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Abstract. In this paper, we study the problem of estimating the mean
values of all the arms uniformly well in the multi-armed bandit setting.
If the variances of the arms were known, one could design an optimal
sampling strategy by pulling the arms proportionally to their variances.
However, since the distributions are not known in advance, we need to
design adaptive sampling strategies to select an arm at each round based
on the previous observed samples. We describe two strategies based on
pulling the arms proportionally to an upper-bound on their variance and
derive regret bounds for these strategies. We show that the performance
of these allocation strategies depends not only on the variances of the
arms but also on the full shape of their distribution.

1 Introduction

Consider a marketing problem where the objective is to estimate the potential
impact of several new products or services. A common approach to this problem
is to design active online polling systems, where at each time step a product
is presented (e.g., via a web banner on Internet) to random customers from a
population of interest, and feedbacks are collected (e.g., whether the customer
clicks on the advertisement or not) and used to estimate the average preference of
all the products. It is often the case that some products have a general consensus
of opinion (low variance) while others have a large variability (high variance).
While in the former case very few votes would be enough to have an accurate
estimate of the value of the product, in the latter the system should present the
product to more customers in order to achieve the same level of accuracy. Since
the variability of the opinions for different products is not known in advance, the
objective is to design an active strategy that selects which product to display at
each time step in order to estimate the values of all the products uniformly well.

The problem of online polling can be seen as an online allocation problem
with several options, where the accuracy of the estimation of the quality of each
option depends on the quantity of resources allocated to it and also on some (ini-
tially unknown) intrinsic variability of the option. This general problem is closely
related to the problems of active learning (Cohn et al., 1996, Castro et al., 2005),
sampling and Monte-Carlo methods (Étoré and Jourdain, 2010), and optimal ex-
perimental design (Fedorov, 1972, Chaudhuri and Mykland, 1995). A particular
instance of this problem is introduced in Antos et al. (2010) as an active learning
problem in the framework of stochastic multi-armed bandits. More precisely, the



problem is modeled as a repeated game between a learner and a stochastic en-
vironment, defined by a set of K unknown distributions {νk}Kk=1, where at each
round t, the learner selects an option (or arm) kt and as a consequence receives
a random sample from νkt (independent of the past samples). Given a budget
of n samples, the goal is to define an allocation strategy over arms so as to esti-
mate their expected values uniformly well (using a squared loss to evaluate the
accuracy). Note that if the variances {σ2

k}Kk=1 of the arms were initially known,
the optimal allocation strategy would be to sample the arms proportionally to
their variances, or more precisely, proportionally to λk = σ2

k/
∑

j σ
2
j . However,

since the distributions are initially unknown, the learner should implement an
active allocation strategy which adapts its behavior as samples are collected.
The performance of this strategy is measured by its regret (Eq. 4), defined as
the difference between the expected quadratic estimation error of the algorithm
and the error of the optimal allocation.

Antos et al. (2010) presented an algorithm, called GAFS-MAX, that allocates
samples proportionally to the empirical variances of the arms, while imposing
that each arm should be pulled at least

√
n times (to guarantee good estimation

of the true variances). They proved that for large enough n, the regret of their
algorithm scales with Õ(n−3/2) and conjectured that this rate is optimal.3 How-
ever, the performance displays both an implicit (in the condition for large enough
n) and explicit (in the regret bound) dependency on the inverse of the smallest
optimal allocation proportion, i.e., λmin = mink λk. This suggests that the algo-
rithm may have a poor performance whenever an arm has a very small variance
compared to the others (e.g., when users involved in the poll have very simi-
lar opinions about some products and very different on some others). Whether
this dependency is due to the analysis of GAFS-MAX, to the specific class of
algorithms, or to an intrinsic characteristic of the problem is an interesting open
question.

In this paper, in order to further investigate this issue, we introduce two
novel algorithms based on upper-confidence-bounds (UCB) on the variance. The
algorithms sample the arms proportionally to an upper-bound on their vari-
ance computed from the empirical variances and a confidence interval derived
from Chernoff-Hoeffding’s (first algorithm) and Bernstein’s (second algorithm)
inequalities. The main advantage of this class of algorithms is that the possi-
bility to use standard tools and arguments for UCB-like algorithms makes their
analysis simple, thus making the study of the dependency on λmin easier. The
main contributions and findings of this paper are as follows:

– The first algorithm, called CH-AS, is based on Chernoff-Hoeffding’s bound
and its regret is Õ(n−3/2) with an inverse dependency on λmin, similar to
GAFS-MAX. The main differences are: the bound for CH-AS holds for any n
(and not only for large enough n), multiplicative constants are made explicit,
and finally, the proof is simpler and relies on very simple tools.

3 The notation un = Õ(vn) means that there exist C > 0 and α > 0 such that
un ≤ C(log n)αvn for sufficiently large n.



– The second algorithm, called B-AS, uses an empirical Bernstein’s inequality,
and it has a better performance (in terms of the number of pulls) in targeting
the optimal allocation strategy without any dependency on λmin. However,
moving from the number of pulls to the regret causes the inverse dependency
on λmin to appear again in the bound. We show that this might be due to
the specific shape of the distributions {νk}Kk=1 and derive a regret bound
independent from λmin for the case of Gaussian arms.

– We show empirically that while the performance of CH-AS depends on λmin

in the case of Gaussian arms, this dependence does not exist for B-AS and
GAFS-MAX, as they perform well in this case. This suggests that 1) it is not
possible to remove λmin from the regret bound of CH-AS, independent of the
arms’ distributions, and 2) GAFS-MAX’s analysis could be improved along
the same line as the proof of B-AS for the Gaussian arms. Furthermore, we
further investigate the impact of the distribution on the regret by reporting
numerical results in case of Rademacher distributions showing that B-AS
performance worsens with λ−1

min. This leads to the conjecture that the full
shape of the distributions, and not only their variance, impacts the regret of
these algorithms.

2 Preliminaries

The allocation problem studied in this paper is formalized in the standard K-
armed stochastic bandit setting, where each arm k = 1, . . . ,K is characterized
by a distribution4 νk with mean µk and variance σ2

k. At each round t ≥ 1, the
learner (algorithm A) selects an arm kt and receives a sample drawn from νkt

independently of the past. The objective is to estimate the mean values of all
the arms uniformly well given a total budget of n pulls. An adaptive algorithm
defines its allocation strategy as a function of the samples observed in the past
(i.e., at time t, the selected arm kt is a function of all the observations up to time
t− 1). After n rounds and observing Tk,n =

∑n
t=1 I {k = kt} samples from each

arm k, the algorithm A returns the empirical estimates µ̂k,n =
1

Tk,n

Tk,n∑

t=1

Xk,t,

where Xk,t denotes the sample received when pulling arm k for the t-th time.
The accuracy of the estimation at each arm k is measured according to its
expected squared estimation error, or loss

Lk,n = Eνk

[
(µk − µ̂k,n)

2
]
. (1)

The global performance, or loss, of A is defined as the worst loss of the arms

Ln(A) = max
1≤k≤K

Lk,n . (2)

4 Although the formulation of the problem holds for any distribution, in the following
we will consider the case of bounded and sub-Gaussian distributions in order to
derive meaningful bounds.



If the variance of the arms were known in advance, one could design an
optimal static allocation (i.e., independent from the observed samples) by pulling
the arms proportionally to their variances. If an arm k is pulled a fixed number
of times T ∗

k,n, its loss is
5

Lk,n(A∗) =
σ2
k

T ∗
k,n

. (3)

By choosing T ∗
k,n so as to minimize Ln under the constraint that

∑K
k=1 T

∗
k,n = n,

the optimal static allocation strategy A∗ pulls each arm k T ∗
k,n =

σ2

kn∑K
i=1

σ2

i

times

(up to rounding effects), and achieves a global performance Ln(A∗) = Σ/n,

where Σ =
∑K

i=1 σ
2
i . We denote by λk =

T∗

k,n

n =
σ2

k

Σ , the optimal allocation
proportion for arm k, and by λmin = min1≤k≤K λk, the smallest such proportion.

In our setting, where the variances of the arms are not known in advance, the
exploration-exploitation trade-off is inevitable: an adaptive algorithm A should
estimate the variances of the arms (exploration) at the same time as it tries
to sample the arms proportionally to these estimates (exploitation). In order
to measure how well the adaptive algorithm A performs, we compare its per-
formance to that of the optimal allocation algorithm A∗, which requires the
knowledge of the variances of the arms. For this purpose we define the notion of
regret of an adaptive algorithm A as the difference between the loss incurred by
the learner and the optimal loss Ln(A∗):

Rn(A) = Ln(A)− Ln(A∗). (4)

It is important to note that unlike the standard multi-armed bandit problems,
we do not consider the notion of cumulative regret, and instead, use the excess-
loss suffered by the algorithm at the end of the n rounds. This notion of regret is
closely related to the pure exploration setting (e.g., Audibert et al. 2010, Bubeck
et al. 2011). In fact, in both settings good strategies should play each arm a linear
function of n, in contrast with the standard stochastic bandit setting, where the
sub-optimal arms should be played logarithmically in n.

3 Allocation Strategy Based on Chernoff-Hoeffding UCB

The first algorithm, called Chernoff-Hoeffding Allocation Strategy (CH-AS), is
based on a Chernoff-Hoeffding high-probability bound on the difference between
the estimated and true variances of the arms. Each arm is simply pulled pro-
portionally to an upper-confidence-bound (UCB) on its variance. This algorithm
deals with the exploration-exploitation trade-off by pulling more the arms with
higher estimated variances or higher uncertainty in these estimates.

3.1 The CH-AS Algorithm

The CH-AS algorithm ACH in Fig. 1 takes a confidence parameter δ as input
and after n pulls returns an empirical mean µ̂q,n for each arm q. At each time

5 This equality does not hold when the number of pulls is random, e.g., in adaptive
algorithms, where the strategy depends on the random observed samples.



Input: parameter δ
Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t =
1

Tq,t−1

(

σ̂2
q,t−1 + 5

√

log(1/δ)
2Tq,t−1

)

for each arm 1 ≤ q ≤ K

Pull an arm kt ∈ argmax1≤q≤K Bq,t

end for

Output: µ̂q,n for all arms 1 ≤ q ≤ K

Fig. 1. The pseudo-code of the CH-AS algorithm, with σ̂2
q,t computed as in Eq. 5.

step t, i.e., after having pulled arm kt, the algorithm computes the empirical
mean µ̂q,t and variance σ̂2

q,t of each arm q as6

µ̂q,t =
1

Tq,t

Tq,t∑

i=1

Xq,i and σ̂2
q,t =

1

Tq,t

Tq,t∑

i=1

X2
q,i − µ̂2

q,t , (5)

where Xq,i is the i-th sample of νq and Tq,t is the number of pulls allocated
to arm q up to time t. After pulling each arm twice (rounds t = 1 to 2K),
from round t = 2K + 1 on, the algorithm computes the Bq,t values based on a
Chernoff-Hoeffding’s bound on the variances of the arms:

Bq,t =
1

Tq,t−1

(
σ̂2
q,t−1 + 5

√
log(1/δ)

2Tq,t−1

)
,

and then pulls the arm kt with the largest Bq,t.

3.2 Regret Bound and Discussion

Before reporting a regret bound for CH-AS, we first analyze its performance in
targeting the optimal allocation strategy in terms of the number of pulls. As it
will be discussed later, the distinction between the performance in terms of the
number of pulls and the regret will allow us to stress the potential dependency
of the regret on the distribution of the arms (see Section 4.3).

Lemma 1. Assume that the supports of the distributions {νk}Kk=1 are in [0, 1]
and that n ≥ 4K. For any δ > 0, for any arm 1 ≤ k ≤ K, the number of pulls
Tk,n played by the CH-AS algorithm satisfies with probability at least 1− 4nKδ,

− 5

Σ2λ
3/2
min

√
n log(1/δ)− K

Σ
≤ Tk,n − T ∗

k,n ≤ 5(K − 1)

Σ2λ
3/2
min

√
n log(1/δ) +

K2

Σ
. (6)

Proof. Let ξK,n(δ) be the event

ξK,n(δ) =
⋂

1≤k≤K, 1≤t≤n

{

∣

∣

∣

(1

t

t
∑

i=1

X2
k,i −

(1

t

t
∑

i=1

Xk,i

)2
)

− σ2
k

∣

∣

∣
≤ 5

√

log(1/δ)

2t

}

. (7)

6 Notice that this is a biased estimator of the variance even if the Tq,t were not random.



From Hoeffding’s inequality it follows that Pr(ξK,n(δ)) ≥ 1 − 4nKδ. We divide
the proof of this lemma into the following three steps.

Step 1. Mechanism of the algorithm. On event ξK,n(δ), for all t ≤ n and q

|σ̂2
q,t − σ2

q | ≤ 5

√

log(1/δ)

2Tq,t
,

and the following upper and lower bounds for Bq,t+1 hold

σ2
q

Tq,t
≤ Bq,t+1 ≤ 1

Tq,t

(

σ2
q + 10

√

log(1/δ)

2Tq,t

)

. (8)

Let t + 1 > 2K be the time at which a given arm k is pulled for the last time,
i.e., Tk,t = Tk,n − 1 and Tk,(t+1) = Tk,n. Note that as n ≥ 4K, there is at least
one arm k that is pulled after the initialization phase. Since ACH chooses to pull
arm k at time t + 1, for any arm p, we have Bp,t+1 ≤ Bk,t+1. From Eq. 8 and
the fact that Tk,t = Tk,n − 1, we obtain

Bk,t+1 ≤ 1

Tk,t

(

σ2
k + 10

√

log(1/δ)

2Tk,t

)

=
1

Tk,n − 1

(

σ2
k + 10

√

log(1/δ)

2(Tk,n − 1)

)

. (9)

Using Eq. 8 and the fact that Tp,t ≤ Tp,n, we derive a lower-bound for Bp,t+1 as

Bp,t+1 ≥ σ2
p

Tp,t
≥ σ2

p

Tp,n
. (10)

Combining the condition Bp,t+1 ≤ Bk,t+1 with Eqs. 9 and 10, we obtain

σ2
p

Tp,n
≤ 1

Tk,n − 1

(

σ2
k + 10

√

log(1/δ)

2(Tk,n − 1)

)

. (11)

Note that at this point there is no dependency on t, and thus, the probability
that Eq. 11 holds for any p and for any k such that Tk,n > 2 (i.e. arm k is pulled
at least once after the initialization phase), is at least 1 − 4nKδ (probability of
the event ξK,n(δ)).

Step 2. Lower bound on Tp,n. If an arm p is under-pulled without taking
into account the initialization phase, i.e., Tp,n − 2 < λp(n − 2K), then from
the constraint

∑
k(Tk,n − 2) = n − 2K, we deduce that there must be at least

one arm k that is over-pulled, i.e., Tk,n − 2 > λk(n − 2K). Note that for this
arm, Tk,n − 2 > λk(n − 2K) ≥ 0, so we know that this specific arm is pulled
at least once after the initialization phase and that it satisfies Eq. 11. Using
the definition of the optimal allocation T ∗

k,n = nλk = nσ2
k/Σ and the fact that

Tk,n ≥ λk(n− 2K) + 2, Eq. 11 may be written as

σ2
p

Tp,n
≤ 1

T ∗
k,n

n

n− 2K

(

σ2
k +

√

100 log(1/δ)

2(λk(n− 2K) + 2− 1)

)

≤ Σ

n
+

20
√

log(1/δ)

(λminn)3/2
+

4KΣ

n2
,



since λk(n − 2K) + 1 ≥ λk(n/2 − 2K + 2K) + 1 ≥ nλk

2 , as n ≥ 4K (thus also
2KΣ

n(n−2K) ≤ 4KΣ
n2 ). By reordering the terms in the previous equation, we obtain

the lower bound

Tp,n ≥ σ2
p

Σ
n
+

20
√

log(1/δ)

(nλmin)
3/2 + 4KΣ

n2

≥ T ∗
p,n − 5

√

n log(1/δ)

Σ2λ
3/2
min

− K

Σ
, (12)

where in the second inequality we used 1/(1 + x) ≥ 1 − x (for x > −1) and
σ2
p ≤ 1/4. Note that the lower bound holds w.h.p. for any arm p.

Step 3. Upper bound on Tp,n. Using Eq. 12 and the fact that
∑

k Tk,n = n,
we obtain the upper bound

Tp,n = n−
∑

k 6=p

Tk,n ≤ T ∗
p,n +

5(K − 1)

Σ2λ
3/2
min

√

n log(1/δ) +
K2

Σ
. (13)

⊓⊔
We now show how this bound translates into a regret bound.

Theorem 1. Assume the distributions {νk}Kk=1 to be bounded in [0, 1] and n ≥
4K. The regret of ACH , for parameter δ = n−5/2, is bounded as

Rn(ACH) ≤ 70K
√
log n

n3/2 Σ λ
5/2
min

+O
( logn

n2

)
. (14)

For space limitations, we only report a sketch of the proof here, the full proof
is provided in the longer version of the paper (Carpentier et al., 2011).

Proof (Sketch). Eq. 3 indicates that the more often an arm is pulled, the smaller
its estimation error becomes. However, this is not true in general because Tk,n

is a random variable that depends on the actual received samples, and thus,
Lk,n = Eνk

[
(µk − µ̂k,n)

2
]
does not satisfy Eq. 3. Nevertheless, for any arm k,

the number of pulls Tk,n is a stopping time w.r.t. the filtration induced by the
samples received for arm k. Hence, by applying the result of Lemma 10 in Antos
et al. (2010) (a form of Wald’s equality), one derive

E
[

(µk − µ̂k,n)
2
I {ξK,n(δ)}

]

≤ 1

T 2
k,n

E

[(

Tk,n
∑

t=1

(µk −Xk,t)
)2]

=
σ2
kE(Tk,n)

T 2
k,n

, (15)

where T k,n is a lower-bound for Tk,n on ξK,n(δ). From this bound, one can use
Lemma 1, which provides both upper and lower-bounds for Tk,n on the event

ξK,n(δ) to deduce that E
[
(µk − µ̂k,n)

2
I {ξK,n(δ)}

]
=

σ2

k

T∗

k,n
+O

(
n−3/2

√
log(1/δ)

)

and E
[
(µk − µ̂k,n)

2
I {ξK,n(δ)}c

]
≤ 1 × P(ξK,n(δ)

c) ≤ 4nKδ (which is obvious).

The claim follows by setting δ = n−5/2. ⊓⊔
Remark 1. As discussed in Sec. 2, our objective is to design a sampling strategy
capable of estimating the mean values of the arms almost as accurately as the
optimal allocation strategy, which assumes that the variances are known. In
fact, Thm. 1 shows that the CH-AS algorithm provides a uniformly accurate
estimation of the expected values of the arms with a regretRn of order Õ(n−3/2).
This regret rate is the same as for GAFS-MAX algorithm (Antos et al., 2010).



Remark 2. In addition to a linear dependency on the number of arms K, the
bound also displays an inverse dependency on the smallest proportion λmin. As
a result, the bound scales poorly when an arm has a very small variance relative
to the other arms (i.e., σk ≪ Σ). Note that GAFS-MAX has also a similar
dependency on the inverse of λmin, although a precise comparison is not possible
due to the fact that Antos et al. (2010) do not explicitly report the multiplicative
constants in their regret bound. Moreover, Thm. 1 holds for any n whereas the
regret bound in Antos et al. (2010) requires a condition n ≥ n0, where n0 is a
constant that scales with λ−1

min. Finally, note that this UCB type of algorithm
(CH-AS) enables a much simpler regret analysis than that of GAFS-MAX.

Remark 3. It is clear from Lemma 1 that the inverse dependency on λmin appears
in the bound on the number of pulls and then it is propagated to the regret
bound. We now show with a simple example that this dependency is not an
artifact of the analysis and it is intrinsic in the performance of the algorithm.
Consider a two-arm problem with σ2

1 = 1 and σ2
2 = 0. Here the optimal allocation

is T ∗
1,n = n− 1, T ∗

2,n = 1 (only one sample is enough to estimate the mean of the
second arm), and λmin = 0, which makes the bound in Thm. 1 vacuous. This does
not mean that CH-AS has an unbounded regret but it indicates that it minimizes
the regret with a poorer rate (see Sec. A.3 in Carpentier et al. 2011, for a sketch
of the proof). In fact, the upper-confidence term forces the algorithm to pull the
arm with zero variance at least Ω(n2/3) times, which results in under-pulling
the first arm by the same amount, and thus, in worsening its estimation. It can
be shown that the resulting regret has the rate Õ(n−4/3) and no dependency
on λmin. So, it still decreases to zero faster than 1/n, but with a slower rate
than in Thm. 1. Merging these two results, we deduce that the regret is in fact

Rn ≤ min
{
λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}
. Note that when λmin = 0 the regret of

GAFS-MAX is in Õ(n−3/2)7, and GAFS-MAX thus outperforms CH-AS in this
case. We further study the behavior of CH-AS in Sec. 5.1.

The reason for the poor performance in Lemma 1 is that Chernoff-Hoeffding’s
inequality is not tight for small-variance random variables. In Sec. 4, we propose
an algorithm based on an empirical Bernstein’s inequality, which is tighter for
small-variance random variables, and prove that this algorithm under-pulls all
the arms by at most Õ(n1/2), without a dependency on λmin (see Eqs. 18 and 19).

4 Allocation Strategy Based on Bernstein UCB

In this section, we present another UCB-like algorithm, called Bernstein Alloca-
tion Strategy (B-AS), based on a Bernstein’s inequality for the variances of the
arms, with an improved bound on |Tk,n − T ∗

k,n| without the inverse dependency
on λmin (compare the bounds in Eqs. 18 and 19 to the one for CH-AS in Eq. 6).
However this result itself is not sufficient to derive a better regret bound than
CH-AS. This finding shows that even an adaptive algorithm which implements
a strategy close to the optimal allocation strategy may still incur a regret that

7 See the end of Section 4 in Antos et al. (2010).



Input: parameters c1, c2, δ
Let b = 4

√

c1 log(c2/δ)
√

log(2/δ) + 2
√
5c1n

−1/2

Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t = 1
Tq,t−1

(

σ̂2
q,t−1 + 2bσ̂q,t−1

√

1
Tq,t−1

+ b2 1
Tq,t−1

)

for each

arm 1 ≤ q ≤ K
Pull an arm kt ∈ argmax1≤q≤K Bq,t

end for

Output: µ̂q,t for each arm 1 ≤ q ≤ K

Fig. 2. The pseudo-code of the B-AS algorithm, with σ̂k,t computed as in Eq. 16.

poorly scales with the smallest proportion λmin. We further investigate this is-
sue by showing that the way the bound of the number of pulls translates into
a regret bound depends on the specific distributions of the arms. In fact, when
the sample distributions are Gaussian, we can exploit the property that the em-
pirical mean µ̂k,t conditioned on Tk,t is independent of the empirical variances
(σ̂k,s)s≤t and further deduce that the regret of B-AS no longer depends on λ−1

min.
The numerical simulations in Sec. 5 further illustrate this theoretical finding.

4.1 The B-AS Algorithm

The B-AS algorithm (Fig. 2), AB , is based on a high-probability bounds (em-
pirical Bernstein’s inequality) on the variance of each arm (Maurer and Pontil,
2009, Audibert et al., 2009). B-AS requires three parameters as input (see also
Remark 4 in Sec. 4.2 on how to reduce them to one) c1 and c2, which are related
to the shape of the distributions (see Assumption 1), and δ, which defines the
confidence level of the bound. The amount of exploration of the algorithm can
be adapted by properly tuning these parameters. The algorithm is similar to
CH-AS except that the bounds Bq,t on each arm are computed as

Bq,t =
1

Tq,t−1

(

σ̂2
q,t−1 + 2bσ̂q,t−1

√

1

Tq,t−1
+ b2

1

Tq,t−1

)

,

where b = 4
√
c1 log(c2/δ)

√
log(2/δ) + 2

√
5c1n

−1/2 and8

σ̂2
k,t =

1

Tk,t − 1

Tk,t
∑

i=1

(Xk,i − µ̂k,t)
2, with µ̂k,t =

1

Tk,t

Tk,t
∑

i=1

Xk,i . (16)

4.2 Regret Bound and Discussion

Instead of bounded distributions, we consider the more general assumption of
sub-Gaussian distributions.

Assumption 1 (Sub-Gaussian distributions) There exist c1, c2 > 0 such
that for all 1 ≤ k ≤ K and any ǫ > 0,

PX∼νk(|X − µk| ≥ ǫ) ≤ c2 exp(−ǫ2/c1) . (17)

8 We consider the unbiased estimator of the variance here.



We first bound the difference between the B-AS and optimal allocation strategies.

Lemma 2. Under Assumption 1 and for any δ > 0, when the B-AS algorithm
runs with parameters c1, c2, and δ, with probability at least 1 − 2nKδ, we have
Tp,min ≤ Tp,n ≤ Tp,max for any arm 1 ≤ p ≤ K and any n ≥ 16

9 c(δ)
−2, where

Tp,min = T ∗
p,n

−Kλp

[

1 +
16a
√

log(2/δ)

Σ

(

√
Σ +

2a
√

log(2/δ)

c(δ)

)

√
n+ 128Ka2 log(2/δ)

Σ
√

c(δ)
n1/4

]

, (18)

and

Tp,max = T ∗
p,n

+K

[

1 +
16a
√

log(2/δ)

Σ

(

√
Σ +

2a
√

log(2/δ)

c(δ)

)

√
n+ 128Ka2 log(2/δ)

Σ
√

c(δ)
n

1

4

]

, (19)

where c(δ) =
2a
√

log(2/δ)
√
K(

√
Σ+4a

√
log(2/δ))

and a = 2
√
c1 log(c2/δ) +

√
5c1

log(2/δ)n
−1/2.

Remark. Unlike the bounds for CH-AS in Lemma 1, B-AS allocates the arms
such that the difference between Tp,n and T ∗

p,n grows at most as Õ(
√
n) without

dependency on λ−1
min. This overcomes the limitation of CH-AS, which, as dis-

cussed in Remark 3 of Sec. 3.2, may over-sample (thus also under-sample) some
arms by O(n2/3) whenever λmin is small. We further notice that the lower bound
in Eq. 18 is of order λpÕ(

√
n), which implies that the gap between Tp,n and T ∗

p,n

decreases as λp becomes smaller. This is not the case in the upper bound, where

the gap is of order Õ(
√
n), but is independent of the value of λp. This explains

why in the case of general distributions, B-AS has a regret bound with an inverse
dependency on λmin (similar to CH-AS), as shown in Thm. 2

Theorem 2. Under Assumption 1, for any n ≥ 4K, the regret of AB run with
parameters c1, c2, and δ = (c2 + 2)n−5/2 is bounded as

Rn(AB) ≤
[CK5c21

λ2
min

log(n)2
(
Σ + 200 log(n)

)(
1 +

1

Σ3

)
+ 2c1(c2 + 2)K

]
n−3/2 ,

where C is a constant (a loose numerical value for C is 30000).

Similar to Thm. 1, the bound on the number of pulls translates into a regret
bound through Eq. 15. As it can be noticed, in order to remove the dependency
on λmin, a symmetric bound on |Tp,n − T ∗

p,n| ≤ λpÕ(
√
n) would be needed.

While the lower bound in Eq. 18 decreases with λp, the upper bound scales with

Õ(
√
n). Whether there exists an algorithm with a tighter upper bound scaling

with λp is still an open question. In the next section, we show that an improved
regret bound can be achieved in the special case of Gaussian distributions.



4.3 Regret for Gaussian Distributions

In the case of Gaussian distributions, the loss bound in Eq. 15 can be improved
as in the following lemma (the full proof is reported in Carpentier et al. 2011).

Lemma 3. Assume that distributions {νk}Kk=1 are Gaussian. Then for any k

E
[
(µ̂k,n − µk)

2
]
≤ σ2

k

Tk,min
+ σ2

kδ
′ , (20)

where Tk,n ≥ Tk,min is the lower-bound in Lemma 2 which holds with probability
at least 1− δ′ (where δ′ = 2nKδ).

Proof (Sketch). We first write the loss for any arm k as

E
[

(µ̂k,n − µk)
2
]

=
n
∑

t=2

E
[

(µ̂k,n − µk)
2|Tk,n = t

]

P(Tk,n = t). (21)

We notice that Tk,n is a random stopping time which depends on the sequence
of empirical variances for arm k and the empirical variances of all the other arms.
The event {Tk,n ≥ t} depends on the filtration Fk,t (generated by the sequence
of empirical variances of the rewards of arm k) and on the “environment of arm
k” E−k (defined by all the rewards samples of other arms). We recall that for a
Gaussian distributionN (µk, σ

2
k), the empirical mean µ̂k,n built on a fixed number

t of independent samples is distributed as a normal distribution N (µk, σ
2
k/t)

and it is independent from the empirical variance σ̂2
k,n. According to Carpentier

et al. (2011), this property can be extended to the conditional random variable
µ̂k,n|Fk,n, E−k which is still distributed as N (µk, σ

2
k/t). Using this property in

(21) we have

E
[

(µ̂k,n − µk)
2] =

n
∑

t=2

σ2
k

t
P(Tk,n = t) = σ2

kE

[ 1

Tk,n

]

.

Using the lower-bound in Lemma 2 the statement follows. ⊓⊔

Remark 1. We notice that the loss bound in Eq. 20 does not require any upper
bound on Tk,n. It is actually similar to the case of deterministic allocation.

When T̃k,n is a deterministic number of pulls, the corresponding loss resulting

from pulling arm k, T̃k,n times, is Lk,n = σ2
k/T̃k,n. In general, when Tk,n is a

random variable depending on the empirical variances {σ̂2
k}k (as in CH-AS and

B-AS), the conditional expectation E
[
(µ̂k,n − µk)

2|Tk,n = t
]
no longer equals

σ2
k/t. However, for Gaussian distributions we recover the property E

[
(µ̂k,n −

µk)
2|Tk,n = t

]
= σ2

k/t, which allows us to deduce the result reported in Lemma 3.
We now report a regret bound in the case of Gaussian distributions. Note

that in this case, Assumption 1 holds for c1 = 2Σ and c2 = 1.9

9 For a single Gaussian distribution c1 = 2σ2. Here we use c1 = 2Σ in order for the
assumption to be satisfied for all K distributions simultaneously.



Theorem 3. Assume that {νk}Kk=1 are Gaussian and that an upper-bound Σ ≥
Σ. B-AS with parameters c1 = 2Σ, c2 = 1, and δ = n−5/2 has a regret

Rn(AB) ≤ CΣK3/2
(
log(2n)

)2
n−3/2 +O

(
n−7/4(log n)2

)
, (22)

where C is a constant (a loose numerical value for C is 19200).

Remark 2. In the case of Gaussian distributions, the regret bound for B-AS has
the rate Õ(n−3/2) without dependency on λmin, which represents a significant
improvement over the regret bounds for the CH-AS and GAFS-MAX algorithms.

Remark 3. In practice, there is no need to tune the three parameters c1, c2, and δ
separately. In fact, it is enough to tune the algorithm for a single parameter b (see
Fig. 2). Using the proof of Thm. 3, it is possible to show that the expected regret

is minimized by choosing b = O
(
max{Σ3/2

,
√
Σ} logn

)
, which only requires an

upper bound on the value of Σ. This is a reasonable assumption whenever a
rough estimate of the magnitude of the variances is available.

5 Numerical Experiments

5.1 CH-AS, B-AS, and GAFS-MAX with Gaussian Arms

In this section, we compare the performance of CH-AS, B-AS, and GAFS-MAX
on a two-armed problem with Gaussian distributions ν1 = N (0, σ2

1 = 4) and
ν2 = N (0, σ2

2 = 1) (note that λmin=1/5). Fig. 3-(left) shows the rescaled regret,
n3/2Rn, for the three algorithms averaged over 50, 000 runs. The results indicate
that while the rescaled regret is almost constant w.r.t. n in B-AS and GAFS-
MAX, it increases for small (relative to λ−1

min) values of n in CH-AS.
The robust behavior of B-AS when the distributions of the arms are Gaussian

may be easily explained by the bound of Thm. 3 (Eq. 22). The initial increase
in the CH-AS curve is also consistent with the bound of Thm. 1 (Eq. 14). As
discussed in Remark 3 of Sec. 3.2, the regret bound for CH-AS is of the form Rn ≤
min

{

λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}

, and thus, the algorithm behaves as Õ(n−4/3) and

λ
−5/2
min Õ(n−3/2) for small and large (relative to λ−1

min) values of n, respectively.
It is important to note that the behavior of CH-AS is independent of the arms’
distributions and is intrinsic in the allocation mechanism, as shown in Lemma 1.
Finally, the behavior of GAFS-MAX indicates that although its analysis shows
an inverse dependency on λmin and yields a regret bounds similar to CH-AS,
its rescaled regret in fact does not grow with n when the distributions of the
arms are Gaussian. This is why we believe that it would be possible to improve
the GAFS-MAX analysis by bounding the standard deviation using Bernstein’s
inequality. This would remove the inverse dependency on λmin and provide a
regret bound similar to B-AS in the case of Gaussian distributions.

5.2 B-AS with Non-Gaussian Arms

In Sec. 4.3, we showed that when the arms have Gaussian distributions, the
regret bound of the B-AS algorithm does not depend on λmin anymore. We also
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Fig. 3. (left) The rescaled regret of CH-AS, B-AS, and GAFS-MAX algorithms on
a two-armed problem, where the distributions of the arms are Gaussian. (right) The
rescaled regret of B-AS for two bandit problems, one with two Gaussian arms and one
with a Gaussian and a Rademacher arms.

discussed on why we conjecture that it is not possible to remove this dependency
in case of general distributions unless tighter upper bounds on the number of
pulls can be derived. Although we do not yet have a lower bound on the regret
showing the dependency on λmin, in this section we empirically show that the
shape of the distributions directly impacts the regret of the B-AS algorithm.

As discussed in Sec. 4.3, the property of Gaussian distributions that allows us
to remove the λmin dependency in the regret bound of B-AS is that the empirical
mean µ̂k,n of each arm k is independent of its empirical variance σ̂2

k,n conditioned
on Tk,n. Although this property might approximately hold for a larger family
of distributions, there are distributions, such as Rademacher, for which these
quantities are negatively correlated. In the case of Rademacher distribution,10

the loss (µ̂k,t − µk)
2 is equal to µ̂2

k,t and we have σ̂2
k,t =

1
Tk,t

∑Tk,t

i=1 X2
k,i − µ̂2

k,t =

1− µ̂2
k,t, as a result, the larger σ̂2

k,t, the smaller µ̂2
k,t. We know that the allocation

strategies in CH-AS, B-AS, and GAFS-MAX are based on the empirical variance
which is used as a substitute for the true variance. As a result, the larger σ̂2

k,t,
the more often arm k is pulled. In case of Rademacher distributions, this means
that an arm is pulled more than its optimal allocation exactly when its mean is
accurately estimated (the loss is small). This may result in a poorer estimation
of the arm, and thus, negatively affect the regret of the algorithm.

In the experiments of this section, we use B-AS in two different bandit prob-
lems: one with two Gaussian arms ν1 = N (0, σ2

1) (with σ1 ≥ 1) and ν2 = N (0, 1),
and one with a Gaussian ν1 = N (0, σ2

1) and a Rademacher ν2 = R arms. Note
that in both cases λmin = λ2 = 1/(1 + σ2

1). Figure 3-(right) shows the rescaled
regret (n3/2Rn) of the B-AS algorithm as a function of λ−1

min for n = 1000. As
expected, while the rescaled regret of B-AS is constant in the first problem, it
increases with σ2

1 in the second one. As explained above, this behavior is due to
the poor approximation of the Rademacher arm which is over-pulled whenever

10 X is Rademacher if X ∈ {−1, 1} and admits values −1 and 1 with equal probability.



its estimated mean is accurate. This result illustrates the fact that in this active
learning problem (where the goal is to estimate the mean values of the arms),
the performance of the algorithms that rely on the empirical-variances (e.g., CH-
AS, B-AS, and GAFS-MAX) crucially depends on the shape of the distributions,
and not only on their variances. This may be surprising since according to the
central limit theorem the distribution of the empirical mean should tend to a
Gaussian. However, it seems that what is important is not the distribution of
the empirical mean or variance, but the correlation of these two quantities.

6 Conclusions and Open Questions

In this paper we studied the problem of the uniform estimation of the mean
value of K independent distributions under a given sampling budget. We in-
troduced a novel class of algorithms based on upper-confidence-bounds on the
(unknown) variances of the arms, and analyzed two algorithms: CH-AS and B-
AS. For CH-AS we derived a regret bound similar to Antos et al. (2010), scaling
as Õ(n−3/2) and with a dependence on λ−1

min. We then introduced a more refined
algorithm, B-AS, using a tighter upper bounds on the variance, and reported a
refined regret bound in the case of Gaussian distributions. Finally we gave argu-
ments (including numerical simulations) supporting the idea that the full shape
of the distributions (and not not only their variance) has a relevant impact on
the performance of the allocation strategies.

This work opens a number of questions.

– Distribution dependency. An open question is to which extent the result for
B-AS in case of Gaussian distributions could be extended to more general
families of distributions. As illustrated in the case of Rademacher, the corre-
lation between the empirical means and variances may cause the algorithm
to over-pull arms even when their estimation is accurate, thus incurring a
large regret. On the other hand, if the sample distributions are Gaussian,
the empirical means and variances are uncorrelated and the allocation algo-
rithms such as B-AS achieve a better regret. Further investigation is needed
to identify whether this results can be extended to other distributions.

– Lower bound. The results in Secs. 4.3 and 5.2 suggest that the dependency on
the distributions of the arms could be intrinsic in the allocation problem. If
this is the case, it should be possible to derive a lower bound for this problem
showing such dependency (a lower-bound with dependency on λ−1

min).
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