
Q-learning for Quantile MDPs:
A Decomposition, Performance, and Convergence Analysis

Jia Lin Hau Erick Delage
University of New Hampshire

Durham, NH
GERAD, HEC Montréal, and
MILA - Quebec AI Institute

Esther Derman Mohammad Ghavamzadeh Marek Petrik
MILA - Quebec AI Institute and

Université de Montréal
Amazon AGI

Sunnyvale, CA
University of New Hampshire

Durham, NH

Abstract

In Markov decision processes (MDPs), quan-
tile risk measures such as Value-at-Risk are
a standard metric for modeling RL agents’
preferences for certain outcomes. This paper
proposes a new Q-learning algorithm for quan-
tile optimization in MDPs with strong conver-
gence and performance guarantees. The algo-
rithm leverages a new, simple dynamic pro-
gram (DP) decomposition for quantile MDPs.
Compared with prior work, our DP decompo-
sition requires neither known transition proba-
bilities nor solving complex saddle point equa-
tions and serves as a suitable foundation for
other model-free RL algorithms. Our numeri-
cal results in tabular domains show that our
Q-learning algorithm converges to its DP vari-
ant and outperforms earlier algorithms.

1 INTRODUCTION

The practicality of reinforcement learning (RL) models
has led to their widespread integration in autonomous
decision-making (Kiran et al., 2021; Kiumarsi et al.,
2017). Traditional metrics focusing on expected value
fail to address the uncertainties of random returns, thus
acknowledging that a one-size-fits-all model is insuffi-
cient (Howard and Matheson, 1972; Tamar et al., 2012).
This observation is blatant in various applications such
as motion control (Ahmadi et al., 2021; Braun et al.,

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

2011; Hakobyan and Yang, 2021), autonomous sys-
tems (Jin et al., 2019; Wang and Chapman, 2022),
healthcare (Köse, 2016; Singh et al., 2020), or capi-
tal investment (Min et al., 2022), where each necessi-
tates a specific risk-sensitive objective. Risk-averse RL
(RARL) endeavors to align with the decision-maker’s
preferences by tailoring the objective function accord-
ing to their risk interests (Yoo et al., 2024). Common
measures in RARL include exponential utility (Borkar,
2002; Hau et al., 2023b), target value (Lin et al.,
2003; Wu and Lin, 1999), value-at-risk (VaR) (Chow
et al., 2018; Hau et al., 2023a; Li et al., 2022), condi-
tional VaR (CVaR) (Bäuerle and Ott, 2011; Chow and
Ghavamzadeh, 2014; Lim and Malik, 2022), or mean-
variance objectives (Luo et al., 2024; Tamar et al.,
2012), among others.

Quantile measures such as VaR are used in data centers
to ensure the reliability of cloud computing services (De-
Candia et al., 2007), in epidemiology to understand
how exposure to disease differs across continuous health
outcomes distributions, e.g., BMI (Wei et al., 2019), or
more standardly in financial markets to assess counter-
party risk (Alexander and Sarabia, 2012; Emmer et al.,
2015). Although VaR does not enjoy the mathematical
properties of CVaR and thus is not a coherent risk,
its numerical advantages for backtesting have led the
Basel Committee to retain it for credit value adjust-
ment (Embrechts et al., 2018; on Banking Supervision,
2023). Unlike expected value, quantile risk measures
account for the return distribution. For example, the
expectation may favor low probability outcomes yield-
ing a high return, whereas the α-level-VaR guarantees
the gain is greater or equal to that value with high prob-
ability 1 − α. In RARL, recent years have witnessed
an increasing interest in quantile measures, especially
since the emergence of distributional RL (Bellemare
et al., 2017; Dabney et al., 2018b) and its successful

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

application in robotics (Majumdar and Pavone, 2017).

A major challenge in deriving practical RL solutions is
that a full knowledge of the environment is often inac-
cessible. This can be even more problematic in RARL
where risk-averse strategies must involve the full return
distribution rather than just its expectation. Previous
works have presented model-free methods to find op-
timal CVaR policies (Dabney et al., 2018a; Keramati
et al., 2020; Lim and Malik, 2022), but all assumed
the existence of an optimal Markov policy. Such as-
sumption is valid for mean and entropic risk objectives
but generally not for quantile-based objectives such as
CVaR or VaR (Ben-Tal and Teboulle, 2007; Hau et al.,
2023a). Indeed, optimal-VaR policies can potentially
all be history-dependent, so restricting the search to
Markov policies can produce suboptimal return (Hau
et al., 2023a; Li et al., 2022).

In this study, we propose a new dynamic program-
ming (DP) formulation for quantile MDPs (see Li et al.
2022) that we refer to as VaR-MDP since it seeks a
policy that is optimal with respect to the VaR of the
total discounted reward. Compared with prior work,
our DP decomposition requires neither known tran-
sition probabilities nor solving complex saddle point
equations. As a second contribution, we introduce VaR-
Q-learning, the first model-free method that provably
optimizes the return distribution’s VaR. We develop
a rigorous proof of convergence to an optimal policy,
thus ensuring the validity of our approach. Although
our VaR-Q-learning can be seen as a simple variant
of the risk-sensitive Q-learning methods developed in
distributional RL (Bellemare et al., 2017; Dabney et al.,
2018a,b), we show that our slight modification makes
a meaningful difference in the quality of the computed
policy.

We first delineate our research setting and preliminary
concepts in Section 2. Then, we introduce new DP
equations in Section 3 to solve VaR-MDPs while being
simpler than existing methods. This enables us to pro-
pose a novel quantile Q-learning algorithm in Section 4,
which optimizes the VaR-MDP from sampled trajec-
tories, and establish its convergence property. Finally,
numerical experiments presented in Section 5 illustrate
the effectiveness of our algorithm.

2 PRELIMINARIES AND FORMAL
MODEL

We first introduce our notations and overview relevant
properties for quantile and VaR risk measures. We then
formalize the MDP framework with VaR objective,
which we name VaR-MDP in short. We prove the
claims of this section in Appendix A.

Notation. The augmented reals are R̄ := R ∪
{−∞,∞} and we denote by I the class of closed in-
tervals in R. Given a measurable space E , we abuse
notation and denote by RE the set of all measurable
functions from E to R, with R̄E the measurable func-
tions to R̄, and finally with IE the functions to I.
Given a finite set Z = {1, . . . , Z}, the probability sim-
plex is ∆Z := {y ∈ RZ

+ | 1⊤y = 1}. For conciseness,
we denote by [n] the sequence of integers from 0 to n.
The set of discrete real-valued random variables with
finite support is denoted by X. Random variables are
marked with a tilde, e.g., x̃ ∈ X.

Quantiles and Value-at-Risk The quantile of a
random variable x̃ ∈ X at level α ∈ [0, 1] is any τ ∈ R̄
such that P [x̃ ≤ τ] ≥ α and P [x̃ ≥ τ] ≥ 1− α. It may
not be unique but lies in the interval [q−α (x̃), q+α (x̃)],
where

q−α (x̃) := min
{
τ ∈ R̄ | P [x̃ ≤ τ] ≥ α

}
,

q+α (x̃) := max
{
τ ∈ R̄ | P [x̃ < τ] ≤ α

}
. (1)

The maximum in Eq. (1) exists because the mapping
τ 7→ P [x̃ < τ] is lower semi-continuous. So does the
minimum, since τ 7→ P [x̃ ≤ τ] is upper semi-continuous.
Also, q−0 (x̃) = −∞ and q+1 (x̃) = ∞, while q−α (x̃) ∈ R
for all α ∈ (0, 1] and q+α (x̃) ∈ R for all α ∈ [0, 1).

Monetary risk measures generalize the average cri-
terion to account for uncertain outcomes. Among
them, quantile-based measures like VaR are the most
common (Follmer and Schied, 2016; Shapiro et al.,
2014). Given a risk level α ∈ [0, 1], the VaR function
VaRα : X→ R̄ is defined as the largest 1−α confidence
lower bound on the value of x̃, i.e.,

VaRα [x̃] := q+α (x̃). (2)

By convention, VaRα [0] = 0 if α ∈ [0, 1) and ∞ other-
wise.

Elicitability. Based on the works of Gneiting (2011)
and Bellini and Bignozzi (2015), a risk measure is
elicitable if it is the solution of an empirical risk min-
imization problem. In particular, a quantile can be
estimated via quantile regression with the loss (Koenker
and Bassett, 1978):

ℓα(δ) := max {αδ,−(1− α)δ} , (3)

where δ represents the residual error between the pre-
diction and the noisy observation. Thus, quantile mea-
sures are elicitable as stated below.

Lemma 2.1. For any x̃ ∈ X and α ∈ [0, 1], it holds
that

argmin
y∈R

E[ℓα(x̃− y)] = [q−α (x̃), q
+
α (x̃)] ∩ R.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

As explained in (Bellini and Bignozzi, 2015, Ex. 3.8),
VaR is not elicitable unless x̃ is continuous, i.e. q−α (x̃) =
q+α (x̃). Hence, methods that rely on statistical estima-
tion of conditional VaR using Lemma 2.1 must contend
with potential underestimation.

MDPs with Value-at-Risk Objective We formu-
late the decision process as an MDP (S,A, r, p, γ, T)
that comprises a set of states S = {1, . . . , S}, a set of
actions A = {1, . . . , A}, a reward function r : S ×A →
[R, R̄], and a transition probability p : S × A → ∆S ,
where p(s, a, s′) denotes the probability to transit from
s ∈ S to s′ ∈ S after taking action a ∈ A. The co-
efficient γ ∈ [0, 1] is a discount factor and T ∈ N is
the decision horizon. We allow for a discount factor
γ ∈ [0, 1] to study a more general framework, which
can be extended to discounted-infinite horizon MDPs
when γ < 1 (Li et al., 2022, Theorem 6). The agent
aims to find a policy π that optimizes the static VaR
of the discounted sum of returns,

ρ(π) := VaRπ,s0
α0

[
T−1∑

k=0

γkr(s̃k, ãk)

]
, (4)

for some initial state s0 ∈ S and reference risk level
α0 ∈ (0, 1). In Eq. (4), the distribution of s̃k for k ≥ 1
is implicitly governed by the transition model p while
the superscript s0 fixes the initial state. The policy
π governs the realization of actions ãk at all steps k,
which we formalize next.

Defining a history at time k ∈ [T − 1] as hk :=
(s0, a0, s1, a1, . . . , sk) ∈ Hk := (S×A)k×S, its append-
ing to a ∈ A and s′ ∈ S is denoted by ⟨hk, a, s

′⟩ ∈ Hk+1.
Given a time horizon t ∈ 1:T , a history-dependent
policy π := (πk)

t−1
k=0 is a sequence of decision rules

πk : Hk → A from histories to actions. Focusing on
the class of Markov or even stationary policies is stan-
dard for risk-neutral objectives because they are opti-
mal (Puterman, 2014). For risk-averse objectives, they
are generally not, so we must optimize over history-
dependent policies. We note that Hau et al. (2023a)
established the existence of optimal deterministic poli-
cies in Eq. (4), so we can ignore stochastic policies
without impairing optimality. Let Πt

HD be the set of all
history-dependent deterministic policies over horizon t.
All in all, given a quantile level α0 and an initial state
s0, we aim to find maxπ∈ΠT

HD
ρ(π).

Although the optimal policy for Eq. (4) is history-
dependent, it can still be computed using DP and
value iteration (Hau et al., 2023a; Li et al., 2022). As
we will see, the difference with standard DP lies in the
fact that the optimal state-action value function must
also adapt the quantile level α ∈ [0, 1] at each state
s ∈ S and t ∈ [T]. Let thus q⋆t : S × [0, 1]×A → R̄ be

the optimal state-action value function for t ∈ [T]:

q⋆t (s, α, a) := max
π∈Πt

HD:
π0(s)=a

VaRπ,s
α

[
t−1∑

k=0

γkr(s̃k, ãk)

]
. (5)

It is also convenient to define the optimal state value
function v⋆t : S × [0, 1]→ R̄ for horizon t ∈ [T] as

v⋆t (s, α) := max
π∈Πt

HD

VaRπ,s
α

[
t−1∑

k=0

γk · r(s̃k, ãk)
]
.

Similar to risk-neutral MDPs, the state value function
is related to the state-action value function through
v⋆t (s, α) = maxa∈A q⋆t (s, α, a),∀t ∈ [T] (see Ap-
pendix A.2).

3 VAR DYNAMIC PROGRAMMING

In this section, we devise a DP method to compute
an optimal policy for the static VaR objective in (4).
This section assumes that the model is known and
builds on the analysis in Hau et al. (2023a); Li et al.
(2022). Section 4 extends the approach to the model-
free setting. Regardless of the methodology, the key
idea of VaR-DP is to augment the state space with
a risk-level input and to perform Bellman recursions
on the augmented state-action value function. This
augmentation should not be arbitrary, as the ‘risk-
level state’ must evolve in a specific way to yield an
optimal policy. We report the proofs of this section in
Appendix B.

3.1 Model-based VaR-DP

We present the VaR-DP introduced by Li et al.
(2022) and revised in Hau et al. (2023a). Let
Bmax : R̄S×[0,1]×A → R̄S×[0,1]×A be the following Bell-
man operator. For all s ∈ S, α ∈ [0, 1], and a ∈ A:

(Bmaxq)(s, α, a) := r(s, a) + γ ·
max

o∈Osa(α)
min
s′∈S

max
a′∈A

q(s′, os′ , a
′), (6)

Osa(α) :=

{
o ∈ [0, 1]S |

∑

s′∈S
os′ · p(s, a, s′) ≤ α

}
.

Further consider the sequence q0(s, α, a) := VaRα [0],
and qt+1 := Bmaxqt for all t ∈ [T − 1]. The con-
straint set above depends on the transition model p
so Bellman recursions are model-based. Correspond-
ingly, a proper recursion on risk levels leads to an
optimal policy in terms of VaR return. Namely,
for k ∈ [T − 1], let αk : Hk → [0, 1] such that
α0(s) = α0, ∀s ∈ S, while αk+1(hk+1) satisfies both

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

αk+1(⟨hk, a, ·⟩) ∈ Osa(αk(hk)) and

qT−k(s, αk(hk), a) = r(s, a)

+ γ min
s′∈S

max
a′∈A

qT−k−1(s
′, αk+1(⟨hk, a, s

′⟩), a′).

Then, one can derive a greedy policy π := (πk)
T−1
k=0

from the constructed risk level mappings (αk)
T−1
k=0 , i.e.,

at each step k ∈ [T − 1] as

πk(hk) ∈ argmax
a∈A

qT−k(s, αk(hk), a), ∀hk ∈ Hk. (7)

The following theorem shows that the above Bellman
operator is optimal, in the sense that the sequence
q := (qt)

T−1
t=0 resulting from these recursions yields

Eq. (5). Accordingly, a policy π that is greedy for
that sequence q of state-action value functions at the
constructed risk-level sequence is optimal for the VaR
objective (4).

Theorem 3.1. Let a sequence q = (qt)
T
t=0 be such

that q0(s, α, a) = VaRα [0] and qt+1 := Bmaxqt for
t ∈ [T − 1]. Then, qt = q⋆t for all t ∈ [T], where
q⋆t is defined in (5). Moreover, if a policy π = (πk)

T−1
k=0

is greedy w.r.t. q as in (7), then it maximizes the VaR
objective (4).

Theorem 3.1 enables solving MDPs with static VaR
objectives through DP equations. An important limi-
tation of this representation is that it requires access
to the underlying transition model. This implicitly ap-
pears in the constraint set Osa(α) from Eq. (6), which
is required to find an optimal greedy policy accord-
ing to the risk level mappings (αk)

T−1
k=0 . Additionally,

each Bellman update requires solving a constrained
optimization problem, which slows down the learning
process.

This paper proposes a model-free learning algorithm
with theoretical convergence guarantees. To assess the
optimality of our value function updates, we reformu-
late VaR-DP equations in terms of Bellman operators
in Section 3.2. Our VaR-DP formulation can be seam-
lessly used for known or unknown transition probability
models, as it allows for statistical estimation from sam-
pled trajectories.

3.2 Nested VaR-DP

Let Bu : R̄S×[0,1]×A → R̄S×[0,1]×A be the following
VaR Bellman operator:

(Buq)(s, α, a) := VaRa,s
α [r(s, a) + γ ·max

a′∈A
q(s̃1, ũ, a

′)],

where the VaR is based on the joint distribution of
(s̃1, ũ) with s̃1 ∼ p(s, a, ·) and an independent ũ uni-
formly distributed on [0, 1] (ũ ∼ U([0, 1]). Correspond-

ingly, consider the following DP equations:

qu0 (s, α, a) := VaRα [0] , ∀s ∈ S, α ∈ [0, 1], a ∈ A,
qut+1 := Buq

u
t , ∀t ∈ [T − 1]. (8)

We must also adapt the risk level mappings to this
new Bellman recursion. Let α̂u

0(s0) := α0 and for
k ∈ [T − 1],

α̂u
k+1(hk+1) := min

{
o ∈ [0, 1] | max

a∈A
quT−k−1(sk+1, o, a)

≥ quT−k(sk, α̂k(hk), ak)− r(sk, ak)

γ

}
. (9)

The greediness criterion remains unchanged: at each
step k ∈ [T − 1], construct

πu
k(hk) ∈ argmax

a∈A
quT−k(s, α̂

u
k(hk), a), hk ∈ Hk. (10)

The following theorem states that this alternative
method is still valid for finding an optimal solution.
Theorem 3.2. Let a sequence qu = (qut)

T
t=0 be such

that qu0 (s, α, a) := VaRα [0] and qut+1 := Buq
u
t for t ∈

[T − 1]. Then, qut = q⋆t for all t ∈ [T], where q⋆t is
defined in (5). Moreover, if a policy πu = (πu

k)
T−1
k=0 is

greedy w.r.t. qu as in (10), then it maximizes the VaR
objective in (4).

In contrast to Hau et al. (2023a); Li et al. (2022),
Theorem 3.2 does not require knowing the transition
model. More importantly, it reduces VaR-MDPs to a
nested VaR conditional mapping:

v⋆T (s0, α0) = max
a0∈A

VaRa0,s0
α0

[
r(s0, a0) + γ ·

max
a1∈A

VaRũ1

[
r(s̃1, a1) + · · ·+ γ ·

max
aT−2∈A

VaRũT−2
[r(s̃T−2, aT−2) + γ ·

max
aT−1∈A

r(s̃T−1, aT−1)|s̃1:T−2, ũ1:T−2] . . . |s̃1, ũ1

]]
.

The value is still over an augmented state-space, but
this time, the risk tolerance is independently and uni-
formly drawn from [0, 1] at each step. This is particu-
larly suitable for sample-based RL and more amenable
to deep settings such as Dabney et al. (2018a,b); Lim
and Malik (2022). Yet, two issues remain to produce a
Q-learning procedure. First, the state space is infinite
because the risk level α is continuous. Second, the
elicitation procedure described in Lemma 2.1 underesti-
mates the VaR when the risk-to-go variable is discrete,
so we cannot directly employ quantile regression. To
address these issues, in the next section, we propose
an approximation scheme that replaces the Bellman
operator of Eq. (8) with either lower or upper bounds
of the appropriate quantiles.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

4 Q-LEARNING ALGORITHM AND
ANALYSIS

This section builds on the DP of Section 3 to derive a
new Q-learning algorithm for the static VaR objective.
Section 4.1 introduces an approximate Bellman opera-
tor that can be used to compute Eq. (8) in a tractable
way. Then, Section 4.2 proposes the VaR-Q-learning
algorithm and shows its convergence guarantees.

4.1 Discretized Quantile Q-functions

The challenge in computing the value function in Eq. (8)
stems from the fact that it is defined over a continuous
α ∈ [0, 1]. To make the computation tractable, we
propose to approximate the risk level α with properly
defined functions that yield lower and upper bounds
on the quantile value function.

Definition 4.1. Let f̄ , f : [0, 1] → [0, 1] be two non-
decreasing right-continuous functions such that f̄(α) >
α ≥ f(α) for all α ∈ [0, 1), while f̄(1) = 1 ≥ f(1).

The following result shows how the functions f, f̄ can
yield upper and lower bounds on VaR, and thus, on
the state-action value function q. This development
exploits that α 7→ q(s, α, a) is non-decreasing for each
s ∈ S and a ∈ A.

Lemma 4.2. For any x̃ ∈ X and α ∈ (0, 1), we have

VaRα(x̃) ≥ q+f(α)(x̃) = max argmin
q∈R

E[ℓf(α)(x̃− q)],

VaRα(x̃) ≤ q−
f̄(α)

(x̃) = min argmin
q∈R

E[ℓf̄(α)(x̃− q)],

where ℓα is defined as in Eq. (3) and f, f̄ as in Defini-
tion 4.1.

We now derive Bellman operators that facilitate the
construction of the Q-learning algorithm. First, the
set-valued operator Bu : RS×[0,1]×A → IS×[0,1]×A gen-
eralizes Bu as an empirical risk minimizer, i.e.,

(Buq)(s, α, a) := (11)

argmin
x∈R

Ea,s

[
ℓα

(
r(s, a) + γ ·max

a′∈A
q(s̃1, ũ, a

′)− x

)]
,

where ũ ∼ U([0, 1]). Second, we define the upper and
lower bounding Bellman operators Bf̄u and Bfu for each
b = (s, α, a), s ∈ S, α ∈ [0, 1], and a ∈ A as

(Bf̄uq)(b) :=
{
(Buq)(s, f̄(α), a) if f̄(α) < 1,

R̄+ max
s′∈S,a′∈A

q(s′, 1, a′) if f̄(α) = 1,

(Bfuq)(b) :=
{
(Buq)(s, f(α), a) if f(α) > 0,

R+ min
s′∈S,a′∈A

q(s′, 0, a′) if f(α) = 0.

The following theorem shows how to use these operators
to bound the value functions and the performance of
the computed policy.
Theorem 4.3. Suppose that q̄u0 = qu

0
= 0, and that

q̄ut+1 and qu
t+1

are right-continuous non-decreasing func-

tions in α satisfying q̄ut+1 ∈ (Bf̄u q̄ut) and qu
t+1
∈ (Bfuqut)

for all t ∈ [T − 1].1 Then, q̄ut ≥ q⋆t ≥ qu
t

for all
t ∈ [T], where q⋆t is defined in (5). Moreover, if a
policy π := (πk)

T−1
k=0 is greedy for qu, in the sense that

πk(hk) ∈ argmax
a∈A

qu
T−k

(s, αu
k(hk), a),

with αu as in (9), then it satisfies
maxa∈A qu

T
(s0, α0, a) ≤ ρ(π).

To simplify the exposition, we focus on the simple
approximation scheme that discretizes the risk-level α
using a uniform grid as below.
Example 4.4 (J-uniform discretization). Define
f, f̄ : [0, 1]→ [0, 1] as

f(α) := max {j/J | j/J ≤ α, j ∈ [J − 1]} ,
f̄(α) := max {j+1/J | j/J ≤ α, j ∈ [J − 1]} ,

for J ≥ 2. These functions satisfy the conditions of
Definition 4.1.

Under this uniform discretization scheme, Bu becomes
Bdu : RS×[J−1]×A → IS×[J−1]×A, defined for s ∈ S,
j ∈ [J − 1], and a ∈ A as

(Bduq)(s, j, a) := argmin
x∈R

1

J

J−1∑

j′=0

Ea,s

[
ℓ j

J

(
r(s, a) + γmax

a′∈A
q(s̃1, j

′, a′)− x

)]
.

Similarly, the Bellman operator Bfu becomes
Bdu : RS×[J−1]×A → IS×[J−1]×A, which is defined for
b = (s, j, a), s ∈ S, j ∈ [J − 1], and a ∈ A as

(Bduq)(b) :=
{
(Bduq)(s, j, a) if j ≥ 1,

R+ min
s∈S,a∈A

q(s, 0, a) if j = 0.
(12)

The following proposition states the correctness of the
discretized Bellman operators.
Proposition 4.5. Given the J-uniform discretization
of Example 4.4, let qd

0
:= 0 and qd

t+1
∈ Bduqdt , t ∈ [T−1].

Then, the sequence q := (q
t
)Tt=0 defined for t ∈ [T] as

q
t
(s, α, a) := qd

t
(s, J · f(α), a),∀s ∈ S, α ∈ [0, 1], a ∈ A,

provides a lower-bound for the optimal value function
q⋆ defined in Eq. (5). Moreover, it can be used to build
a policy π := (πt)

T
t=0 that achieves this lower-bound.

1Right-continuity and non-decreasingness can be ob-
tained by ensuring q̄t(s, α, a) = q̄t(s, α

′, a) if f̄(α) = f̄(α′).

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Algorithm 1 presents a procedure that constructs the
policy π described in Proposition 4.5.

Algorithm 1: Static VaR Policy Execution
Input: s0 ∈ S, α0 ∈ (0, 1), T, J ∈ N,

qd : [T]× S × [J − 1]×A → R̄
1 (s, j)← (s0, ⌊J · α0⌋)
2 for t = T, . . . , 1 do
3 a⋆ ← argmax

a∈A
qd
t
(s, j, a)

4 Execute a⋆ and observe r and s′

5 τ ← γ−1(qd
t
(s, j, a⋆)− r)

6 J ←
{
j′ ∈ [J − 1] | max

a′∈A
qd
t−1

(s′, j′, a′) ≥ τ

}

7 j ← J − 1 ; // arbitrary initialization
8 if J is not empty then
9 j ← minJ

10 s← s′

Note that we limit our analysis to schemes that calcu-
late a posteriori error bounds due to the discretization
of α. It is also important to study a priori structural
error bounds, which can guide the choice of the dis-
cretization. However, such analysis is beyond the scope
of this work.

4.2 VaR-Q-learning Algorithm

We now use the Bellman operators from Section 4.1 to
develop and analyze a new Q-learning algorithm that
solves the VaR objective in a model-free way.

An important obstacle in developing the Q-learning
algorithm is that the Bellman operators in Section 4.1
are set-valued and lack a unique solution. The opera-
tors are set-valued because the quantile is not unique.
As a result, even a well-designed iterative algorithm
may oscillate among multiple possible solutions. It is
common in RARL to replace the quantile loss function
with Huber’s loss to guarantee differentiability (Dabney
et al., 2018a); however, as we show in Appendix C.5,
Huber’s loss is insufficient to guarantee the uniqueness
of value function. Instead, we replace the loss ℓα of
Eq. (3) with the soft-quantile loss ℓκα : R→ R defined
for κ ∈ (0, 1] and α ∈ (0, 1) as

ℓκα(δ) :=





(1−α)κ
2

(
(δ + κ)2 − 2δ

κ − 1
)

if δ < −κ,
(1− α)

(
δ2

2κ

)
if δ ∈ [−κ, 0),

α
(

δ2

2κ

)
if δ ∈ [0, κ),

ακ
2

(
(δ − κ)2 + 2δ

κ − 1
)

if δ ≥ κ.

(13)

Figure 1: Policy performance ρ(π) on INV2.

We also need the derivative ∂ℓκα of ℓκα, which is

∂ℓκα(δ) :=





(1− α)
(
κδ + κ2 − 1

)
if δ < −κ,

1−α
κ δ if δ ∈ [−κ, 0),

α
κ δ if δ ∈ [0, κ),

α
(
κδ − κ2 + 1

)
if δ ≥ κ.

(14)

As the following lemma states, the function ℓκα is
strongly convex and has a Lipschitz-continuous gra-
dient. These properties are instrumental in showing
the value function’s uniqueness and analyzing our Q-
learning algorithm.

Lemma 4.6. The function m 7→ E[ℓκα(x̃−m)] with x̃
discrete is µ-strongly convex and has an L-Lipschitz
continuous derivative for each α ∈ (0, 1), κ ∈ (0, 1] with

µ = min {α, 1− α}κ, L = max {α, 1− α}κ−1.

Algorithm 2: VaR-Q-learning Algorithm
Input: Step sizes βi, stream of sampled

transitions (ti, si, ji, ai, s
′
i), for all i ∈ N

Init: qd
0
(b)← tR, ∀b ∈ [T]× S × [J − 1]×A

1 for i = 0, 1, 2, . . . do
2 bi ← (ti, si, ji, ai)
3 if ji > 0 and ti > 0 then
4 qd

i+1
(bi)← qd

i
(bi)+

βi

J

∑J−1
j′=0 ∂ℓ

κ
ji
J

(
r(si, ai)

+γ ·max
a′∈A

qd
i
(ti − 1, s′i, j

′, a′)− qd
i
(bi)

)

5 else
// Effectively do nothing

6 qd
i+1

(bi)← qd
i
(bi) + βi(tiR− qd

i
(bi))

Having introduced the soft-quantile function in (13),
we are now ready to adapt the Bellman operators to
ensure that the Q-learning algorithm converges to a
unique solution. In particular, we replace Bdu with Bd

κ

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

which is defined for b = (t, s, j, a), t ∈ 1:T , s ∈ S,
j ∈ 1:J − 1, and a ∈ A as

(Bd
κq)(b) := argmin

x∈R

Ea,s

[
ℓκj

J

(
r(s, a) + γmax

a′∈A
q(t− 1, s̃1, j̃

′, a′)− x

)]
,

and we replace the lower-bound operator Bdu by Bd
κ:

(Bd
κq)(b) :=

{
R · t if j = 0 ∨ t = 0,

(Bd
κq)(b) otherwise.

Note that the operators Bd
κ and Bd

κ are not calligraphic
because their objective functions possess unique mini-
mizers. In addition, Bd

κ and Bd
κ are applied to value

functions defined across all time steps simultaneously.
This representation is convenient because we focus on
the finite-horizon objective and must separate the time
step from the Q-learning iteration. That is, qd

i
(t, s, j, a)

represents the value function in the i-th iteration eval-
uated at time t, state s, risk level j, and action a.

Equipped with the above definitions, we now introduce
the VaR-Q-learning algorithm in Algorithm 2. The
algorithm seeks to identify the fixed-point qd = Bd

κq
d,

which is unique, as we show in Appendix C. The algo-
rithm adapts the standard Q-learning approach to the
risk-averse setting. It is well known that the standard
Q-learning algorithm can be seen as a stochastic gradi-
ent descent on the quadratic loss function (e.g., Asadi
et al. (2023)). Algorithm 2 also follows a sequence of
stochastic gradient steps, but it replaces the quadratic
loss function with the soft-quantile loss function ℓακ .

Algorithm 2 takes a stream of samples as input, and
thus, implies that it is an offline algorithm. However,
the algorithm and its analysis also apply to the online
setting in which the sample (ti, si, ji, ai, s

′
i) and step

size βi can depend on the values qd
0
, . . . , qd

i
and are

generated during the execution of the algorithm.

In an actual implementation, Line 6 in Algorithm 2
may be omitted since it does not modify the value func-
tion. We include this step to simplify our convergence
analysis, which considers each update as a stochastic
gradient step towards a contractive minimizer.

We require the following standard assumption to prove
the convergence of Algorithm 2.

Assumption 4.7. The input to Algorithm 2 satisfies
∀i ∈ N:

P
[
s̃′i = s′ | Gi−1, t̃i, s̃i, j̃i, ãi, β̃i

]
= p(s̃i, ãi, s

′), ∀s′ ∈ S,

almost surely, where Gi−1 := (β̃l, (t̃l, s̃l, j̃l, ãl, s̃
′
l))

i−1
l=0 .

The following theorem shows that Algorithm 2 enjoys
convergence guarantees that are comparable to those
in standard Q-learning.
Theorem 4.8. Let κ ∈ (0, 1]. Assume that the se-
quences {β̃i}∞i=0 and {(t̃i, s̃i, j̃i, ãi, s̃′i)}∞i=0 used in Al-
gorithm 2 satisfy Assumption 4.7 and the step-size
conditions

∞∑

i∈Ĩ(t,s,j,a)

β̃i =∞,
∑

i∈Ĩ(t,s,j,a)

β̃2
i <∞, a.s. ,

where Ĩ(t, s, j, a) := {i ∈ N | (t̃i, s̃i, j̃i, ãi) = (t, s, j, a)}.
Then, the sequence (q̃d

i
)∞i=0 produced by Algorithm 2

converges almost surely to qd∞ such that qd∞ = Bd
κq

d
∞.

The proof of Theorem 4.8 follows an approach similar
to that in the proofs of standard Q-learning (Bertsekas
and Tsitsiklis, 1996) with two main differences. First,
the algorithm converges even when γ = 1 and Bd

κ is not
an L∞ contraction. Instead, we show that Bd

κ is a con-
traction w.r.t. a particular weighted norm. Second, the
use of a non-quadratic function ℓκα requires a more care-
ful choice of the step-sizes than the standard analysis.
Moreover, our analysis of the non-quadratic function
extends the Q-learning analysis for risk-sensitive RL
with nested risk measures in Shen et al. (2014).

5 NUMERICAL EXPERIMENTS

In this section, we empirically test our theoretical re-
sults and algorithms on 7 tabular domains: machine
replacement (MR) (Delage and Mannor, 2010), gam-
blers ruin (GR) (Bäuerle and Ott, 2011; Li et al.,
2022), two inventory management problems (INV1 and
INV2) (Ho et al., 2021), riverswim (RS) (Strehl and
Littman, 2008), population (POP) (Kéry and Schaub,
2011; Tirinzoni et al., 2018), and cliffwalk (CW) (Sut-
ton and Barto, 2018). We set the horizon to T = 100
with γ = 0.9 to evaluate the risk of the random dis-
counted return. More details on each experiment can
be found in Appendix D and our code can be found at
https://github.com/MonkieDein/DRA-Q-LA.

Policy execution. We first validate the discretiza-
tion scheme presented in Algorithm 1 for model-free
policy execution. To this aim, we compare the per-
formance of Algorithm 1 (Alg 1) with other risk-
averse algorithms. As a standard baseline, we in-
clude the risk-neutral objective (E). Other baselines are
nested VaR (nVaR) (Ruszczyński, 2010), conditional
VaR (CVaR) (Bäuerle and Ott, 2011), Chow (Chow
et al., 2015), distributional VaR (VaR-IQN) (Dabney
et al., 2018a,b), and entropic VaR (EVaR) (Hau et al.,
2023b). We take a quantile discretization level of
J = 4096 to train Algorithm 1, Chow, and VaR-IQN.
Detail of all algorithms can be found in Appendix D.2.

https://github.com/MonkieDein/DRA-Q-LA

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

π CW INV1 INV2 MR POP RS GR

q̄d -9.11 237.19 970.08 -2.79 -14348.60 50.0 4.78
Algorithm 1 -9.11 237.02 968.01 -2.84 -14348.60 50.0 4.78
qd -9.11 236.88 967.60 -2.85 -14348.60 50.0 4.78

nVaR -87.20 202.46 950.60 -20.00 -14348.60 50.0 0.00
VaR-IQN -9.20 234.61 950.60 -18.21 -14348.60 50.0 0.00
E -9.72 234.43 953.00 -2.96 -15101.04 33.3 3.14
Chow -9.72 232.18 952.72 -4.13 -14348.60 50.0 3.14
CVaR -9.72 235.27 953.07 -3.00 -14348.60 50.0 3.14
EVaR -9.72 234.90 953.00 -2.96 -14348.60 50.0 2.82

Table 1: 25%-quantile of policy return: ρ(π) for VaR0.25.

Table 1 shows the 25%-quantile value obtained after
training, where each entry is the performance obtained
from 100,000 episodes generated from the final policy.
As we can see, our algorithm consistently outperforms
all other algorithms across all tested domains. We also
test our algorithm on a range of quantile levels α0 ∈
{0.05, 0.15, . . . , 0.85, 0.95}. Fig. 1 shows the quantile
value obtained on INV2 after training each baseline.
Our method shows an insensitive behavior to risk levels.
All other domains exhibit a similar trend across quantile
levels (see Appendix D), thus illustrating the robustness
of Algorithm 1 to different environments and risk levels.

We perform an ablative study to understand how the
discretization and selection of qd in Algorithm 1 con-
tribute to the solution quality. We compare the per-
formance of π with that of π̄ (defined analogously to
Eq. (10)) by confronting them to the bounds qd and q̄d

from Example 4.4. We take J ∈ {16, 256, 4096}. Fig. 2
demonstrates that the performance of π lies within
[qd, q̄d], whereas π̄ sometimes performs worse than q
on INV2. Furthermore, as the discretization level in-
creases, the bounding gap q̄d − qd shrinks, suggesting
that π converges to π⋆.

Quantile Q-learning. We now check the conver-
gence and performance of Algorithm 2, which approxi-
mates the VaR computed from DP. In Section 4.2, we
introduced a general VaR-Q-learning handling sampled
time horizons. However, in practice, we remove the
time index to reduce the computation overhead associ-
ated with updating time-indexed value functions. We
take κ ∈ {10−4, 10−8, 10−12, 0} for the κ-soft quantile
loss with a uniform discretization of J = 256. For κ = 0,
the loss is that of Eq. (3) while for positive values, it
is that of Eq. (13). Fig. 3 displays the 1-Wasserstein
distance between the quantile value estimated from
VaR-Q-learning and the quantile value qd computed
via DP (Eq. (12)). For all κ’s, we see that the distance
converges to zero as the number of samples increases.
Furthermore, the VaR-Q-learning policy performs sim-

ilarly to DP (see also Fig. 8 in Appendix D).

To summarize, our experiments illustrate that the pol-
icy returned by the VaR-Q-learning algorithm: (1) Out-
performs other baselines across both domains and quan-
tile levels; (2) Lies in [q, q̄]; and (3) Performs similarly
as the DP optimal policy π.

6 RELATED WORK AND
DISCUSSION

Several works propose model-free methods for RARL.
Mihatsch and Neuneier (2002) introduce a temporal
difference scheme for prediction and control with conver-
gence guarantees, but focus on a specific utility-based
shortfall risk. Converging Q-learning algorithms are
further extended in Borkar and Chandak (2021); Shen
et al. (2014) to a larger class of utility functions. How-
ever, all these works focus on a nested risk measure,
which provides Bellman equations at the expense of
interpretable policies. Differently, Stanko and Macek
(2021) study Q-learning for static CVaR, but their anal-
ysis relies on the DP equations of Chow et al. (2015),
which were shown to be incorrect by Hau et al. (2023a).
When considering static risk measures, one must use
a proper state augmentation to guarantee that an op-
timal policy is identified (Bäuerle and Ott, 2011; Hau
et al., 2023a). Otherwise, limiting assumptions such
as the existence of an optimal Markov policy are re-
quired (Lim and Malik, 2022).

Dabney et al. (2018a) present a similar goal as our
study and propose to train risk-sensitive policies using
a quantile representation of the return distribution. By
leveraging Q-learning for distributional RL (Bellemare
et al., 2017), they introduce IQN, an algorithm capa-
ble of achieving risk-sensitive behavior. Yet, as first
pointed out in Lim and Malik (2022), the greedy step
employed in IQN lacks a clear criterion of optimality
for the trained policy. In this regard, our Q-learning
algorithm modifies the optimal action selected at each

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

J=16 Discretization VaR

0.0 0.2 0.4 0.6 0.8 1.0

J=256 Discretization VaR

0.0 0.2 0.4 0.6 0.8 1.0

J=4096 Discretization VaR

Quantile level (α)

Q
ua

nt
ile

 v
al

ue

q̲ᵈ q̄ᵈ ρ(π̲) ρ(π̄)

Figure 2: Impact of discretization level J on VaR-MDP performance and Q-functions.

Figure 3: Distance between Q-values of Algo-
rithm 2 and DP value function for varying κ.

state-risk level pair, thus fixing IQN’s deficiency in pol-
icy optimization. For policy evaluation, our algorithm
reduces to a variant of IQN ensuring that the resulting
approximated distribution functions under-estimate (in
terms of stochastic ordering) the return distribution.
A detailed discussion on the differences between IQN
and our VaR-Q-learning algorithm can be found in
Appendix E.

Most related to our work is the one by Gilbert and
Weng (2016) in which the authors propose a Q-learning
algorithm to identify a VaR-optimal policy on a special
class of MDPs with end states. There, preferences are
expressed using an ordering over end states. Following
Borkar (1997), their algorithm is based on stochastic
approximation with two time-scales and its convergence
is only empirically demonstrated. They leave open the
question of how to generalize the approach to other
forms of MDPs and raise the question of whether quan-
tile regression methods could be used, which we address
it in this work.

Looking forward, the question of extending our results
to an infinite horizon setting with continuous state
and/or action spaces is definitely interesting. One

might also be able to adapt the convergence analysis of
policy evaluation for distributional RL in Rowland et al.
(2024) to formally establish the convergence properties
of Algorithm 2 under the non-strongly convex objective
ℓα.

Acknowledgements

We would like to thank Marc G. Bellemare for valuable
discussions on the topic of distributional RL and the
IQN algorithm. Esther Derman was partially funded by
IVADO. Erick Delage was partially supported by the
Canadian Natural Sciences and Engineering Research
Council [Grant RGPIN-2022-05261] and by the Canada
Research Chair program [950-230057]. Jia Lin Hau was
partially funded by the University of New Hampshire
dissertation year fellowship 2024-25. Jia Lin Hau and
Marek Petrik were partially supported by NSF grants
2144601 and 2218063.

References

Ahmadi, M., Xiong, X., and Ames, A. D. (2021). Risk-
averse control via CVaR barrier functions: Appli-
cation to bipedal robot locomotion. IEEE Control
Systems Letters, 6:878–883.

Alexander, C. and Sarabia, J. M. (2012). Quantile un-
certainty and value-at-risk model risk. Risk Analysis:
An International Journal, 32(8):1293–1308.

Asadi, K., Sabach, S., Liu, Y., Gottesman, O., and
Fakoor, R. (2023). TD convergence: An optimiza-
tion perspective. Advances in Neural Information
Processing Systems, 37.

Bäuerle, N. and Ott, J. (2011). Markov decision pro-
cesses with average-value-at-risk criteria. Mathemat-
ical Methods of Operations Research, 74:361–379.

Bellemare, M. G., Dabney, W., and Munos, R. (2017).
A distributional perspective on reinforcement learn-

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

ing. In International Conference on Machine Learn-
ing, pages 449–458.

Bellini, F. and Bignozzi, V. (2015). On elicitable risk
measures. Quantitative Finance, 15(5):725–733.

Ben-Tal, A. and Teboulle, M. (2007). An old-new
concept of convex risk measures: The optimized cer-
tainty equivalent. Mathematical Finance, 17(3):449–
476.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
Dynamic Programming. Athena Scientific.

Borkar, V. S. (1997). Stochastic approximation
with two time scales. Systems & Control Letters,
29(5):291–294.

Borkar, V. S. (2002). Q-learning for risk-sensitive con-
trol. Mathematics of operations research, 27(2):294–
311.

Borkar, V. S. and Chandak, S. (2021). Prospect-
theoretic q-learning. Systems & Control Letters,
156:105009.

Braun, D. A., Nagengast, A. J., and Wolpert, D. M.
(2011). Risk-sensitivity in sensorimotor control. Fron-
tiers in Human Neuroscience, 5:1.

Chow, Y. and Ghavamzadeh, M. (2014). Algorithms
for CVaR optimization in MDPs. Advances in Neural
Information Processing Systems, 27.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone,
M. (2018). Risk-constrained reinforcement learning
with percentile risk criteria. Journal of Machine
Learning Research, 18(167):1–51.

Chow, Y., Tamar, A., Mannor, S., and Pavone, M.
(2015). Risk-sensitive and robust decision-making: a
CVaR optimization approach. Advances in Neural
Information Processing Systems, 28.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R.
(2018a). Implicit quantile networks for distributional
reinforcement learning. In International Conference
on Machine Learning, pages 1096–1105.

Dabney, W., Rowland, M., Bellemare, M., and Munos,
R. (2018b). Distributional reinforcement learning
with quantile regression. In AAAI Conference on
Artificial Intelligence, volume 32.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., and Vogels, W. (2007). Dynamo:
Amazon’s highly available key-value store. ACM
SIGOPS Operating Systems Review, 41(6):205–220.

Delage, E. and Mannor, S. (2010). Percentile optimiza-
tion for Markov decision processes with parameter
uncertainty. Operations Research, 58(1):203–213.

Embrechts, P., Liu, H., and Wang, R. (2018). Quantile-
based risk sharing. Operations Research, 66(4):936–
949.

Emmer, S., Kratz, M., and Tasche, D. (2015). What is
the best risk measure in practice? A comparison of
standard measures. Journal of Risk, 18(2):31–60.

Föllmer, H. and Schied, A. (2002). Convex measures of
risk and trading constraints. Finance and Stochastics,
6(4):429–447.

Follmer, H. and Schied, A. (2016). Stochastic Finance:
Introduction in Discrete Time. De Gruyter Graduate,
fourth edition.

Gilbert, H. and Weng, P. (2016). Quantile reinforce-
ment learning. arXiv preprint arXiv:1611.00862.

Gneiting, T. (2011). Making and evaluating point
forecasts. Journal of the American Statistical Asso-
ciation, 106(494):746–762.

Hakobyan, A. and Yang, I. (2021). Wasserstein distribu-
tionally robust motion control for collision avoidance
using conditional value-at-risk. IEEE Transactions
on Robotics, 38(2):939–957.

Hau, J. L., Delage, E., Ghavamzadeh, M., and Petrik,
M. (2023a). On dynamic programming decompo-
sitions of static risk measures in Markov decision
processes. In Thirty-seventh Conference on Neural
Information Processing Systems.

Hau, J. L., Petrik, M., and Ghavamzadeh, M. (2023b).
Entropic risk optimization in discounted MDPs. In
International Conference on Artificial Intelligence
and Statistics, pages 47–76.

Ho, C. P., Petrik, M., and Wiesemann, W. (2021).
Partial policy iteration for L1-robust Markov decision
processes. Journal of Machine Learning Research,
22(275):1–46.

Howard, R. A. and Matheson, J. E. (1972). Risk-
sensitive Markov decision processes. Management
science, 18(7):356–369.

Jin, I. G., Schürmann, B., Murray, R. M., and Al-
thoff, M. (2019). Risk-aware motion planning for
automated vehicle among human-driven cars. In
2019 American Control Conference (ACC), pages
3987–3993. IEEE.

Keramati, R., Dann, C., Tamkin, A., and Brunskill, E.
(2020). Being optimistic to be conservative: Quickly
learning a CVaR policy. In AAAI Conference on
Artificial Intelligence, volume 34, pages 4436–4443.

Kéry, M. and Schaub, M. (2011). Bayesian population
analysis using WinBUGS: a hierarchical perspective.
Academic press.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P.,
Al Sallab, A. A., Yogamani, S., and Pérez, P. (2021).
Deep reinforcement learning for autonomous driv-
ing: A survey. IEEE Transactions on Intelligent
Transportation Systems, 23(6):4909–4926.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Kiumarsi, B., Vamvoudakis, K. G., Modares, H., and
Lewis, F. L. (2017). Optimal and autonomous control
using reinforcement learning: A survey. IEEE Trans-
actions on Neural Networks and Learning Systems,
29(6):2042–2062.

Koenker, R. and Bassett, G. (1978). Regression quan-
tiles. Econometrica, 46(1):33.

Köse, Ü. E. (2016). Optimal timing of living-donor
liver transplantation under risk-aversion. PhD thesis,
Bilkent Universitesi (Turkey).

Li, X., Zhong, H., and Brandeau, M. L. (2022). Quan-
tile Markov decision processes. Operations Research,
70(3):1428–1447.

Lim, S. H. and Malik, I. (2022). Distributional reinforce-
ment learning for risk-sensitive policies. Advances
in Neural Information Processing Systems, 35:30977–
30989.

Lin, Y., Wu, C., and Kang, B. (2003). Optimal models
with maximizing probability of first achieving target
value in the preceding stages. Science in China Series
A: Mathematics, 46:396–414.

Luo, Y., Liu, G., Poupart, P., and Pan, Y. (2024). An
alternative to variance: Gini deviation for risk-averse
policy gradient. Advances in Neural Information
Processing Systems, 36.

Majumdar, A. and Pavone, M. (2017). How should a
robot assess risk. Towards an Axiomatic Theory of
Risk in Robotics, pages 75–84.

Mihatsch, O. and Neuneier, R. (2002). Risk-sensitive
reinforcement learning. Machine Learning, 49:267–
290.

Min, S., Moallemi, C. C., and Maglaras, C. (2022). Risk-
sensitive optimal execution via a conditional value-
at-risk objective. arXiv preprint arXiv:2201.11962.

Nesterov, Y. (2018). Lectures on Convex Optimization.
Springer, 2nd edition.

on Banking Supervision, B. C. (2023). The Basel frame-
work. Basel III.

Puterman, M. L. (2014). Markov decision processes:
discrete stochastic dynamic programming. John Wiley
& Sons.

Rockafellar, R. T. and Wets, R. J. (2009). Variational
Analysis. Springer.

Rowland, M., Munos, R., Azar, M. G., Tang, Y., Os-
trovski, G., Harutyunyan, A., Tuyls, K., Bellemare,
M. G., and Dabney, W. (2024). An analysis of quan-
tile temporal-difference learning. Journal of Machine
Learning Research, 25(163):1–47.

Rudin, W. et al. (1964). Principles of mathematical
analysis, volume 3. McGraw-hill New York.

Ruszczyński, A. (2010). Risk-averse dynamic program-
ming for Markov decision processes. mathematical
Programming, 125:235–261.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2014).
Lectures on Stochastic Programming: Modeling and
Theory. SIAM.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K.
(2014). Risk-sensitive reinforcement learning. Neural
Computation, 26(7):1298–1328.

Singh, A., Halpern, Y., Thain, N., Christakopoulou, K.,
Chi, E., Chen, J., and Beutel, A. (2020). Building
healthy recommendation sequences for everyone: A
safe reinforcement learning approach. In FAccTRec
Workshop.

Stanko, S. and Macek, K. (2021). CVaR Q-learning. In
Computational Intelligence: 11th International Joint
Conference, IJCCI 2019, Vienna, Austria, September
17–19, 2019, Revised Selected Papers, pages 333–358.
Springer.

Strehl, A. L. and Littman, M. L. (2008). An analysis of
model-based interval estimation for Markov decision
processes. Elsevier.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Tamar, A., Di Castro, D., and Mannor, S. (2012).
Policy gradients with variance related risk criteria.
In international Conference on Machine Learning,
pages 387–396.

Tirinzoni, A., Petrik, M., Chen, X., and Ziebart, B.
(2018). Policy-conditioned uncertainty sets for ro-
bust markov decision processes. Advances in neural
information processing systems, 31.

Wang, Y. and Chapman, M. P. (2022). Risk-averse
autonomous systems: A brief history and recent
developments from the perspective of optimal control.
Artificial Intelligence, 311:103743.

Weber, S. (2006). Distribution-invariant risk measures,
information, and dynamic consistency. Mathematical
Finance, 16(2):419–441.

Wei, Y., Kehm, R. D., Goldberg, M., and Terry, M. B.
(2019). Applications for quantile regression in epi-
demiology. Current Epidemiology Reports, 6:191–199.

Wu, C. and Lin, Y. (1999). Minimizing risk models in
Markov decision processes with policies depending
on target values. Journal of Mathematical Analysis
and Applications, 231(1):47–67.

Yoo, G., Park, J., and Woo, H. (2024). Risk-conditioned
reinforcement learning: A generalized approach for
adapting to varying risk measures. In AAAI Con-
ference on Artificial Intelligence, volume 38, pages
16513–16521.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Q-learning for Quantile MDPs:
A Decomposition, Performance, and Convergence Analysis

Supplementary Materials

A PROOFS OF SECTION 2

A.1 Proof of Lemma 2.1

Proof. We aim to show that for x̃ ∈ X, α ∈ [0, 1],

argmin
y∈R

E[max(α(x̃− y),−(1− α)(x̃− y))] = [q−α (x̃), q
+
α (x̃)] ∩ R,

where [q−0 (x̃), q
+
0 (x̃)] ∩ R = (−∞, q+0 (x̃)] and [q−1 (x̃), q

+
1 (x̃)] = [q−0 (x̃),∞). For the case α ∈ (0, 1), we refer the

reader to (Gneiting, 2011, Thm. 9). We study the case α = 0 as a similar set of arguments holds when α = 1.
By definition of q+0 (x̃), for all ȳ ∈ R such that ȳ ≤ q+0 (x̃), P [x̃ < ȳ] ≤ P

[
x̃ < q+0 (x̃)

]
≤ 0 (i.e., equals zero) and

therefore, by the law of total probability:

0 ≤ E[ℓ0(x̃− ȳ)] = E[0|x̃ ≥ ȳ]P [x̃ ≥ ȳ] + E[−(x̃− ȳ)|x̃ < ȳ]P [x̃ < ȳ] = 0.

Hence, argminy∈R E[ℓ0(x̃− y)] ⊇ (−∞, q+0 (x̃)].

By definition of q+0 (x̃), for all ȳ ∈ R such that ȳ > q+0 (x̃), P [x̃ < ȳ] > 0 and:

E[ℓ0(x̃− ȳ)] = E[0|x̃ ≥ ȳ]P [x̃ ≥ ȳ] + E[−(x̃− ȳ)|x̃ < ȳ]P [x̃ < ȳ] = E[ȳ − x̃|x̃ < ȳ]P [x̃ < ȳ] > 0.

The last inequality exploits two facts. First, by left continuity of h(z) := P [x̃ < ȳ + z], P [x̃ < ȳ] > 0 implies that
there must be some ϵ > 0 for which P [x̃ ≤ ȳ − ϵ] > 0. Second, by the Markov inequality E[ȳ − x̃|ȳ − x̃ > 0] ≥
ϵP [ȳ − x̃ ≥ ϵ|ȳ − x̃ > 0] = ϵP [ȳ − x̃ ≥ ϵ] /P [ȳ − x̃ > 0] > 0. Hence, argminy∈R E[ℓ0(x̃ − y)] ⊆ (−∞, q+0 (x̃)]. We
have shown argminy∈R E[ℓ0(x̃− y)] = (−∞, q+0 (x̃)], which ends the proof for α = 0 since q−0 (x̃) = −∞.

A.2 From VaR state-action to VaR state value function

Proposition A.1. The optimal value functions satisfy for each s ∈ S, α ∈ [0, 1], and t ∈ [T] that

v⋆t (s, α) = max
a∈A

q⋆t (s, α, a).

Proof. The result follows straightforwardly from the definition of v⋆t and q⋆t . Namely,

v⋆t (s, α) = max
π∈Πt

HD

VaRπ,s
α

[
t−1∑

k=0

γkr(s̃k, ãk)

]
= max

a∈A,π∈Πt
HD:π0(s)=a

VaRπ,s
α

[
t−1∑

k=0

γkr(s̃k, ãk)

]
= max

a∈A
q⋆t (s, α, a).

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

B PROOFS OF SECTION 3

B.1 Proof of Theorem 3.1

Proof. This proof extends the results obtained in (Hau et al., 2023a, Appx. C) to the case where there exist
(s, a, s′) tuples for which p(s, a, s′) = 0, and reparameterizes the representation. The result on the definition and
optimality of π⋆ comes directly from (Hau et al., 2023a). Specifically, by (Hau et al., 2023a, Appx. C), it holds
that q̈t = q⋆t ,∀t ∈ [T], for all sequences q̈ := (q̈t)

T
t=0 such that q̈0(s, α, a) = VaRα [0] and

q̈t+1(s, α, a) = r(s, a) + γ max
ζ∈Ξsa(α)

min
s′∈S:p(s,a,s′)>0

max
a′∈A

q̈t

(
s′,

αζs′

p(s, a, s′)
, a′

)
, ∀t ∈ [T − 1],

where

Ξsa(α) := {ζ ∈ [0, 1]S |
∑

s′∈S
ζs′ = 1, αζs′ ≤ p(s, a, s′), ∀s′ ∈ S}.

By construction of q = (qt)
T
t=0 from the theorem statement, we have q0 = q̈0, so it remains to establish

Bmaxqt = q̈t+1 for all t ∈ [T − 1]. By mathematical induction, assuming that qt = q̈t for some t ∈ [T − 1], we
show that qt+1 := Bmaxqt = q̈t+1 in two steps : (1) Bmaxqt ≤ q̈t+1 and (2) Bmaxqt ≥ q̈t+1 .

Step 1: Establishing Bmaxqt ≤ q̈t+1.

Let o⋆ ∈ Osa(α) (which is non-empty given that 0 ∈ Osa(α)) be an optimal point for operator Bmax in Eq. (6)
and consider the function:

g(o) : = min
s′∈S

max
a′∈A

qt(s
′, os′ , a

′)

= min
s′∈S

max
a′∈A

q⋆t (s
′, os′ , a

′)

= min
s′∈S

max
π∈Πt

HD

VaRπ,s′

os′

[
t−1∑

k=0

γk · r(s̃k, ãk)
]
.

By properties of VaR and min operators, g is non-decreasing in o. Therefore, maxo∈Osa(α) g(o) is achieved inside
{o ∈ [0, 1]S |∑s′∈S os′p(s, a, s

′) = α} and necessarily,
∑

s′∈S o⋆s′p(s, a, s
′) = α.

Now let ζ ∈ RS be defined as:

ζs′ :=

{
o⋆
s′p(s,a,s

′)

α if α > 0

p(s, a, s′) otherwise.

for all s′ ∈ S. We aim to show that ζ ∈ Ξsa(α). When α = 0, the claim follows by definition of a transition kernel
p. When α > 0, we get

•
∑

s′∈S ζs′ =
∑

s′∈S o⋆
s′p(s,a,s

′)

α = 1

• p(s, a, s′) ≥ 0, o⋆s′ ≥ 0 =⇒ ζs′ =
o⋆
s′p(s,a,s

′)

α ≥ 0 ,∀s′ ∈ S

• (ζs′ ≥ 0 ∀s′ ∈ S ,
∑

s′∈S ζs′ = 1) =⇒ (ζs′ ≤ 1 ∀s′ ∈ S)

• o⋆s′ ≤ 1 =⇒ αζs′ = o⋆s′p(s, a, s
′) ≤ p(s, a, s′) ,∀s′ ∈ S

In both cases, αζs′ = o⋆s′p(s, a, s
′),∀s′ ∈ S. Indeed, for α = 0, the condition

∑
s′∈S o⋆s′p(s, a, s

′) = α implies

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

o⋆s′ = 0 whenever p(s, a, s′) > 0, so o⋆s′p(s, a, s
′) = 0 = αζs′ for all s′ ∈ S. We can thus deduce:

Bmaxqt(s, α, a) = r(s, a) + γ max
o∈Osa(α)

min
s′∈S

max
a′∈A

qt(s
′, os′ , a

′)

= r(s, a) + γ min
s′∈S

max
a′∈A

qt(s
′, o⋆s′ , a

′)

≤ r(s, a) + γ min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt(s
′, o⋆s′ , a

′)

= r(s, a) + γ min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt

(
s′,

αζs′

p(s, a, s′)
, a′

)

≤ r(s, a) + γ max
ζ∈Ξsa(α)

min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt

(
s′,

αζs′

p(s, a, s′)
, a′

)
= q̈t+1(s, α, a).

Step 2: Establishing Bmaxqt ≥ q̈t+1. We proceed similarly. Let an optimal ζ⋆ ∈ Ξsa(α) (it exists since
ζ := p(s, a, ·) is always feasible) satisfying:

q̈t+1(s, α, a) = r(s, a) + γ min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt

(
s′,

αζ⋆s′

p(s, a, s′)
, a′

)
,

and define o ∈ RS as

os′ :=

{
αζ⋆

s′
p(s,a,s′) if p(s, a, s′) > 0,

1 otherwise.

To check if o ∈ Osa(α), we remark that for any s′ ∈ S with p(s, a, s′) > 0,

αζ⋆s′

p(s, a, s′)
≥ 0 [α ≥ 0, ζ⋆ ≥ 0, p(s, a, s′) > 0]

αζ⋆s′

p(s, a, s′)
≤ 1, [αζ⋆s′ ≤ p(s, a, s′)]

so os′ ∈ [0, 1] when p(s, a, s′) > 0. Otherwise, os′ = 1 ∈ [0, 1]. Additionally,

∑

s′∈S
os′p(s, a, s

′) =
∑

s′∈S:p(s,a,s′)>0

αζ⋆s′

p(s, a, s′)
· p(s, a, s′) =

∑

s′∈S:p(s,a,s′)>0

αζ⋆s′ = α,

so o ∈ Osa(α). We can thus establish:

Bmaxqt(s, α, a) = r(s, a) + γ max
o∈Osa(α)

min
s′∈S

max
a′∈A

qt(s
′, os′ , a

′)

≥ r(s, a) + γ min
s′∈S

max
a′∈A

qt(s
′, os′ , a

′)

(a)
= r(s, a) + γ min

s′∈S:p(s,a,s′)>0
max
a′∈A

qt(s
′, os′ , a

′)

= r(s, a) + γ min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt

(
s′,

αζ⋆s′

p(s, a, s′)
, a′

)

= r(s, a) + γ max
ζ∈Ξsa(α)

min
s′∈S:p(s,a,s′)>0

max
a′∈A

qt

(
s′,

αζs′

p(s, a, s′)
, a′

)

= q̈t+1(s, α, a).

Equality (a) stems from the implications: p(s, a, s′) = 0 =⇒ os′ = 1 =⇒ qt(s
′, os′ , a

′) =∞ and for any c ∈ R̄,
min(∞, c) = c. We now conclude the proof by induction, as qt+1 := Bmaxqt = q̈t+1∀t ∈ [T − 1].

B.2 Proof of Theorem 3.2

Before diving into the proof of the theorem, we show the following general lemmas which will eventually be used
for establishing Theorem 3.2.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Lemma B.1. For all t ∈ [T] and s ∈ S, α 7→ v⋆t (s, α) is non-decreasing, right-continuous on [0, 1].

Proof. Proposition A.1 indicates that for any t ∈ [T],

v⋆t (s, α) = VaRπ⋆,s
α

[
t−1∑

k=0

γkr(s̃k, ãk)

]
.

By (Follmer and Schied, 2016, Lem. A.19), α 7→ VaRα[x̃] is non-decreasing and right-continuous for any x̃ ∈ X,
so the result follows.

Lemma B.2. Let f : [0, 1]→ R̄ be non-decreasing and ũ be a uniform random variable over [0, 1]. Then, we have
that VaRα[f(ũ)] = f(α) for all α ∈ [0, 1) where f(α) is right-continuous. Moreover, if f(1) =∞, the equality also
holds at α = 1.

Proof. By definition of VaR (see Eq. (2)), we have: VaRα [f(ũ)] = max{z ∈ R̄|P [f(ũ) < z] ≤ α}. When α = 1,
P [f(ũ) < z] ≤ α for all z ∈ R̄ so that VaRα[f(ũ)] = ∞ and the second part of the statement holds. Let thus
α ∈ [0, 1) be such that f(α) is right-continuous at α. By assumption on f being non-decreasing, ũ ≥ α implies
f(ũ) ≥ f(α) and we can establish:

P [ũ ≥ α] ≤ P [f(ũ) ≥ f(α)]

⇐⇒ 1− P [ũ < α] ≤ 1− P [f(ũ) < f(α)]

⇐⇒ 1− α ≤ 1− P [f(ũ) < f(α)] [P [ũ < α] = P [ũ ≤ α] = α]

⇐⇒ α ≥ P [f(ũ) < f(α)] .

As a result, f(α) ≤ VaRα [f(ũ)].

On the other hand, the right-continuity of f at α ensures that for all ϵ > 0 there exists a δ > 0 such that
f(α+ δ) < f(α) + ϵ. Thus

P [f(ũ) < f(α) + ϵ] ≥ P [f(ũ) ≤ f(α+ δ)] [By construction: f(α+ δ) < f(α) + ϵ]

≥ P [ũ ≤ α+ δ] [ũ ≤ α+ δ =⇒ f(ũ) ≤ f(α+ δ)]

= α+ δ

> α.

Hence, VaRα [f(ũ)] ≤ f(α) + ϵ for all ϵ > 0. Setting ϵ→ 0, VaRα [f(ũ)] ≤ f(α).

We conclude that VaRα [f(ũ)] = f(α) for all α ∈ [0, 1) at which f(α) is right-continuous.

The result below directly follows from Lemmas B.1 and B.2.

Corollary B.3. For all t ∈ [T] and s ∈ S, we have VaRα[v
⋆
t (s, ũ)] = v⋆t (s, α), where ũ is a uniform random

variable on [0, 1].

Lemma B.4. Let S ∈ N non-decreasing functions fi : [0, 1]→ R̄, i ∈ 1:S with each fi(α) ∈ R for all α ∈ (0, 1).
Let also ỹ be a discrete random variable on 1:S with probability mass function p̂i := P[ỹ = i], ∀i ∈ 1:S, and ũ
an independent random variable with uniform distribution on [0, 1]. Then, we have

VaRα [fỹ(ũ)] = max
o∈[0,1]S



min

i∈1:S
VaRoi [fi(ũ)] |

S∑

j=1

oj p̂j ≤ α



 . (15)

Proof. This proof closely follows that of (Hau et al., 2023a, Thm. 5.1) but relaxes the assumption p̂i > 0 and

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

simplifies the notation. Let I := {i ∈ 1:S | p̂i > 0}. We decompose VaR based on its definition in Eqs. (1) and (2):

VaRα [fỹ(ũ)] = max
{
τ ∈ R̄ | P [fỹ(ũ) < τ] ≤ α

}

(b)
= max

{
τ ∈ R̄ |

∑

i∈I

P [fỹ(ũ) < τ | ỹ = i] · p̂i ≤ α

}

= max

{
τ ∈ R̄ |

∑

i∈I

P [fi(ũ) < τ] · p̂i ≤ α

}

(c)
= max



τ ∈ R̄ | ∃o ∈ [0, 1]S , P [fi(ũ) < τ] ≤ oi, ∀i ∈ I,

∑

j∈I

oj p̂j ≤ α





= max



τ ∈ R̄ | ∃o ∈ [0, 1]S , P [fi(ũ) < τ] ≤ oi, ∀i ∈ I,

S∑

j=1

oj p̂j ≤ α





(d)
= max

o∈[0,1]S



max

{
τ ∈ R̄ | P [fi(ũ) < τ] ≤ oi, ∀i ∈ I

}
|

S∑

j=1

oj p̂j ≤ α





= max
o∈[0,1]S



max

⋂

i∈I

{
τ ∈ R̄ | P [fi(ũ) < τ] ≤ oi

}
|

S∑

j=1

oj p̂j ≤ α





(e)
= max

o∈[0,1]S



min

i∈I
max

{
τ ∈ R̄ | P [fi(ũ) < τ] ≤ oi

}
|

S∑

j=1

oj p̂j ≤ α





(f)
= max

o∈[0,1]S



min

i∈I
VaRoi [fi(ũ)] |

S∑

j=1

oj p̂j ≤ α



 . (16)

In the derivation above, step (b) follows from the law of total probability and omitting zero probability events.
Then we lower-bound them by an auxiliary variable oi in step (c). In step (d) we replace the joint maximum
over τ and o by sequential max, and then we replace the max of an intersection by the minimum of the
maxima of sets in (e). The equality in (e) holds because τ 7→ P [fi(ũ) < τ] is monotone and, therefore, the sets{
τ ∈ R̄ | P [fi(ũ) < τ | ỹ = i] ≤ oi

}
are nested. Step (f) holds by definition of VaR.

It remains to show that (16) equals (15). Suppose that o⋆ ∈ [0, 1]S is optimal in (16) and construct ō ∈ [0, 1]S as

ōi =

{
o⋆i if i ∈ I,

1 otherwise,
∀i ∈ 1:S.

Since ō is feasible in (15) with the same objective, (16) ≤ (15). To show that (16) ≥ (15) suppose that o⋆ ∈ [0, 1]S

is optimal in (15). The inequality then holds because o⋆ is feasible in (16) and because

min
i∈I

VaRo⋆i
[fi(ũ)] ≥ min

i∈1:S
VaRo⋆i

[fi(ũ)] .

Lemma B.5. Assume non-decreasing functions fi : [0, 1] → R̄, i ∈ 1:S with each fi(α) ∈ R for all α ∈ (0, 1).
Then, it holds that maxi∈1:S VaRũ1

[fi(ũ2)] = maxi∈1:S fi(ũ1) almost surely, where ũ1 and ũ2 are two independent
uniform random variables on [0, 1].

Proof. By Lemma B.2, for any j ∈ 1:S, VaRᾱ[fj(ũ)] = fj(ᾱ) at any value of ᾱ ∈ [0, 1) where fj(·) is right-
continuous. This implies that for all α ∈ [0, 1) where all fi’s are right-continuous, maxi∈1:S VaRα[fi(ũ)] =
maxi∈1:S fi(α) since the maximum is necessarily right-continuous then. For i ∈ 1:S, fi is monotone on the interval
(0, 1), so by Froda’s theorem (Rudin et al., 1964, Thm. 4.30), the number of discontinuities of fi must be at most
countable on (0, 1) so therefore also on [0, 1]. This implies that the number of points α at which some fi from

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

i ∈ 1:S is discontinuous is at most countable. We thus conclude that maxi∈1:S fi(ũ1) = maxi∈1:S VaRũ1 [fi(ũ2)]
with probability one.

Lemma B.6. Let S non-decreasing functions fi : [0, 1]→ R̄, i ∈ 1:S with each fi(α) ∈ R for all α ∈ (0, 1). Then
VaRα[maxi∈1:S fi(ũ)] = maxi∈1:S VaRα[fi(ũ)], where ũ is a uniform random variable on [0, 1]

Proof. First, the claim trivially applies to α = 1 since VaR1[x̃] =∞ for all random variables x̃ ∈ X. Thus, we
focus on the case α ∈ [0, 1). Since α 7→ VaRα[·] is non-decreasing (see (Follmer and Schied, 2016, Lem. A.19)),
VaRα[maxi∈1:S fi(ũ)] ≥ VaRα[fj(ũ)] for all j ∈ 1:S, hence VaRα[maxi∈1:S fi(ũ)] ≥ maxi∈1:S VaRα[fi(ũ)]. We
are therefore left with showing that VaRα[maxi∈1:S fi(ũ)] ≤ maxi∈1:S VaRα[fi(ũ)]. We do so by contradiction.
Assume that

VaRα[max
i∈1:S

fi(ũ)] > max
i∈1:S

VaRα[fi(ũ)] =: ν⋆.

Applying Lemma B.5, maxi∈1:S fi(ũ) = maxi∈1:S VaRũ[fi(ũ2)] almost surely, so we must have ν⋆ <
VaRα[maxi∈1:S VaRũ[fi(ũ2)]] where ũ2 is uniformly distributed on [0, 1]. By definition of VaRα[·] (Eq. (2)),
this implies that there exists ϵ > 0 such that:

P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ

]
≤ α.

Since ν⋆ = maxi∈1:S VaRα[fi(ũ)] and α 7→ VaRα[fi(ũ)] is non-decreasing, we must have maxi∈1:S VaRα′ [fi(ũ)] ≤
ν⋆ < ν⋆ + ϵ for all α′ ≤ α. In addition, by the law of total probability:

α ≥ P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ

]

= P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ > α

]
P [ũ > α]

+ P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ ≤ α

]
P [ũ ≤ α]

= (1− α)P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ > α

]
+ αP

[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ ≤ α

]

= (1− α)P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ > α

]
+ α,

so necessarily:

P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ > α

]
= 0.

Yet, since maxi∈1:S VaRα′ [fi(ũ2)] is right-continuous, non-decreasing in α′ and evaluates at ν⋆ for α′ = α, there
must be a δ > 0 such that maxi∈1:S VaRα′ [fi(ũ2)] ≤ ν⋆ + ϵ for all α′ ≤ α+ δ. This leads to a contradiction since:

0 < δ = P [ũ ∈ (α, α+ δ]]

= P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ ∈ (α, α+ δ]

]
P [ũ ∈ (α, α+ δ]]

= P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ, ũ ∈ (α, α+ δ]

]

≤ P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ, ũ > α

]

= P
[
max
i∈1:S

VaRũ[fi(ũ2)] < ν⋆ + ϵ|ũ > α

]
(1− α) = 0.

We are now ready to prove Theorem 3.2, whose statement is recalled below.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Theorem. Let a sequence qu = (qut)
T
t=0 be such that qu0 (s, α, a) = VaRα [0] and qut+1(s, α, a) := Buq

u
t (s, α, a) for

t ∈ [T − 1]. Then, qut = q⋆t for all t ∈ [T], where q⋆t is defined in Eq. (5). Moreover, if a policy πu = (πu
k)

T−1
k=0 is

greedy for qu as in Eq. (10), then it maximizes the value-at-risk objective (4).

Proof. We start with demonstrating that q⋆t = qut ,∀t ∈ [T], recursively with mathematical induction. Assuming
that qut = q⋆t we want to show that qut+1 := Buq

u
t = q⋆t+1 as written in Eq. (8). We then prove the optimality of

π⋆ constructed using α̂u.

Step 1: For all s ∈ S, α ∈ [0, 1] and a ∈ A, q⋆0(s, α, a) = qu0 (s, α, a) = VaRα [0] so the base case holds. Assume
that qut = q⋆t for some t ∈ [T − 1]. Then, one can derive:

q⋆t+1(s, α, a) = r(s, a) + γ · max
o∈Osa(α)

min
s′∈S

max
a′∈A

q⋆t (s
′, os′ , a

′) [By Theorem 3.1]

= r(s, a) + γ · max
o∈Osa(α)

min
s′∈S

v⋆t (s
′, os′) [By Proposition A.1]

= r(s, a) + γ · max
o∈Osa(α)

min
s′∈S

VaRos′ [v
⋆
t (s

′, ũ)] [By Corollary B.3]

= r(s, a) + γ ·VaRa,s
α [v⋆t (s̃1, ũ)] [By Lemma B.4]

= VaRa,s
α [r(s, a) + γ ·max

a′∈A
q⋆t (s̃1, ũ, a

′)] [By Proposition A.1]

= VaRa,s
α [r(s, a) + γ ·max

a′∈A
qut (s̃1, ũ, a

′)] [By inductive assumption]

= Buq
u
t (s, α, a) = qut+1(s, α, a) [By Eq. (8)].

This confirms that q⋆ satisfies q⋆t+1 = Buq
⋆
t = Buq

u
t = qut+1 for all t ∈ [T − 1], so that q⋆ = qu.

Step 2: We now show that α̂u
k(·) constructed according to:

α̂u
k+1(hk+1) := min

{
o ∈ [0, 1] | max

a∈A
quT−k−1(sk+1, o, a) ≥

quT−k(sk, α̂k(hk), ak)− r(sk, ak)

γ

}

defines an optimal policy. Namely,

α̂u
k+1(hk+1) := min

{
o ∈ [0, 1] | max

a∈A
quT−k−1(sk+1, o, a) ≥

quT−k(sk, α̂
u
k(hk), ak)− r(sk, ak)

γ

}
.

Based on what has been shown in Step 1, we can interchangeably write quT−k−1 or q⋆T−k−1 in the construction of
α̂u
k, k ∈ [T − 1], so that

α̂u
k+1(hk+1) := min

{
o ∈ [0, 1] | max

a∈A
q⋆T−k−1(sk+1, o, a) ≥

q⋆T−k(sk, α̂
u
k(hk), ak)− r(sk, ak)

γ

}
.

By Lemma B.1, α 7→ v⋆t (s, α) is right-continuous and non-decreasing so the minimum above is well-defined. We
are left to check that α̂u

k(·) leads to an associated ôka(hk) ∈ Osa(α̂
u
k(hk)) satisfying:

qT−k(s, αk(hk), a) = r(s, a) + γ · min
s′∈S

max
a′∈A

qT−k−1(s
′, αk+1(⟨hk, a, s

′⟩), a′) (17)

This can be done in two steps.

We can first show that for all hk ∈ Hk, a ∈ A, the vector ôk ∈ RS composed of ôks′ := α̂u
k+1(⟨hk, a, s

′⟩) for all
s′ ∈ S, is in Osa(α̂

u
k(hk)). To do so, we make use of the fact that for all t the maximum over maxo∈Osa in (6)

is achieved thus implying that it is achieved at T − k by some ôk⋆ when s = sk and α = α̂u
k(hk). Namely, ôk⋆

satisfies:

q⋆T−k(sk, α̂
u
k(hk), a) = min

s′∈S
r(sk, a) + γv⋆T−k−1(s

′, ôk⋆s′) ≤ r(sk, a) + γv⋆T−k−1(s
′, ôk⋆s′) , ∀s′ ∈ S

where we replaced maxa′∈A q⋆T−k−1(s
′, ôk⋆s′ , a

′) with v⋆T−k−1(s
′, ôk⋆s′). We can therefore easily conclude that:

∑

s′∈S
ôks′p(sk, a, s

′) =
∑

s′∈S
α̂u
k+1(⟨hk, a, s

′⟩)p(sk, a, s′)
∑

s′∈S
ôk⋆s′ p(sk, a, s

′) ≤ α̂u
k(hk),

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

which establishes that ôk ∈ Osa(α̂
u
k(hk)).

We can then show that equation (17), with qT−k and qT−k−1 respectively replaced by their equivalent q⋆T−k and
q⋆T−k−1 (based on Theorem 3.1), is satisfied based on:

q⋆T−k(s, α̂
u
k(hk), a) = max

o∈Osa(α̂u
k(hk))

min
s′∈S

(
r(s, a) + γ ·max

a′∈A
q⋆T−k−1(s

′, os′ , a
′)

)
[By Eq. (6)]

≥ min
s′∈S

(
r(s, a) + γ ·max

a′∈A
q⋆T−k−1(s

′, α̂u
k+1(⟨hk, a, s

′⟩), a′)
)

[ôk ∈ Osa(α̂
u
k(hk))]

= min
s′∈S

(
r(s, a) + γ · v⋆T−k−1(s

′, α̂u
k+1(⟨hk, a, s

′⟩))
)

[By Proposition A.1]

≥ min
s′∈S

(
r(s, a) + γ · q

⋆
T−k(s, α̂

u
k(hk), a)− r(s, a)

γ

)
[Definition of α̂u

k]

= min
s′∈S

q⋆T−k(s, α̂
u
k(hk), a) = q⋆T−k(s, α̂

u
k(hk), a),

The above inequalities must therefore be equalities, so equation (17) holds for α̂u
k(hk). As a result, the policy π⋆

constructed using α̂u is optimal.

C PROOFS OF SECTION 4

C.1 Risk Measures

Definition C.1 (Monetary risk measure). A monetary risk measure is a mapping ϱ : X → R̄ satisfying the
following properties:

1. Translation invariance: For all x̃ ∈ X, c ∈ R, ϱ(x̃+ c) = ϱ(x) + c

2. Monotonicity: For all x̃, ỹ ∈ X, x̃ ≤ ỹ =⇒ ϱ(x̃) ≤ ϱ(ỹ).

Lemma C.2. For any monetary risk measure ϱ : X→ R where X is defined in a finite outcome space ω ∈ Ω, it
holds that:

|ϱ(x̃)− ϱ(ỹ)| ≤ max
ω∈Ω
|x̃(ω)− ỹ(ω)|.

Proof. Define ϵ := maxω∈Ω |x̃(ω)−ỹ(ω)| ≥ 0. We prove that ϱ(x̃)−ϱ(ỹ) ≤ ϵ. The second inequality ϱ(ỹ)−ϱ(x̃) ≤ ϵ
follows analogously. Let z̃ := max{x̃, ỹ}. Then, for all ω ∈ Ω:

x̃(ω) ≤ max{x̃(ω), ỹ(ω)}
= z̃(ω)

= ỹ(ω) + max{x̃(ω)− ỹ(ω), 0}
≤ ỹ(ω) + |x̃(ω)− ỹ(ω)| [x̃(ω)− ỹ(ω) ≤ |x̃(ω)− ỹ(ω)|, 0 ≤ |x̃(ω)− ỹ(ω)|]
≤ ỹ(ω) + max

ω′∈Ω
|x̃(ω′)− ỹ(ω′)|

= ỹ(ω) + ϵ.

As a result, x̃ ≤ z̃ ≤ ỹ+ ϵ. Since ϱ is a monetary risk measure, it is monotonous and translation invariant, so that

ϱ(x̃) ≤ ϱ(z̃) ≤ ϱ(ỹ + ϵ) = ϱ(ỹ) + ϵ,

and ϱ(x̃)− ϱ(ỹ) ≤ ϵ.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

C.2 Proof of Lemma 4.2

Proof. The inner inequalites follow from

q+f(α)(x̃) ≤ q+α (x̃) [By monotonicity]

= VaRα[x̃]

= max
{
τ ∈ R̄ | P [x̃ < τ] ≤ α

}

≤ sup
{
τ ∈ R̄ | P [x̃ < τ] < f̄(α)

}

= q−
f̄(α)

(x̃). [(Follmer and Schied, 2016, Appx. A.3, Def. A.24)]

The outer inequalities follow from Lemma 2.1.

C.3 Proof of Theorem 4.3

Proof. The proof is broken down into two parts. First, we address the bounding on q⋆, then we demonstrate the
stated properties of our constructed policy.

Step 1: Upper and lower bound on q⋆. We prove by induction on t ∈ [T] that for all (s, α, a) ∈ S × (0, 1)×A:

tR ≤ qu
t
(s, α, a) ≤ q⋆t (s, α, a) ≤ q̄ut (s, α, a) ≤ tR̄,

or more succinctly, that tR ≤ qu
t
≤ q⋆t ≤ q̄ut ≤ tR̄. At t = 0, the bounds are obtained by definition given that

q̄u0 = qu
0
= q⋆0 = 0. Assume that the statement holds for some t ∈ [T − 1] and let’s check if the proposition is

preserved at t+ 1.

Case 1: f̄(α) < 1. For all α ∈ (0, 1) such that f̄(α) < 1, we have:

q⋆t+1(s, α, a) = VaRa,s
α [r(s, a) + γ ·max

a′∈A
q⋆t (s̃1, ũ, a

′)] [By Theorem 3.2]

= q+ a,s
α [r(s, a) + γ ·max

a′∈A
q⋆t (s̃1, ũ, a

′)] [By definition of VaRα]

≤ q+ a,s
α [r(s, a) + γ ·max

a′∈A
q̄ut (s̃1, ũ, a

′)] [By inductive assumption]

≤ q− a,s

f̄(α)
[r(s, a) + γ ·max

a′∈A
q̄ut (s̃1, ũ, a

′)] [By Lemma 4.2]

Finally, we exploit the elicitability of qf̄(α) (see Lemma 2.1), due to the random variable r(s, a) + γ ·
maxa′∈A q̄ut (s

′, ũ, a′) being supported on the interval [(t+ 1)R, (t+ 1)R̄], to obtain:

q⋆t+1(s, α, a) ≤ q− a,s

f̄(α)
[r(s, a) + γ ·max

a′∈A
q̄ut (s̃1, ũ, a

′)]

= min argmin
q

Ea,s

[
ℓf̄(α)

(
r(s, a) + γ ·max

a′∈A
q̄ut (s̃1, ũ, a

′)− q

)]

= min
{
(Bf̄u q̄ut)(s, α, a)

}

≤ q̄ut+1(s, α, a),

where the last inequality is due to the fact that q̄ut+1 ∈ (Bf̄u q̄ut) by construction:

q̄ut+1 ∈ (Bf̄u q̄ut), qu
t+1
∈ (Bfuqut), ∀ t ∈ [T − 1]. (18)

Moreover, we have that:

argmin
q

Ea,s

[
ℓf̄(α)

(
r(s, a) + γ ·max

a′∈A
q̄ut (s̃1, ũ, a

′)− q

)]
⊂

(
−∞, (t+ 1)R̄

]

since it is a quantile of r(s, a) + γ ·maxa′∈A q̄ut (s
′, ũ, a′) ≤ (t+ 1)R̄. This confirms the statement for f̄(α) < 1.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Case 2: f̄(α) = 1. We instead rely on the following inequalities:

q⋆t+1(s, α, a) = max
π∈Π̃HR

VaR(a,π1:t),s
α

[
t∑

k=0

γkr(s̃k, ãk)

]

≤
t∑

k=0

γkR̄ ≤ (t+ 1)R̄ = R̄+ max
s∈S,a′∈A

q̄ut (s, 1, a
′) = q̄ut+1(s, α, a).

A similar set of arguments applies for the lower bound. Namely,

q⋆t (s, α, a) = q+ a,s
α [r(s, a) + γ ·max

a′∈A
q⋆t−1(s̃1, ũ, a

′)] [By Theorem 3.2]

≥ q+ a,s
α [r(s, a) + γ ·max

a′∈A
qu
t−1

(s̃1, ũ, a
′)] [By inductive assumption]

≥ q+ a,s
f(α) [r(s, a) + γ ·max

a′∈A
qu
t−1

(s̃1, ũ, a
′)]. [By Lemma 4.2]

Similarly, we exploit the elicitability and the fact that qu
t+1
∈ (Bfuqut) to write

q⋆t+1(s, α, a) ≥ q+ a,s
f(α) [r(s, a) + γ ·max

a′∈A
qu
t
(s̃1, ũ, a

′)]

= max argmin
q

Ea,s

[
ℓf(α)

(
r(s, a) + γ ·max

a′∈A
qu
t
(s̃1, ũ, a

′)− q

)]

= max
{
(Bfuqut)(s, α, a)

}

≥ qu
t+1

(s, α, a),

where the difference lies in the second inequality, i.e. one needs to exploit the monotonicity of α 7→ q+α (x̃). The
case where f(α) = 0 also follows naturally:

q⋆t+1(s, α, a) = max
π∈Π̃HR

VaR(a,π1:t),s
α

[
t∑

k=0

γkr(s̃k, ãk)

]
≥

t∑

k=0

γkR ≥ (t+ 1)R = qu
t+1

(s, α, a).

This completes our inductive proposition: tR ≤ qu
t
≤ q⋆t ≤ q̄ut ≤ tR̄.

Step 2: Bounds on the performance of πk(hk). We start by proving that

max
a∈A

qu
T
(s0, α0, a) ≤ VaRπ,s0

α0

[
T−1∑

k=0

γkr(s̃k, ãk)

]
.

The rest follows based on the bounding properties of q̄uT and qu
T
.

First, we can confirm that ok composed using oks′ := αu
k+1(⟨hk, a, s

′⟩) is in Osa(α
u
k(hk)). To do so, we exploit the

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

fact that:

qu
T−k

(sk, α
u
k(hk), a)

(18)
∈ argmin

q∈R
Ea,sk

[
ℓf(αu

k(hk))

(
r(sk, a) + γ ·max

a′∈A
qu
T−k−1

(s̃1, ũ, a
′)− q

)]

4.2
≤ VaRa,sk

f(αu
k(hk))

[r(sk, a) + γmax
a′∈A

qu
T−k−1

(s̃1, ũ1, a
′)]

4.2
≤ VaRa,sk

αu
k(hk)

[r(sk, a) + γmax
a′∈A

qu
T−k−1

(s̃1, ũ1, a
′)]

B.4
= max

o∈Oska(αu
k(hk))

min
s′∈S

r(sk, a) + γVaRos′ [max
a′∈A

qu
T−k−1

(s′, ũ1, a
′)]

= min
s′∈S

r(sk, a) + γVaRo⋆
s′
[max
a′∈A

qu
T−k−1

(s′, ũ1, a
′)]

B.6
= min

s′∈S
r(sk, a) + γmax

a′∈A
VaRo⋆

s′
[qu

T−k−1
(s′, ũ1, a

′)]

B.2
= min

s′∈S
r(sk, a) + γmax

a′∈A
qu
T−k−1

(s′, o⋆s′ , a
′)

≤ r(sk, a) + γmax
a′∈A

qu
T−k−1

(s′, o⋆s′ , a
′) ,∀s′ ∈ S

for optimal o⋆ ∈ Oska(α
u
k(hk)). This implies that

max
a′∈A

qu
T−k−1

(s′, o⋆s′ , a
′) ≥

qu
T−k

(sk, α
u
k(hk), a)− r(sk, a)

γ

By construction of ok, we have that oks′ ≤ o⋆s′ , hence

∑

s′∈S
oks′p(sk, a, s

′) ≤
∑

s′∈S
o⋆s′p(sk, a, s

′) ≤ αu
k(hk).

Let us now construct a series of policies πt
k defined as:

πt
k(hk) ∈ argmax

a∈A
qu
t−k

(sk, α
u,t
k (hk), a),

where αu,t−1
0 (s′) := αu,t

1 (⟨s, a, s′⟩) and πt−1
k−1(h1:k) := πt

k(hk) are defined without loss of generality for all k, α, t,
hk. The superscript t represents the horizon of the sub-problem, we may omit the superscript when it represent
the final objective decision horizon T as π = πT and αu = αu,T .

Letting

vπt (s, α) := VaRπ,s
α [

t−1∑

k=0

r(s̃k, ãk)] (19)

and vut (s, α) := maxa∈A qu
t
(s, α, a), we now prove by induction on t that v

πt

t (s, α) ≥ vut (s, α) ∀t ∈ [T]. This is
obviously the case at t = 0 since vπ0 (s, α) = 0 = qu

0
(s, α, a) for all s, a, α ∈ (0, 1), and π. Now assuming that for

some t ∈ 1 : T , vπ
t−1

t−1 (s, α) ≥ vut−1(s, α), letting αu,T
0 (s) = α and a = πt

0(s) for v
πt

t (s, α) we obtain:

v
πt

t (s, α)
(19)
= VaRπt,s

α (

t−1∑

k=0

γkr(s̃k, ãk))

B.4
= max

o∈Osa(α)
min
s′∈S

r(s, a) + γVaRs
os′

[

t−1∑

k=1

γk−1r(s̃k, π
t
k(h̃k)|ã0 = a, s̃1 = s′]

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Let rewrite the second term as follows

VaRs
os′

[
t−1∑

k=1

γk−1r(s̃k, π
t
k(h̃k))|ã0 = a, s̃1 = s′

]

= VaRs
os′

[
t−1∑

k=1

γk−1r(s̃k, π
t−1
k−1(h1:k | αu,t−1

0 (s̃1) = αu,t
1 (⟨s, ã0, s̃1⟩))) | ã0 = a, s̃1 = s′

]

= VaRs′

os′

[
t−2∑

k′=0

γk′
r(s̃k′ , πt−1

k′ (hk′))

]

= VaRπt−1,s′

os′

[
t−2∑

k′=0

γk′
r(s̃k′ , ãk′)

]

Now we have

v
πt

t (s, α) = max
o∈Osa(α)

min
s′∈S

r(s, a) + VaRπt−1,s′

os′

[
t−2∑

k′=0

γk′
r(s̃k′ , ãk′)

]
[From derivation above]

≥ min
s′∈S

r(s, a) + VaR
πt−1,s′

αu,t
1 (⟨s,a,s′⟩)

[
t−2∑

k′=0

γk′
r(s̃k′ , ãk′)

]
[Property of max]

= min
s′∈S

r(s, a) + γv
πt−1

t−1 (s′, αu,t
1 (⟨s, a, s′⟩)) [By Eq. (19)]

≥ min
s′∈S

r(s, a) + γvut−1(s
′, αu,t

1 (⟨s, a, s′⟩)) [By Inductive assumption]

≥ min
s′∈S

vut (s, α) = vut (s, α) [By Eq. (18)].

We could conclude with induction that:

VaRπ,s0
α0

[
T−1∑

k=0

γkr(s̃k, ãk)

]
= v

πT

T (s0, α0) ≥ vuT (s0, α0) = max
a∈A

qu
T
(s0, α0, a).

C.4 Proof of Proposition 4.5

Proof. This result follows by induction from showing that the constructed q satisfies the conditions identified in
Theorem 4.3 under f as defined in Example 4.4. Naturally, the initial condition is satisfied:

q
0
(s, α, a) = qd

0
(s, J · f(α), a) = 0.

To prove the inductive step tor any t ∈ 1:T − 1, we have that if f(α) = 0 then :

q
t+1

(s, α, a) = qd
t+1

(s, 0, a) = R+ min
s∈S,a∈A

qd
t
(s, 0, a) = R+ min

s∈S,a∈A
q
t
(s, 0, a)

since f(0) = 0. If f(α) = j/J with j ≥ 1, then

q
t+1

(s, α, a) = qd
t+1

(s, J · f(α), a)

∈ argmin
x∈R

1

J

J−1∑

j′=0

Ea,s

[
ℓj/J

(
r(s, a) + γ ·max

a′∈A
qd
t
(s̃1, j

′, a′)− x

)]

= argmin
x∈R

1

J

J−1∑

j′=0

Ea,s

[
ℓj/J

(
r(s, a) + γ ·max

a′∈A
qu
t
(s̃1, j

′/J, a′)− x

)]

= argmin
x∈R

Ea,s

[
ℓj/J

(
r(s, a) + γ ·max

a′∈A
qu
t
(s̃1, f(ũ), a

′)− x

)]

= Bfuqt.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

−4 −2 0 2 4

0.5

1.0

1.5

2.0

m
E
[e1 /

2

1 /
2
(x̃
−
m
)]

Figure 4: A example used to prove the non-uniqueness of an optimal solution in Proposition C.3.

Moreover, since f is right-continuous and non-decreasing q is right-continuous and non-decreasing by construction.

C.5 Why not Huber’s Loss

A common differentiable function used in quantile regression is the Huber’s quantile regression loss function and
is commonly defined as (and in general differs from the Moreau envelope of the quantile loss function):

eκα(δ) :=





−(1− α)(δ + κ) + 1
2 (1− α)κ if δ < −κ

(1− α)
(

δ2

2κ

)
if δ ∈ [−κ, 0]

α
(

δ2

2κ

)
if δ ∈ (0, κ)

α(δ − κ) + 1
2ακ if δ > κ

(20)

Although some definitions of Huber’s loss are scaled by a positive constant compared with (20), such scaling does
not affect the minimizer.

The next proposition demonstrates that it is not sufficient to consider the popular Huber’s loss function in place
of the quantile loss function. Suppose that one defines a risk measure as

ξ(x̃) := argmin
m∈R

E[eκα(x̃−m)] (21)

where Huber’s loss eκα is defined in (20).

Proposition C.3. The minimization problem in (21) may not have a unique solution.

Proof. Consider a risk level of α = 0.5, κ = 0.5, and random variable x̃ such that P [x̃ = −1] = P [x̃ = 1] = 1/2.
Then the risk measure defined in (21) becomes

ξ(x̃) := argmin
m∈R

E[eκα(x̃−m)] = argmin
m∈R

E
[
e
1/2
1/2 (x̃−m)

]
.

Simple algebraic manipulation shows that the minimization above does not have a unique optimal solution and
instead m ∈ [−1/2, 1/2] is optimal, as Fig. 4 illustrates.

C.6 Proof of Lemma 4.6

Before proving Lemma 4.6, first define the notions it invokes.

Definition C.4. Given L, µ ∈ R++, a differentiable function f : R→ R is µ-strongly convex if

f(x) ≥ f(y) + f ′(y)(x− y) +
1

2
µ(x− y)2, ∀x, y ∈ R.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

It has an L-Lipschitz continuous derivative if

|f ′(x)− f ′(y)| ≤ L|x− y|, ∀x, y ∈ R.

We always have L ≥ µ (Nesterov, 2018, Thm. 2.1.10).

The next lemma focuses on the properties of the loss function, after which we can prove Lemma 4.6.

Lemma C.5. Suppose that κ ∈ (0, 1]. Then the function ℓκα is continuously differentiable and satisfies for all
δ1, δ2 ∈ R that

min{α, 1− α} κ ≤ |∂ℓ
κ
α(δ2)− ∂ℓκα(δ1)|
|δ2 − δ1|

≤ max{α, 1− α}
κ

. (22)

Moreover, the function ℓκα is strongly convex with constant min {α, 1− α}κ and has a Lipschitz-continuous
derivative with constant max {α, 1− α}κ−1.

Proof. The inequality in (22) follows from the fact that ∂ℓκα, derived in (14), is a piecewise linear function
and κ ≤ 1. Then, the function ℓκα is strongly convex from the strong monotonicity of its derivative in (14) by
(Rockafellar and Wets, 2009, Exercise 12.59). The function ℓκα has a Lipschitz continous derivative immediately
by the upper bound in (22).

Proof of Lemma 4.6. By Lemma C.5 and (Nesterov, 2018, Lem. 2.1.6), we have that the objective in (24) is also
strongly convex with constant µ given in the lemma. By Lemma 4.6 and the linearity of the expectation operator,
the derivative of (24) is also Lipschitz continuous with constant L given in the lemma.

C.7 Proof of Theorem 4.8

C.7.1 Properties of Soft-Quantile Measure

Definition C.6. A risk measure q̂κα is a shortfall risk measure (see Föllmer and Schied (2002); Weber (2006))
defined as:

q̂κα(x̃) := sup{m ∈ R : E[∂ℓκα(x̃−m)] ≥ 0}, (23)

where ∂ℓκα(·) is defined in (14).

Lemma C.7. The measure q̂κα satisfies monotonicity, translation invariance, and is elicitable as:

q̂κα(x̃) := argmin
m∈R

E[ℓκα(x̃−m)] (24)

with ℓκα as defined in (13).

Proof. Monotonicity and translation invariance follow naturally from the properties of shortfall risk measures as
defined in Föllmer and Schied (2002); Weber (2006), after confirming that ∂ℓκα(δ) is increasing and non-constant.
Elicitability follows from Theorem 4.3 in Bellini and Bignozzi (2015) after confirming that ∂ℓκα(δ) is strictly
increasing and left continuous.

C.7.2 Standard Operator Convergence Results

Our convergence analysis follows the framework presented in Section 4 of Bertsekas and Tsitsiklis (1996), which we
summarize in this section. The Q-learning algorithm, consider the following iteration for some random sequence
z̃i : Ω→ RN where N = {1, . . . , n} defined as

z̃i+1(b) = (1− θ̃i(b)) · z̃i(b) + θ̃i(b) · ((Hz̃i)(b) + ϕ̃i(b)), i = 0, 1, . . . ,

= z̃i(b) + θ̃i(b) · ((Hz̃i)(b) + ϕ̃i(b)− z̃i(b)), i = 0, 1, . . . ,
(25)

for all b ∈ N , where H : RN → RN is some possibly non-linear operator, θ̃i : Ω → R+ is a step size, and
ϕ̃i : Ω→ RN is some random noise sequence. The random history Fi at iteration i = 1, . . . is denoted by

Fi =
(
z̃0, . . . , z̃i, ϕ̃0, . . . , ϕ̃i−1, θ̃0, . . . , θ̃i

)
.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

To study the convergence of the algorithm, we may also need to define a weighted maximum norm for x ∈ RN

and weights w ∈ RN
++, i.e. w ∈ RN with w(b) > 0 for all b ∈ N , as

∥x∥w := max
b∈N

|x(b)|
w(b)

.

The weighted maximum norm is useful when analyzing the convergence of non-discounted MDPs. Its importance
is in the fact that a non-negative matrix with a sub-unit spectral radius is a contraction in the weighted norm,
but may not be a contraction in the plain maximum norm.
Definition C.8 (Star-contraction). An operator H : RN → RN is a weighted maximum norm star-contraction if
there exist z⋆ ∈ RN , w ∈ RN

++, χ ∈ [0, 1) such that

∥Hz − z⋆∥w ≤ χ · ∥z − z⋆∥w.

Note that the original name for star-contraction is pseudo-contraction. We use the term star-contraction because
of its close resemblance to star-convexity.

The following assumption on the noise of the stochastic process will be needed to ensure the convergence of our
algorithm.
Assumption C.9 (Assm. 4.3 Bertsekas and Tsitsiklis (1996)). The noise terms in (25) satisfy for each i = 1, 2, . . .
that:

(1) Random errors are conditionally unbiased, a.s.:

E[ϕ̃i(b) | Fi] = 0, ∀b ∈ 1:n,

(2) There exists a norm ∥ · ∥ on RN and c, g ∈ R such that

E[ϕ̃i(b)
2 | Fi] ≤ c+ g · ∥z̃i∥2, ∀b ∈ 1:n, a.s.

Proposition C.10. [Proposition 4.4 Bertsekas and Tsitsiklis (1996)] Let z̃i, i = 1, . . . be the sequence generated
by the iteration in (25). Assume that

1. The step-sizes θ̃i,∀i = 1, . . . satisfy almost surely that θ̃i ≥ 0 and
∞∑

t=0

θ̃i(b) =∞,

∞∑

i=0

θ̃2i (b) <∞, ∀b ∈ N .

2. The noise terms ϕ̃i, i = 1, . . . satisfy Assumption C.9.

3. The operator H in (25) is a weighted maximum norm star-contraction as in Definition C.8.

Then, z̃i converges to z⋆, a fixed point of H, with probability 1:

P
[
lim
i→∞

z̃i = z⋆
]
= 1.

C.7.3 Operator Definitions

We will need the following operators for any ξ > 0 and j̃′ ∼ U([J − 1]). Let b = (t, s, j, a) for t ∈ [T], s ∈ S, j ∈
[J − 1], a ∈ A:

(Gq)(b) :=




q(b)−R · t if j = 0 ∨ t = 0,
d
dx Ea,s

[
ℓκj/J

(
r(s, a) + γ ·maxa′∈A q(t− 1, s̃1, j̃

′, a′)− x
)]∣∣∣

x=q(t,s,j,a)
otherwise,

=

{
q(b)−R · t if j = 0 ∨ t = 0,

−Ea,s
[
∂ℓκj

J

(
r(s, a) + γmaxa′∈A q(t− 1, s̃1, j̃

′, a′)− q(t, s, j, a)
)]

otherwise,

(Gs′q)(b) :=

{
q(b)−R · t if j = 0 ∨ t = 0,

−E
[
∂ℓκj

J

(
r(s, a) + γmaxa′∈A q(t− 1, s′, j̃′, a′)− q(t, s, j, a)

)]
otherwise,

Hq := q − ξ ·Gq,

Hs′q := q − ξ ·Gs′q.

(26)

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Consider a random sequence of inputs ((t̃i, s̃i, j̃i, ãi, s̃
′
i), β̃i, q̃i)

∞
i=0 in Algorithm 2. We can define a real-valued

random variable ϕ̃ for t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A as

ϕ̃i(t, s, j, a) :=

{
(Hs̃′i

q̃d
i
)(t, s, j, a)− (Hq̃d

i
)(t, s, j, a) if (t̃i, s̃i, j̃i, ãi) = (t, s, j, a),

0 otherwise.

θ̃i(t, s, j, a) :=

{
β̃i

ξ if (t̃i, s̃i, j̃i, ãi) = (t, s, j, a),

0 otherwise.

(27)

Lemma C.11. The random sequence of iterations followed by Algorithm 2 satisfies

q̃d
0
(t, s, j, a) = tR, a.s. ,

q̃d
i+1

(t, s, j, a) = q̃d
i
(t, s, j, a) + θ̃i(t, s, j, a) · (Hq̃d

i
+ ϕ̃i − q̃d

i
)(t, s, j, a), ∀i ∈ N, a.s.,

where the terms are defined in (26) and (27).

Proof. We prove the claim by induction on i. The base case holds immediately from the definition. To prove the
inductive case, suppose that i ∈ N and we prove the result in the following cases.

Case 1a: Suppose that b̃ = (t̃i, s̃i, j̃i, ãi) = (t, s, j, a) = b and ti > 0, ji > 0, then by algebraic manipulation:

q̃d
i+1

(b) = q̃d
i
(b) + θi(b)((Hq̃d

i
)(b) + ϕ̃i(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((Hq̃d

i
)(b) + (Hs̃′i

q̃d
i
)(b)− (Hq̃d

i
)(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((Hs̃′i

q̃d
i
)(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((q̃

d
i
− ξGs̃′i

q̃d
i
)(b)− q̃d

i
(b))

= q̃d
i
(b) +

βi

J

∑

j′∈[J−1]

∂ℓκj
J

(
r(s, a) + γmax

a′∈A
q̃d
i
(t− 1, s̃′i, j

′, a′)− q̃d
i
(b)

)
.

Case 1b: Suppose that b̃ = (t̃i, s̃i, j̃i, ãi) = (t, s, j, a) = b and ti = 0 ∨ ji = 0, then by algebraic manipulation:

q̃d
i+1

(b) = q̃d
i
(b) + θi(b)((Hq̃d

i
)(b) + ϕ̃i(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((Hq̃d

i
)(b) + (Hs̃′i

q̃d
i
)(b)− (Hq̃d

i
)(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((Hs̃′i

q̃d
i
)(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)((q̃

d
i
− ξGs̃′i

q̃d
i
)(b)− q̃d

i
(b))

= q̃d
i
(b) + θi(b)(q̃

d
i
(b)− ξq̃d

i
(b) + ξRt− q̃d

i
(b))

= q̃d
i
(b)− θi(b)ξ(q̃

d
i
(b)−Rt)

= q̃d
i
(b)− βi(q̃

d
i
(b)−Rt).

Case 2 : Suppose that b̃ = (t̃i, s̃i, j̃i, ãi) ̸= (t, s, j, a) = b, then by algebraic manipulation, the algorithm does not
change the q-function:

q̃d
i+1

(b) = q̃d
i
(b) + θi(b) · ((Hq̃d

i
)(b) + ϕ̃i(b)− q̃d

i
(b))

= q̃d
i
(b) + 0 · ((Hq̃d

i
)(b) + ϕ̃i(b)− q̃d

i
(b))

= q̃d
i
(b).

C.7.4 Operator H is a contraction

We use the following weights w ∈ R[T]×S×[J−1]×A with a weighted max norm to prove the contraction properties
in this section: where the weights are defined as

w(t, s, j, a) := 2t, ∀t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A. (28)

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Lemma C.12. The operator Bd
κ is a weighted max norm contraction for w defined in (28):

∥Bd
κx−Bd

κy∥w ≤
1

2
∥x− y∥w, ∀x, y ∈ RS .

Proof. The operator Bd
κ is equivalently defined using a shortfall risk measure q̂κα from Lemma C.7 for each

b = (t, s, j, a) as

(Bd
κq)(b) :=

{
R · t if j = 0 ∨ t = 0,

(q̂κj
J

)a,s
[
r(s, a) + γmaxa′∈A q(t− 1, s̃1, j̃

′, a′)
]

otherwise,

We analyze the following two cases.

Case 1 : For each t ∈ 1:T, s ∈ S, j ∈ 1:(J − 1), a ∈ A:

0 ≤ 1

w(t, s, j, a)

∣∣∣(Bd
κx)(t, s, j, a)− (Bd

κy)(t, s, j, a)
∣∣∣

(a)
=

1

w(t, s, j, a)

∣∣∣∣(q̂κj/J)a,s
[
max
a′∈A

γx(t− 1, s̃1, j̃
′, a′)

]
− (q̂κj/J)

a,s

[
max
a′∈A

γy(t− 1, s̃1, j̃
′, a′)

]∣∣∣∣
(b)
≤ 1

w(t, s, j, a)
max

a′∈AS×[J−1]

∣∣∣(q̂κj/J)a,s
[
γx(t− 1, s̃1, j̃

′, a′(s̃1, j̃
′))

]
− (q̂κj/J)

a,s
[
γy(t− 1, s̃1, j̃

′, a′(s̃1, j̃
′))

]∣∣∣
(c)
≤ 1

w(t, s, j, a)
· max
s′∈S,j′∈[J−1],a′∈A

|γx(t− 1, s′, j′, a′)− γy(t− 1, s′, j′, a′)|

=
1

w(t, s, j, a)
· γ · max

s′∈S,j′∈[J−1],a′∈A
|x(t− 1, s′, j′, a′)− y(t− 1, s′, j′, a′)|

(d)
≤ max

s′∈S,j′∈[J−1],a′∈A

|x(t− 1, s′, j′, a′)− y(t− 1, s′, j′, a′)|
2w(t− 1, s′, j′, a′)

.

In step (a), we use the translation invariance of the risk measure to cancel out r(s, a). Step (b) follows by upper
bounding the difference using the monotonicity of q̂κj

J

, step (c) follows from Lemmas C.2 and C.7, step (d) follows
from the definition of w, its dependence on t only, and γ ≤ 1.

Case 2 : For t = 0 ∨ j = 0:

1

w(t, s, j, a)

∣∣∣(Bd
κx)(t, s, j, a)− (Bd

κy)(t, s, j, a)
∣∣∣ = 1

2t
|Rt−Rt| = 0.

Then, using the equalities above and K = [T]× S × [J − 1]×A we get that

∥Bd
κx−Bd

κy∥w = max
b∈K

1

w(b)

∣∣∣(Bd
κx)(b)− (Bd

κy)(b)
∣∣∣

≤ max
t∈1:T,s′∈S,j′∈1:J−1,a′∈A

|x(t− 1, s′, j′, a′)− y(t− 1, s′, j′, a′)|
2 · w(t− 1, s′, j′, a′)

≤ max
t∈[T],s′∈S,j′∈[J−1],a′∈A

|x(t, s′, j′, a′)− y(t, s′, j′, a′)|
2 · w(t, s′, j′, a′)

=
1

2
∥x− y∥w.

The following lemma establishes that the gradient update is a convex combination of the starting value and an
optimal solution for an appropriate step size.
Lemma C.13. Suppose that f : R → R is a differentiable µ-strongly convex function with an L-Lispchitz
continuous gradient. Consider xi ∈ R and a gradient update for any step size ξ ∈ (0, 1/L]:

xi+1 := xi − ξ · f ′(xi).

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Then ∃l ∈ [1/L, 1/µ] such that ξ/l ∈ (0, 1] and

xi+1 = (1− ξ/l) · xi + ξ/l · x⋆,

where x⋆ = argminx∈R f(x) (unique from strong convexity).

Proof. Assume that f ′(xi) ̸= 0 hence xi ̸= x⋆; otherwise the result holds trivially. Then construct l ̸= 0 as

l :=
xi − x⋆

f ′(xi)
.

Substituting the definition of l into the gradient update, we get that

xi+1 := xi − ξ · f ′(xi) = (1− ξ/l)xi + ξ/l · x⋆,

as desired.

It remains to show that l ∈ [1/L, 1/µ] and ξ/l ∈ (0, 1]. Using that f ′(x⋆) = 0 and strong convexity (Nesterov, 2018,
Thm. 2.1.10) and Lipschitz continuity of the derivative:

1

L
|f ′(xi)| =

1

L
|f ′(xi)− f ′(x⋆)| ≤ |xi − x⋆| ≤ 1

µ
|f ′(xi)− f ′(x⋆)| = 1

µ
|f ′(xi)|. (29)

Next, we analyze two cases.

Case 1 : Suppose that x⋆ > xi. Then f ′(xi) > f ′(x⋆) = 0 because f ′ is increasing for a strongly convex f , and
therefore, (29) becomes

− 1
Lf

′(xi) ≤ x⋆ − xi ≤ − 1
µf

′(xi),

− 1
L ≥ x⋆−xi

f ′(xi)
≥ − 1

µ ,

− 1
L ≥ −l ≥ − 1

µ ,
1
L ≤ l ≤ 1

µ .

In addition, ξ ∈ (0, 1/L] =⇒ ξ/l ∈ (0, 1].

Case 2 : Suppose that x⋆ < xi. Then f ′(xi) > f ′(x⋆) = 0 because f ′ is increasing for a strongly convex f , and
therefore, (29) becomes

1
Lf

′(xi) ≤ xi − x⋆ ≤ 1
µf

′(xi),
1
L ≤ xi−x⋆

f ′(xi)
≤ 1

µ ,
1
L ≤ l ≤ 1

µ .

In addition, ξ ∈ (0, 1/L] =⇒ ξ/l ∈ (0, 1].

Theorem C.14. A fixed point x⋆ = Bd
κx

⋆ exists and satisfies x⋆ = Hx⋆. Let µ̄ := J−1κ, L̄ := κ−1, and
ξ ∈ (0,min(1, 1/L̄)) in the definition of H. Then, H is a weighted max norm star contraction:

∥Hx−Hx⋆∥w ≤
(
1− µ̄ξ

2

)
· ∥x− x⋆∥w,

for w defined in (28).

Proof. The fixed point x⋆ exists from Lemma C.12 and the Banach fixed point theorem. The operator H takes a
gradient step towards Bd

κ.

Case 1 : Fix some b = (t, s, j, a) with t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A and suppose that t > 0 and j > 0. Fix some
q and define

f(y) = Es,a

[
ℓκj/J

(
r(s, a) + γ ·max

a′∈A
q(t− 1, s̃1, j̃

′, a′)− y

)]
, (30)

The function f is strongly convex with Lipschitz gradient with parameters µ̄ and L̄ based on Lemma 4.6 and since

µ̄ ≤ min

{
j

J
, 1− j

J

}
κ ≤ max

{
j

J
, 1− j

J

}
κ−1 ≤ L̄,∀j ∈ 1:J − 1.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Let y⋆ ∈ argminy∈R f(y). Then, ∃l ∈ [1
L̄
, 1
µ̄] such that

(Hq)(b) = (q − ξGq)(b) = q(b)− ξ · f ′(q(b)) = (1− ξ/l) · q(b) + ξ/l · y⋆

= (1− ξ/l) · q(b) + ξ/l · (Bd
κq)(b),

(31)

from algebraic manipulation and application of Lemma C.13 to the function f in (30) which satisfies the requisite
strong convexity and Lipschitz continuity properties.

The fixed point of x⋆ of Bd
κ is a fixed point of H from (31)

(Hx⋆)(b) =

(
1− ξ

l

)
x⋆(b) +

ξ

l
(Bd

κx
⋆)(b) =

(
1− ξ

l

)
x⋆(b) +

ξ

l
(x⋆)(b) = x⋆(b).

Finally, we get using (31) that

|(Hx)(b)− (Hx⋆)(b)| = |(1− ξ/l)x(b) + ξ/l(Bd
κx)(b)− ((1− ξ/l)x⋆(b) + ξ/l(Bd

κx
⋆)(b))|

= |(1− ξ/l)(x− x⋆)(b) + ξ/l(Bd
κx−Bd

κx
⋆)(b)|

≤ (1− ξ/l)|(x− x⋆)(b)|+ ξ/l|(Bd
κx−Bd

κx
⋆)(b)|

≤ (1− ξ/l)|(x− x⋆)(b)|+ 1

2
ξ/l|(x− x⋆)(b)|

= (1− ξ/2l)|(x− x⋆)(b)|.

Here, we used the triangle inequality for absolute values and the fact that x⋆ is a fixed point of Bd
κ and Lemma C.12.

Hence,
1

w(b)
|(Hx−Hx⋆)(b)| ≤

(
1− µ̄ξ

2

)
1

w(b)
|(x− x⋆)(b)|. (32)

Case 2 : Fix some b = (t, s, j, a) with t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A and suppose that t = 0 ∨ j = 0. Then, from
x⋆(b) = R · t, we have that if ξ < 1:

|(Hx)(b)− (Hx⋆)(b)| = |x(b)− ξ(x(b)−R · t)−R · t|
= (1− ξ)|x(b)−R · t| = (1− ξ)|x(b)− x⋆(b)|.

Hence,
1

w(b)
|(Hx−Hx⋆)(b)| ≤ (1− ξ)

1

w(b)
|(x− x⋆)(b)| ≤ (1− µ̄ξ/2)

1

w(b)
|(x− x⋆)(b)| (33)

since µ̄ξ/2 ≤ κJ−1ξ/2 ≤ κξ ≤ ξ because κ ≤ 1.

Conclusion: Putting (32) and (33) together with the definition of the weighted norm, we get the desired star
contraction rate.

C.7.5 Noise Properties

The history Fi at an iteration i ∈ N is defined as

Fi :=
(
q̃d
0
, . . . , q̃d

i
, ϕ̃0, . . . , ϕ̃i−1, θ̃0, . . . , θ̃i

)
. (34)

Recall from Assumption 4.7 that
Gi := (β̃l, (t̃l, s̃l, j̃l, ãl, s̃

′
l))

i
l=0,

and

P
[
s̃′i = s′ | Gi−1, b̃i, β̃i

]
= p(s̃i, ãi, s

′), ∀s′ ∈ S,

almost surely, where Gi−1 := (β̃l, (t̃l, s̃l, j̃l, ãl, s̃
′
l))

i−1
l=0 .

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Lemma C.15. Let Ω be an appropriate sample space. Then for each ω1, ω2 ∈ Ω and i = 1, . . . :

(Gi−1(ω1) = Gi−1(ω2)) ∧ (b̃i(ω1) = b̃i(ω2)) ∧ (β̃i(ω1) = β̃i(ω2))

=⇒
Fi(ω1) = Fi(ω2) = F̄i(Gi−1(ω1), b̃i(ω1), β̃i(ω1)), a.s.

for some F̄i operator that maps a tuple ((βl, (tl, sl, jl, al, s
′
l))

i−1
l=0 , (ti, si, ji, ai), βi) to some(

qd
0
, . . . , qd

i
, ϕ0, . . . , ϕi−1, θ0, . . . , θi

)
.

Proof. We proceed by induction on i. To prove the base step for i = 0:

F0(ω1) = (q̃d
0
(ω1), θ̃0(ω1)) = (tR, θ̃0(ω1)) = (tR, θ̃0(ω2)) = F0(ω2).

Here, θ̃0(ω1) = θ̃0(ω2) because β̃0(ω1) = β̃0(ω2), and b̃0(ω1) = b̃0(ω2).

To prove the inductive step, assume that the property holds for i and prove it for i+ 1. That is, suppose that
l = i+ 1

(Gl−1(ω1) = Gl−1(ω2)) ∧ (b̃l(ω1) = b̃l(ω2)) ∧ (β̃l(ω1) = β̃l(ω2)).

Then from the inductive assumption:
Fl = Fl, ∀ l = 1, . . . , i,

and for b = b̃i+1(ω1) = b̃i+1(ω2):

(ϕ̃i(b))(ω1) = (Hs̃′i(ω1)q̃
d
i
(ω1))(b)− (Hq̃d

i
(ω1))(b)

= (Hs̃′i(ω2)q̃
d
i
(ω2))(b)− (Hq̃d

i
(ω2))(b)

= (ϕ̃i(b))(ω2).

(θ̃i+1(b))(ω1) =
β̃i+1(ω1)

ξ
=

β̃i+1(ω2)

ξ
= (θ̃i+1(b))(ω2),

and for b ̸= b̃i+1(ω1) = b̃i+1(ω2):

(ϕ̃i(b))(ω1) = 0 = (ϕ̃i(b))(ω2).

(θ̃i+1(b))(ω1) = 0 = (θ̃i+1(b))(ω2).

In addition,

(q̃d
i+1

(b))(ω1) = (q̃d
i
(b))(ω1) + (θ̃i(b))(ω1) · (Hq̃d

i
(ω1) + ϕ̃i(ω1)− q̃d

i
(ω1))(t, s, j, a)

= (q̃d
i
(b))(ω2) + (θ̃i(b))(ω2) · (Hq̃d

i
(ω2) + ϕ̃i(ω2)− q̃d

i
(ω2))(b),

= (q̃d
i+1

(b))(ω2).

Putting the inequalities above together we get the desired equality:

Fi+1(ω1) =
(
q̃d
0
(ω1), . . . , q̃

d
i+1

(ω1), ϕ̃0(ω1), . . . , ϕ̃i(ω1), θ̃0(ω1), . . . , θ̃i+1(ω1)
)

=
(
q̃d
0
(ω2), . . . , q̃

d
i+1

(ω2), ϕ̃0(ω2), . . . , ϕ̃i(ω2), θ̃0(ω1), . . . , θ̃i+1(ω1)
)

= Fi+1(ω2).

Lemma C.16. Under Assumption 4.7:

P
[
s̃′i = s′ | Gi−1, b̃i, β̃i,Fi

]
= p(s̃i, ãi, s

′), a.s.,

for each s′ ∈ S and i ∈ N.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Proof. Using Lemma C.15, we have that

P
[
Fi = F̄(Gi−1, b̃i, β̃i) | Gi−1, b̃i, β̃i

]
= 1.

Hence, from Assumption 4.7 and the law of total probability, for each s′ ∈ S, i ∈ N:

p(s̃i, ãi, s
′) = P

[
s̃′i = s′ | Gi−1, b̃i, β̃i

]

= P
[
s̃′i = s′ | Gi−1, b̃i, β̃i,Fi = F̄(Gi−1, b̃i, β̃i)

]
P
[
Fi = F̄(Gi−1, b̃i, β̃i) | Gi−1, b̃i, β̃i)

]

= P
[
s̃′i = s′ | Gi−1, b̃i, β̃i,Fi = F̄(Gi−1, b̃i, β̃i)

]

= P
[
s̃′i = s′ | Gi−1, b̃i, β̃i,Fi

]
a.s.

Lemma C.17. The noise ϕ̃i in (27) satisfies almost surely

E[ϕ̃i(t, s, j, a) | Fi] = 0, ∀t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A, i ∈ N,

where Fi is the history defined in (34).

Proof. Let b := (t, s, j, a) and i ∈ N be arbitrary. We decompose the expectation using the law of total expectation
to get thta

E[ϕ̃i(b) | Fi] = E[ϕ̃i(b) | Fi, b̃i ̸= b] · P[b̃i ̸= b | Fi] + E[ϕ̃i(b) | Fi, b̃i = b] · P[b̃i = b | Fi] a.s., (35)

where b̃i := (s̃i, ãi, t̃i, j̃i).

The first r.h.s. term in (35) is, from the definition of ϕ̃i(b),

E[ϕ̃i(b) | Fi, b̃i ̸= b] = E[0 | Fi, b̃i ̸= b] = 0, a.s.. (36)

We now analyze two cases to evaluate the second r.h.s. term in (35).

Case 1 : j > 0 ∧ t > 0. Then almost surely:

E[ϕ̃i(b) | Fi, b̃i = b] = E[(Hs̃′i
q̃d
i
)(b)− (Hq̃d

i
)(b) | Fi, b̃i = b]

= ξ · E[−(Gs̃′i
q̃d
i
)(b) + (Gq̃d

i
)(b) | Fi, b̃i = b]

= ξ · E[−(Gs̃′i
q̃d
i
)(b) + (Gq̃d

i
)(b) | Fi, b̃i = b]

= ξ · E[E[−(Gs̃′i
q̃d
i
)(b) | Fi, b̃i = b, β̃i,Gi−1] + (Gq̃d

i
)(b) | Fi, b̃i = b]

(a)
= ξ · E[Ea,s[−(Gs̃1 q̃

d
i
)(b)] + (Gq̃d

i
)(b) | Fi, b̃i = b]

= ξ · E[−(Gq̃d
i
)(b) + (Gq̃d

i
)(b) | Fi, b̃i = b]

= 0.

(37)

To clarify, when s̃1 is used in an expectation with a superscript, such as Ea,s, then it does not represent a sample
s̃i with i = 1, but instead it represents the transition from s̃0 = s to s̃1 distributed as p(s, a, ·).
Step (a) above follows from Lemma C.16 given that the randomness of (Gs̃′i

q̃d
i
)(b) only comes from s̃′i when

conditioning on Fi, b̃i = b, β̃i, and Gi−1.

Case 2 : j = 0 ∨ t = 0. Directly from the definition of the operators in (26):

E[ϕ̃i(b) | Fi, b̃i = b] = E[(Hs̃′i
q̃d
i
)(b)− (Hq̃d

i
)(b) | Fi, b̃i = b]

= ξ · E[−(Gs̃′i
q̃d
i
)(b) + (Gq̃d

i
)(b) | Fi, b̃i = b]

= 0.

(38)

Substituting (36), and the appropriate case, (37) or (38), into (35) proves the desired equality.

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Lemma C.18. The noise ϕ̃i in (27) satisfies

E[(ϕ̃i(t, s, j, a))
2 | Fi] ≤ c+ g∥q̃d

i
∥2∞, ∀t ∈ [T], s ∈ S, j ∈ [J − 1], a ∈ A, i ∈ N,

almost surely, for some c, g ∈ R+ where Fi is the history defined in (34).

Proof. Let b := (t, s, j, a) and i ∈ N be arbitrary. We decompose the expectation using the law of total expectation
to get almost surely

E[ϕ̃i(b)
2 | Fi] = E[ϕ̃i(b)

2 | Fi, b̃i ̸= b] · P[b̃i ̸= b | Fi] + E[ϕ̃i(b)
2 | Fi, b̃i = b] · P[b̃i = b | Fi], (39)

where b̃i := (t̃i, s̃i, ãi, j̃i, ãi).

The first r.h.s. term in (39) is, from the definition of ϕ̃i(b),

E[ϕ̃i(b)
2 | Fi, b̃i ̸= b] = E[0 | Fi, b̃i ̸= b] = 0, a.s.. (40)

We now analyze two cases to evaluate the second r.h.s. term in (39).

Case 1 : Assume that j > 0, t > 0. Then from the definitions of the operators in (26):

E[(ϕ̃i(b))
2 | Fi, b̃i = b] = E

[(
(Hs̃′i

q̃d
i
)(b)− (Hq̃d

i
)(b)

)2

| Fi, b̃i = b

]

= ξ2E
[(
−(Gs̃′i

q̃d
i
)(b) + (Gq̃d

i
)(b)

)2

| Fi, b̃i = b

]

= ξ2E
[
E
[(
−(Gs̃′i

q̃d
i
)(b) + (Gq̃d

i
)(b)

)2

| Fi, b̃i = b, β̃i,Gi−1

]
| Fi, b̃i = b

]

(a)
= ξ2E

[
Ea,s

[(
(Gs̃1 q̃

d
i
)(b)− (Gq̃d

i
)(b)

)2
]
| Fi, b̃i = b

]
.

To clarify, when s̃1 is used in an expectation with a superscript, such as Ea,s, then it does not represent a sample
s̃i with i = 1, but instead it represents the transition from s̃0 = s to s̃1 distributed as p(s, a, ·).
Step (a) above follows from Lemma C.16 given that the randomness of −(Gs̃′i

q̃d
i
)(b) + (Gq̃d

i
)(b) only comes from

s̃′i when conditioning on Fi, b̃i = b, β̃i, and Gi−1. Then, continuing the derivation:

E[(ϕ̃i(b))
2 | Fi, b̃i = b] = ξ2E

[
Ea,s

[(
(Gs̃1 q̃

d
i
)(b)− (Gq̃d

i
)(b)

)2
]
| Fi, b̃i = b

]

(a)
= ξ2E

[
Ea,s

[(
E
[
∂ℓκj

J

(
δ̃i(s̃1, j̃

′)
)
|s̃1

]
− Ea,s

[
∂ℓκj

J

(
δ̃i(s̃1, j̃

′)
)])2

]
| Fi, b̃i = b

]

(b)
= ξ2E

[(
Ea,s

[(
E
[
∂ℓκj

J

(
δ̃i(s̃1, j̃

′)
)
| s̃1

])2
]
−

(
Ea,s

[
∂ℓκj

J

(
δ̃i(s̃1, j̃

′)
)])2

)
| Fi, b̃i = b

]

≤ ξ2E
[
Ea,s

[(
E
[
∂ℓκj

J

(
δ̃i(s̃1, j̃

′)
)
| s̃1

])2
]
| Fi, b̃i = b

]

(c)
≤ ξ2E

[
max

j′∈[J−1],s′∈S
∂ℓκj

J

(δ̃i(s
′, j′))2 | Fi, b̃i = b

]

(d)
≤ ξ2E

[
max

j′∈[J−1],s′∈S

(
|∂ℓκj

J

(δ̃i(s
′, j′))− ∂ℓκj

J

(0)|
)2

| Fi, b̃i = b

]

(e)
≤ ξ2E

[
max

j′∈[J−1],s′∈S

(
max

{
j

J
, 1− j

J

}
κ−1|δ̃i(s′, j′)|

)2

| Fi, b̃i = b

]

≤ ξ2κ−2 · E
[

max
j′∈[J−1],s′∈S

δ̃i(s
′, j′)2 | Fi, b̃i = b

]

(f)
≤ ξ2κ−2 · (2∥r∥2∞ + 8 · ∥q̃d

i
∥2∞).

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

Step (a) above follows by substituting (Gs̃1 q̃
d
i
)(b)− (Gq̃d

i
)(b) and replacing

δ̃i(s
′, j′) := r(s, a) + γmax

a′∈A
q̃d
i
(t− 1, s′, j′, a′)− q̃d

i
(t, s, j, a). (41)

The equality in step (b) holds because for a random variable x̃ := E[∂ℓκj
J

(
δi(s̃1, j̃

′)
)
|s̃1], the variance satisfies

E[(x̃ − E[x̃])2] = E[x̃2] − (E[x̃])2. Step (c) upper bounds the expectation by a supremum, and step (d) uses
∂ℓκj

J

(0) = 0 from the definition in (14). Step (e) uses Lemma C.5 to bound the derivative difference as a function
of the step size. Finally, step (f) derives the final upper bound since

∥r∥∞ = max
s∈S,a∈A

|r(s, a)|, ∥q̃d
i
∥∞ = max

b∈K
|q̃d

i
(b)|,

where K = [T]× S × [J − 1]×A and

max
j′∈[J−1],s′∈S

δ̃i(s
′, j′)2 ≤ (∥r∥∞ + 2∥q̃d

i
∥∞)2 ≤ (∥r∥∞ + 2∥q̃d

i
∥∞)2 + (∥r∥∞ − 2∥q̃d

i
∥∞)2

= 2∥r∥2∞ + 8∥q̃d
i
∥2∞,

and because q̃d
i

is measurable on Fi.

Case 2 : Assume that t = 0 ∨ j = 0. Directly from the definition of the operators in (26):

E[(ϕ̃i(b))
2 | Fi, b̃i = b] = E[((Hs̃′i

q̃d
i
)(b)− (Hq̃d

i
)(b))2 | Fi, b̃i = b]

= ξ · E[(−(Gs̃′i
q̃d
i
)(b) + (Gq̃d

i
)(b))2 | Fi, b̃i = b]

= 0.

Finally, we can confirm that

E[ϕ̃i(b)
2 | Fi] = E[ϕ̃i(b)

2 | Fi, b̃i ̸= b] · P[b̃i ̸= b | Fi] + E[ϕ̃i(b)
2 | Fi, b̃i = b] · P[b̃i = b | Fi]

≤ 0 · P[b̃i ̸= b | Fi] + ξ2κ−2 · (2∥r∥2∞ + 8 · ∥q̃d
i
∥2∞) · P[b̃i = b | Fi]

≤ ξ2κ−2 · (2∥r∥2∞ + 8 · ∥q̃d
i
∥2∞).

C.7.6 Main Proof

Proof of Theorem 4.8. We verify that the sequence of our q-learning iterates satisfies the properties in Proposi-
tion C.10.

• The step size condition in Theorem 4.8 guarantees that we satisfy property (a) in Proposition C.10

• We satisfy property (b) in Proposition C.10 because

– Lemma C.17 shows that we satisfy property (1) in Assumption C.9
– Lemma C.18 shows that we satisfy property (2) in Assumption C.9

• Theorem C.14 shows that we satisfy property (c) in Proposition C.10

D EMPIRICAL RESULTS

The code used to generate all plots can be found in https://github.com/MonkieDein/DRA-Q-LA.

https://github.com/MonkieDein/DRA-Q-LA

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37(S) 38 (The Cliff) 39(G)r = -100

r = -1

80%

10% 10%X

Stochastic transitions:
to each adjacent
direction with 10%
probability instead of
selected direction.

Figure 5: The cliffwalk domain

D.1 Domain Details

For each domain, we provide CSV files and julia JLD files in the supplementary material with the exact specifications
of the domains we use. Domain detail for six out of seven of our domains include (Machine Replacement (MR),
Gambler’s Ruin (GR), Inventory1 (INV1), Inventory2 (INV2), Riverswim (RS) and Population Management
(POP)) can be found in (Hau et al., 2023b, Appx. E). The Cliffwalk (CW) domain is similar to the one described
in (Sutton and Barto, 2018, Ex. 6.6), with a minor modification. In this version, the agent transitions to each
adjacent direction with a 10%-probability instead of always following the selected direction (see Fig. 5). The
initial state s0 specification can be found in Table 2. We initialize all environments with a discount factor of
γ = 0.9 and a horizon T = 100.

MR GR INV1 INV2 RS POP CW
s0 1 5 10 20 9 44 37

Table 2: Initial state for each domain

D.2 Algorithmic Details

Algorithm 1 Line 6 is implemented with ϵ = 10−14 to account for the non-associative property of floating

point arithmetic with τ =
qd
t
(s,j,a⋆)−r

γ as:

j ← argmin

{
j′ ∈ [J − 1] | max

a′∈A
qd
t−1

(s′, j′, a′) ≥ τ − ϵ|τ |
}

.

Algorithm 2 Without loss of generality, the VaR-Q-value function is trained with a standardized scaled reward
function r̂(s, a)← r(s,a)−R

R̄−R
. We also remove the time indices to reduce computational overhead and initialize the

q-value function with q̂d ← (1− γ)−1. The VaR-Q-value function is then unscaled via q̃d ← q̂d · (R̄−R) + R
1−γ

before being compared with the DP variant qd. The learning rate is defined as βi ← 100 · (0.1i·0.0003) for i-th
occurrence of sample (s, a) across all domains. For a fair comparison between domains, we sample a transition for
every (s, a)-pair at each iteration.

Nested VaR (nVaR) also known as dynamic VaR, nVaR is solved via the following DP for each s ∈ S and
t ∈ [T − 1] as

vt+1(s) = max
a∈A

VaRα0
[r(s, a) + γ · vt(s̃′)] ,

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

where s̃′ ∼ p(s, a, ·). Then, we evaluate a greedy policy πt : S → A, k ∈ [T − 1] constructed to satisfy

πk(s) ∈ argmax
a∈A

VaRα0
[r(s, a) + γ · vT−k(s̃

′)] .

Distributional VaR (VaR-IQN) It uses the Markov action-selection strategy proposed by Dabney et al.
(2018a); Keramati et al. (2020) with J = 4096 uniform quantile discretization (Dabney et al., 2018b; Rowland
et al., 2024):

qt+1(s, αj , a) = VaRαj

[
r(s, a) + γmax

a′∈A
VaRα0

[qt(s̃
′, ũ, a′)]

]
∀αj =

2j + 1

J
where j ∈ [J − 1] ,

where ũ refer to the discretized uniform distribution satisfy P[ũ = 2j+1
J] = 1

J ∀j ∈ [J − 1] follows greedy policy

πk(s) ∈ argmax
a∈A

VaRα0
[qT−k(s, ũ, a)] .

In contrast to our algorithm, an optimal action a is selected w.r.t the initial Markov risk level of interest α0

instead of the quantile-dependent risk level αj (Lim and Malik, 2022).

Conditional Value at Risk (CVaR) Follows the dynamic program described in (Bäuerle and Ott, 2011),
that solves a bi-level optimization

max
π∈Πt

HD

CVaRπ,s
α

[
t−1∑

k=0

γk · r(s̃k, ãk)
]
:= max

π∈Πt
HD

sup
z∈R

(z − α−1E[z −
t−1∑

k=0

γk · r(s̃k, ãk)]+)

= sup
z∈R

(z − α−1 min
π∈Πt

HD

E[z −
t−1∑

k=0

γk · r(s̃k, ãk)]+) ,

given z ∈ R, a recursive function with memoization is used to solve the inner optimization for t ∈ 1 : T as

v⋆t (s, z) := min
π∈Πt

HD

E

[
z −

t−1∑

k=0

γk · r(s̃k, ãk)
]

+

= γ ·min
a∈A

∑

s′∈S
v⋆t−1(s

′,
z − r(s, a)

γ
) · p(s, a, s′) ,

with the base case v⋆0(s, z) = E [z − 0]+ = max{0, z}.
Since it is not computationally feasible to solve for all z ∈ R, with the same intuition presented in Section 4.1,
we consider an approximation z by rounding it up to a precision determined by the span of the return range to
under-approximate the CVaR return. Specifically, we round z to d = 5− ⌈log10(R̄−R)− log10(1− γ)⌉ decimal
places, ensuring an accuracy of five significant digits relative to the return range.

Furthermore, in the discounted setting, it suffices to compute the value function for a closed set Zt ⊂ [L,U] for
an MDP with horizon t where L = ⌈R(1−γt)

1−γ ⌉d and U = ⌈ R̄(1−γt)
1−γ ⌉d, because the value function and behavior of z

outside this range, i.e. z ∈ (−∞, L) ∪ (U,∞) are well defined. Specifically,

• For z ≤ L, the value function for all states is given by minπ E [z − x̃π]+ = 0.

• For z ≥ U , the value function for all states satisfies minπ E [z − x̃π]+ = (z − U) + minπ E [U − x̃π]+ =
(z − U) + v⋆t (s, U).

This approach can also be extended to the non-discounted finite-horizon case, where the bounds simplify to
L = tR and U = tR̄.

Quantile Based CVaR (Chow) We implemented the algorithm described in (Chow et al., 2015; Hau et al.,
2023a) with J = 4096 uniform discretization as

(Bmaxq)(s, αj , a) := r(s, a) + γ · min
ζ∈Zsa(αj)

∑

s′∈S
ζs′ ·max

a′∈A
q(s′,

αjζs′

p(s, a, s′)
, a′) ∀αj =

j

J
where j ∈ [J] ,

Zsa(α) := {ξ ∈ ∆S | αζs′ ≤ p(s, a, s′)} .
which follow a greedy history-dependent policy described in (Chow et al., 2015). We use the same discretization
level as our algorithm. It is important to note that this algorithm could over-approximate the true static CVaR
value function due to the duality gap, so it may perform badly (Hau et al., 2023a).

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

EVaR Algorithm described in (Hau et al., 2023b) and known to perform well when evaluated with static CVaR
and EVaR. We implemented the algorithm with the time-dependent policy described there, and with fixed ERM
discretization βj = 100 · (0.99j) ∀j ∈ [3000], instead of a domain-dependent discretization.

D.3 More empirical results

Fig. 6 extends Fig. 2 and demonstrates that the performance of π across all the domains to understand how the
selection of qd in Algorithm 1 contribute to the quality of the solution. More specifically, π lies within [qd, q̄d],
whereas π̄ may performs worse than qd. Furthermore, as the discretization level increases, the bounding gap
q̄d − qd shrinks, suggesting that π converges to π⋆.

Fig. 7 extends Fig. 1 and compares our algorithm with other related algorithms (detailed in Appendix D.2) for
all the domains on quantile levels α0 ∈ {0.05, 0.15, . . . , 0.85, 0.95}. As we can see, our algorithm consistently
outperforms all other algorithms across all tested domains and quantile levels.

Fig. 8 shows that for all the domains, both the value function and the performance of the policy for the κ-soft
quantile Q-learning (Algorithm 2) with κ ∈ {10−4, 10−8, 10−12, 0} and uniform discretization of J = 256 converges
to the DP variant Eq. (12) after 20, 000iterations. Not only the value functions for the Q-learning converges
closely to the DP’s value function, the performance of the policy computed from the Q-learning value function
also matches the policy from the DP variant.

Fig. 9 extends Fig. 3 and demonstrates for all the domains that the value function achieve from κ-soft quantile
Q-learning (Algorithm 2) for κ ∈ {10−4, 10−8, 10−12, 0} and uniform discretization of J = 256 converges to the
DP variant Eq. (12). The Wasserstein-1 distance of quantile function defined as

W1(q
d, q̃d) :=

1

J

∑

j∈[J−1]

|max
a∈A
{qd(s0, j, a)} −max

a∈A
{q̃d(s0, j, a)}|.

We use it to evaluate the differences between two value functions. From Fig. 9 we can see that for all domains,
the Wasserstein-1 distances of the value functions are far apart at the beginning and quickly converge to zero as
the number of samples for each (s, a) pair increase.

E COMPARISON OF VAR-Q-LEARNING AND IQN

We now compare the Implicit Quantile Network (IQN) Q-learning algorithm proposed in Dabney et al. (2018a)
to a variant of our Q-learning algorithm that stochastically approximates the expected value operation over
the sampling of next risk j′ ∼ U([J − 1]) using K ′ sampled risk level. Specifically, we focus on a version of
IQN Q-learning that considers a finite horizon problem (using an additional t state dimension), models the
state-value function using a piecewise constant function of the risk level, i.e. q(t, s, α, a) := q̂d(t, s, ⌊αJ⌋, a)
with q̂d ∈ R[T]×S×[J−1]×A, and models the risk aversion using a distorted risk measure parameterized by some
non-decreasing βIQN : [0, 1] → [0, 1] and implied Γ(j) := E[βIQN (ũ) | j ≤ ũ ≤ (j + 1)/J] for ũ ∼ U([0, 1]).
Algorithms 3 and 4 present in a comparable format how a quantile MDP and IQN approach compute their
respective loss when updating their respective approximate state-value functions.

The biggest distinction between the two algorithms lies in the computation of the action or actions associated to
state s′. On one hand, IQN seeks for each sampled (s, t, a, r, s′) tuple a single action that captures a form of risk
aversion portrayed by argmaxa′∈A E[q̂d(t− 1, s′, βIQN (ũ), a′)] = argmaxa′∈A(1/J)

∑J−1
j′=0 Γ(j)q̂

d(t− 1, s′, j′, a′),
where ũ ∼ U([0, 1]). On the other hand, the variant of our Quantile Q-learning algorithm seeks an optimal action
for each sampled next state quantile level j′k′ . The latter reflects our finding that the quantile MDP can be solved
by solving a nested VaR DP where the risk level is independently sampled from a uniform distribution at each
time step. In comparison, it is not clear what criterion of optimality is satisfied by the policy evaluated by IQN;
see Lim and Malik (2022) for a discussion regarding the case where βIQN (·) reflect a CVaR measure.

As part of the finer differences between the two algorithms, one can observe that our quantile Q-learning employs
our κ-soft quantile loss, whereas IQN uses a Huber quantile loss, denoted by ℓhα(·). We also use the quantile
loss function associated to the discretized level ⌊τkJ⌋/J instead of using τk directly in order to guarantee a
conservative approximation (instead of an estimation) of the value-at-risk of level τk. We finally handle samples
with τk < 1/J differently than the rest given that our Algorithm 2 prescribes steering the value of qd(t, s, 0, a)

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300
16 Discretization VaR (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−100

−80

−60

−40

−20

16 Discretization VaR (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−1.50×10⁴

−1.00×10⁴

−5.00×10³

0

5.00×10³

16 Discretization VaR (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

16 Discretization VaR (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

16 Discretization VaR (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

16 Discretization VaR (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

16 Discretization VaR (machine)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300
256 Discretization VaR (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

256 Discretization VaR (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−1.50×10⁴

−1.00×10⁴

−5.00×10³

0

5.00×10³

256 Discretization VaR (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

256 Discretization VaR (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

256 Discretization VaR (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

256 Discretization VaR (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

256 Discretization VaR (machine)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300
4096 Discretization VaR (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−9

−8

4096 Discretization VaR (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−1.50×10⁴

−1.00×10⁴

−5.00×10³

0

5.00×10³

4096 Discretization VaR (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

4096 Discretization VaR (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

4096 Discretization VaR (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

4096 Discretization VaR (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

4096 Discretization VaR (machine)

Quantile level (α)

Q
ua

nt
ile

 v
al

ue

q̲ᵈ q̄ᵈ ρ(π̲) ρ(π̄)

Figure 6: Approximation bound qd and its respective π policy performance

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

0.0 0.2 0.4 0.6 0.8 1.0

150

200

250

Policy Evaluation inventory1

0.0 0.2 0.4 0.6 0.8 1.0

−75

−50

−25

Policy Evaluation cliff

0.0 0.2 0.4 0.6 0.8 1.0

−15000

−10000

−5000

Policy Evaluation population

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Policy Evaluation ruin

0.0 0.2 0.4 0.6 0.8 1.0

25

50

75

100

125

Policy Evaluation riverswim

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

Policy Evaluation machine

Quantile level (α)

Q
ua

nt
ile

 v
al

ue

Alg 1

nVaR

VaR-IQN

E

Chow

CVaR

EVaR

Figure 7: Policy performance evaluation ρ(π)

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

0.0 0.2 0.4 0.6 0.8 1.0

220

240

260

κ=1e-4 Q-learning (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−9

−8

κ=1e-4 Q-learning (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−12000

−9000

−6000

κ=1e-4 Q-learning (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

κ=1e-4 Q-learning (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

1000

1250

1500

κ=1e-4 Q-learning (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

60

80

100

120

140

κ=1e-4 Q-learning (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

κ=1e-4 Q-learning (machine)

0.0 0.2 0.4 0.6 0.8 1.0

220

240

260

κ=1e-8 Q-learning (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−9

−8

κ=1e-8 Q-learning (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−12000

−9000

−6000

κ=1e-8 Q-learning (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

κ=1e-8 Q-learning (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

1000

1250

1500

κ=1e-8 Q-learning (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

60

80

100

120

κ=1e-8 Q-learning (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

κ=1e-8 Q-learning (machine)

0.0 0.2 0.4 0.6 0.8 1.0

220

240

260

κ=1e-12 Q-learning (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−9

−8

κ=1e-12 Q-learning (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−12000

−9000

−6000

κ=1e-12 Q-learning (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

κ=1e-12 Q-learning (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

1000

1250

1500

κ=1e-12 Q-learning (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

60

80

100

120

κ=1e-12 Q-learning (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

κ=1e-12 Q-learning (machine)

0.0 0.2 0.4 0.6 0.8 1.0

220

240

260

κ=0 Q-learning (inventory1)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−9

−8

κ=0 Q-learning (cliff)

0.0 0.2 0.4 0.6 0.8 1.0

−12000

−9000

−6000

κ=0 Q-learning (population)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

κ=0 Q-learning (ruin)

0.0 0.2 0.4 0.6 0.8 1.0

1000

1250

1500

κ=0 Q-learning (inventory2)

0.0 0.2 0.4 0.6 0.8 1.0

60

80

100

120

κ=0 Q-learning (riverswim)

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

κ=0 Q-learning (machine)

Quantile level (α)

Q
ua

nt
ile

 v
al

ue

q̃ᵈ q̲ᵈ ρ(π̃) ρ(π̲)

Figure 8: Q learning q̃ vs DP q value function and policy performance after 20, 000 iterations (J = 256)

Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik

Figure 9: Q-learning vs DP value function Wasserstein distance.

Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

towards the value of Rt in order to produce a natural lower bound on the value-at-risk for risk levels in that lower
range.

Algorithm 3: Risk Sampled-based Quantile Q-learning Loss (adapted from Algorithm 2)

1 Require: K,K ′,κ, and functions qd

Input: t, s, a, s′
2 # Sample current quantile thresholds
3 τk ∼ U([0, 1]), 1 ≤ k ≤ K
4 # Sample next quantile thresholds
5 τ ′k′ ∼ U([0, 1]), 1 ≤ k′ ≤ K ′

6 # Compute greedy next quantile-based actions
7 a⋆

k′ ← argmaxa′∈A qd(t− 1, s′, ⌊τ ′
k′J⌋, a′), 1 ≤ k′ ≤K′

8 # Compute distributional temporal differences
9 δkk′ ← r(s, a) + γqd(t− 1, s′, ⌊τ ′k′J⌋,a⋆

k′)− qd(t, s, ⌊τkJ⌋, a), 1 ≤ k ≤ K, 1 ≤ k′ ≤ K ′

10 # Compute κ-soft quantile loss
11 Output:

∑K
k=1(1/K)

∑K′

k′=1 ℓ
κ
⌊τkJ⌋/J (δkk′) · Iτk∈[1/J,1] + (qd(t, s,0, a)−Rt)2 · Iτk∈[0,1/J)

Algorithm 4: Implicit Quantile Network Loss (adapted from Dabney et al. (2018a))

1 Require: K,K ′,h, and functions Γ, q̂d
Input: t, s, a, s′

2 # Sample current quantile thresholds
3 τk ∼ U([0, 1]), 1 ≤ k ≤ K
4 # Sample next quantile thresholds
5 τ ′k′ ∼ U([0, 1]), 1 ≤ k′ ≤ K ′

6 # Compute greedy next uniform action
7 a⋆← argmaxa′∈A(1/J)

∑∑∑J−1
j′=0 Γ(j

′)q̂d(t− 1, s′, j′, a′)

8 # Compute distributional temporal differences
9 δkk′ ← r(s, a) + γq̂d(t− 1, s′, ⌊τ ′k′J⌋,a⋆)− q̂d(t, s, ⌊τkJ⌋, a), 1 ≤ k ≤ K, 1 ≤ k′ ≤ K ′

10 # Compute Huber quantile loss
11 Output:

∑K
k=1(1/K

′)
∑K′

k′=1 ℓ
h
τk
(δkk′)

	INTRODUCTION
	PRELIMINARIES AND FORMAL MODEL
	VAR DYNAMIC PROGRAMMING
	Model-based VaR-DP
	Nested VaR-DP

	Q-LEARNING ALGORITHM AND ANALYSIS
	Discretized Quantile Q-functions
	VaR-Q-learning Algorithm

	NUMERICAL EXPERIMENTS
	RELATED WORK AND DISCUSSION
	PROOFS OF SECTION 2
	Proof of Lemma 2.1
	From VaR state-action to VaR state value function

	PROOFS OF SECTION 3
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	PROOFS OF SECTION 4
	Risk Measures
	Proof of Lemma 4.2
	Proof of Theorem 4.3
	Proof of Proposition 4.5
	Why not Huber's Loss
	Proof of Lemma 4.6
	Proof of Theorem 4.8
	Properties of Soft-Quantile Measure
	Standard Operator Convergence Results
	Operator Definitions
	Operator H is a contraction
	Noise Properties
	Main Proof

	EMPIRICAL RESULTS
	Domain Details
	Algorithmic Details
	More empirical results

	COMPARISON OF VAR-Q-LEARNING AND IQN

