2

h∑
i=1

βt(Xt,i, At,i, St)−
h∑
t=1

Rt,i

)
1{St ∈ Ct}

]

≤ h
√

2E

[
n∑
t=1

h∑
t=1

βt(Xt,i, At,i, St)

]
+ E

[∑
s∈S

Gn+1(s) + Lh

]

≤ h
√

2E

[
n∑
t=1

h∑
t=1

βt(Xt,i, At,i, St)

]
+
√
Lnh log n+ Lh ,

where we use that up until the last episode t′ = maxt∈[m]{St = s} a latent state s is sampled from the posterior,
there is an upper-bound on its overestimation Gt′(s).

Let Λ0,s = min{minx,a
∥∥αR0,s(x, a)

∥∥
1
,minx,a

∥∥αT0,s(x, a)
∥∥

1
} represent at least how concentrated the reward and

transition priors are for latent state s. Let Λ0,min = mins∈S Λ0,s be the minimum over latent states. What remains
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the bounding the sum of confidence widths, which is done in Lemma 6. Combining the regret due to both terms
gives,

BR(m) ≤ 4|X |h

√
2|A|nh log(4|X ||A|n) log

(
1 +

nh

2|X ||A|Λ0,min

)
+ 2|X ||A|h2

+
√
Lnh log n+ 3Lh .


