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Abstract

In reinforcement learning applications, we often
want to accurately estimate the return of sev-
eral policies of interest. We study this problem,
multiple-policy high-confidence policy evalua-
tion, where the goal is to estimate the return of
all given target policies up to a desired accu-
racy with as few samples as possible. The nat-
ural approaches to this problem, i.e., evaluating
each policy separately or estimating a model of
the MDP, do not take into account the similarities
between target policies and scale with the num-
ber of policies to evaluate or the size of the MDP,
respectively. We present an alternative approach
based on reusing samples from on-policy Monte-
Carlo estimators and show that it is more sample-
efficient in favorable cases. Specifically, we pro-
vide guarantees in terms of a notion of overlap of
the set of target policies and shed light on when
such an approach is indeed beneficial compared
to existing methods.

1 INTRODUCTION

Policy evaluation aims to estimate the return (expected sum
of rewards) of a given policy and is one of the fundamen-
tal problems in reinforcement learning (Sutton and Barto,
1992). The on-policy version of this problem has a natural
and very popular approach, simply collect several episodes
with the policy of interest and estimate the return as the
average sum of rewards achieved. This Monte-Carlo es-
timator can be readily augmented with confidence inter-
vals through standard tools like Hoeffding’s inequality. In
contrast, the off-policy version, where we would like to
estimate the return of a target policy from data that was
collected with other policies, requires more sophisticated
estimators and has been a very active field of study. Ap-
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proaches based on importance-sampling, model-based esti-
mation, doubly-robust estimators and marginalized impor-
tance sampling have been proposed and analyzed (Precup,
2000; Li et al., 2015; Gottesman et al., 2019; Yin and Wang,
2020; Uehara et al., 2021; Yin et al., 2021; Hao et al.,
2021). The off-policy version of policy evaluation is partic-
ularly relevant in offline RL, for example, when we want to
determine the return of a policy with high confidence from
existing data before deploying it in a real system.

However, in many cases we have the ability to test a policy
for a few iterations in the real system before we determine
a full deployment, for example in the common practice of
controlled experiments for recommendation systems (Gu-
nawardana et al., 2012), where a recommendation policy is
evaluated on a small random fraction of users. In those ap-
plications, we often have multiple policies that we would
like to evaluate, e.g. arising from using different hyperpa-
rameters in offline RL training. Thus, our goal is to esti-
mate the return for K different policies up to some desired
accuracy ϵ with high confidence while collecting as few
samples as possible. Our work provides a theoretical study
of this problem setting, which we call multiple-policy high-
confidence policy evaluation.

A simple solution is to treat multiple-policy policy evalu-
ation as individual on-policy policy evaluation problems,
collect a certain number of samples with each policy and
use on-policy Monte-Carlo estimator on the samples col-
lected with the respective policy. Albeit simple and robust,
this approach scales linearly with the number of policies
K which may be undesirable. One can show that this lin-
ear dependence on K is unavoidable in the worst-case, but
there may be hope to improve it when the policies are “sim-
ilar”. For example, if all K policies take the same actions
on many states they visit, then sharing data among their
estimators may reduce the sampling requirement and yield
sample-complexity that is sub-linear in K.

Our work provides a solution with sub-linear in K sample-
complexity in favorable cases by identifying a suitable
notion of dissimilarity between policies to evaluate (tar-
get policies), called expected disagreement, and providing
guarantees that scale as a function of this dissimilarity in-
stead of K. We obtain our main result under a sampling or-
acle assumption that generalizes that of a generative model.
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We then show how this oracle can be implemented in the
absence of a generative model through an appropriate re-
processing phase while retaining favorable, albeit worse,
guarantees. A key component of our work is a sampling
strategy that couples the roll-out of the different target poli-
cies. This builds on an ideas similar to trajectory synthesis /
stitching (Fonteneau et al., 2013; Sussex et al.; Wang et al.,
2020b). However, while those works create synthetic tra-
jectories from a given set of transition samples, we aim to
collect transitions in the first place that can be synthesized
into independent trajectories for each target policy.

We complement our main theoretical result with an in-
depth discussion of our sampling strategy and its theoret-
ical results. One may for example wonder whether this
sampling strategy is actually necessary or whether it is suf-
ficient for our results to simply collect data with a uni-
form mixture over target policies and use state-of-the-art
off-policy estimators to produce the return of each target
policy. We answer this in the negative by providing exam-
ples where a uniform mixture sampling approach requires
Θ̃(K/ϵ2) samples but our sampling strategy only needs
Õ(1/ϵ2+K), with a reduction by a factor of K in the dom-
inant term. However, we also show that our sampling strat-
egy is not fully instance-optimal by providing a carefully
crafted example where an improvement by a factor

√
K is

possible. We hope that this discussion provides valuable in-
sights on what quantities govern the sample-complexity of
our problem setting and which problem instances are cru-
cial to address by future work.

2 PRELIMINARIES AND NOTATIONS

Notations: We adopt the following notation. For any in-
teger K, the set {1, . . . ,K} is denoted by [K], and U([K])
is the uniform distribution over this set. For any event
E, 1{E} = 1 if event E occurs and 1{E} = 0, other-
wise. For any set X , we denote by ∆(X ) the probabil-
ity simplex over X . We define the clipping operator as
clip[a|b] = a · 1(a ≥ b) for all a, b ∈ R. Finally, we use Õ
for the big O notation up to poly-logarithmic factors.

We model the agent’s interaction with the environment as a
tabular finite-horizon MDP with state space S, action space
A and horizon H . The cardinalities of state- and action-
space are S = |S| and A = |A|. Without loss of gen-
erality, we assume that the MDP is layered, i.e., the state
space S can be partitioned into H disjoint sets {Sh}Hh=1

and the only possible state transitions are between those in
Sh to those in Sh+1, for all h ∈ [H]. For convenience,
we also assume that there is only one starting state s1, i.e.,
S1 = {s1}. We sometimes use sh in our derivations to
explicitly refer to the states in Sh. Finally, we denote by
r : S × A → [0, 1] and P : S × A → ∆(S), the re-
ward and transition kernels of the MDP, with P (s′|s, a)
being the probability of transitioning to state s′ after tak-

ing action a in state s. We assume that the rewards are
deterministic, however, our results can be easily extended
to sub-Gaussian rewards. We also use the symbol s⊥ for
a terminal state, i.e., a state that the system remains there
forever under any action and without receiving any reward.
A policy π : S → ∆(A) is defined as a deterministic or
stochastic mapping from states to actions. If a policy π is
deterministic, we use π(s) = a to say that π takes action a
in state s, and if it is stochastic, we use π(a|s) as the prob-
ability with which π takes action a in state s. Policies are
non-stationary in a finite-horizon MDP, i.e., π = {πh}Hh=1.
However, since in a layered MDP, each policy πh only op-
erates on the states in Sh, we can simply represent all poli-
cies πh, ∀h ∈ [H], by π.

For any policy π, we denote its value function by vπ :
S → [0, H]. We overload the notation and use vπ ≡
vπ(s1), which we refer to as the return of policy π.
We also use v̂π to refer to any estimate of the return
of policy π. Finally, we denote the state occupancy
measure of π by dπ : S → [0, 1], where dπ(s′) =∑

s∈Sh−1

∑
a∈A dπ(s)π(a|s)P (s′|s, a), ∀s′ ∈ Sh. We

also overload this notation and use dπ(s, a) = dπ(s)π(a|s)
as the state-action occupancy of policy π.

3 PROBLEM SETTING & EXISTING
APPROACHES

We study the problem of multiple-policy high-confidence
policy evaluation, where we are given K target policies
π1, . . . , πK ∈ Π and a failure probability δ ∈ (0, 1), and
our goal is to produce confidence intervals {Ik}Kk=1 for
the return of these policies, {vπk}Kk=1, that are required to
guarantee

P (∀k ∈ [K] : vπk ∈ Ik) ≥ 1− δ.

We distinguish two versions of this problem: 1) In the
fixed-budget version, we are allowed to interact with the
MDP for a given number n of time-steps and the goal is to
produce the smallest possible confidence intervals, and 2)
In the fixed-accuracy version, we are given a desired accu-
racy ϵ and the goal is to produce confidence intervals, each
of size at most ϵ, after the least number of time-steps.

We will now review the existing approaches to this problem
and discuss their strengths and limitations.

3.1 On-Policy Monte-Carlo Estimation

The simplest and perhaps most commonly used ap-
proach is MC estimation (Fonteneau et al., 2013). Here,
we simply collect a certain number nk of trajectories
T1,k,T2,k, . . . ,Tnk,k with each target policy πk and com-
pute a return estimate as the average of the returns achieved
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in these trajectories, i.e.,

v̂πk =
1

nk

nk∑
i=1

∑
(s,a)∈Ti,k

r(s, a).

With a simple application of Hoeffing’s inequality,

|vπk − v̂πk | ≤

√
2H2 log(2/δk)

nk
,

holds with probability at least 1− δk. Allocating the same
number of trajectories and failure probability to each pol-
icy nk = n

K and δk = δ
K , shows that we can construct

confidence intervals this way that shrink at a rate of√
2H2K log(2K/δ)

n
. (1)

Conversely, for the fixed-accuracy setting, if we want to
achieve accuracy ϵ, then we will require

2H2K

ϵ2
log(2K/δ) (2)

samples. We can replace the dependency on H by a
problem-dependent quantity using Bernstein’s inequality,
but this is orthogonal to the focus of this paper. Hence, we
will generally keep H for ease of exposition. Our focus is
on the dependency on the number of target policies K, as
well as the size of the MDP (the number of states S and
actions A). While the MC estimator has no dependency on
the size of the MDP, it has to always suffer a K penalty.
This is because no sample is shared among the estimators
of the target policies.

3.2 Model-Based Estimation with Reward Bonuses

A common way to share samples is to first build a model of
the environment and then use it to construct estimators by
evaluating each target policy in the model. In fact, confi-
dence bounds on value functions from empirical model es-
timates are the backbone of most regret-minimization algo-
rithms in tabular MDPs. Constructing confidence-bounds
using reward bonuses is the most common approach and
has been shown to achieve minimax-optimal regret rate
of order

√
SAT poly(H) (Azar et al., 2017; Zanette and

Brunskill, 2019; Dann et al., 2019). Taking a reward bonus
approach for evaluating the return of policy πk gives a con-
fidence interval of the form

EP̂ ,πk

[
H∑

h=1

r(Sh, Ah)

]
± EP̂ ,πk

[
H∑

h=1

b(Sh, Ah)

]
,

where P̂ is the empirical transition model and EP̂ ,πk
[·]

is the expectation in this model when executing policy

πk. The bonuses have the form b(s, a) =
√

C(s,a)
n(s,a) +

Figure 1: A simple MDP in which model-based estimators
with reward bonuses have large confidence intervals.

o(1/
√

n(s, a)), where n(s, a) is the number of observa-
tions of state-action pair (s, a) used to construct the em-
pirical model and C(s, a) is some bound on the variance
of the return from this state-action pair on. Unfortunately,
even for a single policy and on-policy data collection, con-
fidence intervals based on per-state reward bonuses only
shrink at a rate of

√
S/n in some MDPs. A simple ex-

ample of such behavior can be found in Figure 1. In this
example there exists a single starting state with only one
action followed by S terminal states. The transition kernel
is a uniform distribution over the S terminal states.

3.3 Model-Based Estimation without Reward
Bonuses

One may wonder whether the unavoidable S dependency
is a limitation of the reward bonuses or the model-based
estimator itself. Yin and Wang (2020) showed that the for-
mer is true by analyzing the root-mean-squared error of the
model-based estimator EP̂ ,πk

[∑H
h=1 r(Sh, Ah)

]
(they re-

fer to as TMIS) and proving the following asymptotic con-
vergence rate (Theorem 3.1 in their paper)

√
HK

n
·

√√√√ H∑
h=1

Eπk

[
dπk(sh, ah)∑K
j=1 d

πj (sh, ah)

]
+ o

(
1√
n

)
for policy πk when the data is collected by a uniform
mixture of all target policies. Since dπk(sh, ah) ≤∑K

j=1 d
πj (sh, ah), this rate is indeed never worse than

the MC rate in (1) and does not exhibit any explicit de-
pendence on S. Further, when the occupancy of the tar-
get policies are similar, this rate can have more favor-
able dependency on K. However, using this result di-
rectly for confidence intervals is not straight-forward for
several reasons: 1) this is only a bound on the RMS, not
a high probability bound, 2) the bound includes the oc-
cupancy measures which are unknown, and 3) the bound
becomes valid only when the number of samples exceeds
Θ
(
maxs,a

(
1
K

∑K
j=1 d

πj (s, a)
)−1)

. One can circumvent
these issues by splitting the collected data in Θ(log(1/δ))
batches, applying the estimators individually, and then con-
structing a confidence interval using the variation across
batches (see Section 3.2 of Yin and Wang 2020), but such
approach not always desirable in practice. Independent of
the specific estimator, as we will see in Section 4.2, data
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collection with a uniform mixture of target policies can be
highly suboptimal.

3.4 Other Estimators

Besides on-policy Monte Carlo and model-based estima-
tors, there is a rich family of off-policy estimators for es-
timating the return of a target policy from a given dataset.
A classic estimator is trajectory-wise or step-wise impor-
tance sampling but it is well-known that its variance is
often exponential in the horizon (Liu et al., 2018, 2020).
Doubly-robust estimators address this limitation (Jiang and
Li, 2016; Hanna et al., 2017; Farajtabar et al., 2018) but,
to the best of our knowledge, no finite-sample statistical
bound is available for them that would allow us to con-
struct provably accurate and tight confidence intervals. Re-
cently, marginalized importance sampling with learned im-
portance weights as the ratio of occupancy measures has
been shown to be useful to overcome this curse of horizon.
This includes several methods constructing confidence in-
tervals (Jiang and Huang, 2020; Dai et al., 2020; Feng
et al., 2021), with a focus on the function approximation
case. However, to the best of our knowledge, these tech-
niques only produce approximately correct intervals (Dai
et al., 2020) or designed for the infinite-horizon case (Feng
et al., 2021). Another line of recent work constructs con-
fidence intervals for the off-policy optimization problem
based on the α-Renyi divergence between occupancy mea-
sures of the target and collection policies (Papini et al.,
2019; Metelli et al., 2020, 2021).

The above literature on off-policy policy evaluation pro-
vides a rich toolbox for policy evaluation from a fixed
dataset but does not directly address the question of how
to best sample the data in our setting, where we would like
to evaluate a set of target policies. As we illustrate later, a
simple uniform mixture of target policies is often subopti-
mal. In this work, we therefore explore a different approach
inspired by the idea of trajectory synthesis that naturally
yields a sampling strategy that performs better in natural
problem instances.

4 MULTI-POLICY POLICY
EVALUATION WITH A SAMPLING
ORACLE

We study a simple procedure for the fixed-accuracy ver-
sion of the multiple-policy high-confidence policy evalua-
tion problem, whose pseudo-code is shown in Algorithm 1.
The overall sample complexity of the approach is shown in
Line 1. If the trajectories in Line 3 were sampled by ex-
ecuting each policy πk for one episode, then Algorithm 1
would simply be on-policy Monte-Carlo (MC) estimation.
As a result, the procedure inherits many of the benefits
of on-policy MC estimation, including the simplicity and

Algorithm 1: High-Confidence Policy Evaluation
input: target policies {πk}k∈[K],

sampling oracle O,
failure probability δ,
desired accuracy ϵ.

1 set number of trajectories to n = Θ
(

H2 log(K/δ)
ϵ2

)
2 for i = 1, 2, . . . , n do
3 generate trajectories {Ti,k}k∈[K] using

Algorithm 2 with inputs {πk}k∈[K] and O
4 compute confidence intervals for all k ∈ [K] as

Ik = [v̂πk − ϵ− βO, v̂
πk + ϵ+ βO] with estimates

5 v̂πk =
1

n

n∑
i=1

∑
(s,a)∈Ti,k

r(s, a)

6 return confidence intervals {Ik}k∈[K]

Algorithm 2: Coupled Trajectory Sampler
input: target policies {πk}k∈[K], sampling oracle O

1 initialize trajectories Tk = ∅, ∀k ∈ [K]
2 initialize active sets

K1(s1, a) = {k ∈ [K] : πk(s1) = a},
K1(s, a) = ∅, ∀s ∈ S \ {s1}, ∀a ∈ A.

3 for h ∈ [H] do
4 Kh+1(s, a) = ∅, ∀(s, a) ∈ Sh+1 ×A
5 for (s, a) : Kh(s, a) ̸= ∅ do
6 Query sampling oracle s′ = O(s, a)
7 for k ∈ Kh(s, a) do
8 Add (s, a) to Tk

9 if s′ ̸= s⊥ then
10 Add k to Kh+1(s′, πk(s

′))

11 return set of trajectories {Tk}k∈[K]

the opportunity to use empirical variance-based confidence
bounds, which we omit here for ease of presentation.

The key component of the procedure is how the trajectories
are generated which is shown in Algorithm 2. This proce-
dure takes inspiration from Pegasus (Ng and Jordan, 2000)
and Trajectory Synthesis Method in Wang et al. (2020a),
and returns one trajectory for each target policy. However,
instead of generating independent trajectories for each pol-
icy, as one would do in on-policy MC estimation, this pro-
cedure couples trajectories for different target policies by
reusing parts of a trajectory for multiple policies (if this is
possible). That is, if two policies play the same action at a
visited state during a trajectory construction, then the tra-
jectory follows the same successor state for both policies,
instead of drawing a fresh sample for each policy. Assume
for now that we have access to a generative model of the
MDP and we can directly request successor state samples
for a state-action pair. Then, if two policies would take the
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same initial action in the initial state, instead of requesting
one sample for each, we only request one sample that can
be used in the trajectories of both policies. Algorithm 2 fol-
lows this logic for all policies in all time-steps. The active
set Kh(s, a) ⊆ [K] keeps track of which target policies
visit state-action pair (s, a) at time h in their trajectories,
and only requests one successor state sample per each non-
empty active set. We will refer to Kh as the arrangement
of policies at layer h.

We assume that we are given a sampling oracle that can
generate the successor state samples for a given state-action
pair. This may be a generative model if available, but as
we will show in Section 5, can also be approximated when
we only have trajectory access to the MDP. To be able to
handle such approximate versions, we formally define the
sampling-oracle as follows:

Definition 1. A sampling oracle O : S × A → ∆(S ∪
{s⊥} × [cmax]) is a mapping from state-action pairs to a
distribution over an extended state space S ∪ {s⊥} and a
sample cost m ∈ [cmax], cmax ∈ N. Whenever the oracle
O is called, an independent sample (s′,m) from this dis-
tribution is returned that consists of the successor state s′

and the cost m, where m is the total number of trajectories
sampled from the MDP by the oracle to produce s′.

The maximum cost cmax is an upper-bound on the total
number of sampled trajectories that the oracle can use be-
fore returning s′ ∈ S ∪ {s⊥}. All the oracles we con-
struct in Section 5 have cmax = O(K/ϵ2). As we will
show, the dependence on cmax in our bounds is only log-
arithmic. Algorithm 2 uses a sampling oracle to collect
trajectories for each target policy. Formally, a trajectory
T sampled by an oracle O for a policy π is a sequence
T = ((S1, π(S1)), . . . , (Sτ , ∅)), where S1 = s1 is al-
ways the starting state of the MDP and the trajectory ends
whenever the oracle returns s⊥ at the stopping time τ ,
i.e., Sh = Sτ iff Sh = O(sh−1, π(sh−1)), Sh−1 ̸= s⊥,
and Sh = s⊥. We further make the assumption that the
sampling oracle returns s⊥ almost surely whenever its in-
put contains a state sH ∈ SH from the last layer of the
MDP. A sampling oracle is characterized by its bias.

Definition 2. The bias of the sampling oracle O with re-
spect to a set of target policies Π is

βO = sup
π∈Π
|E[v̂π]− vπ| ,

where v̂π =
∑

(Sh,Ah)∈T r(Sh, Ah) and T is a trajectory
sampled by oracle O for policy π ∈ Π.

The most trivial instantiation of the sampling oracle O is a
generative model O(s, a) = P (·|s, a) with cmax = 1. The
bias of this sampling oracle is βO = 0.

4.1 Theoretical Analysis

We first prove that Algorithm 1 is correct, i.e., the confi-
dence intervals that it returns have the desired coverage.

Theorem 3. If Algorithm 1 is called with parameters (ϵ, δ)
and a sampling oracle O with bias βO, then with proba-
bility at least 1− δ/3, the true values of all target policies
{πk}Kk=1 are contained in the confidence intervals returned
by the algorithm {Ik}Kk=1, i.e., P(∀k ∈ [K] : vπk ∈ Ik) ≥
1− δ/3.

Proof. We consider any target policy πk, for a k ∈ [K], and
show that P(vπk ∈ Ik) ≥ 1 − (δ/3K). The desired result
follows after a union bound. Let v̂πk

i =
∑

(s,a)∈Ti,k
r(s, a)

denote the empirical value of policy πk constructed after
sampling the i-th trajectory from the oracle. Consider the
martingale difference sequence {v̂πk

i − E[v̂πk
i ]}ni=1, where

the expectation is w.r.t. all the randomness up to the i-th
call to the oracle. Using the Azuma-Hoeffding’s inequality,
with probability 1− δ, we have∣∣∣∣∣ 1n

n∑
i=1

v̂πk
i − E[v̂πk

i ]

∣∣∣∣∣ ≤ 2H

√
log(2/δ)

n
.

Using the fact that O has bias βO, we have that∣∣∣∣∣vπk − 1

n

n∑
i=1

v̂πk
i

∣∣∣∣∣ ≤
∣∣∣∣∣vπk − 1

n

n∑
i=1

E[v̂πk
i ]

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

v̂πk
i − E[v̂πk

i ]

∣∣∣∣∣ ≤ βO + 2H

√
log(6K/δ)

n
,

holds with probability at least 1 − δ
3K . The result follows

by the definitions of n and Ik in Algorithm 1.

After establishing the correctness of Algorithm 1, we now
analyze its sample-complexity by bounding the total num-
ber of calls to the sampling oracleO. We express our bound
in terms of the expected disagreement of the policies, which
we define next.

Definition 4 (Disagreement). The disagreement of the pol-
icy arrangement Kh is the number of state-action pairs vis-
ited by the target policies at layer h, i.e.,

dis(Kh) = |{(s, a) ∈ Sh ×A : Kh(s, a) ̸= ∅}| .

The expected disagreement of Kh is defined as

D(Kh) = E

[
H∑

h′=h

dis(Kh′
) | Kh

]
.

Note that for each element in {(s, a) ∈ Sh ×
A : Kh(s, a) ̸= ∅}, Algorithm 2 samples once from the
sampling oracle O. Hence, the expected number of sam-
ples used by Algorithm 1 is nD(K1). We can also show
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in the following theorem that the total number of samples
used by Algorithm 1 concentrates tightly around the ex-
pected number of samples.
Theorem 5. If Algorithm 1 is called with parameters (ϵ, δ),
then with probability at least 1 − δ/3, the total number of
calls to the sampling oracle is bounded by

O

(
D(K1) log(K/δ)

ϵ2
+KH log(1/δ)

)
.

Proof of Theorem 5. The total number of oracle calls can
be written as

∑n
i=1

∑H
h=1 dis(K

h
i ). Writing Xi =∑H

h=1 dis(K
h) ∈ [0,KH] and noting that {Xi}i∈[n] is a

set of i.i.d. random variables, we can apply Bernstein’s in-
equality and bound the total number of oracle calls as

n∑
i=1

H∑
h=1

dis(Kh
i ) ≤

n∑
i=1

E

[
H∑

h=1

dis(Kh
i )

]
+

c1

√√√√ n∑
h=1

Var

(
H∑

h=1

dis(Kh
i )

)
log(3/δ) + c2HK log(3/δ)

with probability at least 1 − δ/3 for appropriate absolute
constants c1, c2 > 0. We further bound the RHS as

≤
n∑

i=1

D(K1
i ) + c1

√√√√KH

n∑
h=1

E

(
H∑

h=1

dis(Kh)

)
log(3/δ)

+ c2HK log(3/δ)

=

n∑
i=1

D(K1
i ) + c1

√√√√KH

n∑
i=1

D(K1
i ) log(3/δ)

+ c2HK log(3/δ)

≤ 3

2

n∑
i=1

D(K1
i ) +

(c1
2

+ c2

)
HK log(3/δ)

where the first inequality uses Var(X) ≤ E[X] · esssupX
which holds for all non-negative random variables and
the final inequality applies the arithmetic-mean-geometric-
mean inequality. Plugging in the value of n and noting that
K1

i = K1 finishes the proof.

Up to a small number1 of samples Õ(KH) that is indepen-
dent of ϵ, the sample-complexity of Algorithm 1 is gov-
erned by that of the sampling oracle and the expected dis-
agreement D(K1). The expected disagreement, which we
defer its in-depth discussion to the next section, is a quan-
tity that depends on the problem and target-policies, is fa-
vorably small in many problems, and more importantly is
never larger than KH .

1Note that this number can be reduced to c ≪ HK if the
disagreement of each Kh

i , ∀i ∈ [n], ∀h ∈ [H] is uniformly
bounded by c with probability 1 − δ. We expect that if the tar-
get policies are similar, then such a uniform bound would be a
reasonable assumption.

Figure 2: The class of MDPs used in Lemma 7.

When we have access to a generative model, Theorem 3
and Theorem 5 imply the following sample-efficiency guar-
antee for Algorithm 1:

Corollary 6. If Algorithm 1 is called with parameters (ϵ, δ)
and a generative model as its sampling oracle, then after
requesting at most O

(
D(K1) log(K/δ)

ϵ2 +KH log(1/δ)
)

samples from the generative model, with probability at
least 1 − δ, all confidence bounds it returns have width
at most 2ϵ and capture the true value of all target policies.

4.2 Discussion on the Expected Disagreement

While the notion of disagreement is somewhat natural and
the coupled trajectory sampler (Algorithm 2) takes advan-
tage of a natural notion of overlap between trajectories, it is
unclear if Algorithm 1 is optimal even when it uses a gen-
erative model as its sampling oracle. Using two examples
depicted in Figures 2 and 3, we demonstrate the benefits
and limitations of Algorithm 1. The formal construction
for the example in Figure 2 can be found in the proof of
Lemma 7 and the construction for the example in Figure 3
can be found in the proof of Lemma 8 in Appendix A. We
begin with a very simple MDP in which any round-robin-
based sampling strategy will perform poorly compared to
Algorithm 1:

Lemma 7. Let K ≥ 2 and ϵ = O(1/K) be arbitrary.
Then, there is a class of MDPs and K target policies so
that the expected disagreement D(K1) ≤ 2 is constant and
Algorithm 1 only requires

O

(
log(K/δ)

ϵ2
+KH log(1/δ)

)
samples. However, any algorithm that collects a fixed-size
dataset with the uniform mixture over all target policies has
to collect at least Ω(K/ϵ2) samples.

Figure 2 shows the topology of the class of MDPs used in
Lemma 7. The idea behind it is very simple. In the ini-
tial state, policies π2, . . . πK all take the same action that
transitions deterministically to s2 while π1 takes a differ-
ent action that transitions to s′2. In both successor states,
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Figure 3: The MDP instance used for the lower-bound
in Lemma 8.

each action transitions with almost equal probability to s3
or s′3 and the only non-zero reward is in s3 which is 1. Sam-
pling with a uniform mixture over policies π1, . . . , πK will
generate roughly K times more samples for s2 than for s′2.
Since we need order 1/ϵ2 samples for each s2 and s′2, this
will result in a total sample size of order K/ϵ2. In con-
trast, the expected disagreement in this MDP is O(1) and
Algorithm 1 will generate roughly equal amount of sam-
ples for s2 and s′2. This gives a total expected sample size
of order 1/ϵ2. This example illustrates that even in very
simple cases, the sampling strategy of Algorithm 1 can be
much more sample-efficient than the simple uniform mix-
ture over target policies.

There are also examples where Algorithm 1 performs
worse than collecting data with a uniform mixture over tar-
get policies, but they require a more intricate setup than
Figure 2. The next lemma shows such an example.

Lemma 8. There exists an MDP instance with at most
O(log(K)) states and O(K) actions for which

E

[
H∑

h=1

dis(Kh)

]
≥ Ω(

√
K) ,

H∑
h=1

∑
s∈S

∑
a∈A

max
k∈[K]

dπk

h (s, a) ≤ O(log(K)) .

Figure 3 shows the topology of the MDP instance used
by Lemma 8. The first statement in Lemma 8 implies that
Algorithm 1 will need to call the generative model at least
Ω(
√
K) times with constant probability, and we will show

that the second implies that a model-based estimator with
data collected by a uniform mixture over π1, . . . , πK will

only require samples that are independent of K. To that
end, we compute the accuracy of the round-robin model-
based estimator for any policy π. Let d̂π(s, a) denote the
empirical occupancy measure computed after n rounds of
round-robin sampling. We now bound |d̂π(s̄, a)−dπ(s̄, a)|
for the state s̄ in Figure 3, where a = dπ(s̄). Applying the
Bernstein’s inequality implies that

P

(
|d̂π(s̄, a)− dπ(s̄, a)| ≳

√
dπ(s̄, a)

n(s̄, a)
log(1/δ)

)
≤ δ.

The construction of the MDP instance implies that
dπ(s̄, a) = Θ(1/

√
K). Thus, another application of Ho-

effding’s inequality implies that n(s̄, a) = Ω(
√
Kn) with

probability 1 − δ. Combining with the above Bernstein

bound, we have that |d̂π(s̄, a)− dπ(s̄, a)| < O(
√

log(1/δ)
n )

with probability 1− δ. Similarly, we can show that for any
state-action pair (s, a), it holds that |d̂π(s, a)−dπ(s, a)| <
O(
√

log(1/δ)
n ) and so a uniform bound over all (s, a)’s

shows that |v̂π − vπ| ≤ O(
√

log(SA/δ)
n ) with probability

1− δ. This implies that the sample complexity of a simple
model-based estimator is

√
K times less than that of Algo-

rithm 1.

5 SAMPLING ORACLE WITHOUT A
GENERATIVE MODEL

In this section, we discuss how we can implement a sam-
pling oracle without access to a generative model. This will
require a preprocessing phase that first identifies a relevant
subset of states G and then for each state s ∈ G determines
a policy to reach s. Equipped with the mapping of relevant
states to policies g : G → Π, we can implement the sam-
pling oracle Og shown in Algorithm 3. When the oracle
is invoked for a state-action pair (s, a) with s ∈ G, we ex-
ecute the policy g(s) associated with s until s is reached,
then we take action a and obtain a successor state sample.
If either s /∈ G or it takes too many attempts to reach s,
then the oracle returns s⊥ instead.

The preprocessing phase is shown in Algorithm 4. We first
sample a hold-out set of trajectoriesHk for each policy πk.
We then proceed in phases indexed by i. In each phase we
again sample a dataset of trajectories for each policy and
determine the empirical occupancy d̂k for each policy πk,
but zero out states that did not occur often enough in the
dataset. For all non-zero entries, we can show that d̂k(s)
is a constant factor approximation of the true occupancy
measure dπk . We then determine the good set G ⊆ S as all
states for which there is at least one non-zero occupancy
measure estimate. We also associate in g(s) each state in
s ∈ G with the policy that has the largest occupancy mea-
sure estimate for s. The mapping g now identifies for each
state in G the policy that reaches each state with the high-
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Algorithm 3: Sampling oracle Og

parameter: policy mapping g : G → Π
maximum sample cost cmax

input : state s and action a
1 if s /∈ G then
2 return s⊥

3 run policy π = g(s) until either s is reached or the
number of episodes exceeds cmax

4 if s is reached then
5 execute action a
6 return next state s′

7 else
8 return s⊥

Algorithm 4: Preprocessing phase
input: Policy π, confidence parameter δ, accuracy ϵ

1 initialize c← O(log2(SK/(ϵδ)))
2 for k = 1, . . .K do
3 Hk ← Sample 10

ϵ log(c/δ) trajectories with πk

4 for i = 0, 1, 2, . . . , do
5 for k = 1, . . . ,K do
6 Sample 2i trajectories with π and let

wk : S → N be the number of visits to each
state

7 Set d̂k(s)← wk(s)
2i 1

{
wk(s) ≥ 2 log c

δ

}
∀ s

8 Set G ← {s ∈ S : maxk d̂k(s) > 0}
9 for s ∈ G do

10 Set g(s)→ πk′ where
11 k′ = argmaxk∈[K] d̂k(s)

12 Set τk as the number of trajectories inHk that
contain a state outside of G

13 if τk ≤ 10
3 log c

δ for all k ∈ [K] then
14 return g : G → Π

est probability, up to a constant factor. All that is left is to
ensure that G is sufficiently large. To that end, we test the
escape probability of each policy πk from the set G, that is,
the likelihood that a trajectory sampled with πk contains a
state outside of G. We use the hold-out set Hk and if the
number of escaped trajectories in Hk is sufficiently small,
then the algorithm terminates and returns g. Otherwise, it
moves on the to the next phase where it collects more tra-
jectories to determine G.

The following lemma formalizes the properties of this pro-
cedure:

Lemma 9. With probability 1 − O(δ), Algorithm 4 termi-
nates after collecting

O

(
SK

ϵ
log

log(SK/ϵ)

δ

)

episodes and the function g : G → Π satisfies the following
properties:

1. The escape probability of any policy πk for k ∈ [K]
from the set G is at most ϵ, that is, an episode sampled
with πk contains with probability at least 1 − ϵ only
states in G.

2. For each s ∈ G, it holds

dg(s)(s) ≥ 1

36
max
k∈[K]

dπk(s).

Note that the S factor in the number of collected episodes
can be replaced by an instance-dependent factor that is
much smaller than S in favorable cases. This preprocess-
ing phase is sufficient to guarantee that the oracle in Algo-
rithm 3 has a bias that is at most H times larger than the
accuracy parameter ϵ:

Lemma 10. Assume that Algorithm 3 receives a g : G → Π
such that the escape probability for all π1, . . . , πk from G
is at most ϵ. Then the bias of the sampling oracle is at most
Hϵ.

Hence, by first running Algorithm 4 with accuracy param-
eter ϵ/2H and then using Algorithm 3 as a sampling oracle
in Algorithm 1, we can achieve the following guarantee:

Theorem 11. If Algorithm 1 is called with parameters
(ϵ/2, δ) and a sampling oracle Og from Algorithm 3 with
preprocessing in Algorithm 4, then with probability at least
1 − O(δ), the return of all target policies {πk}Kk=1 is con-
tained in the confidence intervals produced by the algo-
rithm. Furthermore, these intervals have each size at most
ϵ and the total number of trajectories collected is

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

+
SH2K

ϵ


where dmax = maxk∈[K] d

πk and we use (s, a) ∈ K1:H

to mean the sum over all state-action pairs with non-empty
entry in K1:H and K1:H is the random arrangement pro-
duced by the coupled trajectory sampler

To provide some intuition about the bound in Theorem 11,
we now compute the bound for the MDPs in Figure 2
and Figure 3. In Figure 3, by construction every policy
has the same probability of visiting s̄, i.e., dmax(s̄) =
Θ(1/

√
K). The disagreement is constant everywhere out-

side s̄ and every arrangement has the same probability. So,
the upper-bound in Theorem 11 evaluates to Θ(LK/ϵ2)
providing no improvement over just playing the round-
robin strategy together with a MC estimator. In Figure 2,
dmax(s) = Ω(1) for all states and there exists only a single
possible arrangement with disagreement O(1). Thus, The-
orem 11 implies a total sample complexity of Õ

(
1
ϵ2 + K

ϵ

)
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that matches the one by Algorithm 1 with the generative
model oracle and improves w.r.t. K over both the MC and
round-robin model-based estimators.

During the preprocessing phase in Algorithm 4, we es-
sentially look for each state s ∈ G for the policy among
π1, . . . , πK which visits that states with highest probability.
Using the ideas of reward-free exploration, we can search
among a larger set of policies for the best one to visit each
state. This trades of better sampling cost in the main phase
against a highest sampling cost during preprocessing. We
will then replace dmax(s) in the bound by

d(s) = max
π∈ΠK,G

dπ(s),

which is the maximum occupancy measure over all policies
ΠK,G restricted to the set of states G and actions taken by
at least one target policy. It is sufficient here to consider
the MDP that is restricted to the set of states G (produced
by Algorithm 4) since this will contribute at most a bias of
O(ϵ) in the final return estimate, as we have shown above.

Theorem 12. There exists a sampling oracle whose total
number of sampled trajectories when is used with Algo-
rithm 1 is at most

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

d(s)

+
KH4S4

ϵ

 ,

with probability 1 − δ. Furthermore, the bias of this sam-
pling oracle is at most O(ϵ).

The definition of d(s) implies d(s) ≥ dmax(s). We now
discuss a simple MDP in which the bound in Theorem 11
evaluates to Õ(K/ϵ2), while the improved bound in The-
orem 12 evaluates to Õ(1/ϵ2), matching the generative
model oracle.

Figure 4: Unfavorable instance for Theorem 11

Begin by fixing the parameters K, ϵ, δ. The topology of the
MDP can be found in Figure 4. In state s1 policy π1 takes

action a1 and transitions to state s′2 w.p. 1. All other poli-
cies take action a2 and transition to state s2 w.p. 1 − 1/K
and to s′2 w.p. 1 − 1/K. The transition from state s2 to
s3,1 is deterministic. There are two actions in state s′2, with
π1 playing a2 and transitioning to s3,3 w.p. 1. All remain-
ing policies play action a1 and transition to state s3,2 w.p.
1. State s3,1 contains a single action which transitions uni-
formly at random to s4 or s′4. State s3,2 contains K − 1
actions, indexed by each of the policies k ∈ {2, 3, . . . ,K}.
Action ak transitions to state s4 with probability 1

2+γk and
to s′4 w.p. 1

2 − γk, where γ ∈ {ϵ,−ϵ}K is a fixed vector
which defines the class of MDPs which we consider. State
s3,3 also contains a single action a1 which transitions to s4
with probability 1

2 − γ1 and with the remaining probabil-
ity to s′4. States s4 and s′4 contain a single action a1 and
the only non-zero reward is r(s4, a1) = 1. The standard
lower bound argument requires the round-robin estimator
to visit state s3,3 at least Ω( 1

ϵ2 ) times in expectation to be
able to identify the value of γ1, or equivalently to estimate
the return of π1 up to ϵ accuracy. Thus the expected sample
complexity of any round-robin algorithm will be at least
K
ϵ2 . Next, we note that dmax(s3,2) = 1

K and that the ex-
pected disagreement is O(1), which allows us to evaluate
the bound in Theorem 11 as Õ

(
K
ϵ2

)
. This bound is in fact

tight, since the sampling oracle defined by Algorithm 3 and
Algorithm 4 will indeed need Ω(K) sampled trajectories to
reach s3,2. Finally, we note that the sampling oracle defined
in the proof of Theorem 12 will only need Õ(1) samples to
reach state s3,2 as d(s3,2) = 1. This allows us to evaluate
the sample complexity stated in Theorem 12 to Õ

(
1
ϵ2

)
.

6 CONCLUSION

We study the multiple-policy high-confidence policy eval-
uation. Our goal is to devise algorithms which can take
favorable structure of the target policy set, such as overlap
between the actions that the target policies select. To this
extent we propose a new algorithm for the problem (Algo-
rithm 1) which makes use of a sampling oracle and show
guarantees in terms of a new measure of similarity which
we call disagreement. We demonstrate example MDPs in
which Algorithm 1 can be more favorable than a naive
round-robin MC approach and a model-based estimator,
and discuss MDPs in which the algorithm is sub-optimal.
Further, we instantiate the algorithm with several different
sampling oracles and discuss the sample complexity of the
resulting algorithms in Theorem 11 and Theorem 12.
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A Proofs from Section 4

Proof of Lemma 8. Consider the MDP in Figure 3. We assume that 1
2 log2(K) is an integer. The MDP has H = 1

2 log2(K)
layers. In the first layer there is a single starting state s1,1 with a single action a1 on which all K policies agree. The second
layer of the MDP has two states s2,1 and s2,2. The transition kernel is set as P (s2,1|s1,1, a1) = P (s2,1|s1,1, a1) = 1

2 . Both
states s2,1 and s2,2 contain two actions a1 and a2. For k ∈ [1,K/2] we have πk(s2,i) = a2,1 for k ∈ [K/2 + 1,K]
πk(s2,i) = a2,2, that is the set of K policies is split in half at layer 2. The transition kernel is defined as

P (s3,1|s2,1, a1) = 1

P (s3,2|s2,1, a2) = 1

P (s3,2|s2,2, a1) = 1

P (s3,3|s2,2, a2) = 1.

For the remaining layers the construction repeats in a similar way. States s2h+1,1 and s2h+1,3 contain a single action
which transitions to s2h+2,1 and s2h+2,4 respectively and similarly s2h+2,1 and s2h+2,4 contain a single action which
transitions to s2h+3,1 and s2h+3,3 respectively. States s2h+1,2 also contain a single action and the transition is to states
s2h+2,2 and s2h+2,3. States s2h+2,2 and s2h+2,3 behave similarly to s2,1 and s2,2 by dividing the set of policies into equal
halves. Assume that at state s2h+2,2 we have an arrangement of policies {πk}jk=i, then policies {πk}j/2k=i play action a1
and transition to s2h+3,1, and policies {πk}jk=j/2+1 play action a2 and transition to s2h+3,2. Similarly for state s2h+2,2,

{πk}j/2k=i play a1 and transition to s2h+3,2, and {πk}jk=j/2+1 play a2 and transition to s2h+3,3. We make the following
observations: at each state s2h+1,2 we have an arrangement of exactly K/2h policies, further, any two arrangements at
s2h+1,2 have an empty intersection. This implies that at the final layer, the state s̄ ≡ sH,2 will always have an arrangement
of at least Θ(

√
K) policies. Further, with this construction, the disagreement at every layer is at most 2. To show the

lemma we specify the action set at s̄ to have Θ(
√
K) actions, so that every policy {πk}jk=i present in an arrangement at s̄

will take a different action. Note that this is always possible, e.g., by mapping πk(s̄) = ak−1+1, since each arrangement is
disjoint. We now note that the disagreement is at least Ω(

√
K) and further maxk∈K dπk(s̄, a) ≤ 1√

K
. For every other state-

action pair (s, a) it holds that maxk∈K dπk(s, a) ≤ 1 which further shows that
∑H

h=1

∑
s∈S

∑
a∈A maxk∈[K] d

πk

h (s, a) ≤
O(log(K)).

Proof of Lemma 7. Let K ≥ 2 and ϵ = O(1/K) be arbitrary and consider a class of MDPs of the following form. Each
MDP has H = 3 layers and states S1 = {s1},S2 = {s2, s′2} and S3 = {s3, s′3}. The reward function is zero everywhere
except for s3 where it is 1 for all actions. There are 2 actions a1, a2 and we restrict our attention per state to only those
actions taken by the target policies π1, . . . , πk. In the initial state, policy π1 takes action a1 and transitions deterministically
to s′2. All other policies take action a2 and transition deterministically to s2. In state s2, all policies take the same action
a1 and transition to s3 and s′3 with equal probability. In state s′2, π1 takes action a1 and transitions to s3 with probability
1
2 + γ1ϵK and to s′3 with the remaining probability. Each MDP in the class is identified by a vector γ ∈ {−1,+1}K that
determines the bias in the transitions to the final layer. The return of each target policy is

vπ1 =
1

2
+ γ1ϵK,

vπi =
1

2
, i ≥ 2.

Hence, in order to construct confidence intervals of size at most ϵ that each contain the return of a target policy with
probability 1 − δ, the algorithm has to learn the correct γ with probability at least 1 − δ. The occupancy measure of the
uniform mixture policy π̄ for visiting states s2, s

′
2 are dπ̄(s2) = K−1

K and dπ̄(s′2) = 1
K . Using standard techniques for

lower bounds, we can show that for any algorithm that learns γ correctly with constant probability it holds that the number
of samples E[n(s′2, a1)] = Ω

(
1
ϵ2

)
, otherwise the value function of vπ1 will not be accurately estimated. On the other hand

the uniform mixture policy π̄ after sampling a dataset of size n will visit (s2, a1) for ndπ̄(s′2, a1) =
n
K times in expectation.

This implies that

n = Ω

(
K

ϵ2

)
.

On the other hand the expected disagreement is exactly 2 and comes from the initial state s1.
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B Proofs from Section 5

B.1 Proofs related to preprocessing in Algorithm 4

In this section, we prove the correctness of Algorithm 4 stated in Lemma 9.

Proof of Lemma 9. We will first show in Lemma 13 that the algorithm terminates in the desired number of iterations and
epochs. We then show in Lemma 14 that G has the desired coverage and finally in Lemma 15 the property on the occupancy
measures. Combining those results with a union bound completes the proof.

Lemma 13. With probability at least 1−O(δ), Algorithm 4 terminates within log2
(
80S
ϵ log c

δ

)
iterations and thus samples

at most O
(
SK
ϵ log c

δ

)
trajectories.

Proof. It suffices to show that with the desired probability the termination condition maxk τk ≤ 10
3 log c

δ must be triggered
in iteration i = log2

(
80S
ϵ log c

δ

)
.

We first show that if the escape probability pk from G under each policy πk is at most ϵ
10 , then the algorithm terminates

with high probability. Let ℓ = log(c/δ) and n =
⌈
10ℓ
ϵ

⌉
be the size of Hk. Then τk can be written as the sum of n i.i.d.

Bernoulli random variables with parameter pk. By a simple application of Bernstein’s inequality, we have with probability
at least 1− δ/c that

τk ≤ pk · n+
√
2nℓpk(1− pk) +

2ℓ

3
(Bernstein’s inequality)

≤ pk · n+
√
2nℓpk +

2ℓ

3
(pk ∈ [0, 1])

≤ 3npk
2

+
5ℓ

3
(AM-GM inequality)

≤
(
33

2
· pk
ϵ

+
5

3

)
ℓ. (n ≤ 11ℓ

ϵ )

Hence, when pk ≤ ϵ · 10·2
33·3 ≤

ϵ
10 , then τk ≤ 10

3 ℓ. Taking a union bound over k implies that with probability at least
1−O(δ) the algorithm returns in iteration i if maxk pk ≤ ϵ

10 .

We will now show that the occupancy measure of any state s /∈ G cannot be too large for any of the policies. Consider
any s ∈ S and m = 2i. Since wk(s) is the sum of m i.i.d. Bernoulli random variables with parameter dπk(s), it holds by
Bernstein’s inequality with probability at least 1− δ/c that

dπk(s)m ≤ wk(s) +
√
2ℓ(1− dπk(s))dπk(s)m+

2ℓ

3

≤ wk(s) +
√

2ℓdπk(s)m+
2ℓ

3

≤ wk(s) +
dπk(s)m

2
+

5ℓ

3
. (AM-GM inequality)

Rearranging terms implies for states s /∈ G

dπk(s)

4
≤ wk(s)

2m
+

5ℓ

6m
≤ 11ℓ

6m
.

After taking the union bound over k and s, we can conclude that dπk(s) ≤ 8ℓ
m for all s and k. Further, since

pk ≤
∑

s∈S\G

dπk(s) ≤ 8Sℓ

m

for all k ∈ [K], we can conclude that the algorithm will terminate with high probability if m = 2i ≥ 80Sℓ
ϵ .
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Lemma 14. If Algorithm 4 returns g within the first c/K iterations, then with probability at least 1 − O(δ), the escape
probability of πk from G for each k ∈ [K] is at most ϵ. This means that the probability that an episode sampled according
to any πk contains a state outside of G is at most ϵ.

Proof. Consider a fixed iteration i and let pk represent the probability that an episode sampled with πk visits some state
outside of G. Let ℓ = log(c/δ) and n = 10ℓ

ϵ be number of trajectories in Hk. Then τk can be written as the sum of n i.i.d.
Bernoulli random variables with parameter pk. By a simple application of Bernstein’s inequality, we have with probability
at least 1− δ/c that

p · n ≤ τ +
√
2nℓpk(1− pk) +

2ℓ

3
(Bernstein’s inequality)

≤ τ +
√
2nℓpk +

2ℓ

3
(pk ∈ [0, 1])

≤ τ +
npk
2

+
5ℓ

3
(AM-GM inequality)

Hence, by rearranging this chain of inequalities, we get that when the algorithm terminates in iteration i

p ≤ 2
τk
n

+
10ℓ

3n
≤ 20ℓ

3n
≤ 10ℓ

n
= ϵ.

Taking a union bound over k ∈ [K] and i ∈ [imax] where imax = c/K finishes the proof.

Lemma 15. If Algorithm 4 returns g within the first c
SK iterations, then with probability at least 1 − O(δ), the following

property holds for each s ∈ G

dg(s)(s) ≥ 1

4
max
k∈[K]

d̂k(s) ≥
1

36
max
k∈[K]

dπk(s).

Proof. Consider a fixed i, k ∈ [K] and s ∈ S . Denote ℓ = log c
δ . Since wk(s) is the sum of m i.i.d. Bernoulli random

variables with parameter dπk(s), it holds by Bernstein’s inequality with probability at least 1− δ/c that

dπk(s)m ≤ wk(s) +
√
2ℓ(1− dπk(s))dπk(s)m+

2ℓ

3

≤ wk(s) +
√

2ℓdπk(s)m+
2ℓ

3

≤ wk(s) +
dπk(s)m

2
+

5ℓ

3
. (AM-GM inequality)

Rearranging terms implies that

dπk(s)

4
≤ wk(s)

2m
+

5ℓ

6m
≤ wk′(s)

2m
+

5ℓ

6m

where k′ ∈ argmaxk wk(s). Assume s ∈ G, then wk′(s) ≥ 2ℓ and hence

dπk(s)

4
≤ wk′(s)

2m
+

5ℓ

6m
≤ wk′(s)

m
= d̂k(s).

Conversely, Bernstein’s inequality also gives with probability at least 1− δ/c that

wk(s) ≤ dπk(s)m+
√
2ℓ(1− dπk(s))dπk(s)m+

2ℓ

3

≤ dπk(s)m+
√

2ℓdπk(s)m+
2ℓ

3

≤ 3dπk(s)m

2
+

5ℓ

3
. (AM-GM inequality)

Rearranging terms gives for k with wk(s) ≥ 2ℓ that

d̂k(s)

6
= d̂k(s)−

5

6
d̂k(s) ≤ d̂k(s)−

5ℓ

3m
≤ 3

2
dπk(s).
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Hence, d̂k(s) ≤ 9dπk(s) for such k. Taking a union bound over k, s and i yields the desired statement.

Lemma 16. With probability at least 1−O(δ), Algorithm 4 returns a function g : G → Π such that for all s ∈ G

dg(s)(s) ≥ 1

12960
· ϵ
S

Proof. Consider a fixed i, k ∈ [K] and s ∈ S and let m = 2i. By Bernstein’s inequality and AM-GM, we get with
probability at least 1− δ/c

wk(s) ≤ dπk(s)m+
√

2ℓ(1− dπk(s))dπk(s)m+
2ℓ

3

≤ dπk(s)m+
√

2ℓdπk(s)m+
2ℓ

3
≤ 3dπk(s)m

2
+

5ℓ

3
.

where ℓ = log(c/δ) Rearranging and using that for all s ∈ G there is a k′ with wk′(s) ≥ 2ℓ, we have

max
k

dπk(s) ≥ 2

9
· ℓ
m

Applying Lemma 13 and a union bound over s, k and i gives that with probability at least 1−O(δ), we have for all s ∈ G

max
k

dπk(s) ≥ 2

9
· ϵ

80S
.

Combining this with Lemma 15 yields that

dg(s)(s) ≥ 1

12960
· ϵ
S
.

B.2 Proofs for Oracle Algorithm 3

Lemma 17. Assume that Algorithm 3 receives a g : G → Π such that the escape probability for all π1, . . . , πk from G is at
most ϵ. Then the bias of the sampling oracle is at most Hϵ.

Proof. Let πk be a target policy and define P ′
π(S1, S2, . . . , SH) as the distribution over (state) trajectories induced by

sampling repeatedly with Algorithm 3 with inputs Sh and Ah = πk(Sh) to generate Sh+1. Further let Pπ be the distribution
over (state-) trajectories when sampling directly with π in the MDP. Then the bias of Og can be written as

βOg
= max

k∈[K]

∣∣∣∣∣EPπk

[
H∑

h=1

r(Sh, πk(Sh))

]
− EP ′

πk

[
H∑

h=1

r(Sh, πk(Sh))

]∣∣∣∣∣
Denote by Z =

∑H
h=1 r(Sh, πk(Sh)) the return random variable and by E the event that Sh ∈ G for all h ∈ [H]. Note that

s⊥ /∈ G.

We will first show that for all policies πk, the probability of E is identical under Pπk
and P ′

πk
using the Markov-property

of the process. We write

Pπk
(E) =

∑
s1,...,sH∈GH

Pπk
(S1 = s1, . . . , SH = sH)

=
∑

s1,...,sH∈GH

Pπk
(S1 = s1) ·

H∏
h=2

Pπk
(Sh = sh|Sh−1 = sh−1) (Markov property)

Now, by the construction of the oracle, we have that

Pπk
(Sh = sh|Sh−1 = sh−1) = P ′

πk
(Sh = sh|Sh−1 = sh−1)
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for all sh ∈ G and sh−1 ∈ G since the oracle returns a next state sample by first reaching sh−1 ∈ G in some manner and
then drawing sh by executing the action πk(sh−1) in the environment. Hence Pπk

(E) = P ′
πk
(EH) holds. Further note that

we actually have just shown the stronger result that

Pπk
(S1 = s1, . . . , SH = sH) = P ′

πk
(S1 = s1, . . . , SH = sH)

for all (s1, . . . , sH) ∈ GH . Therefore, it also holds that EPπk
[Z|E ] = EP ′

πk
[Z|E ]. We can now use these properties to

bound the bias as

βOg
= max

k∈[K]

∣∣∣EPπk
[Z]− EP ′

πk
[Z]
∣∣∣

= max
k∈[K]

∣∣∣EPπk
[Z|E ]Pπk

(E) + EPπk

[
Z|Ē

]
Pπk

(Ē)− EP ′
πk

[Z|E ]P ′
πk
(E)− EP ′

πk

[
Z|Ē

]
P ′
πk
(Ē)
∣∣∣

= max
k∈[K]

∣∣∣EPπk

[
Z|Ē

]
Pπk

(Ē)− EP ′
πk

[
Z|Ē

]
P ′
πk
(Ē)
∣∣∣

= max
k∈[K]

∣∣∣EPπk

[
Z|Ē

]
− EP ′

πk

[
Z|Ē

]∣∣∣Pπk
(Ē) (Pπk

(Ē) = P ′
πk
(Ē))

= H max
k∈[K]

Pπk
(Ē) (Z ∈ [0, H])

≤ Hϵ (escape probability bounded for all πk by ϵ)

Lemma 18. Assume Algorithm 3 is run with parameter g : G → Π on a state-action pair (s, a) where with s ∈ G. Then
with probability at least 1− δ, the sampling cost is

log(1/δ)

dg(s)(s)

Proof. Each episode the oracle has probability p = dg(s)(s) to reach s and terminate. Consider the probability that the
total number of episodes τ required by the oracle exceeds a number n = 1

p log(1/δ)

P (τ > n) ≤ (1− p)n ≤ exp (−pn) = exp

(
p

p
log(δ)

)
= δ.

B.3 Proof of Theorem 11

Proof of Theorem 11. The correctness follows directly from the guarantee for Algorithm 1 in Theorem 3, the bound on the
oracle bias in Lemma 17 and the guarantee for the preprocesing phase in Lemma 9. This also implies that the total number
of episode collected in the preprocessing phase with accuracy parameter ϵ/H is

O

(
SHK

ϵ
log

log(SK/ϵ)

δ

)
It remains to determine the number of episodes collected in the oracle calls.

To that end, consider a fixed sampling cost c(s) ∈ [0, cmax] associated with each state and denote by

Xi =
∑
s∈S

∑
a∈A

1
{
K1:H

i (s, a) > 0
}
c(s)

the sample cost accrued in the i-th call to the trajectory sampler. Note that Xi ∈ [0, cmaxKH]. Applying Bernstein’s
inequality, we get that the total sample cost is bounded as∑

i=1n

Xi ≤ nE[X1] +
√
2nℓE[X1]cmaxKH +

2ℓcmaxKH

3

≤ 3

2
nE[X1] +

5ℓ

3
cmaxKH
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with probability at least 1 − O(δ) where ℓ = log(1/δ). Take a union bound over all S and let c : S → N be a sampling
cost of the oracle associated with each s. Then the total sampling cost of Algorithm 1 is

3

2
n · E

 ∑
(s,a)∈K1:H

c(s)

+
5ℓ

3
cmaxKH

with probability at least 1−O(δ). Here we use (s, a) ∈ K1:H to mean the sum over all state-action pairs with non-empty
entry in K1:H and K1:H is the random arrangement produced by the coupled trajectory sampler.

To determine the sampling cost, note that the total number of calls to the oracle with each state is at most nK. Therefore,
by Lemma 18 the number of episodes during each of those calls is bounded for all s ∈ G by

c(s) :=
log(nSK/δ)

dg(s)(s)

with probability at least 1−O(δ). For all s ∈ S \ G, we set c(s) = 0. Note that by Lemma 16, we have that c is uniformly
bounded by cmax = 12960S log(nSK/δ)

ϵ . Combining this with the total sampling cost bound above, we get that the total
number of episodes sampled during oracle calls from Algorithm 1 is bounded as

O

nE

 ∑
(s,a)∈K1:H

log(SHK/ϵδ)

dg(s)(s)

+
SH2K

ϵ
log2

SK

ϵδ


= O

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

 log2
SK

ϵδ
+

SH2K

ϵ
log2

SK

ϵδ


Hence, the total number of trajectories are bounded by

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

+
SH2K

ϵ



B.4 Proof of Theorem 12

Proof of Theorem 12. The algorithm combines the set G discovered in Algorithm 4 together with the reward-free explo-
ration idea in Jin et al. (2020). Let Ak denote the action space of policy k, that is the restriction of A to the actions only
played by πk on G. Let A[K] =

⋃
k∈[K]Ak. We begin by constructing an augmented MDP with statespace G

⋃
{s̄},

action space A[K] and transition kernel P̄ defined as follows. P̄ (s′|s, a) = P (s′|s, a) for all (s′, s, a) ∈ G2 × A[K] and
P̄ (s̄|s, a) = 1−

∑
s′∈G P (s′|s, a). Note that since there are no states s ∈ S \ G, P̄ is well-defined. Next, suppose that we

need to emulate the generative model oracle to reach state s ∈ G. We instantiate the rewards of the augmented MDP with
0 for all (s′, a), s′ ̸= s and equal to 1 on (s, a) for all a ∈ A[K]. Then the maximum value function v∗ in this MDP has
value exactly equal to d(s).

Next, we use the ORLC algorithm from Dann et al. (2019). Theorem 4.1 (Dann et al., 2019) guarantees that after T rounds
of the ORLC algorithm, the algorithm will have returned at least one policy πt, together with a certificate for sub-optimality

ϵt = Õ

(√
SAH log(1/δ)

T + S2AH3 log(1/δ)
T

)
with probability 1− δ, where the Õ notation hides poly-logarithmic factors in

S,A,H, T . That is, we have w.p. 1− δ

|d(s)− vπt | ≤ ϵt ≤ Õ

(√
SAH log(1/δ)

T
+

S2AH3 log(1/δ)

T

)
.

The above bound is not entirely sufficient for our purposes, however, a more careful reading of the proof, indeed shows
that we can bound

|d(s)− vπt |

≤Õ

(√
SAHvπt log(1/δ)

T
+

S2AH3 log(1/δ)

T

)
.
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Using the standard self-bounding trick now implies that after T = O(S2AH3 log(1/(δd(s)))/d(s)) rounds of ORLC it
holds that dπt(s) ≥ d(s)

2 . We note that d(s) ≥ dmax(s) for which we already have a constant approximation and so we

can set T = Θ̃
(

|G|2KH3

dmax(s)

)
large enough to ensure that with probability 1− δ we always find a πt with dπt(s) ≥ d(s)

2 . It is

in fact possible to only use T = Θ̃
(

|G|2KH3

d(s)

)
by hypothesis testing log(1/dmax(s)) values possible values of d(s) on an

exponential grid of [0, 1] for log(1/δ) runs of ORLC, however, we leave this argument for future work.

The above argument implies that after Θ̃
(∑

s∈G
|G|2KH3

dmax(s)

)
iterations of ORLC we have a family of policies which can

simulate a generative model oracle to state s within at most O(log(1/δ)/d(s)) trajectories. By Lemma 16, we have
dmax(s) = Ω̃( ϵ

HS ) for all s ∈ G(ϵ). We can therefore bound the total number of episode required to identify the sampling
policies for all s ∈ G as

Õ

(∑
s∈G

|G|2KH3

dmax(s)

)
= Õ

(
S|G|3KH4

ϵ

)
.

B.5 Using preprocesisng phase for occupancy measure estimates

As discussed in Section 3, Yin and Wang (2020) proved that the mean-squared error of the model-based round-robin
estimator is bounded as

E[(v̂πk − vπk )
2] ≤ HK

n
·

H∑
h=1

Eπk

[
dπk(sh, ah)∑K
j=1 d

πj (sh, ah)

]
+ o

(
1

n

)
.

We can use the preprocessing phase of our sampling oracle to estimate the RHS of this bound from empirical data and
remove the dependency in its lower order terms depend on the smallest occupancy measure among the visited states. We
state this result in terms of a fixed number of samples n:

Theorem 19. There exists an algorithm that after n samples from the round-robin model-based estimator can guarantee
that

E
[
(v̂πk − vπk )

2
]
≲

(
HK

n
·

H∑
h=1

Eπk

[
dπk(sh, ah)∑K
j=1 d

πj (sh, ah)

]
×

(
1 +

√
KS

n

)
+

K4H3S

n2

)
. (3)

Furthermore, the RHS of the inequality in (3) can be estimated up to multiplicative constants with probability 1− δ.

Proof. To show the inequality we use the restricted MDP construction from the proof of Theorem 12. Fix a target policy

π and let ϵ =
√

1
n . We can then show using a similar argument to that in Lemma 17 that the occupancy measure between

the truncated and original MDP at level h ∈ H can deviate at most by O(hϵ)∣∣∣∣∣∑
sh

d̄π(sh)− dπ(sh)

∣∣∣∣∣ ≤ 3hϵ.

This then implies that |v̄π(s) − vπ(s)| ≤ H2ϵ and so the total bias incurred by using the truncated MDP is at most O(ϵ).
To get the first part of the Theorem we now plug into the Theorem 3.1 (Yin and Wang, 2020) and notice that the minimum
occupancy measure of the behavior policy is at least ϵ

K|G(ϵ)| on the augmented MDP. The second part of the theorem
follows from Lemma 16 and Lemma 15.


