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ABSTRACT

Mirror descent (MD), a well-known first-order method in constrained convex
optimization, has recently been shown as an important tool to analyze trust-region
algorithms in reinforcement learning (RL). However, there remains a considerable
gap between such theoretically analyzed algorithms and the ones used in practice.
Inspired by this, we propose an efficient RL algorithm, called mirror descent policy
optimization (MDPO). MDPO iteratively updates the policy by approximately
solving a trust-region problem, whose objective function consists of two terms:
a linearization of the standard RL objective and a proximity term that restricts
two consecutive policies to be close to each other. Each update performs this
approximation by taking multiple gradient steps on this objective function. We
derive on-policy and off-policy variants of MDPO, while emphasizing important
design choices motivated by the existing theory of MD in RL. We highlight the
connections between on-policy MDPO and two popular trust-region RL algorithms:
TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in
fact not a necessity for high performance gains in TRPO. We then show how the
popular soft actor-critic (SAC) algorithm can be derived by slight modifications
of off-policy MDPO. Overall, MDPO is derived from the MD principles, offers
a unified approach to viewing a number of popular RL algorithms, and performs
better than or on-par with TRPO, PPO, and SAC in a number of continuous and
discrete control tasks.

1 INTRODUCTION

An important class of RL algorithms consider an additional objective in their policy optimization
that aims at constraining the consecutive policies to remain close to each other. These algorithms are
referred to as trust region or proximity-based, resonating the fact that they make the new policy to lie
within a trust-region around the old one. This class includes the theoretically grounded conservative
policy iteration (CPI) algorithm [15], as well as the state-of-the-art deep RL algorithms, such as
trust-region policy optimization (TRPO) [26] and proximal policy optimization (PPO) [28]. The main
difference between these algorithms is in the way that they enforce the trust-region constraint. TRPO
enforces it explicitly through a line-search procedure that ensures the new policy is selected such
that its KL-divergence with the old policy is below a certain threshold. PPO takes a more relaxed
approach and updates its policies by solving an unconstrained optimization problem in which the
ratio of the new to old policies is clipped to remain bounded. It has been shown that this procedure
does not prevent the policy ratios to go out of bound, and only reduces its probability [31, 9].

Mirror descent (MD) [6, 4] is a first-order optimization method for solving constrained convex
problems. Although MD is theoretically well-understood in optimization [3, 14], only recently, has it
been investigated for policy optimization in RL [25, 12, 20, 29, 1]. Despite the progress made by
these results in establishing connections between MD and trust-region policy optimization, there are
still considerable gaps between the trust-region RL algorithms that have been theoretically analyzed
in their tabular form [29] and those that are used in practice, such as TRPO and PPO.

In this paper, motivated by the theory of MD in tabular RL, our goal is to derive scaleable and
practical RL algorithms from the MD principles, and to use the MD theory to better understand and
∗Work done partially at FAIR as part of AI Residency.
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explain the popular trust-region policy optimization methods. Going beyond the tabular case, when
the policy belongs to a parametric class, the trust-region problems for policy update in RL cannot
be solved in closed-form. We propose an algorithm, called mirror descent policy optimization
(MDPO), that addresses this issue by approximately solving these trust-region problems via taking
multiple gradient steps on their objective functions. We derive on-policy and off-policy variants
of MDPO (Section 4). We highlight the connection between on-policy MDPO and TRPO and PPO
(Section 4.1), and empirically compare it against these algorithms on several continuous control tasks
from OpenAI Gym [7] (Section 5.3). We then show that if we define the trust-region w.r.t. the uniform
policy, instead of the old one, our off-policy MDPO coincides with the popular soft actor-critic (SAC)
algorithm [13]. We discuss this connection in detail (Section 4.2) and empirically compare these
algorithms using the same set of continuous control problems (Section 5.4).

Figure 1: Overall Comparison. Between MDPO, PPO,
and TRPO, MDPO provides the best trade-off in terms of
best average performance, less (normalized) wall clock
times, and least number of algorithm specific hyper pa-
rameters used.

Our observations on the comparison between
the MDPO algorithms and TRPO, PPO, and
SAC are a result of extensive empirical studies
on different versions of these algorithms (Sec-
tion 5 and Appendices E and F). In particular,
we first compare the vanilla versions of these
algorithms in order to better understand how the
core of these methods work relative to each other.
We then add a number of code-level optimiza-
tion techniques derived from the code-bases of
TRPO, PPO, and SAC to these algorithms to
compare their best form (those that obtain the
best results reported in the literature) against
each other, while also evaluating MDPO with
PPO on 21 Atari games. We address the com-
mon belief within the community that explicitly
enforcing the trust-region constraint is a necessity for good performance in TRPO, by showing
that MDPO, a trust-region method based on the MD principles, does not require enforcing a hard
constraint and achieves strong performance by solely solving an unconstrained problem. We address
another common belief that PPO is a better performing algorithm than TRPO. By reporting results
of both the vanilla version and the version loaded with code-level optimization techniques for all
algorithms, we show that in both cases, TRPO consistently outperforms PPO. This is in line with
some of the findings from a recent study on PPO and TRPO [9]. Finally, we provide an optimization
perspective for SAC, instead of its initial motivation as an entropy-regularized (soft) approximate
dynamic programming algorithm. Through comprehensive experiments, we show that on-policy and
off-policy MDPO achieve state-of-the-art performance across a number of benchmark tasks, and can
be excellent alternatives to popular policy optimization algorithms, such as TRPO, PPO, and SAC.

2 PRELIMINARIES

In this paper, we assume that the agent’s interaction with the environment is modeled as a γ-discounted
Markov decision process (MDP), denoted byM = (S,A, P,R, γ, µ), where S and A are the state
and action spaces; P ≡ P (s′|s, a) is the transition kernel; R ≡ r(s, a) is the reward function;
γ ∈ (0, 1) is the discount factor; and µ is the initial state distribution. Let π : S → ∆A be a stationary
Markovian policy, where ∆A is the set of probability distributions onA. The discounted frequency of
visiting a state s by following a policy π is defined as ρπ(s) ≡ (1−γ)E[

∑
t≥0 γ

tI{st = s}|µ, π]. The
value function of a policy π at a state s ∈ S is defined as V π(s) ≡ E[

∑
t≥0 γ

tr(st, at)|s0 = s, π].
Similarly, the action-value function of π is defined as Qπ(s, a) = E[

∑
t≥0 γ

tr(st, at)|s0 = s, a0 =

a, π]. The difference between the action-value Q and value V functions is referred to as the advantage
function Aπ(s, a) = Qπ(s, a)− V π(s).

Since finding an optimal policy for an MDP involves solving a non-linear system of equations and
the optimal policy may be deterministic (less explorative), many researchers have proposed to add
a regularizer in the form of an entropy term to the reward function, and then solve the entropy-
regularized (or soft) MDP (e.g., [16, 30, 25]). In this formulation, the reward function is modified as
rλ(s, a) = r(s, a)+λH(π(·|s)), where λ is the regularization parameter and H is an entropy-related
term, such as Shannon entropy [10, 23], Tsallis entropy [17, 24], or relative entropy [2, 22]. Setting
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λ = 0, we return to the original formulation, also referred to as the hard MDP. In what follows, we
use the terms ‘regularized’ and ‘soft’ interchangeably.

2.1 MIRROR DESCENT IN CONVEX OPTIMIZATION

Mirror Descent (MD) [4] is a first-order trust-region optimization method for solving constrained
convex problems, i.e., x∗ ∈ arg minx∈C f(x), where f is a convex function and the constraint set C
is convex compact. In each iteration, MD minimizes a sum of two terms: 1) a linear approximation
of the objective function f at the previous estimate xk, and 2) a proximity term that measures the
distance between the updated xk+1 and current xk estimates. MD is considered a trust-region method,
since the proximity term keeps the updates xk and xk+1 close to each other. We may write the MD
update as

xk+1 ∈ arg min
x∈C

〈∇f(xk), x− xk〉+
1

tk
Bψ(x, xk), (1)

where Bψ(x, xk) := ψ(x)− ψ(xk)− 〈∇ψ(xk), x− xk〉 is the Bregman divergence associated with a
strongly convex potential function ψ, and tk is a step-size determined by the MD analysis. When
ψ = 1

2‖·‖
2
2, the Bergman divergence is the Euclidean distance Bψ(x, xk) = 1

2‖x − xk‖
2
2, and (1)

becomes the projected gradient descent algorithm [3]. When ψ is the negative Shannon entropy, the
Bregman divergence term takes the form of the KL divergence, i.e., Bψ(x, xk) = KL(x, xk). In
this case, when the constraint set C is the unit simplex, C = ∆X , MD becomes the exponentiated
gradient descent algorithm and (1) has the following closed form [4]:

xik+1 =
xik exp

(
− tk∇if(xk)

)∑n
j=1 x

j
k exp

(
− tk∇jf(xk)

) , (2)

where xik and ∇if are the ith coordinates of xk and ∇f .

3 MIRROR DESCENT IN RL

The goal in RL is to find an optimal policy π∗. Two common notions of optimality, and as a result,
two distinct ways to formulate RL as an optimization problem are as follows:

(a) π∗(·|s) ∈ arg max
π

V π(s), ∀s ∈ S, (b) π∗ ∈ arg max
π

Es∼µ
[
V π(s)

]
. (3)

In (3a), the value function is optimized over the entire state space S . This formulation is mainly used
in value function based RL algorithms. On the other hand, the formulation in (3b) is more common in
policy optimization, where a scalar that is the value function at the initial state (s ∼ µ) is optimized.

Unlike the MD optimization problem, the objective function is not convex in π in either of the above
two RL optimization problems. Despite this issue, [12] and [29] have shown that we can still use the
general MD update rule (1) and derive MD-style RL algorithms with the update rules

πk+1(·|s)← arg max
π∈Π

Ea∼π
[
Aπk(s, a)

]
− 1

tk
KL(s;π, πk), ∀s ∈ S, (4)

πk+1← arg max
π∈Π

Es∼ρπk
[
Ea∼π

[
Aπk(s, a)

]
− 1

tk
KL(s;π, πk)

]
, (5)

for the optimization problems (3a) and (3b), respectively. Note that while in (4), the policy is
optimized uniformly over the state space S , in (5), it is optimized over the measure ρπk , i.e., the state
frequency induced by the current policy πk.

4 MIRROR DESCENT POLICY OPTIMIZATION

In this section, we derive on-policy and off-policy RL algorithms based on the MD-style update
rules (4) and (5). We refer to our algorithms as mirror descent policy optimization (MDPO). Since the
trust-region optimization problems in the update rules (4) and (5) cannot be solved in closed-form, we
approximate these updates with multiple steps of stochastic gradient descent (SGD) on the objective
functions of these optimization problems. In our on-policy MDPO algorithm, described in Section 4.1,
we use the update rule (5) and compute the SGD updates using the Monte-Carlo (MC) estimate of
the advantage function Aπk gathered by following the current policy πk. On the other hand, our
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off-policy MDPO algorithm, described in Section 4.2, is based on the update rule (4) and calculates
the SGD update by estimating Aπk using samples from a replay buffer.

In our MDPO algorithms, we define the policy space, Π, as a class of smoothly parameterized
stochastic polices, i.e., Π = {π(·|s; θ) : s ∈ S, θ ∈ Θ}. We refer to θ as the policy parameter. We
will use π and θ to represent a policy, and Π and Θ to represent the policy space, interchangeably.

4.1 ON-POLICY MDPO

In this section, we derive an on-policy RL algorithm based on the MD-based update rule (5), whose
pseudo-code is shown in Algorithm 1 in Appendix A. We refer to this algorithm as on-policy MDPO.
We may write the update rule (5) for the policy space Θ (defined above) as

θk+1 ← arg max
θ∈Θ

Ψ(θ, θk), where Ψ(θ, θk) = Es∼ρθk
[
Ea∼πθ

[
Aθk (s, a)

]
− 1

tk
KL(s;πθ, πθk )

]
. (6)

Each policy update in (6) requires solving a constrained (over Θ) optimization problem. In on-policy
MDPO, instead of solving this problem, we update the policy by performing multiple SGD steps on
the objective function Ψ(θ, θk). Interestingly, performing only a single SGD step on Ψ(θ, θk) is not
sufficient as∇θKL(·;πθ, πθk)|θ=θk = 0, and thus, if we perform a single-step SGD, i.e.,

∇θΨ(θ, θk)|θ=θk = Es∼ρθk
a∼πθ

[
∇ log πθk(a|s)Aθk(s, a)

]
,

the resulting algorithm would be equivalent to vanilla policy gradient and misses the entire purpose
of enforcing the trust-region constraint. As a result, the policy update at each iteration k of on-policy
MDPO involves m SGD steps as

θ
(0)
k = θk, for i = 0, . . . ,m− 1, θ

(i+1)
k ← θ

(i)
k + η∇θΨ(θ, θk)|

θ=θ
(i)
k

, θk+1 = θ
(m)
k ,

where the gradient of the objective function

∇θΨ(θ, θk)|
θ=θ

(i)
k

= Es∼ρθk
a∼πθk

[π(i)
θk

πθk
∇ log π

θ
(i)
k

(a|s)Aθk (s, a)
]
− 1

tk
Es∼ρθk

[
∇θKL(s;πθ, πθk )|

θ=θ
(i)
k

]
(7)

can be estimated in an on-policy fashion using the data generated by the current policy πθk . Since
in practice, the policy space is often selected as Gaussian, we use the closed-form of KL in this
estimation. Our on-policy MDPO algorithm (Algorithm 1, Appendix A) has close connections to
two popular on-policy trust-region RL algorithms: TRPO [26] and PPO [28]. We now discuss the
similarities and differences between on-policy MDPO and these algorithms.

Comparison with TRPO. At each iteration k, TRPO considers the constrained optimization problem

max
θ∈Θ

E s∼ρθk
a∼πθk

[ πθ(a|s)
πθk(a|s)

Aθk(s, a)
]
, s.t. Es∼ρθk

[
KL(s;πθk , πθ)

]
≤ δ, (8)

and updates its policy parameter by taking a step in the direction of the natural gradient of
the objective function in (8) as θk+1 ← θk + ηF−1Es∼ρθk

a∼πθk

[
∇ log πθk (a|s)Aθk (s, a)

]
, where F =

Es∼ρθk
a∼πθk

[
∇ log πθk (a|s)∇ log πθk (a|s)>

]
is the Fisher information matrix for the current policy πθk . It

then explicitly enforces the trust-region constraint in (8) by a line-search: computing the KL-term for
θ = θk+1 and checking if it is larger than the threshold δ, in which case, the step size is reduced until
the constraint is satisfied.

In comparison to TRPO, first, on-policy MDPO does not explicitly enforce the trust-region constraint,
but approximately satisfies it by performing multiple steps of SGD on the objective function of
the optimization problem in the MD-style update rule (6). We say “it approximately satisfies the
constraint” because instead of fully solving (6), it takes multiple steps in the direction of the gradient
of its objective function. Second, on-policy MDPO uses simple SGD instead of natural gradient, and
thus, does not have to deal with the computational overhead of computing (or approximating) the
inverse of the Fisher information matrix.1 Third, the direction of KL in on-policy MDPO, KL(π, πk),

1TRPO does not explicitly invert F , but instead, approximates the natural gradient update using conjugate
gradient descent.
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is consistent with that in the MD update rule in convex optimization and is different than that in
TRPO, KL(πk, π). This does not cause any sampling problem for either algorithm, as both calculate
the KL-term in closed-form (Gaussian policies). Fourth, while TRPO uses heuristics to define the
step-size and to reduce it in case the trust-region constraint is violated, on-policy MDPO uses a simple
schedule, motivated by the theory of MD [4], and sets tk=1−k/K, whereK is the maximum number
of iterations. This way it anneals the step-size tk from 1 to 0 over the iterations of the algorithm.

Comparison with PPO. At each iteration k, PPO performs multiple steps of SGD on the objective
function of the following unconstrained optimization problem:

max
θ∈Θ

E s∼ρθk
a∼πθk

[
min

{ πθ(a|s)
πθk(a|s)

Aθk(s, a), clip
( πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε
)
Aθk(s, a)

}]
, (9)

in which the hyper-parameter ε determines how the policy ratio, πθ/πθk , is clipped. It is easy to
see that the gradient of the objective function in (9) is zero for the state-action pairs at which the
policy ratio is clipped and is non-zero, otherwise. However, since the gradient is averaged over all
the state-action pairs in the batch, the policy is updated even if its ratio is out of bound for some
state-action pairs. This phenomenon, which has been reported in [31] and [9], shows that clipping in
PPO does not prevent the policy ratios to go out of bound, but it only reduces its probability. This
means that despite using clipping, PPO does not guarantee that the trust-region constraint is always
satisfied. In fact, recent results, including those in [9] and our experiments in Section 5.3, show that
most of the improved performance exhibited by PPO is due to code-level optimization techniques,
such as learning rate annealing, observation and reward normalization, and in particular, the use
of generalized advantage estimation (GAE) [27]. Although both on-policy MDPO and PPO take
multiple SGD steps on the objective function of unconstrained optimization problems (6) and (9),
respectively, the way they handle the trust-region constraint is completely different.

Another interesting observation is that the adaptive and fixed KL algorithms (we refer to as KL-PPO
here), proposed in the PPO paper [28], have policy update rules similar to on-policy MDPO. However,
these algorithms have not been used much in practice, because it was shown in the same paper that
they perform much worse than PPO. Despite the similarities, there are three main differences between
the update rules of KL-PPO and on-policy MDPO. First, KL-PPO uses mini-batches whereas MDPO
uses the entire data for their multiple (m) gradient updates at each round. Second, the scheduling
scheme used for the tk parameter is quite different in KL-PPO and MDPO. In particular, KL-PPO
either uses a fixed tk or defines an adaptive scheme that updates (increase/decrease) tk based on the
KL divergence magnitude at that time step. On the other hand, on-policy MDPO uses an annealed
schedule to update tk, starting from 1 and slowly bringing it down to near 0. Third, similar to TRPO,
the direction of KL in KL-PPO, KL(πk, π), is different than that in on-policy MDPO, KL(π, πk).
Since in our experiments, on-policy MDPO performs significantly better than PPO (see Section 5.3),
we conjecture that either any or a combination of the above differences, especially the first two, is the
reason for the inferior performance of KL-PPO, compared to PPO, as reported in [28].

4.2 OFF-POLICY MDPO

In this section, we derive an off-policy RL algorithm based on the MD update rule (4). We refer to
this as off-policy MDPO and provide the pseudo-code in Algorithm 2 in Appendix A. To emulate the
uniform sampling over the state space required by (4), Algorithm 2 samples a batch of states from a
replay buffer D (Line 4). While this sampling scheme is not truly uniform, it makes the update less
dependent on the current policy. Similar to the on-policy case, we write the update rule (4) for the
policy class Θ as

θk+1 ← arg max
θ∈Θ

Ψ(θ, θk), where Ψ(θ, θk) = Es∼D
[
Ea∼πθ

[
Aθk (s, a)

]
− 1

tk
KL(s;πθ, πθk )

]
. (10)

The main idea in Algorithm 2 is to estimate the advantage or action-value function of the current
policy, Aθk or Qθk , in an off-policy fashion, using a batch of data randomly sampled from the replay
buffer D. In a similar manner to the policy update of our on-policy MDPO algorithm (Algorithm 1),
described in Section 4.1, we then update the policy by taking multiple SGD steps on the objective
function Ψ(θ, θk) of the optimization problem (10) (by keeping θk fixed). A more presentable form
of the policy loss in Ψ can be written as follows:

L(θ, θk) = Es∼D
ε∼N

[
log πθ

(
ãθ(ε, s)|s

)
− log πθk

(
ãθ(ε, s)|s

)
− tkQθkψ

(
s, ãθ(ε, s)

)]
, (11)
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In particular, the first two terms here are obtained just by opening the KL, whereas the advantage
estimate is replaced by a neural network estimate Qψ, which is learned from off-policy data in a
TD(0) fashion. Furthermore, solely as an implementation detail, another neural network Vφ is used
in conjunction with Qψ , which is fit to the Qψ estimate of the current policy. Finally, the policy loss
also uses the reparameterization trick where ãθ(ε, s) is the action generated by sampling the ε noise
from a zero-mean normal distribution N .

We can easily modify Algorithm 2 to optimize soft (entropy regularized) MDPs. In this case, in the
critic update (Line 12 of Algorithm 2), the Qψ update remains unchanged, while in the Vφ update, the
target changes from Ea∼πθk+1

[Qψ(·, a)] to Ea∼πθk+1
[Qψ(·, a)−λ log π(a|·)]. The loss function (11)

used for the actor (policy) update (Lines 7-9 of Algorithm 2) is also modified, Qψ becomes the
soft Q-function and a term λtk log πθk(ãθ(ε, s)|s) is added inside the expectation. We denote these
changes explicitly in Algorithm 3.

Similarly to on-policy MDPO that has close connection to TRPO and PPO, discussed in Section 4.1,
off-policy MDPO (Algorithm 2 and 3) is related to the popular soft actor-critic (SAC) algorithm [13].
We now derive SAC by slight modifications in the derivation of off-policy MDPO. This gives an
optimization interpretation to SAC, which we then use to show strong ties between the two algorithms.

Comparison with SAC. Soft actor-critic is an approximate policy iteration algorithm in soft MDPs.
At each iteration k, it first estimates the (soft) Q-function of the current policy, Qπk , and then sets the
next policy to the (soft) greedy policy w.r.t. the estimated Q-function as

πk+1(a|s)← exp
(
Qπk(s, a)

)
/ ZSAC(s), (12)

where ZSAC(s) = Ea∼πk(·|s)
[

exp
(
Qπk (s, a)

)]
is a normalization term. However, since tractable

policies are preferred in practice, SAC suggests to project the improved policy back into the policy
space considered by the algorithm, using the following optimization problem:

θk+1 ← arg min
θ∈Θ

LSAC(θ, θk), LSAC(θ, θk) = Es∼D
[
KL
(
s;πθ,

exp
(
Qθk(s, ·)

)
ZSAC(s)

)]
. (13)

This update rule computes the next policy as the one with the minimum KL-divergence to the term
on the RHS of (12)

Since the optimization problem in (13) is invariant to the normalization term, unlike (12), the
policy update (13) does not need to compute ZSAC(s). By writing the KL definition and using the
reparameterization trick in (13), SAC updates its policy by minimizing the following loss function:

LSAC(θ, θk) = Es∼D
ε∼N

[
λ log πθ

(
ãθ(ε, s)|s

)
−Qθkψ

(
s, ãθ(ε, s)

)]
. (14)

Comparing the loss in (14) with the one used in off-policy MDPO (Eq. 11), we notice that despite the
similarities, the main difference is the absence of the current policy, πθk , in the SAC loss function.
To explain the relationship between off-policy MDPO and SAC, recall from Section 2.1 that if the
constraint set is the unit simplex, i.e., C = ∆X , the MD update has the closed-form shown in (2).
Thus, if the policy class (constraint set) Π in the update rule (4) is the entire space of stochastic
policies, then we may write (4) in closed-form as (see e.g., [21, 29])

πk+1(a|s)← πk(a|s) exp
(
tkQ

πk(s, a)
)
/ Z(s), (15)

where Z(s) = Ea∼πk(·|s)
[

exp
(
tkQ

πk (s, a)
)]

is a normalization term. The closed-form solution (15)
is equivalent to solving the constrained optimization problem (4) in two phases (see [14]): 1) solving
the unconstrained version of (4) that leads to the numerator of (15), followed by 2) projecting this
(unconstrained) solution back into the constrained set (all stochastic policies) using the same choice
of Bregman divergence (KL in our case), which accounts for the normalization term in (15). Hence,
when we optimize over the parameterized policy space Θ (instead of all stochastic policies), the MD
update would be equivalent to finding a policy θ ∈ Θ with minimum KL-divergence to the solution
of the unconstrained optimization problem obtained in the first phase (the numerator of Eq. 15). This
leads to the following policy update rule:

θk+1 ← arg min
θ∈Θ

L(θ, θk), L(θ, θk) = Es∼D
[
KL
(
s;πθ, πθk exp(tkQ

θk)
)]
. (16)
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If we write the definition of KL and use the reparameterization trick in (16), we will rederive the
loss function (11) used by our off-policy MDPO algorithm.2 Note that both SAC (13) and off-policy
MDPO (16) use KL projection to project back to the set of policies. For SAC, the authors argue that
any projection can be chosen arbitrarily. However, our derivation clearly shows that the selection of
KL projection is dictated by the choice of the Bregman divergence.

As mentioned earlier, the main difference between the loss functions used in the policy updates of
SAC (14) and off-policy MDPO (11) is the absence of the current policy, πθk , in the SAC’s loss
function.3 The current policy, πθk , appears in the policy update of off-policy MDPO, because it is a
trust-region algorithm, and thus, tries to keep the new policy close to the old one. On the other hand,
following the original interpretation of SAC as an approximate dynamic programming algorithm,
its policy update does not contain a term to keep the new and old policies close to each other. It is
interesting to note that SAC’s loss function can be re-obtained by repeating the derivation which leads
to off-policy MDPO, and replacing the current policy, πθk , with the uniform policy in the objective
(10) of off-policy MDPO. Therefore, SAC can be considered as a trust-region algorithm w.r.t. the
uniform policy (or an entropy regularized algorithm). This means its update encourages the new
policy to remain explorative, by keeping it close to the uniform policy.

Trust-PCL [22] uses the path consistency idea along with entropy regularization and an additional
term for remaining close to a past policy. In principle, this resembles the off-policy MDPO algorithm.
However, Trust-PCL uses a multi-step consistency loss whereas off-policy MDPO uses single
transitions. Moreover, besides different derivations, there remain implementation-level details
between the two, as Trust-PCL only uses a V network while off-policy MDPO uses a Q function as
well.

Due to space constraints, we defer a discussion on the forward and reverse KL directions (including
the ECPO [21] algorithm) to Appendix D.

5 EXPERIMENTAL RESULTS

Figure 2: Performance of on-policy
(top) and off-policy (bottom) MDPO
(code level optimizations included) for dif-
ferent values of m on the Walker2d task.

In this section, we empirically evaluate our on-policy and
off-policy MDPO algorithms on a number of continuous
control tasks from OpenAI Gym [7], and compare them
with state-of-the-art baselines: TRPO, PPO, and SAC. We
report all experimental details, including the hyper-parameter
values used by the algorithms, in Appendix B. In the tabular
results, both in the main paper and in Appendices E and F, we
report the final training scores averaged over 5 runs and their
95% confidence intervals (CI). We bold-face the values with
the best mean scores. We also compare on-policy MDPO
and PPO on 21 Atari games from the ALE benchmark [5],
showing averages over 5 random seeds. We strictly follow the
hyperparameters reported in the PPO paper, and use m = 3
for all games.

For off-policy MDPO, we experiment with two potential
functions ψ to define the Bregman divergence Bψ: 1) Shan-
non entropy, which results in the KL version (described in
Section 4.2), and 2) Tsallis entropy, which results in the
Tsallis version of off-policy MDPO. We refer the reader to
Appendix C for the complete description and detailed deriva-
tion of the Tsallis version. Note that we did not pursue a
similar bifurcation between Tsallis and KL induced Bregman
divergences for the on-policy case since the exact derivations
are more tedious there. Another important point to note is
that the Tsallis entropy gives us a range of entropies, con-

2In soft MDPs, Qπk is replaced by its soft version and a term −λtk log πθk (a|s) is added to the exponential
in (15). This will result in the same changes in (16). Similar to the hard case, applying the reparameterization
trick to the the soft version of (16) gives us the soft version of the loss function (11).

3The same difference can also be seen in the policy updates (12) and (15) of SAC and off-policy MDPO.
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On-Policy Off-Policy
Env MDPO TRPO PPO MDPO-KL MDPO-Tsallis SAC
Hopper-v2 2361 (± 518) 1979 (± 672) 2051 (± 241) 2428 (± 395) 2428 (± 395), q = 1.0 1870 (± 404)
Walker2d-v2 4834 (± 607) 4473 (± 558) 1490 (± 292) 3591 (± 366) 4028 (± 287), q = 2.0 3738 (± 312)
HalfCheetah-v2 4172 (± 1156) 3751 (± 910) 2041 (± 1319) 11823 (± 154) 11823 (± 154), q = 1.0 11928 (± 342)
Ant-v2 5211 (± 43) 4682 (± 278) 59 (± 133) 4434 (± 749) 5486 (± 737), q = 2.0 4989 (± 579)
Humanoid-v2 3234 (± 566) 4414 (± 132) 529 (± 47) 5323 (± 348) 5611 (± 260), q = 1.2 5191 (± 312)
H. Standup-v2 155261 (± 3898) 149847 (± 2632) 97223 (±4479) 143955 (± 4499) 165882 (± 16604), q = 1.4 154765 (± 11721)

Table 1: Comparisons on MuJoCo domains. Averaged (over 5 runs) returns for Loaded+GAE version of
MDPO, TRPO, PPO, and SAC algorithms, together with their 95% confidence intervals. On-policy results are
for 10M timesteps. The values with the best mean scores are bold-faced.

trolled by the parameter q ∈ (0, 2] (see Appendix C). Two special cases are 1) Shannon entropy for
q = 1.0, and 2) sparse Tsallis for q = 2.0 [17, 18, 24].

5.1 ON MULTIPLE SGD STEPS

In on-policy MDPO, we implement the multi-step update at each MD iteration of the algorithm, by
sampling M trajectories from the current policy, generating estimates of the advantage function, and
performing m gradient steps using the same set of trajectories. We evaluated on-policy MDPO for
different values of m in all tasks. We show the results for Walker2d in Figure 2 (top). The results
for all tasks show a clear trade-off between m and the performance. Moreover, m = 10 seems to be
the best value across the tasks. This is why we use m = 10 in all our on-policy MDPO experiments.
Our results clearly indicate that using m = 1 leads to inferior performance as compared to m = 10,
reaffirming the theory that suggests solving the trust-region problem in RL requires taking several
gradient steps at each MD iteration. Finally, in our preliminary experiments with TRPO, we observed
that performing multiple gradient steps at each iteration of TRPO does not lead to any improvement,
sometimes even leading to worse performance than when performing a single-step update.

For off-policy MDPO, performing multiple SGD steps at each MD iteration (Lines 6 to 10 in
Algorithm 2) becomes increasingly time-consuming as the value of m grows. This is because off-
policy algorithms perform substantially more gradient updates than their on-policy counterparts (a
gradient step per environment step vs. a gradient step per almost 1, 000 environment steps). To address
this issue, we resort to staying close to an m-step old copy of the current policy, while performing a
single gradient update at each iteration of the algorithm. This copy is updated every m iterations with
the parameters of the current policy. Our results for the Hopper domain in Appendix G.1 show that
the performance of MDPO can be improved by performing m gradient updates at each iteration, but
we omit from performing these experiments at scale because of their unreasonably high wall-clock
time. Finally, we evaluated off-policy MDPO for different values of m in all tasks and show the
results for Walker2d in Figure 2 (bottom). We found it hard to identify a single best value of m for
all tasks. However, m = 1000 had the most reasonable performance across the tasks, and thus, we
use it in all our off-policy MDPO experiments.

5.2 ON CODE-LEVEL OPTIMIZATIONS

There are certain “code-level optimization techniques" used in code-bases of TRPO, PPO, and SAC
that result in enhanced performance. In [9], the authors provided a case study of these techniques in
TRPO and PPO. We provide a detailed description of these techniques in Appendix B, and report the
performance of the algorithms without these techniques (vanilla or minimal version) and with these
techniques (loaded and loaded+GAE versions) in Appendices E and F. Note that the loaded+GAE
version of TRPO and PPO match their state-of-the-art results in the literature.

Overall, the key takeaway from our results is that MDPO performs significantly better than PPO and
on-par or better than TRPO and SAC, while being much simpler to implement, and more general as
being derived from the theory of MD in RL. In the next two sections, we report our main observations
from our on-policy and off-policy experiments.

5.3 ON-POLICY RESULTS

We implemented three versions of on-policy MDPO, TRPO, and PPO: 1) the vanilla or minimal
version, 2) the loaded version in which we add the code-level optimization techniques to these
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algorithms, and 3) the loaded version plus GAE, whose results are reported in Table 1. The results
for all three versions are reported in Appendix E.

We elicit the following observations from our results. First, on-policy MDPO performs better than
or on par with TRPO and better than PPO across all tasks. This contradicts the common belief
that explicitly enforcing the constraint (e.g., through line-search) as done in TRPO is necessary for
achieving good performance. Second, on-policy MDPO can be implemented more efficiently than
TRPO, because it does not require the extra line-search step. Notably, TRPO suffers from scaling
issues as it requires computing the correct step-size of the gradient update using a line search, which
presents as an incompatible part of the computation graph in popular auto-diff packages, such as
TensorFlow. Moreover, MDPO performs significantly better than PPO, while remaining equally
efficient in terms of implementation. Third, TRPO performs better than PPO consistently, both in
the vanilla case and when the code-level optimizations (including GAE) are added to both algorithms.
This is in contrast to the common belief that PPO is a better performing algorithm than TRPO. Our
observation is in line with what noted in the empirical study of these two algorithms in [9], and we
believe it further reinforces it. Adding code-level optimizations and GAE improve the performance of
PPO, but not enough to outperform TRPO, when it also benefits from these additions. Lastly, fourth,
it was shown in [31] that PPO is prone to instability issues. Our experiments show that this is indeed
the case as PPO’s performance improves until the standard time-step mark of 1M, and then decreases
in some tasks. For example, in the Ant-v2 domain, both PPO and TRPO get to a similar score ( 1000)
around the 1M mark but then PPO’s performance decreases whereas TRPO continues to increase, as
can be seen in Table 1 and Appendix E.

Atari results. To show that MDPO can be robustly used as an excellent substitute for PPO, we
compare the two algorithms on 21 games from the ALE benchmark. Our results show that MDPO
performs better or on par than PPO on 15 out of 21 games, while performing better than PPO on 6 out
of 21 games. Due to space constraints, we report the full training plots in Appendix 10. Interestingly,
both MDPO and PPO behave quite differently in a lot of games. Since we do not optimize any
hyperparameters for MDPO, it might be possible to get more gains with further finetuning. Note that
it is well known that TRPO leads to much inferior performance than PPO on the ALE benchmark.
Indeed, comparing our results with those in the TRPO paper, we see that both MDPO and PPO win
in 5 out of the 6 games reported in the TRPO paper.

5.4 OFF-POLICY RESULTS

Similar to the on-policy case, we implemented both vanilla and loaded versions of off-policy MDPO
and SAC. We report the results of the loaded version in this section (Table 1), and the complete results
in Appendix F. We observe the following from these results. First, off-policy MDPO-KL performs
on par with SAC across all tasks. Second, off-policy MDPO-Tsallis that has an extra hyper-parameter
q to tune can outperform SAC across all tasks. We observe that the best performing values of q are
different for each domain but always lie in the interval [1.0, 2.0]. Third, off-policy MDPO results in
a performance increase in most tasks, both in terms of sample efficiency and final performance, in
comparison to on-policy MDPO. This is consistent with the common belief about the superiority of
off-policy to on-policy algorithms.

Similar to off-policy MDPO, we can incorporate the Tsallis entropy in SAC. In [18], the authors
showed performance improvement over SAC by properly tuning the value of q in SAC-Tsallis.
However, in domains like Humanoid-v2 and Ant-v2, they only reported results for the 1M time-step
mark, instead of the standard 3M. In our preliminary experiments with SAC-Tsallis in Appendix G.3,
we did not see much improvement over SAC by tuning q, unlike what we observed in our MDPO-
Tsallis results. More experiments and further investigation are hence needed to better understand the
effect of Tsallis entropy (and q) in these algorithms.

6 CONCLUSIONS

We derived on-policy and off-policy algorithms from the theory of MD in RL. Each policy update in
our MDPO algorithms is formulated as a trust-region optimization problem. However, our algorithms
do not update their policies by solving these problems, instead, update them by taking multiple
gradient steps on the objective function of these problems. We described in detail the relationship
between on-policy MDPO and TRPO and PPO. We also discussed how SAC can be derived by slight
modifications of off-policy MDPO. Finally, using a comprehensive set of experiments, we showed
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that on-policy and off-policy MDPO can achieve performance better than or equal to these three
popular RL algorithms, and thus can be considered as excellent alternatives to them.

We can think of several future directions. In addition to evaluating MDPO algorithms in more
complex and realistic problems, we would like to see their performance in discrete action problems
in comparison with algorithms like DQN and PPO. Investigating the use of Bregman divergences
other than KL seems to be promising. Our work with Tsallis entropy is in this direction but more
algorithmic and empirical work needs to be done. Finally, there are recent theoretical results on
incorporating exploration into the MD-based updates. Applying exploration to MDPO could prove
most beneficial, especially in complex environments.
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Appendix
A PSEUDOCODES

Below we provide the pseudocodes for the two MDPO algorithms, on-policy and off-policy.

Algorithm 1 On-Policy MDPO
1: Initialize Value network Vφ; Policy networks πnew and πold;
2: for k = 1, . . . ,K do
3: # On-policy Data Generation
4: Simulate the current policy πθk for M steps;
5: for t = 1, . . . ,M do
6: Calculate returnRt=R(st, at)=

∑M
j=t γ

j−trj ; Estimate advantageA(st, at)=R(st, at)−Vφ(st);
7: end for
8: # Policy Improvement (Actor Update)
9: θ

(0)
k = θk;

10: for i = 0, . . . ,m− 1 do
11: θ

(i+1)
k ← θ

(i)
k + η∇θΨ(θ, θk)|

θ=θ
(i)
k

; (Eq. 7)

12: end for
13: θk+1 = θ

(m)
k ;

14: # Policy Evaluation (Critic Update)
15: Update φ by minimizing the N -minibatch (N ≤M ) loss function LVφ = 1

N

∑N
t=1

[
Vφ(st)−Rt

]2;
16: end for
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Algorithm 2 Off-Policy MDPO

1: Initialize Replay buffer D = ∅; Value networks Vφ and Qψ; Policy networks πnew and πold;
2: for k = 1, . . . ,K do
3: Take action ak ∼ πθk (·|sk), observe rk and sk+1, and add (sk, ak, rk, sk+1) to the replay buffer D;
4: Sample a batch {(sj , aj , rj , sj+1)}Nj=1 from D;
5: # Policy Improvement (Actor Update)
6: θ

(0)
k = θk;

7: for i = 0, . . . ,m− 1 do
8: θ

(i+1)
k ← θ

(i)
k + η∇θL(θ, θk)|

θ=θ
(i)
k

; (Eq. 11)

9: end for
10: θk+1 = θ

(m)
k ;

11: # Policy Evaluation (Critic Update)
12: Update φ and ψ by minimizing the loss functions

LVφ = 1
N

∑N
j=1

[
Vφ(sj)−Qψ

(
sj , πθk+1(sj)

)]2;

LQψ = 1
N

∑N
j=1

[
r(sj , aj) + γVφ(sj+1)−Qψ(sj , aj)

]2;
13: end for

L(θ, θk) = Es∼D
ε∼N

[
log πθ

(
ãθ(ε, s)|s

)
− log πθk

(
ãθ(ε, s)|s

)
− tkQθkψ

(
s, ãθ(ε, s)

)]
(Eq. 11 revisited)

Algorithm 3 Off-Policy MDPO (Soft)

1: Initialize Replay buffer D = ∅; Value networks Vφ and Qψ; Policy networks πnew and πold;
2: for k = 1, . . . ,K do
3: Take action ak ∼ πθk (·|sk), observe rk and sk+1, and add (sk, ak, rk, sk+1) to the replay buffer D;
4: Sample a batch {(sj , aj , rj , sj+1)}Nj=1 from D;
5: # Policy Improvement (Actor Update)
6: θ

(0)
k = θk;

7: for i = 0, . . . ,m− 1 do
8: θ

(i+1)
k ← θ

(i)
k + η∇θL(θ, θk)|

θ=θ
(i)
k

; (Eq. 11 soft)

9: end for
10: θk+1 = θ

(m)
k ;

11: # Policy Evaluation (Critic Update)
12: Update φ and ψ by minimizing the loss functions

LVφ = 1
N

∑N
j=1

[
Vφ(sj)−Qψ

(
sj , πθk+1(sj)

)
− λ log πθk+1(sj)

]2;

LQψ = 1
N

∑N
j=1

[
r(sj , aj) + γVφ(sj+1)−Qψ(sj , aj)

]2;
13: end for

L(θ, θk) = Es∼D
ε∼N

[
log πθ

(
ãθ(ε, s)|s

)
− (1− λtk) log πθk

(
ãθ(ε, s)|s

)
− tkQθkψ

(
s, ãθ(ε, s)

)]
(Eq. 11 soft)
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B EXPERIMENTAL DETAILS

B.1 SETUP

We evaluate all algorithms on OpenAI Gym [7] based continuous control tasks, including Hopper-v2,
Walker2d-v2, HalfCheetah-v2, Ant-v2, Humanoid-v2 and HumanoidStandup-v2. All experiments are
run across 5 random seeds. Each plot shows the empirical mean of the random runs while the shaded
region represents a 95% confidence interval (empirical mean ±1.96× empirical standard deviation /√
n = 5). We report results in both figure and tabular forms. The tabular results denote the mean

final training performance and the best values with overlapping confidence intervals are bolded.

For all off-policy experiments, we use λ = 0.2 across all tasks, which is known to be the best
performing value for all tasks according to [13] (In our experiments, a value of 0.2 worked equally
well for Humanoid as the reported 0.05 in the SAC paper). We report all details of our off-policy
experiments including hyperparameter values in Table 3. Moreover, since doing multiple gradient
steps at each iteration becomes quite time consuming for the off-policy case, we get around this issue
by fixing the old policy (πθk ) for m number of gradient steps, in order to mimic the effect from taking
multiple gradients steps at each iteration. This ensures that the total number of environment steps are
always equal to the total number of gradients steps, irrespective of the value of m. Finally, for all
experiments, we use a fixed Bregman stepsize (1/tk) as opposed to an annealed version like in the
on-policy case.

B.2 CODE-LEVEL OPTIMIZATION TECHNIQUES

The widely available OpenAI Baselines [8] based PPO implementation uses the following five
major modifications to the original algorithm presented in [28] – value function clipping, reward
normalization, observation normalization, orthogonal weight initialization and an annealed learning
rate schedule for the Adam optimizer. These are referred to as code level optimization techniques
(as mentioned in above sections) and are originally noted in [9]. Following the original notation, we
refer to the vanilla or minimal version of PPO, i.e. without these modifications as PPO-M. Then, we
consider two PPO versions which include all such code level optimizations, with the hyperparameters
given in [28]. One of them does not use GAE while the other version includes GAE. Therefore they
are referred to as PPO-LOADED and PPO-LOADED+GAE respectively. These versions, although
being far from the theory, have been shown to be the best performing ones, and so form as a good
baseline. We do a similar bifurcation for TRPO and on-policy MDPO. We report all details of our
on-policy experiments including hyperparameter values in Table 2.

Similarly, for the off-policy MDPO versions, we again restrain from using the optimization tricks
mentioned above. However we do employ three techniques that are common in actor-critic based
algorithms, namely: using separate Q and V functions as in [13], using two Q functions to reduce
overestimation bias and using soft target updates for the value function. Prior work [11, 19] has
shown these techniques help improve stability.

Similar to the on-policy experiments, we include a minimal and loaded version for the off-policy
experiments as well, which are described in Appendix D. In particular, this branching is done based
on the neural network and batch sizes used. Since the standard values in all on-policy algorithms is
different from the standard values used by most off-policy approaches, we show results for both set
of values. This elicits a better comparison between on-policy and off-policy methods.
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Hyperparameter TRPO-M TRPO-LOADED PPO-M PPO-LOADED MDPO-M MDPO-LOADED
Adam stepsize - - 3× 10−4 Annealed from 1 to 0 3× 10−4 Annealed from 1 to 0
minibatch size 128 128 64 64 128 128

number of gradient updates (m) - - - - 5 10
reward normalization 7 ! 7 ! 7 !

observation normalization 7 ! 7 ! 7 !

orthogonal weight initialization 7 ! 7 ! 7 !

value function clipping 7 ! 7 ! 7 !
GAE λ 1.0 0.95 1.0 0.95 1.0 0.95

horizon (T) 2048
entropy coefficient 0.0

discount factor 0.99
total number of timesteps 107

#runs used for plot averages 5
confidence interval for plot runs ∼ 95%

Table 2: Hyper-parameters of all on-policy methods.

Hyperparameter MDPO-M
KL

MDPO-M
Tsallis

SAC-M MDPO-LOADED
KL

MDPO-LOADED
Tsallis

SAC-LOADED

number of hidden units per layer 64 64 64 256 256 256
minibatch size 64 64 64 256 256 256

entropy coefficient (λ) 0.2
Adam stepsize 3× 10−4

reward normalization 7
observation normalization 7

orthogonal weight initialization 7
value function clipping 7

replay buffer size 106

target value function smoothing coefficient 0.005
number of hidden layers 2

discount factor 0.99
#runs used for plot averages 5

confidence interval for plot runs ∼ 95%

Table 3: Hyper-parameters of all off-policy methods.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 HumanoidStandup-v2

Bregman stepsize (1/tk) 0.8 0.4 0.3 0.5 0.5 0.3
Table 4: Bregman stepsize for each domain, used by off-policy MDPO.
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C TSALLIS-BASED BREGMAN DIVERGENCE

As described in section 2.1, the MD update contains a Bregman divergence term. A Bregman
divergence is a measure of distance between two points, induced by a strongly convex function ψ. In
the case where the potential function ψ is the negative Shannon entropy, the resulting Bregman is the
KL divergence. Similarly, when ψ is the negative Tsallis entropy, for a real number q, i.e.,

ψ(π) =
1

1− q

(
1−

∑
a

π(a | s)q
)
, (17)

we obtain the Tsallis Bregamn divergence, i.e.,

Bψ(π, πk) =
q

1− q
∑
a

π(a | s)πk(a | s)q−1 − 1

1− q
∑
a

π(a | s)q +
∑
a

πk(a | s)q. (18)

Note that the last term on the RHS of (18) is independent of the policy π being optimized. Also note
that as q → 1, the Tsallis entropy collapses to the Shannon entropy −

∑
a π(a | s) log π(a | s), and

thus, it generalizes the Shannon entropy. Moreover, for q = 2, the Tsallis entropy is called the sparse
Tsallis entropy.

At first glance, the above expression is very different from the definition of the KL divergence.
However, by defining the function logq as

logq x :=

{
xq−1−1
q−1 , if q 6= 1 and x > 0,

log q, if q = 1 and x > 0,

we may write the negative Tsallis entropy, defined by (17), as

ψ(π) =
∑
a

π(a | s) logq π(a | s), (19)

and the Tsallis Bregman, defined by (18), in a similar manner to the KL divergence as

Bψ(π, πk) =
∑
a

π(a | s)
(

logq π(a | s)− q logq πk(a | s)
)

︸ ︷︷ ︸
= KL(π,πk), for q=1

−

independent of the policy π being optimized︷ ︸︸ ︷
(1− q)

∑
a

πk(a | s) logq πk(a | s)︸ ︷︷ ︸
=0, for q=1

.

(20)
With this convenient definition, we can write the Tsallis-based version of the off-policy MDPO
objective defined in (11) as

LTsallis(θ, θk) = Es∼D
ε∼N

[
logq πθ

(
ãθ(ε, s)|s

)
− q logq πθk

(
ãθ(ε, s)|s

)
− tkQθkψ

(
s, ãθ(ε, s)

)]
. (21)

Note that the last term on the RHS of (20) is independent of the policy being optimized (i.e., π or θ),
and thus, does not appear in the loss function LTsallis(θ, θk) in (21).

Note that on-policy MDPO uses a closed form version for the Bregman divergence (since both
policies are Gaussian in our implementation, a closed form of their KL exists). Such a closed form
version for the Tsallis based Bregman is quite cumbersome to handle in terms of implementation, and
thus we did not pursue the Tsallis based version in the on-policy experiments. However, in principle,
it is very much feasible and we leave this for future investigation.
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D REVERSE VS. FORWARD KL DIRECTION

Similar to the on-policy case, the mode-seeking or reverse direction of the KL term in off-policy
MDPO (Eq. 16) is consistent with that in the MD update rule in convex optimization. With this
direction of KL, the optimization problems for policy update in both off-policy MDPO and SAC are
invariant to the normalization term Z(s). Thus, these algorithms can update their policies without
computing Z(s). In [21], the authors proposed an algorithm, called exploratory conservative policy
optimization (ECPO), that resembles our soft off-policy MDPO, except in the direction of KL.
Switching the direction of KL to mean-seeking or forward has the extra overhead of estimating the
normalization term for ECPO. However, in [21], they argue that it results in better performance.
They empirically show that ECPO performs better than several algorithms, including one that is
close to off-policy MDPO, which they refer to as policy mirror descent (PMD), and report poor
performance for it. We did not use their code-base and exact configuration, but we did not observe
such poor performance for our off-policy MDPO. In fact, experimental results of Section 5.4 show
that off-policy MDPO performs better than or on-par with SAC in six commonly used MuJoCo
domains. More experiments and further investigation are definitely required to better understand the
effect of the KL direction in MDPO algorithms.
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E ON-POLICY RESULTS

Here, we report the results for all on-policy algorithms, i.e. TRPO, PPO and MDPO. We have three
variants here, 1) the minimal version, i.e. {TRPO, PPO, MDPO}-M, which makes use of no code level
optimizations, 2) the loaded version, i.e. {TRPO, PPO, MDPO}-LOADED, which includes all code
level optimizations, and 3) the loaded+GAE version, i.e. {TRPO, PPO, MDPO}-LOADED+GAE,
which includes all code level optimizations and also includes the use of GAE. We see that the overall
performance increases in most cases as compared to the minimal versions. However, the trend in
performance between these algorithms remains consistent to the main results.

MDPO TRPO PPO
Hopper-v2 1964 (±217) 2382 (±445) 1281 (±353)

Walker2d-v2 2948 (±298) 2454 (±171) 424 (±92)

HalfCheetah-v2 2873 (±835) 1726 (±690) 617 (±135)

Ant-v2 1162 (±738) 1716 (±338) -40 (±33)

Humanoid-v2 635 (±46) 449 (±9) 448 (±56)

HumanoidStandup-v2 127901 (±6217) 100408 (±12564) 96068 (±11721)

Table 5: Performance of MDPO-M, compared against PPO-M, TRPO-M on six MuJoCo tasks. The results are
averaged over 5 runs, together with their 95% confidence intervals. The values with the best mean scores are
bolded.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) HumanoidStandup-v2 (f) Humanoid-v2

Figure 3: Performance of MDPO-M, compared against PPO-M, TRPO-M on six MuJoCo tasks. The results are
averaged over 5 runs, with their 95% confidence intervals shaded.
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(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) HumanoidStandup-v2 (f) Humanoid-v2

Figure 4: Performance of MDPO-LOADED, compared against loaded implementations (excluding GAE) of
PPO and TRPO (PPO-LOADED, TRPO-LOADED) on six MuJoCo tasks. The results are averaged over 5 runs,
with their 95% confidence intervals shaded.
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MDPO TRPO PPO
Hopper-v2 2361 (±518) 1979 (±672) 2051 (±241)

Walker2d-v2 4834 (±607) 4473 (±558) 1490 (±292)

HalfCheetah-v2 4172 (±1156) 3751 (±910) 2041 (±1319)

Ant-v2 5211 (±43) 4682 (±278) 59 (±133)

Humanoid-v2 3234 (±566) 4414 (±132) 529 (±47)

HumanoidStandup-v2 155261 (±3898) 149847 (±2632) 97223 (±4479)

Table 6: Performance of MDPO-LOADED+GAE, compared against loaded implementations (including GAE) of
PPO and TRPO (PPO-LOADED+GAE, TRPO-LOADED+GAE) on six MuJoCo tasks. The results are averaged
over 5 runs, together with their 95% confidence intervals. The values with the best mean scores are bolded.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) HumanoidStandup-v2 (f) Humanoid-v2

Figure 5: Performance of MDPO-LOADED+GAE, compared against loaded implementations (including GAE)
of PPO and TRPO (PPO-LOADED+GAE, TRPO-LOADED+GAE) on six MuJoCo tasks. The results are
averaged over 5 runs, with their 95% confidence intervals shaded.
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F OFF-POLICY RESULTS

Here, we report the results for all off-policy algorithms, i.e. MDPO and SAC. We have two variants
here, 1) the minimal version, i.e. MDPO-M and SAC-M, which uses the standard neural network and
batch sizes (64) and 2) the loaded version, i.e. MDPO-LOADED and SAC-LOADED, which uses a
neural network and batch size of 256. We see that the overall performance increases in most cases
as compared to the minimal versions, i.e. SAC-M, MDPO-M. However, the trend in performance
between these algorithms remains consistent to the main results.

MDPO-KL MDPO-Tsallis, qbest SAC
Hopper-v2 1385 (±648) 1385 (±648), q = 1.0 1501 (±414)

Walker2d-v2 873 (±180) 1151 (±218), q = 1.8 635 (±137)

HalfCheetah-v2 8098 (±428) 8477 (±450), q = 1.4 9298 (±371)

Ant-v2 1051 (±284) 2348 (±338), q = 2.0 378 (±33)

Humanoid-v2 2258 (±372) 4426 (±229), q = 1.6 3598 (±172)

HumanoidStandup-v2 131702 (±7203) 138157 (±8983), q = 1.2 142774 (±4864)

Table 7: Performance of KL and Tsallis based versions of MDPO-M, compared with SAC-M on six MuJoCo
tasks. The results are averaged over 5 runs, together with their 95% confidence intervals. The values with the
best mean scores are bolded.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2 (f) HumanoidStandup-v2

Figure 6: Performance of KL and Tsallis based versions of MDPO-M, compared with SAC-M on six MuJoCo
tasks. X-axis represents time steps in millions. The results are averaged over 5 runs, with their 95% confidence
intervals shaded.
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MDPO-KL MDPO-Tsallis, qbest SAC
Hopper-v2 2428 (±395) 2428 (±395), q = 1.0 1870 (±404)

Walker2d-v2 3591 (±366) 4028 (±287), q = 2.0 3738 (±312)

HalfCheetah-v2 11823 (±154) 11823 (±154), q = 1.0 11928 (±342)

Ant-v2 4434 (±749) 5486 (±737), q = 2.0 4989 (±579)

Humanoid-v2 5323 (±348) 5611 (±260), q = 1.2 5191 (±312)

HumanoidStandup-v2 143955 (±4499) 165882 (±16604), q = 1.4 154765 (±11721)

Table 8: Performance of KL and Tsallis based versions of MDPO-LOADED, compared with SAC-LOADED
on six MuJoCo tasks. The results are averaged over 5 runs, together with their 95% confidence intervals. The
values with the best mean scores are bolded.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2 (f) HumanoidStandup-v2

Figure 7: Performance of KL and Tsallis based versions of MDPO-LOADED, compared with SAC-LOADED
on six MuJoCo tasks. X-axis represents time steps in millions. The results are averaged over 5 runs, with their
95% confidence intervals shaded. Note that although there is overlap in the performance of all methods, MDPO
achieves a higher mean score in 5 out 6 domains.
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G ADDITIONAL EXPERIMENTS

G.1 MULTI-STEP UPDATE

Figure 8: Performance of off-policy MDPO,
compared with SAC on Hopper-v2, when do-
ing both single and multiple gradient updates
each iteration.

For off-policy MDPO, we use a modified version of doing
multi-step updates at each iteration (see section 5.1) due
to computational reasons. In order to ensure a fair com-
parison, we used the single-step gradient updates for SAC
in our main experiments. Here, we resort to the original
algorithm presented in Algorithm 2, wherein we do m
gradient steps at each iteration. We compare this version
of MDPO-KL with a similar multi-step version of SAC,
as is originally reported in [13]. In Figure 8 we see that
doing multiple updates helps improve the score of both
MDPO and SAC, as is expected.

G.2 DIFFERENT TSALLIS ENTROPIES FOR BREGMAN
AND MDP REGULARIZATION

So far in the paper, we have used the same Tsallis entropy (same q value) for defining the Bregman
divergence as well as the MDP regularizer. Here, we test the performance for when the two tsallis
entropies are different. For this, we sample from a set of three q values {1.0, 1.5, 2.0} and report the
results for every possible combination of q values used for defining the Bregman divergence and the
MDP regularizer. We test this on the Walker2d-v2, Humanoid-v2, and Ant-v2 domains (domains
where we see the most improvement due to the addition of Tsallis entropy) and observe that sticking
to the same q values for both cases results in the best performance across all three domains (see
Table 9).

Bregman q
MDP q q = 1.0 q = 1.5 q = 2.0

Walker2d-v2
q = 1.0 3591 (±366) 3268 (±234) 1007 (±422)
q = 1.5 2126 (±456) 2805 (±302) 1573 (±328)
q = 2.0 14 (±5) 2915 (±391) 4028 (±287)

Ant-v2
q = 1.0 4434 (±749) 3007 (±572) 1913 (±973)
q = 1.5 4119 (±326) 5488 (±233) 2781 (±812)
q = 2.0 -807 (±951) 4418 (±184) 5486 (±737)

Humanoid-v2
q = 1.0 5323 (±348) 4734 (±341) 4561 (±381)
q = 1.5 24 (±4) 5013 (±274) 3766 (±331)
q = 2.0 12 (±5) 28(±3) 2751 (±304)

Table 9: Different Tsallis Entropies. The results are averaged over 5 runs, with 95% confidence intervals shaded.

G.3 TSALLIS-BASED SAC

We test performance of SAC-Tsallis while varying the q values. In our preliminary experiments with
SAC-Tsallis in Table 9, we did not see much improvement over SAC by tuning q, unlike what we
observed in our MDPO-Tsallis results. More experiments and further investigation are definitely
needed to better understand the effect of Tsallis entropy (and q) in these algorithms.

Figure 9: Performance of Tsallis SAC. The results are averaged over 5 runs, with 95% confidence intervals
shaded.
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H ATARI RESULTS

Figure 10: Comparison of MDPO with PPO on 21 Atari games. Order of magnitude of x-axis is 103, which
roughly corresponds to 10M environment time steps or 40M game frames.
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