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Abstract— Robust reinforcement learning (RL) aims to learn
a policy that can withstand uncertainties in model parameters,
which often arise in practical RL applications due to modeling
errors in simulators, variations in real-world system dynam-
ics, and adversarial disturbances. This paper introduces the
robust imitation learning (IL) problem in a Markov decision
process (MDP) framework where an agent learns to mimic an
expert demonstrator that can withstand uncertainties in model
parameters without additional online environment interactions.
The agent is only provided with a dataset of state-action pairs
from the expert on a single (nominal) dynamics, without any
information about the true rewards from the environment.
Behavioral cloning (BC), a supervised learning method, is a
powerful algorithm to address the vanilla IL problem. We
propose an algorithm for the robust IL problem that utilizes
distributionally robust optimization (DRO) with BC. We call
the algorithm DR-BC and show its robust performance against
parameter uncertainties both in theory and in practice. We
also demonstrate the empirical performance of our approach to
addressing model perturbations on several MuJoCo continuous
control tasks.

Index Terms— Imitation Learning, Reinforcement Learning,
Robust Reinforcement Learning

I. INTRODUCTION

A child, a dog, or even a reptile is capable of learning
through imitation [1]. Such intuitive way of learning naturally
extends from animal’s survival instincts to solving potentially
complicated control tasks. Hence, it serves as the primary
philosophy underlying most, if not all, methods in Imitation
Learning (IL), a very fundamental reinforcement learning
(RL) setting in which the goal is to learn a control policy
exclusively from expert demonstrations. However simple and
fundamental the idea of imitation learning may sound, varia-
tions in the training (simulators) and testing (real-world) envi-
ronments can result in significant failures of current RL and IL
control policies [2]–[5]. The training and testing environments
in RL can vary due to several factors, such as modeling errors,
real-world parameter changes, and adversarial disturbances.
For instance, the sensor noise, action delay, friction, and mass
of a mobile robot in the simulator may differ from those in
the real-world setting. Furthermore, environmental conditions
such as terrain, weather, lighting, and obstacle densities can
also vary between the two settings which ultimately may
make it infeasible to deploy learned policies to the real world.

Imitation Learning: Learning through imitation can be
traced back to as early as [6]. Imitation learning assumes
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access to only expert demonstrations. This has given rise to
the most natural approach, behavior cloning [7], which is a
supervised learning method and learns by simply minimizing
differences between the actions of the learners and those
of the experts for the states seen by the expert. [8] studied
behavior cloning and characterized a tight bound on its sub-
optimality gap of order O(εH2). Most of works in imitation
learning then try to improve this bound with additional as-
sumptions. [9] proposed DAGGER which required hindsight
expert actions for the states visited by the learner. They
showed that the above bound on the sub-optimality gap can be
improved to O(εuH), where u is the cost of taking a different
action than the expert’s at one step and following the expert’s
suggestions afterward, by querying the expert and interacting
with the environment. In worse cases, u can be as large as H .
Another approach, DRIL [10], needs environment interactions
but no expert query, and achieves a sub-optimality gap bound
that is linear in H . GAIL [11] uses a discriminator network
to distinguish between the expert’s states from those visited
by the learner’s policy while interacting with the environment.
GAIL also achieves a sub-optimality gap bound that is linear
in H [12]. In [13], the authors provide a game-theoretic
framework for the IL problem that naturally competes with
noisy expert policies. Different from these works, we focus on
setting up an IL problem to address the parameter mismatch
between the training and testing environments, and provide a
practical algorithm to solve it.

Inverse RL (IRL): This is a framework where an agent
learns the underlying true reward function of an expert and
uses it in the usual RL algorithm to produce a policy that
imitates the expert. Notable works include [14]–[18]. Al-
though this is not the setting we consider, these are works that
solve the IL problem using inverse RL methodologies. [19]
proposed MIMIC-MD which directly estimates the expert
trajectory distribution, but their algorithm is not practically
implementable as is. [20] proposed MILO which uses an
additional offline dataset to estimate environment dynamics. It
has great empirical performance when trained with extremely
limited expert demonstration, a scenario where BC fails to
produce any working policy. [21] proposed an IRL algorithm
to learn cost functions that are robust in noisy systems. These
are all inherently adversarial approaches which are using
critics to disturb the underlying systems or to distinguish and
pick good reward representations. Different from these works,
we focus on the min-max setting for IL where the objective
is to learn the policy that minimizes the loss to mimic the
expert’s actions against the worst possible models that lie in
an uncertainty set.



Robust RL: The framework of the robust Markov decision
process (RMDP) [22], [23] addresses the problem of learning
a policy that is robust against mismatches between the training
and testing environments. This is the goal of distributionally
robust reinforcement learning (DR-RL). Robust RL has appli-
cation in many real-world evolving systems in which there is
always a gap between the true model and the simulator. De-
ploying naive RL policies [24] can be catastrophic when this
gap is large. The RMDP problem is well-studied. [25]–[29]
have investigated various types of uncertainty sets and sought
tractable methods to solve RMDP. [30]–[32] have studied the
sample complexity of model-based robust RL algorithms in
a tabular setting using a generative model, which is a strong
oracle enabling learners to query arbitrary transitions. [33]
developed a model-free online robust RL algorithm with linear
function approximation to tackle potentially infinite state
spaces and [34] similarly developed a model-free offline robust
RL algorithm with general function approximation. [35]
proposed an online robust Q-learning with an R-contamination
uncertainty set. We would like to note that robust RL has
a strong connection to distributionally robust optimization
(DRO). Many of the optimization techniques and analyses
in robust RL were originally developed in the context of
supervised learning by the DRO community [36]–[41]. This
line of work is closest to ours, but as per our knowledge,
ours is the first work to focus on addressing the parameter
mismatch between the training and testing environments using
DRO techniques in the context of imitation learning setting.

Main Contributions: We summarize our contributions in
this paper as follows and refer to the relevant sections: (i)
We introduce the problem of robust imitation learning for
mismatch in model parameters. In this work, we consider
mismatch in system transition dynamics. Robust learning in
RL is studied widely but not in IL. We only know of [42], but
it is in the IRL framework for making fair comparison. Critical
real-world applications, such as power systems, healthcare,
self-driving automobiles, have guidance from expert across
diverse scenarios [43]–[45]. (ii) We propose a novel robust IL
algorithm, called Distributionally Robust Behavioral Cloning
(DR-BC). We provide theoretical guarantees for DR-BC. The
BC method is computationally efficient which makes any
other non-robust IL algorithm falls short on, and the DRO
methodology addresses the model mismatch. Our proposed
method cleverly bridges these two methods to solve the robust
IL problem. We discuss this further in Section II. (iii) We
perform extensive simulations on four notable continuous-
action OpenAI [46] Gym MuJoCo [47] environments. We
demonstrate that the DR-BC policy is robust against model
perturbations in that when BC has catastrophic drop in
performance, DR-BC weathers model mismatches for much
more sever model perturbations.

II. ROBUST IMITATION LEARNING

In this section, we formally introduce our imitation learning
problem that addresses parameter mismatch between the true
and simulated models (transition dynamics). We then propose
a robust IL algorithm for this problem that uses DRO, and

provide its theoretical guarantees. We end this section by
discussing why we need to study robust IL.

A. Problem Formulation

The goal of IL in sequential decision-making is to imitate
an expert’s policy by only using demonstrations generated
by its interactions with the environment [10], [48]. More
formally, consider an infinite-horizon MDP, denoted by the
tuple {S,A, P o, γ, r, µ}, where S and A are the state and
action spaces, P o : S×A → ∆(S) is the transition dynamics
(model) of the environment, γ is a discount factor, µ is the
initial state distribution, and r : S × A → [0, 1] is the true
reward function (unknown to the learner). In this paper, we
consider a system with finite actions and a large state space. A
stochastic policy π : S → ∆(A) maps states to distributions
over actions. For any policy π, the value function of an initial
state s0 ∼ µ is given by Vπ(s0) = E[

∑∞
t=0 γ

tr(st, at)|at ∼
π(·|st), st+1 ∼ P ost,at ]. We denote Vπ = Es0∼µVπ(s0) and
drop the explicit dependence on µ going forward for notation
simplicity.

For any policy π, denote dπP o ∈ ∆(S) as the state distri-
bution of π under the evaluation of model P o with initial
state picked from µ. In this section, we simply denote such
state-distributions as dπ and make explicit dependence on
P o where brevity is needed. Formally, let Prt(s|π, s0 ∼
µ) be the probability of visiting state s ∈ S at time t
following policy π on model P o starting at initial state
s0 ∼ µ. Then, the state distribution of π is dπ(s) = (1 −
γ)
∑∞
t=0 γ

tPrt(s|π, s0 ∼ µ, P o). We can now rewrite the
value of π as Vπ = Es∼dπ,a∼π[r(s, a)]/(1− γ).

In the vanilla IL setting, the true reward function r is
unknown to the learner. We instead have the dataset generated
by rolling an expert policy (which is unknown to the learner)
specified by πe : S → ∆(A). Concisely speaking, we have
an expert dataset in the form of i.i.d. tuples De = {si, ai}Ni=1

sampled from state distribution dπeP o and an expert policy πe.
We use the RMDP framework [22], [23] subsuming the

MDP framework described above. Consider an RMDP tuple
{S,A,P, γ, r, µ} where γ ∈ [0.5, 1) and the uncertainty set
P is defined as

P = ⊗(s,a)∈S×A Ps,a with
Ps,a = {Ps,a ∈ ∆(S) : D(Ps,a, P

o
s,a) ≤ ρ′r}, (1)

where P o = (P os,a, (s, a) ∈ S × A) is the simulator model,
D(·, ·) is a distance measure between two probability distri-
butions (e.g., total variation, chi-square, Kullback-Liebler (f -
divergences in general), Wasserstein), and ρ′r ∈ (0, (1−γ)/γ]
is the radius of the uncertainty set indicating the level of
robustness. We assume the real-world model belongs to this
uncertainty set P . We restrict to the total-variation distance
DTV for the measure D in this paper and leave other types
of measures for future work.

From the RMDP literature [22], [32], [34], [49],
we introduce the robust value function as V rob

π (s) =∑
a π(a|s)Qrob

π (s, a) and the corresponding robust Q-value
function as Qrob

π (s, a) = r(s, a)+γ infPs,a∈Ps,a P
>
s,aV

rob
π for

policy π. Similar to [8], we let πe ∈ Π, where Π is the class of



stochastic policies, be a good robust policy (under the above
RMDP setting). That is, it satisfies maxπ∈Π V

rob
π − V rob

πe ≤
o(H) (something small compared to time horizon). For nota-
tion simplicity, as in [8], [20], [48], we just let V rob

πe ≥ V
rob
π

hold for all π ∈ Π. Now, we pose the robust IL problem
as follows. The goal of a robust IL algorithm is to output
a policy π̂ that imitates the expert policy πe by satisfying
V rob
π̂ ≈ V rob

πe . We have provided real-world applications that
motivate this problem formulation in Section I.

B. Need for Robust Imitation Learning

In this section, we formally show that the vanilla behavioral
cloning policy Equation (2) can be arbitrarily bad (as bad as
a random policy) compared to an expert policy (good robust
policy). Consider the following vanilla behavioral cloning [8]
optimization problem.
πbc = arg min

π
Lbc(π) = Es∼dπe [l(πe(· | s), π(· | s))]. (2)

We assume access to sampling possibly infinite data from the
state distribution dπe to calculate the loss Lbc(πbc) up to some
small error. We consider a simple setting with P = {P o, P ′}
where P o is the simulator model and P ′ is the perturbed
model. We give the following result similar to [50, Theorem
4] and skip its proof.

Theorem 1 (Robustness Gap). There exists an uncertainty
set P = {P o, P ′}, initial state s0 ∈ S , expert policy πe such
that maxπ∈Π V

rob
π (s0)− V rob

πe (s0) ≤ ε for small ε > 0, and
discount factor γ ∈ (γo, 1] such that V rob

πbc
(s0) ≤ V rob

πe (s0)−
c/(1− γ), where c is a positive constant.

Remark 1. The vanilla behavioral cloning policy πbc com-
pared to expert policy (good robust policy) is bad with a
performance gap Ω(1/(1−γ)). Since |r(s, a)| ≤ 1 uniformly
by assumption, ‖V rob

π ‖∞ ≤ 1/(1 − γ) for any policy π.
Therefore, the difference between the optimal/expert robust
value function and the robust value function of an arbitrary
policy cannot be greater than O(1/(1 − γ)). Thus the per-
formance of πbc can be as bad as an arbitrary policy in an
order sense. In the next section, we propose an algorithm to
solve the robust imitation learning problem.

C. Robust Against Model Mismatch

We propose a principled adversarial approach by the
methodology of distributionally robust optimization (DRO)
to solve the robust imitation learning problem. DRO is now
a well-established area [36], [40], [51], whose formulation
is identical to that in the classical RMDP [22], [23] in DR-
RL. The distributionally robust behavioral cloning algorithm
solves the following optimization problem getting the policy
πdrbc:

arg min
π

max
P∈P :DTV(dπeP ,dπe

Po
)≤ρr

Es∼dπeP [l(π(·|s), πe(·|s))], (3)

where ρr, the robustness radius parameter which is a
problem-dependent constant, is set to γρ′r/(1− γ) ∈ (0, 1],
and l(π(·|s), πe(·|s)) is a surrogate loss function which
measures how far the learner policy π is with respect to the
expert action for the states visited by the expert. Examples

of the loss function l comprise of 0-1 loss (described by
Ea∼π(·|s)1(a 6= πe(s)) for deterministic expert policies),
total variation loss (described by DTV(πe(·|s), π(·|s)) =
0.5 ‖πe(·|s)− π(·|s)‖1), KL loss (described by
DKL(π(·|s)‖πe(·|s)) =

∑
a π(a|s) log(π(a|s)/πe(a|s))

with π absolutely continuous to πe), and many more such
quantifiers. We simply use the DTV loss function in this paper
considering its known connections with other f -divergences
[52], [53]. We note that the DR-BC policy πdrbc depends on
ρr but we simply choose to make it inherent for notation
simplicity. We also remark that we recover the behavioral
cloning policy [7] with ρr = 0 in DR-BC policy Equation (3).

We define the uncertainty set parameterized by ρr as
M = {P ∈ P : DTV(dπeP , d

πe
P o) ≤ ρr}. It is straightforward

from its definition and Lemma 7 that M = P . The DR-BC
algorithm Equation (3) finds πdrbc for the IL problem by
minimizing an observed surrogate loss between its actions
and the actions of an expert policy under the adversarial
state distribution for a model in class M which acts as
a worse-case distribution. We define the model mismatch
distributionally robust behavioral cloning loss function as
Ldrbc(π, ρr) = maxP∈M Es∼dπeP [DTV(π(·|s), πe(·|s))] for
any policy π and ρr. But we immediately notice that to solve
the inner optimization in Equation (3) we need access to
all the state distributions around the expert’s state distribu-
tion. Even knowing the model P o, this is computationally
intractable. Moreover, we would also need the capability of
querying an expert for actions for various states chosen by
such state distributions. Also assuming having access to all
models in M is unrealistic. We now discuss circumventing
this challenge using the DRO methodology [36], [37].

Motivated from the DR-RL literature [32], [34], [49], we
now have the following result that provides a dual refor-
mulation for the inner maximization in Equation (3) as a
consequence of the DRO methodology.

Proposition 2. For a fixed expert policy πe ∈ Π, we have,
for all π ∈ Π and ρr ∈ (0, 1],

max
P∈M

Es∼dπeP [DTV(π(·|s), πe(·|s))]

= min
η∈R

Es∼dπe
Po

[(DTV(π(·|s), πe(·|s))− η)+]

+ ( sup
s∈S:dπe

Po
(s)>0

DTV(π(·|s), πe(·|s))− η)+ · ρr + η.

Proof. We first rewrite maxP∈M Es∼dπeP [DTV(π(·|s), πe(·|s))]
as maxdπeP :DTV(dπeP ,dπe

Po
)≤ρr Es∼dπeP [DTV(π(·|s), πe(·|s))]

since M = {P ∈ P : DTV(dπeP , d
πe
P o) ≤ ρr}. Then the

statement immediately follows from Lemma 5.

We give our DR-BC algorithm that only requires an expert
dataset De generated according to model P o in Algorithm 1
based on Proposition 2. The DRO technique in Proposition 2
transforms the inner maximization in Equation (3) to an
unconstrained scalar variables convex optimization problem.
We remark that this new optimization problem due to the dual
reformulation only depends on the expert’s state distribution.
This enables us to use the expert dataset to solve the DR-BC
objective Equation (3). We emphasize that we need access to



all the state distributions to solve the inner optimization in
Equation (3) directly which is computationally intractable for
large-scale problems. Now we are overcoming this challenge
through this dual reformulation result. We refer to Section IV
for further details.

Algorithm 1 Distributionally Robust Behavioral Cloning

1: Input: Expert dataset De = (si, ai)
N
i=1 according to

model P o, model mismatch radius parameter ρr.
2: Initialize: Policy πθ parameterized by θ.
3: Calculate the empirical loss for Ldrbc(πθ, ρc):

min
η∈R

((1/N)
∑

(s,a)∈De

(l(a, πθ(s))− η)+)

+ ρr

(
sup

(s,a)∈De
l(a, πθ(s))− η

)
+

+ η. (4)

4: θ ← arg minθ Ldrbc(πθ, ρr).
5: Output policy: π̂drbc = πθ

We now give the sub-optimality guarantee of model mis-
match DR-BC policy. We provide its proof in Section III.

Theorem 3 (Model mismatch DR-BC sub-optimality
bound). Assume small optimization error Ldrbc(πdrbc, ρr) =
εdrbc(ρr). We have V rob

πe − V
rob
πdrbc

≤ 2εdrbc(ρr)/(1− γ)2.

Remark 2. We have an O(εdrbc(ρr)H
2) sub-optimality bound

from Theorem 3. With a small optimization error εdrbc(ρr),
the sub-optimality guarantee for DR-BC algorithm is superior
to the BC policy as discussed in Section II-B. When the
robustness parameter ρr = 0, we recover the non-robust BC
algorithm and its quadratic horizon dependence [8]. This sub-
optimality bound is in fact tight Ω(εH2) [8], [48].

We also present the approximation result for the sub-
optimality of π̂drbc returned by Algorithm 1 that uses the
expert dataset De. We provide its proof in Section III. We
consider emin, the minimum non-zero probability value in
πe, as a problem dependent constant. We again consider
Ldrbc(π̂drbc,

√
ρr) = εdrbc(ρr) > 0 be a small optimization

error for all ρr ∈ (0, 1].

Theorem 4 (Approximate DR-BC sub-optimality bound). Let
ε̂drbc(ρr) = εdrbc(ρr) + Õ(ρr

√
log(1/δ)/(eminN)). Then,

for any ρr ∈ (0, 1], policy π̂drbc satisfies V rob
πe − V

rob
π̂drbc

≤
2ε̂drbc(ρr)/(1− γ)2, with probability at least 1− δ.

Remark 3. We note that Õ(·) is order optimal up to a
logarithmic term on N and its exact form is available in
Section III. The approximate sub-optimality guarantee for DR-
BC algorithm is still superior to the BC policy as discussed in
Section II-B. We indeed showcase empirically as well that DR-
BC algorithm is resilient to model perturbations in Section IV.

III. ANALYSIS DETAILS

A. Useful Technical Results

We now state a result from [34] based on DRO methodology
which is useful for proving Proposition 2.

Lemma 5 ( [34, Lemma 5]). Let P o be a non-zero distribu-
tion on the space X and l : X → R be a loss function. Then

sup
DTV(P,P o)≤ρ

Ex∼P [l(x)] = inf
η∈R

{
Ex∼P o [(l(x)− η)+]

+ (sup
x∈X

l(x)− η)+ · ρr + η
}
. (5)

We now specialize [36, Corollary 2] for the total variation
distance.

Lemma 6. Let Θ ⊆ Rd, l : X × Θ 7→ [0,M ] and fix any
ρ ∈ (0, 1]. We have

sup
DTV(P,P o)≤ρ

EP [l(X, θ̂)] ≤ inf
θ∈Θ

sup
DTV(P,P o)≤√ρ

EP [l(X, θ)]

+ cM(1 + ρ)
√

(log(1/δ) + 2d log(N))/N,

which holds with probability at least 1 − δ, where
c > 0 is some universal constant and θ̂ =
arg minθ∈Θ sup

DTV(P,P̂ o)≤√ρ EP [l(X, θ)].

Proof. The proof simply follows from observation {p :
DTV(p, q) ≤ 2ρ′} ⊆ {p : Dχ2(p, q) ≤ ρ′} ⊆ {p :
DTV(p, q) ≤ 2

√
ρ′} which follows from Pinsker’s inequality

[52], [53, Theorem 5], and [54, Lemma 11.1].

B. Proof of Theorem 3

We present a few results needed for proving Theorem 3.
First, we formally show that when two models are close, then
their state-distributions are close under the same policy.

Lemma 7. Consider any policy π and P ∈ P . We have
DTV(dπP , d

π
P o) ≤ γρ′r/(1− γ).

Proof. By definition, since P ∈ P , we have
DTV(Ps,a, P

o
s,a) ≤ ρ′r for all (s, a) ∈ S × A. We

denote matrices Pπ,Poπ : S × S → [0, 1] with Pπ(s′, s) =∑
a∈A π(a|s)Ps,a(s′) and Poπ(s′, s) =

∑
a∈A π(a|s)P os,a(s′).

Now, we can write

dπP = (1− γ)
∑∞
t=0 γ

tPrt(s | π, s0 ∼ µ, P )

= (1− γ)
∑∞
t=0(γPπ)tµ,

and similarly dπP o = (1−γ)
∑∞
t=0(γPoπ)tµ. Denoting Pt,π =

Ptπµ,Pot,π = (Poπ)tµ, from triangle inequality we further get

‖dπP − dπP o‖1 ≤ (1− γ)

∞∑
t=0

γt
∥∥Pt,π − Pot,π

∥∥
1
. (6)

Intuitively, Pt,π(Pot,π) is state distribution resulting from π
evolving in the model P (P o) at time step t with µ as the
initial state distribution. We now bound

∥∥Pt,π − Pot,π
∥∥

1
for

t ≥ 0 in a recursive approach. From basic Markov chain



theory [55] for any t ≥ 0, we have∥∥Pt,π − Pot,π
∥∥

1
=
∑
s′

|Pt,π(s′)− Pot,π(s′)|

=
∑
s′

|
∑
s,a

(Pt−1,π(s)Ps,a(s′)− Pot−1,π(s)P os,a(s′))π(a|s)|

≤
∑
s

|Pt−1,π(s)− Pot−1,π(s)|
∑
a

π(a|s)
∑
s′

P (s′|s, a)

+
∑
s

Pot−1,π(s)
∑
a

π(a|s)
∑
s′

|P (s′|s, a)− P o(s′|s, a)|

≤
∥∥Pt−1,π − Pot−1,π

∥∥
1

+ 2ρ′r,

where the last inequality holds since DTV(Ps,a, P
o
s,a) =

(1/2)
∥∥Ps,a − P os,a∥∥1

≤ ρ′r for all (s, a) ∈ S × A. By
recursion, we have

∥∥Pt,π − Pot,π
∥∥

1
≤ 2ρ′rt. Recall from

algebra that
∑∞
t=0 γ

tt = γ/(1 − γ)2. Combining this with
Equation (6) completes the proof.

Now we state a result which extends the performance
difference lemma [56, Lemma 1.16] notion for robust MDPs.

Lemma 8 (Robust Performance Difference Lemma). For any
π′, π policies, we get

V rob
π − V rob

π′ ≤
1

1− γ
·

max
P :D(dπP ,d

π
Po

)≤ρr
Es∼dπP

[∑
a

(π(a|s)− π′(a|s))Qrob
π′ (s, a)

]
.

Proof. We first define few useful notations for this proof.
The robust model P rob,π for every π is as follows: P rob,π

s,a =
arg minPs,a∈Ps,a P

>
s,aV

rob
π , (s, a) ∈ S × A. We call V Pπ

as the value function for policy π under the model P . Now
we can write V rob

π′ = V P
rob,π′

π′ .
Fix s0 ∼ µ. For any π′, π policies, we have

V rob
π (s0)− V rob

π′ (s0)
(a)

≤ V P
rob,π′

π (s0)− V rob
π′ (s0)

(b)
= V P

rob,π′

π (s0)− V P
rob,π′

π′ (s0)

(c)
=

1

1− γ
E
s∼dπ,P

rob,π′
s0

[∑
a

(π(a|s)− π′(a|s))Qrob
π′ (s, a)

]
,

where (a) follows since by definition of V rob
π (s0) we have

V rob
π (s0) ≤ V P

rob,π′

π (s0), and (b) follows from defini-
tion of P rob,π′

yielding V rob
π′ (s0) = V P

rob,π′

π′ (s0). Observe
P rob,π′ ∈ P . Now taking expectation on s0 ∼ µ with
Lemma 7 completes the proof of this result. Now it only
remains to show (c).

For (c), first denote Tπ,π′(s) = (st, at)t≥0 trajectory gen-
erated from rolling policy π from the initial state s0 under
the robust model P rob,π′

. Now,

V P
rob,π′

π (s0)− V P
rob,π′

π′ (s0)

= ETπ,π′ (s)[
∑
t

γtr(st, at)]− V P
rob,π′

π′ (s0)

(d)
= ETπ,π′ (s)[

∑
t

γt(r(st, at) + γV P
rob,π′

π′ (st+1)

− V P
rob,π′

π′ (st)]

(e)
= ETπ,π′ (s)[

∑
t

γt(Qrob
π′ (st, at)− V rob

π′ (st)]

(f)
=

1

1− γ
E
s′∼dπ

′,P rob,π′
s0

∑
a′

π(a′|s′)(Qrob
π′ (s′, a′))

− 1

1− γ
E
s′∼dπ

′,P rob,π′
s0

∑
a′

π′(a′|s′)(Qrob
π′ (s′, a′)),

where (d) follows by recursion, (e) follows since
Qrob
π′ (s, a) = r(s, a) + γ(P rob,π′

s,a )>V P
rob,π′

π′ , and (f) from
V rob
π′ (s) =

∑
a π
′(a|s)Qrob

π′ (s, a). This proves (c).

Proof of Theorem 3. We start by Lemma 8 with π′ = πdrbc

and π = πe. We get

V rob
πe − V

rob
π′ ≤

1

1− γ
·

max
P :D(dπeP ,dπe

Po
)≤ρr

Es∼dπeP [
∑
a

(πe(a|s)− π′(a|s))Qrob
π′ (s, a)]

(a)

≤ 1

1− γ
·

max
P :D(dπeP ,dπe

Po
)≤ρr

Es∼dπeP
[
‖πe(·|s)− π′(·|s)‖1

∥∥Qrob
π′ (s, ·)

∥∥
∞

]
(b)

≤ 2

(1− γ)2
max

P :D(dπeP ,dπe
Po

)≤ρr
Es∼dπeP [DTV(π′(·|s)‖πe(·|s))] ,

where (a) follows from Holder’s inequality and (b) from
DTV definition and the fact that

∥∥Qrob
π′ (s, ·)

∥∥
∞ ≤ 1/(1 −

γ) for any π′. The proof of this result is complete since
Ldrbc(πdrbc, ρr) = εdrbc(ρr).

C. Proof of Theorem 4

Proof. Firstly, from Lemma 6, we observe that
Ldrbc(π̂drbc, ρc) ≤ ε̂drbc(ρc) holds with probability at least
1− δ with

ε̂drbc(ρc) = εdrbc(ρc)+c(1+ρc)

√
log(1/δ) + 2|A| log(N)

eminN
,

where emin = mins,a:πe(a|s)>0 πe(a|s) and c > 0 is some
universal constant. The proof is now complete by following
the analysis of Theorem 3 with π̂drbc.

IV. EXPERIMENTS

We aim to answer the question: When model mismatches
are present, is the DR-BC algorithm robust compared to the
non-robust BC algorithm?

A. Experiment Setup and Practical Algorithm

We perform extensive simulations on four OpenAI Gym
[46] environments simulated with MuJoCo physics engine
[47]: Hopper-v3, HalfCheetah-v3, Walker2d-v3,
and Ant-v3. We train both the BC and DR-BC algorithms on
the expert data generated by the pre-trained TD3 [57] policies
from the RL Baselines3 Zoo repositories [58]. [20] pointed
out that BC is very effective at imitating the expert when
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perturbations are in: ‘gravity’, ‘joint stiffness’ of the thigh joint, and ‘joint damping’ of all joints.
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given large number of samples. Hence, like [10], [20], we
give both BC and DR-BC the same but relatively low number
of expert trajectories. For reproducibility, we provide the code
and more implementation details in the GitHub repository
https://github.com/ferocious-cheetah/DRBC.

Now we explain Algorithm 1 in details. We have the
following proposition, similar to [34, Proposition 1] and skip
its proof, showing that the unconstrained optimization of the
dual variable in Equation (4) of Algorithm 1 can be further
reduced to be over just a finite real interval.

Proposition 9. Suppose that we have deterministic
policies πe, π and a bounded action space A. Let
the loss l be chosen as the squared L2 loss, i.e.,
l(π(s), πe(s)) = ‖π(s)− πe(s)‖22. Further, denote L =

sup(s,a)∈De ‖π(s)− πe(s)‖22. Then the dual reformulation in
Equation (4) can be further rewritten as

Ldrbc(πθ, ρr) = inf
η∈[0,(1+ρr)L]

{ 1

N

∑
(s,a)∈De

(l(a, πθ(s))− η)+

+ ρr(L− η)+ + η}. (7)

At initialization, we need an expert dataset De of size N
and some radius of our uncertainty set ρr. We also need to
initialize a neural network πθ which is our policy (actor) with
random parameters θ. In each iteration, to solve Equation (7),
we use the minimization solver from the powerful optimiza-
tion libraries in SciPy [59]. In particular, we use the SLSQP
method [60] with the bounds prescribed in Proposition 9. In
step 4, our policy (actor) is optimized based on the Ldrbc

loss using ADAM [61].

B. Test For Robustness

When the testing environment is perturbed, e.g., change in
gravity, perturbed actuator and modified damping coefficient,
model mismatches are present. Here we explain the simulation
results on each of the four environments in details.

We perturb Hopper-v3 by changing the model parameter
‘gravity’, ‘thigh joint stiffness’, and ‘joint damping’. Figure 1
shows that DR-BC is tenacious under model perturbations. For
example, in the middle figure, when the ‘thigh joint stiffness’
parameter is positive and increasing, a joint spring is created
in the thigh of hopper and becomes stiffer. A non-robust
policy such as BC cannot withstand such mismatch between
the training and testing environments. Meanwhile, our DR-
BC agent refuses to drop in performance. In Figure 2 and
Figure 3, DR-BC still refuses to lose performance in wide
ranges of perturbations on different environments.
Ant-v3 is the most difficult environment among the four.

In Figure 4, we perturb it by changing the model parameter
‘joint stiffness’ of all four hip joints, ‘joint stiffness’ of all
four ankle joints, and ‘actuator ctrlrange’ of all four ankle
joints. When the control range of a joint actuator is reduced, it
becomes harder for the agent to recover from dramatic change
in the posture that involves that joint, let alone simultaneous
perturbation in all four joint actuators. The rightmost figure
in Figure 4 shows that the performance of BC precipitates

when it no longer has the full control range. On the other
hand, DR-BC performance is stable throughout.

V. CONCLUSION

In this paper, we introduce a novel problem of robust
imitation learning to incorporate resiliency to changes in the
real-world parameters. We present a novel approach to solve
this problem, Distributionally Robust Behavioral Cloning
(DR-BC) algorithm. Our proposed DR-BC algorithm utilizes
the distributionally robust optimization (DRO) technique for
BC to efficiently address robustness for the changes in real-
world parameters. We have shown through both theoretical
and practical analysis that DR-BC can effectively and compu-
tationally efficiently combat the model perturbations in many
benchmark MuJoCo tasks.

While in this paper we only consider the total variation
distance for the inner maximization, future work will explore
using other types measures such as KL-divergence and Chi-
square divergence. The same applies to the loss function
considered in this work. We also plan to work on the scenario
where the model is not known in large-scale problems using
general function approximations. An interesting practical
direction could be to use DR-BC algorithm to fine-tune the
policy network in online IL algorithms like GAIL which
generate more diverse and realistic examples.
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