
Continuous-Time Hierarchical Reinforcement Learning

Mohammad Ghavamzadeh ghavamza@cse.msu.edu

Sridhar Mahadevan mahadeva@cse.msu.edu

Department of Computer Science, Michigan State University, East Lansing, MI 48824-1226, USA

Abstract

Hierarchical reinforcement learning (RL) is
a general framework which studies how to
exploit the structure of actions and tasks
to accelerate policy learning in large do-
mains. Prior work in hierarchical RL, such
as the MAXQ method, has been limited
to the discrete-time discounted reward semi-
Markov decision process (SMDP) model.
This paper generalizes the MAXQ method
to continuous-time discounted and average
reward SMDP models. We describe two hi-
erarchical reinforcement learning algorithms:
continuous-time discounted reward MAXQ

and continuous-time average reward MAXQ.
We apply these algorithms to a complex mul-
tiagent AGV scheduling problem, and com-
pare their performance and speed with each
other, as well as several well-known AGV
scheduling heuristics.

1. Introduction

Hierarchical methods provide a general framework for
scaling reinforcement learning to problems with large
state spaces by using the task (or action) structure to
restrict the space of policies. Prior work in hierarchi-
cal RL, including HAMs (Parr, 1998), options (Sutton
et al., 1999) and MAXQ (Dietterich, 2000), has been
limited to the discrete-time discounted reward SMDP
model. This paper extends the MAXQ hierarchical
RL framework to the continuous-time SMDP model,
and introduces two new versions of MAXQ: one for the
continuous-time discounted reward model, and one for
the continuous-time average reward model. Although
average reward RL has been extensively studied, using
both the discrete-time MDP model (Schwartz, 1993;
Mahadevan, 1996; Tadepalli & Ok, 1996) as well as
the continuous-time SMDP model (Mahadevan et al.,
1997; Wang & Mahadevan, 1999), prior work has been
limited to “flat” algorithms. Both the proposed al-
gorithms are tested on a complex multiagent AGV

scheduling task.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the continuous-time SMDP
framework under both discounted and average reward
paradigms. Section 3 describes the MAXQ method
using an automated guided vehicle (AGV) task. Sec-
tion 4 and 5 illustrate the continuous-time discounted
reward MAXQ and continuous-time average reward
MAXQ algorithms, respectively. Section 6 presents
experimental results of using proposed algorithms in a
multiagent AGV scheduling problem. Finally, section
7 summarizes the paper and discusses some directions
for future work.

2. Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) are useful
in modeling temporally extended actions. They ex-
tend the discrete-time MDP model in several aspects.
Time is modeled as a continuous entity and decisions
are only made at discrete points in time (or events).
The state of the system may change continually
between decisions, unlike MDPs where state changes
are only due to actions.
An SMDP is defined as a five tuple (S,A,P ,R,F),
where S is a finite set of states, A is the set of
actions, P is a set of state and action dependent
transition probabilities, R is the reward function,
and F is a function giving probability of transition
times for each state-action pair. P (s′|s, a) denotes
the probability that action a will cause the system to
transition from state s to state s′. This transition is at
decision epochs only. Basically, the SMDP represents
snapshots of the system at decision points, whereas
the so-called natural process describes the evolution of
the system over all times. F (t|s, a) is the probability
that the next decision epoch occurs within t time
units after the agent chooses action a in state s at
a decision epoch. From F and P , we can compute Φ by

Φ(t, s′|s, a) = P (s′|s, a)F (t|s, a)

where Φ denotes the probability that the system
will be in state s′ for the next decision epoch, at or
before t time units after choosing action a in state s,
at the last decision epoch. The reward function for
SMDPs is more complex than in the MDP model. In
addition to the fixed reward of taking action a in state
s, k(s, a), an additional reward may be accumulated
at rate c(s′, s, a) for the time the natural process
remains in state s′ between decision epochs. Formally,
the expected reward between two decision epochs,
given that the system is in state s and chooses action
a in the first decision epoch, is expressed as

r(s, a) = k(s, a) + Ea
s {

∫ τ

0
c(Wt, s, a)dt}

where τ is the transition time to the second de-
cision epoch and Wt denotes the state of the natural
process during this transition.

2.1 Discounted Models

We begin with a short overview of infinite-horizon dis-
counted semi-Markov decision processes (Puterman,
1994; Bradtke & Duff, 1995). We assume continuous-
time discounting at rate β > 0, which means that the
present value of one reward unit received t time units
in the future equals e−βt. In this model, for policy π,
vπ(s) denotes the expected infinite-horizon discounted
reward, given that the process occupies state s at the
first decision epoch and is defined by

vπ(s) = Eπ
s {

∞
∑

n=0

e−βσn [k(sn, an)

+

∫ σn+1

σn

e−β(t−σn)c(Wt, sn, an)dt]}

(1)

In the above expression, σ0, σ1, . . . represents the
times of successive decision epochs and e−βσn trans-
forms the reward to values at the first decision epoch.
In this model, the expected discounted reward between
two decision epochs is defined as

r(s, a) = k(s, a)

+

∫

∞

0

∑

s′∈S

[

∫ u

0

e−βtc(s′, s, a)P (s′|s, a)dt]F (du|s, a)

(2)

Using Equation 2, we can re-express the value function
in Equation 1 as

vπ(s) = r(s, π(s)) +
∑

s′∈S

∫

∞

0

e−βtvπ(s′)Φ(dt, s′|s, π(s))

The action value function Qπ(s, a) represents the dis-
counted cumulative reward of doing an action a in
state s once, and then following policy π subsequently.

Qπ(s, a) = r(s, a)

+
∑

s′∈S

P (s′|s, a)

∫

∞

0

e−βtQπ(s′, π(s′))F (dt|s, a)

2.2 Average Reward Models

The theory of infinite-horizon semi-Markov decision
processes with the average reward criterion is more
complex than that for discounted models. (Puterman,
1994; Mahadevan, 1996). To simplify exposition we
assume that for every stationary policy, the embedded
Markov chain has a unichain transition probability
matrix. Under this assumption, the expected average
reward of every stationary policy does not vary with
the initial state. For policy π, state s ∈ S and
time t ≥ 0, vπ

t (s) denotes the expected total reward
generated by the process up to time t, given that the
system occupies state s at time 0 and is defined as

vπ
t (s) = Eπ

s {
∑vt−1

n=0 k(sn, an) +
∫ t

0
c(Wu, svu

, avu
)du}

where vu is the number of decisions made up to
time t. In this model, the expected total reward
between two decision epochs is defined as

r(s, a) = k(s, a)

+

∫

∞

0

∑

s′∈S

[

∫ u

0

c(s′, s, a)P (s′|s, a)dt]F (du|s, a)

The average expected reward or gain gπ(s) for a policy
π at state s can be defined by taking the limit inferior
of the ratio of the expected total reward up until the
nth decision epoch to the expected total time until
the nth epoch. So, the gain of a policy gπ(s) can be
expressed as the ratio

gπ(s) = lim
n→∞

Eπ
s {

∑n

i=0[k(si, ai) +
∫ σi+1

σi

c(Wt, si, ai)dt]}

Eπ
s {

∑n
i=0 τi}

For unichain MDPs, the gain of any policy is state
independent and we can write gπ(s) = gπ. For each
transition, the expected transition time is defined as:

y(s, a) = Ea
s {τ} =

∫

∞

0
t
∑

s′∈S Φ(dt, s′|s, a)

In unichain average reward SMDPs, the expected

average adjusted sum of rewards hπ for stationary
policy π is defined as

hπ(s) = V π
t (s)− gπt (3)

where t is the time at which the decision epoch oc-
curs. The Bellman equation for unichain average re-
ward SMDPs is defined based on the h function in
Equation 3 and can be written as

hπ(s) = r(s, π(s))− gπy(s, π(s)) +
∑

s′∈S

P (s′|s, π(s))hπ(s′)

The action value function Rπ(s, a) represents the av-
erage adjusted value of doing an action a in state s

once, and then following policy π subsequently.

Rπ(s, a) = r(s, a)− gπy(s, a) +
∑

s′∈S

P (s′|s, a)Rπ(s′, π(s′))

3. The MAXQ Framework

The continuous-time hierarchical reinforcement learn-
ing algorithms introduced in this paper are extensions
of the MAXQ method for discrete-time hierarchical
reinforcement learning (Dietterich, 2000). This ap-
proach involves the use of a graph to store a distributed
value function. The overall task is first decomposed
into subtasks up to the desired level of detail, and the
task graph is constructed. We illustrate the idea us-
ing the AGV scheduling task used as the experimen-
tal testbed in this paper. Automated Guided Vehi-
cles (AGVs) are used in flexible manufacturing sys-
tems (FMS) for material handling. Any FMS system
using AGVs faces the problem of optimally scheduling
the paths of AGVs in the system. Also, when a vehi-
cle becomes available, and multiple move requests are
queued, a decision needs to be made as to which re-
quest should be serviced by that vehicle. Hence, AGV
scheduling requires dynamic dispatching rules, which
are dependent on the state of the system like the num-
ber of parts in each buffer, the state of the AGV, and
the processing going on at the workstations. The sys-
tem performance is usually measured in terms of the
throughput, which is the number of finished assemblies
deposited at the unloading deck per unit time. Fig-
ure 1 shows the layout of a factory environment. Parts
of type i have to be carried to drop-off station at ma-
chine i (Di) and the assembled parts brought back
into the warehouse. This is a task which can be paral-
lelized, if we have more than one AGV working on it.
Note the agents need to learn three skills here. First,
how to do each subtask, such as deliver material to

stations or navigation and when to perform Pickup

or Load action. Second, agents also need to learn the
order to do subtasks (e.g. go to load station and load
part i before heading to the drop off station at machine
i). Finally, AGVs need to learn how to coordinate with
other AGVs (i.e. AGV 1 can deliver part to machine i

whereas AGV 2 can deliver the finished assembly from
machine j). The strength of the MAXQ framework is
that it can serve as a substrate for learning all these
three types of skills.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 1. An AGV optimization task with four AGV
agents (not shown) which carry raw materials and finished
parts between the machines and the warehouse.

First, the AGV scheduling task is decomposed into
subtasks and its task graph is built. Then its task
graph is converted to the MAXQ graph, which is
shown in figure 2. The MAXQ graph has two types
of nodes: MAX nodes (triangles) and Q nodes (rect-
angles), which represent the different actions that can
be done under their parents.

More formally, the MAXQ method decomposes an
MDP M into a set of subtasks M0,M1, ...,Mn. Each
subtask is a three tuple (Ti, Ai, R̃i) defined as:

• Ti(s) is a termination predicate which partitions
the state space S into a set of active states Si,
and a set of terminal states Ti. The policy for
subtask Mi can only be executed if the current
state s ∈ Si.

• Ai is a set of actions that can be performed to
achieve subtask Mi. These actions can either be
primitive actions from A, the set of primitive ac-

Root

DA2DA1DM2DM1

DM1 DM2

Load PutNavLoad

Nav Load Put

Forward Left Right

leftforward right

NavPuti

NavPuti: Navigate to Dropoff Station i

NavLoad: Navigate to Loading Deck

DAi: Deliver Assembly to Station i

Max Node

Q Node

:

:
DMi: Deliver Material to Station i

(b)

Figure 2. MAXQ graph for the AGV scheduling task.

tions for the MDP M , or they can be other sub-
tasks.

• R̃i(s
′) is the pseudo reward function, which spec-

ifies a pseudo-reward for each transition to a ter-
minal state s ′ ∈ Ti. This pseudo-reward tells how
desirable each of the terminal states is for this
particular subtask.

Each primitive action a is a primitive subtask in
the MAXQ decomposition, such that a is always ex-
ecutable, it terminates immediately after execution,
and its pseudo-reward function is uniformly zero. The
projected value function V π is the value of executing
hierarchical policy π starting in state s, and at the root
of the hierarchy. The completion function (Cπ(i , s, a))
is the expected cumulative discounted reward of com-
pleting subtask Mi after invoking the subroutine for
subtask Ma in state s.

The value function V (i, s) in the MAXQ method is
calculated by decomposing it into two parts: the value
of the subtask which is independent of the parent task,
and the value of the completion of the task, which of
course depends on the parent task.

V (i, s) =

{

maxaQ(i, s, a) if i is composite
∑

s′ P (s′|s, i)R(s′|s, i) if i is primitive

Q(i, s, a) = V (a, s) + C(i, s, a) (4)

The Q values and the C values can be learned through
a standard temporal-difference learning method, based

on sample trajectories (see (Dietterich, 2000) for de-
tails). One important point to note here is that since
subtasks are temporally extended in time, the Q-
learning update rule used here is based on the SMDP
model (Puterman, 1994).

Let us assume that an agent is at state s while doing
task i, and chooses subtask j to execute. Let this
subtask terminate after N steps and result in state s′.
Then, the SMDP Q-learning rule used to update the
completion function is given by

Ct+1(i, s, j)← (1− α)Ct(i, s, j) + αγN (max
a′

Vt(a
′, s′)

+ Ct(i, s
′, a′))

A hierarchical policy π is a set containing a policy for
each of the subtasks in the problem: π = {π0 . . . πn}.
The projected value function in the hierarchical case,
denoted by V π(s), is the value of executing hierarchi-
cal policy π starting in state s and starting at the root
of the task hierarchy. A recursively optimal policy for
MDP M with MAXQ decomposition {M0 . . . Mn} is a
hierarchical policy π = {π0 . . . πn} such that for each
subtask Mi the corresponding policy πi is optimal for
the SMDP defined by the set of states Si, the set of
actions Ai, the state transition probability function
Pπ(s′, N |s, a), and the reward function given by the
sum of the original reward function R(s′|s, a) and the
pseudo-reward function R̃i(s

′). The MAXQ learning
algorithm has been proven to converge to the unique
recursively optimal policy for MDP M and MAXQ
graph H, where M is a discounted infinite horizon
MDP with discount factor γ, and H is a MAXQ graph
defined over subtasks {M0 . . . Mn}.

4. Continuous-Time Discounted

Reward MAXQ Algorithm

At the center of the MAXQ method for hierarchical re-
inforcement learning is the MAXQ value function de-
composition. We show how the overall value function
for a policy is decomposed into a collection of value
functions for individual subtasks for the continuous-
time discounted reward model. The projected value
function of hierarchical policy π on subtask Mi, de-
noted V π(i, s), is the expected cumulative discounted
reward of executing πi (and the policies of all de-
scendents of Mi) starting in state s until Mi termi-
nates. The value V π(i, s) has the following form in
the continuous-time discounted reward framework:

V π(i, s) = Eπ
s {

∞
∑

n=0

e−βσnr(sn, an)} (5)

where r(sn, an) is defined using Equation 2. Now let
us suppose that the first action chosen by πi is invoked
and executes for a number of steps N and terminates
in state s′ according to P π

i (s′|s, a). We can rewrite
Equation 5 as

V π(i, s) = Eπ
s {

N−1
∑

n=0

e−βσnr(sn, an) +

e−βσN

∞
∑

n=0

e−βσnr(sN+n, aN+n)}

(6)

The first summation on the right-hand side of Equa-
tion 6 is the discounted sum of rewards for executing
subroutine πi(s) starting in state s until it terminates,
in other words, it is V π(πi(s), s), the projected value
function for the child task Mπi(s). The second term
on the right-hand side of the equation is the value of
s′ for the current task i, V π(i, s′), discounted by e−βt,
where s′ is the current state when subroutine πi(s) ter-
minates and t is the sample transition time from state
s to state s′. We can write Equation 6 in the form of
a Bellman equation:

V π(i, s) = V π(πi(s), s) +
∑

s′∈Si

Pi(s
′|s, πi(s))

∫

∞

0

e−βtV π(i, s′)Fi(dt|s, πi(s))

(7)

Equation 7 can be re-stated for action-value function
decomposition as follows:

Qπ(i, s, a) = V π(a, s) +
∑

s′∈Si

Pi(s
′|s, a)

∫

∞

0

e−βtQπ(i, s′, πi(s
′))Fi(dt|s, a)

The right-most term in this equation is the expected
discounted cumulative reward of completing task Mi

after executing action a in state s. This term is called
the completion function and is denoted by Cπ(i, s, a).
With this definition, we can express the Q function
recursively as

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)

and we can re-express the definition for V as

V π(i, s) =

Qπ(i, s, πi(s)) if i is composite

ki(s, i)+

∫

∞

0

∑

s′∈Si

Pi(s
′|s, i)

[

∫ u

0

e−βtci(s
′, s, i)dt]Fi(du|s, i)

if i is primitive

We can use the above formulas to obtain update equa-
tions for value function V , outside completion function
C and inside completion function C̃ in the continuous-
time discounted reward model. Pseudo-code for the
resulting algorithm is shown in Algorithm 1 1.

5. Continuous-Time Average Reward

MAXQ Algorithm

We now describe a new average reward hierarchical
reinforcement learning algorithm based on the MAXQ
framework. To simplify exposition, we assume that
for every possible stationary policy of each subtask
in the hierarchy, the embedded Markov chain has a
unichain transition probability matrix. Under this as-
sumption every subtask in the hierarchy is a unichain
SMDP. This means the expected average reward of
every stationary policy for each subtask in the hierar-
chy does not vary with initial state. As we mentioned
earlier, value function decomposition is the heart of
the MAXQ method. We show how the overall h func-
tion for a policy is decomposed into a collection of
h functions for individual subtasks in the continuous-
time average reward MAXQ method. The projected
h function of hierarchical policy π on subtask Mi, de-
noted hπ(i, s), is the average adjusted sum of rewards
earned of following policy πi (and the policies of all
descendents of Mi) starting in state s until Mi termi-
nates:

hπ(i, s) = lim
N→∞

Eπ
s {

N−1
∑

t=0

(r(st, at)− giτt)} (8)

where τ ’s and gi are the length of decision epochs and
gain of subtask Mi respectively. Now let us suppose
that the first action chosen by π is invoked and exe-
cutes for a number of steps and terminates in state s′

according to P π
i (s′|s, a). We can write Equation 8 in

the form of a Bellman equation:

1We use the notation u

α

←− v in Algorithm 1 and Algo-
rithm 2 as an abbreviation for the stochastic approximation
update rule u←(1− α)u + αv.

Algorithm 1 The continuous-time discounted reward
MAXQ algorithm.

1: function MAXQ(MaxNode i, State s)
2: let Seq={} be the sequence of (states visited, tran-

sition times) while executing i

3: if i is a primitive MaxNode then

4: execute action i in state s, observe state s′ in
τ time units, receive lump portion of reward
k(s, i) and continuous portion of reward with
rate r(s′, s, i)

Vt+1(i, s)
α
←− [k(s, i) +

1− e−βτ

β
r(s′, s, i)]

5: push (state s, transition time τ) into the begin-
ning of Seq

6: else

7: while i has not terminated do

8: choose action a according to the current ex-
ploration policy πi(s)

9: let ChildSeq=MAXQ(a,s), where ChildSeq
is the sequence of (states visited, transition
times) while executing action a

10: observe result state s′

11: let
a∗ = argmaxa′∈Ai(s′)[C̃t(i, s

′, a′) + Vt(a
′, s′)]

12: T = 0;
13: for (s,τ) in ChildSeq from the beginning do
14: T = T + τ

C̃t+1(i, s, a)
α
←− e−βT [R̃i(s

′) + C̃t(i, s
′, a∗)

+ Vt(a
∗, s′)]

Ct+1(i, s, a)
α
←− e−βT [Ct(i, s

′, a∗) + Vt(a
∗, s′)]

15: end for

16: append ChildSeq onto the front of Seq
17: s = s′

18: end while

19: end if

20: return Seq
21: end MAXQ

hπ(i, s) = r(s, πi(s))− giyi(s, πi(s))

+
∑

s′∈Si

Pi(s
′|s, πi(s))h

π(i, s′)

(9)

Since r(s, πi(s)) is the expected total reward between
two decision epochs of subtask i, given that the system
occupies state s at the first decision epoch and decision
maker chooses action πi(s) and the expected length of
time until next decision epoch is yi(s, πi(s)), we have

r(s, πi(s)) = V π
yi(s,πi(s))

(πi(s), s) = hπ(πi(s), s)

+ gπi(s)yi(s, πi(s))

By replacing r(s, πi(s)) from the above expression,
Equation 9 can be written as

hπ(i, s) = hπ(πi(s), s)− (gi − gπi(s))yi(s, πi(s))

+
∑

s′∈Si

Pi(s
′|s, πi(s))h

π(i, s′)

(10)

We can re-state Equation 10 for action-value function
decomposition as follows:

Rπ(i, s, a) = hπ(a, s)− (gi − ga)yi(s, a)

+
∑

s′∈Si

Pi(s
′|s, a)Rπ(i, s′, πi(s

′))

In the above equation, the term

−(gi − ga)yi(s, a) +
∑

s′∈Si
Pi(s

′|s, a)Rπ(i, s′, πi(s
′))

denotes the average adjusted reward of complet-
ing task Mi after executing action a in state s. This
term is called the completion function and is denoted
by Cπ(i, s, a). With this definition, we can express
the R function recursively as

Rπ(i, s, a) = hπ(a, s) + Cπ(i, s, a)

and we can re-express the definition for h as

hπ(i, s) =

Rπ(i, s, πi(s)) if i is composite

k(s, i) +

∫

∞

0

∑

s′∈Si

Pi(s
′|s, i)[

∫ u

0

c(s′, s, i)dt]Fi(du|s, i)

− gi
∑

s′∈Si

Pi(s
′|s, i)

∫

∞

0

tFi(dt|s, i)

if i is primitive

(11)

The above formulas can be used to obtain update equa-
tions for h function, outside completion function C and
inside completion function C̃ in the continuous-time
average reward model. Pseudo-code for the result-
ing algorithm is shown in Algorithm 2. As mentioned
above, all subtasks in the hierarchy, even primitive ac-
tions, are modeled by a unichain SMDP.

6. Experimental Results

We now apply the two proposed continuous-time algo-
rithms to the AGV scheduling task described in section
3 and compare their performance and speed with each
other, as well as several well-known AGV scheduling
heuristics.

The experimental results were generated with the fol-
lowing model parameters. There are four AGVs in
the environment, the inter-arrival time for parts at the
warehouse is uniformly distributed with a mean of 4
sec and variance of 1 sec. The percentage of Part1,
Part2, Part3 and Part4 in the part arrival process are
20, 28, 22 and 30 respectively. The time required for
assembling the various parts is normally distributed
with means 15, 24, 24 and 30 sec for Part1, Part2,
Part3 and Part4 respectively, and the variance 2 sec.
The time required for primitive actions are also nor-
mally distributed. Each experiment was conducted
five times and the results averaged. Since this is a
multiagent task, we extend both proposed algorithms
to the multiagent case using the approach introduced
in (Makar et al., 2001).

In this approach (which we call cooperative MAXQ),
each agent uses the same MAXQ hierarchy to decom-
pose the task into subtasks. Learning is decentralized
and coordination skills among agents are learned by
using joint actions at the highest level of the hierar-
chy. The Q (or R) nodes at the highest level of the
hierarchy are configured to represent the joint action
space among multiple agents. In this approach, each
agent only knows what other agents are doing at the
level of high level subtasks, and is unaware of their
lower level actions. This idea allows agents to learn

Algorithm 2 The continuous-time average reward
MAXQ algorithm.

function MAXQ(MaxNode i, State s)
2: let Seq={} be the sequence of (states visited, tran-

sition times, reward) while executing i

if i is a primitive MaxNode then

4: execute action i in state s, observe state s′ in
τ time units, receive lump portion of reward
k(s, i) and continuous portion of reward with
rate r(s′, s, i)

ht+1(i, s)
α
←− [k(s, i) + r(s′, s, i)τ − gi

tτ]

if i is a non-random action then

6: update average reward or gain of subtask i

gi
t+1 =

rt+1(i)

tt+1(i)
=

rt(i) + k(s, i) + r(s′, s, i)τ

tt(i) + τ

end if

8: push (state s, transition time τ , reward ρ =
k(s, i) + r(s′, s, i)τ) into the beginning of Seq

else

10: while i has not terminated do

choose action a according to the current ex-
ploration policy πi(s)

12: let ChildSeq=MAXQ(a,s), where ChildSeq
is the sequence of (states visited, transition
times) while executing action a

observe result state s′

14: let
a∗ = argmaxa′∈Ai(s′)[C̃t(i, s

′, a′) + Vt(a
′, s′)]

T = 0; R = 0;
16: for (s,τ ,ρ) in ChildSeq from the beginning do

T = T + τ ; R = R + ρ;

C̃t+1(i, s, a)
α
←− [R̃i(s

′)− (gi
t − ga

t)T

+ C̃t(i, s
′, a∗) + Vt(a

∗, s′)]

Ct+1(i, s, a)
α
←− [Ct(i, s

′, a∗) + Vt(a
∗, s′)

− (gi
t − ga

t)T]

18: if a is a non-random action then

update average reward or gain of subtask i

gi
t+1 =

rt+1(i)

tt+1(i)
=

rt(i) + R

tt(i) + T

20: end if

end for

22: append ChildSeq onto the front of Seq
s = s′

24: end while

end if

26: return Seq
end MAXQ

coordination faster by sharing information at the level
of subtasks, rather than attempting to learn coordi-
nation taking into account primitive joint state-action
values.

Figure 3 compares the proposed MAXQ algorithms
with several well-known AGV scheduling rules, show-
ing clearly the improved performance of the reinforce-
ment learning methods. As seen in this figure, the
agents learn a little faster initially in the discounted
MAXQ framework, but the final system throughput
achieved using the average reward algorithm is higher
than the discounted reward case. This result is consis-
tent with the assumption that the undiscounted opti-
mality framework is more appropriate for cyclical tasks
same as AGV scheduling than the discounted frame-
work.

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Highest Queue First Heuristic
Nearest Station First Heuristic

First Come First Serve Heurisitic
Continuous-Time Average Reward MAXQ

Continuous-Time Discounted Reward MAXQ

Figure 3. This plot shows both continuous-time average
reward and discounted reward multiagent MAXQ algo-
rithms outperform three well-known widely used (indus-
trial) heuristics for AGV scheduling.

7. Conclusions and Future Work

This paper describes two new continuous-time hier-
archical RL algorithms based on the MAXQ frame-
work. The effectiveness of both algorithms was demon-
strated by applying them to a large scale multiagent
AGV scheduling problem. The first algorithm extends
the original discrete-time MAXQ algorithm to the
continuous-time discounted SMDP model, whereas the
second algorithm extends MAXQ to the continuous-
time average reward SMDP model. As such, since
the second algorithm is the first hierarchical average-
reward algorithm proposed to our knowledge, it de-
serves further discussion. In particular, the MAXQ ap-
proach assumes that subtasks always terminate. How-
ever, for complete generality, we need to also consider

the case where the subtasks are also cyclical and non-
terminating, just as the overall task was in the AGV
problem. One way to handle such non-terminating
subtasks is to use interruptions, as implemented in
the options framework (Sutton et al., 1999). Alter-
natively, one could imagine a mixed-mode framework
where subtasks are optimized using an undiscounted
total-reward criterion, and the parent task is formu-
lated using an average reward criterion.

Many practical and theoretical issues remain unex-
plored in this research. We have not demonstrated
a proof of convergence of the two algorithms. Analyz-
ing the proof of average reward extension of MAXQ is
particularly interesting. It is obvious that many other
manufacturing and robotics problems can benefit from
a MAXQ-like approach, particularly in the multiagent
case where task-level coordination can greatly acceler-
ate learning (Makar et al., 2001).

Acknowledgements

This work is supported by the Defense Advanced
Research Projects Agency, DARPA contract No.
DAANO2-98-C-4025.

References

Bradtke, S. J., & Duff, M. O. (1995). Reinforcement
Learning Methods for Continuous-Time Markov De-
cision Problems. In G. Tesauro, D. Touretzky and
T. Leen (Eds.), Advances in neural information pro-

cessing systems, vol. 7, 393–400. Cambridge, MA.:
The MIT Press.

Dietterich, T. G. (2000). Hierarchical Reinforcement
Learning with the MAXQ Value Function Decom-
position. Journal of Artificial Intelligence Research,
13, 227–303.

Mahadevan, S. (1996). Average Reward Reinforcement
Learning: Foundations, Algorithms, and Empirical
Results. Machine Learning, 22, 159–196.

Mahadevan, S., Marchalleck, N., Das, T., & Gosavi,
A. (1997). Self-Improving Factory Simulation us-
ing Continuous-Time Average Reward Reinforce-
ment Learning. Proceedings of the Fourteenth In-

ternational Conference on Machine Learning (pp.
202–210).

Makar, R., Mahadevan, S., & Ghavamzadeh, M.
(2001). Hierarchical Multiagent Reinforcement
Learning. Proceedings of the Fifth International

Conference on Autonomous Agents.

Parr, R. E. (1998). Hierarchical Control and Learning

for Markov Decision Processes. Doctoral disserta-
tion, Department of Computer Science, University
of California, Berkeley.

Puterman, M. L. (1994). Markov Decision Processes.
New York, USA: Wiley Interscience.

Schwartz, A. (1993). A Reinforcement Learning
Method for Maximizing Undiscounted Rewards.
Proceedings of the Tenth International Conference

on Machine Learning (pp. 298–305).

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDPs and semi-MDPs: A Framework for Temporal
Abstraction in Reinforcement Learning. Journal of

Artificial Intelligence, 181–211.

Tadepalli, P., & Ok, D. (1996). Auto-Exploratory Av-
erage Reward Reinforcement Learning. Proceedings

of the Thirteenth AAAI (pp. 881–887).

Wang, G., & Mahadevan, S. (1999). Hierarchical Op-
timization of Policy-Coupled Semi-Markov Decision
Processes. Proceedings of the Sixteenth International

Conference on Machine Learning (pp. 466–473).

