
Hierarchically Optimal Average Reward Reinforcement Learning

Mohammad Ghavamzadeh mgh@cs.umass.edu

Sridhar Mahadevan mahadeva@cs.umass.edu

Department of Computer Science, University of Massachusetts Amherst, Amherst, MA 01003-4610, USA

Abstract

Two notions of optimality have been explored
in previous work on hierarchical reinforce-
ment learning (HRL): hierarchical optimality,
or the optimal policy in the space defined by
a task hierarchy, and a weaker local model
called recursive optimality. In this paper, we
introduce two new average-reward HRL algo-
rithms for finding hierarchically optimal poli-
cies. We compare them to our previously re-
ported algorithms for computing recursively
optimal policies, using a grid-world taxi prob-
lem and a more real-world AGV scheduling
problem. The new algorithms are based on a
three-part value function decomposition pro-
posed recently by Andre and Russell, which
generalizes Dietterich’s MAXQ value func-
tion decomposition. A key difference between
the algorithms proposed in this paper and
our previous work is that there is only a sin-
gle global gain (average reward), instead of
a gain for each subtask. Our results show
the new average-reward algorithms have bet-
ter performance than both the previous re-
cursively optimal counterparts, as well as the
corresponding discounted hierarchical opti-
mal algorithms.

1. Introduction

Average reward reinforcement learning is an undis-
counted infinite-horizon framework for finding gain-
optimal policies of an unknown Markov decision pro-
cess (MDP) (Mahadevan, 1996). It is generally ap-
propriate in modeling cyclical control and optimiza-
tion tasks, such as queuing, scheduling, and flexi-
ble manufacturing (Gershwin, 1994). Average re-
ward RL has been extensively studied, using both the
discrete-time Markov decision process (MDP) model
(Schwartz, 1993; Mahadevan, 1996; Tadepalli & Ok,
1996; Abounadi et al., 2001) as well as the continuous-
time semi-MDP (SMDP) model (Mahadevan et al.,

1997; Wang & Mahadevan, 1999). Much of this work
focuses on “flat” value function representations, and
does not exploit the inherent hierarchical structure of
sequential decision tasks. Work on hierarchical rein-
forcement learning has investigated how task structure
can be explicitly used to decompose value functions,
and accelerate the search for optimal policies. Two no-
tions of optimality have been investigated: hierarchical
optimality achieved in the options (Sutton et al., 1999)
and HAM (Parr, 1998) models, and a weaker recur-
sive optimality obtained in the MAXQ value function
decomposition (Dietterich, 2000). Hierarchical opti-
mality finds the policy optimal within the space of
policies defined by the hierarchy. Recursive optimality
only guarantees that the policy at each node is opti-
mal given the policies of its children. Therefore, each
subtask converges to a local optimal policy without
reference to the context in which it is executed.

In our previous work (Ghavamzadeh & Mahade-
van, 2001), we extended the HRL paradigm to both
average-reward and continuous-time SMDP models,
and introduced several new algorithms for finding re-
cursively optimal policies. In that work, we extended
the MAXQ decomposition, using a separate gain for
each subtask in the task hierarchy. Recently, Andre
and Russell (Andre & Russell, 2002) proposed a three
part decomposition of the value function that extends
the MAXQ decomposition to (discounted) hierarchi-
cally optimal policies. In this paper, we generalize
their decomposition to the average reward model and
propose two new average-reward algorithms that find
hierarchically optimal policies. Unlike our earlier al-
gorithms, both the proposed algorithms in this paper
use only a global gain for the entire hierarchy. We test
the proposed algorithms on a grid-world taxi prob-
lem, and a real-world AGV scheduling task. We find
that the new hierarchical optimal average-reward al-
gorithms perform better than not only the previous
average-reward recursively optimal methods, but also
the corresponding discounted methods.

The rest of this paper is organized as follows. Sec-

tion 2 briefly introduces the discrete-time average
reward SMDP model. For simplicity, we describe
only discrete-time SMDP models in this section.
Continuous-time SMDP models under both discounted
and average reward paradigms have been explained
in (Puterman, 1994; Bradtke & Duff, 1995) and also
in our previous work (Ghavamzadeh & Mahadevan,
2001). In section 3, we illustrate recursive and hi-
erarchical optimality. Section 4 describes the hierar-
chically optimal MAXQ (HO-MAXQ) value function
decomposition. In section 5, we describe the pro-
posed discrete-time and continuous-time average re-
ward HRL algorithms using the HO-MAXQ decompo-
sition. Section 6 presents experimental results of us-
ing proposed algorithms in a grid-world taxi problem
as well as an AGV scheduling task. Finally, section 7
summarizes the paper and discusses some direction for
future work.

2. Semi-Markov Decision Processes

Hierarchical RL studies how lower-level policies over
primitive actions can themselves be composed into
higher level policies. Policies over primitive actions
are “semi-Markov” when composed at the next level
up, because the “flat” policy defined by composing two
lower-level policies need not be Markov with respect to
the lower level state (e.g., it is not possible to predict
when a robot that cleans a room by repeating a lower-
level policy of vacuuming each state in the room twice
will finish, purely as a function of the current state).
Thus, semi-Markov decision processes (SMDPs) have
become the preferred language for modeling tempo-
rally extended actions. Unlike Markov decision pro-
cesses (MDPs), the time between transitions may be
several time units and can depend on the transition
that is made. An SMDP is defined as a five tuple
(S,A,P ,R,F), where S is a finite set of states, A is
the set of actions, P is the state and action transition
probability function, R is the reward function, and F

is a function giving probability of transition times for
each state-action pair. The transitions are at decision
epochs only. The SMDP represents snapshots of the
system at decision points, whereas the so-called natu-
ral process describes the evolution of the system over
all times. F (t|s, a) is the probability that the next de-
cision epoch occurs within t time units after the agent
chooses action a in state s at a decision epoch.

2.1 Average Reward Models

The theory of infinite-horizon semi-Markov decision
processes with the average reward criterion is more
complex than that for discounted models (Howard,

1971; Puterman, 1994; Mahadevan, 1996). To simplify
exposition we assume that for every stationary policy,
the embedded Markov chain has a unichain transition
probability matrix. Under this assumption, the ex-
pected average reward of every stationary policy does
not vary with the initial state.

In the discrete-time average reward SMDP model,
vπ

N (s) denotes the expected total reward generated by
the policy π up to time step N , given that the system
occupies state s at time 0 and is defined as

v
π
N (s) = E

π
s {

N−1
∑

u=0

r(su, au)}

where r(su, au) is the reward received for executing
action au in state su.

The average expected reward or gain gπ(s) for a policy
π at state s can be expressed as the ratio

g
π(s) = lim

N→∞

Eπ
s {

∑N−1
u=0 r(su, au)}

N

For unichain MDPs, the gain of any policy is state
independent and we can write gπ(s) = gπ. For each
transition, the expected number of transition steps is
defined as:

y(s, a) = Ea
s {N} =

∑

∞

N=0

∑

s′∈S
P (s′, N |s, a)

In discrete-time unichain average reward SMDPs, the
expected average adjusted sum of rewards hπ for sta-
tionary policy π is defined as

h
π(s) = E

π
s {

∞
∑

u=0

[r(su, au)− g
π]} (1)

The Bellman equation is defined based on the h func-
tion in Equation (1) as

h
π(s) = r(s, π(s))− g

π
y(s, π(s)) +

∑

s′∈S

P (s′|s, π(s))hπ(s′)

The average adjusted action value function Rπ(s, a)
is similarly defined as

R
π(s, a) = r(s, a)− g

π
y(s, a) +

∑

s′∈S

P (s′|s, a)Rπ(s′, π(s′))

3. Recursive versus Hierarchical

Optimality

Recursive and hierarchical optimality are two impor-
tant forms of optimality in hierarchical reinforcement

learning. Recursive optimality only guarantees that
the policy of each subtask is optimal given the policies
of its children. It is an important form of optimality
because it permits each subtask to learn a locally opti-
mal policy while ignoring the behavior of its ancestors
in the hierarchy. This increases the opportunities for
subtask sharing and state abstraction. The original
MAXQ HRL algorithm (Dietterich, 2000) converges
to a recursively optimal policy. On the other hand,
hierarchical optimality is a stronger form of optimal-
ity since it is a global optimum consistent with the
given hierarchy. In this form of optimality, the policy
for each individual subtask is not necessarily optimal,
but the policy for the entire hierarchy is optimal. The
HAMQ HRL algorithm (Parr, 1998) and the SMDP
learning algorithm for a fixed set of options (Sutton
et al., 1999) both converge to a hierarchically optimal
policy.

The following example from (Dietterich, 2000) demon-
strates the difference between recursively and hierar-
chically optimal policies. Consider the simple maze
problem in figure 1. Suppose a robot starts somewhere
in the left room and it must reach the goal G in the
right room. In addition to three primitive actions,
North, South and East, the robot has a high level task
Exit Room in the left room and a high level task Go to
Goal in the right room. Exit Room terminates when
the robot exits the left room and Go to Goal termi-
nates when the robot reaches the goal G. The arrows
in figure 1(a) show the locally optimal policy within
each room. The arrows in the left room seek to exit
the room by the shortest path. The arrows in the right
room follow the shortest path to the goal. However,
the resulting policy is not hierarchically optimal. Fig-
ure 1(b) shows the hierarchically optimal policy that
would always exit the left room by the upper door.
This policy would not be locally optimal because the
states in the shaded region would not follow the short-
est path to the doorway.

4. Hierarchically Optimal MAXQ Value

Function Decomposition

A value function decomposition splits the value of a
state or a state-action pair into multiple additive com-
ponents. In Dietterich’s MAXQ decomposition (Diet-
terich, 2000), the expected return for executing sub-
task a and then following policy π until the end of
the current task i, Qπ(i, s, a), is split into two parts
and is written as Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)
where the value function V π(a, s) is the expected re-
ward for executing action a in state s. The completion
function Cπ(i, s, a) is the expected reward for finish-

G

(a) (b)

G

Figure 1. The policy shown in the left diagram is recur-
sively optimal but not hierarchically optimal. The policy
in the right diagram is hierarchically optimal but not re-
cursively optimal. The shaded cells indicate states where
the two definition of optimality disagree.

ing subtask i after a is executed. Since the expected
reward after subtask i execution is not a component of
the action value function, this two-part decomposition
allows only for recursive optimality.

Andre and Russell (Andre & Russell, 2002) recently
proposed a way of achieving hierarchical optimality in
the MAXQ framework, by adding a third component
for the expected reward outside the current subtask
i to the above decomposition and express the action
value function as

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) + CEπ(i, s, a)

where CEπ(i, s, a) is called the external completion
function and is the expected reward external to the
current subtask i. Each component of this three-part
value function decomposition is defined as follows:

V π(i, s) =















∑

s1
P (s1|s, i)r(s1|s, i) if i is primitive

V
π(child(i), s) + C

π(child(i), s, πchild(i)(s))

if i is composite

C
π(i, s, a) =

∑

s2,N1

Pi(s2, N1|s, a)γN1 [V π(πi(s2), s2)

+ C
π(i, s2, πi(s2))]

CE
π(i, s, a) =

∑

s3,N2

PEX(i)(s3, N2|s, a)

γ
N2Q

π(parent(i), s3, πparent(i)(s3))

where s2 and s3 are terminal states for subtasks a

and i, N1 and N2 are number of time steps of exe-
cution subtasks a and i respectively, Pi(s2, N1|s, a) is
the probability of transition to the terminal state of
subtask a and PEX(i)(s3, N2|s, a) is the probability of
transition to the terminal state of subtask i.

5. Hierarchically Optimal Average

Reward RL Algorithms

In our previous work, we extended the original MAXQ
decomposition to continuous-time SMDPs and also to
average reward domains. In the average reward algo-
rithms described in our previous work (Ghavamzadeh
& Mahadevan, 2001), we defined a separate gain for
each subtask in the hierarchy to guarantee the local
optimality for every subtask in the hierarchy and the
recursive optimality for the entire hierarchy.

However, the HO-MAXQ decomposition described in
the last section converges to a stronger form of opti-
mality called hierarchical optimality, which is global
optimality consistent with the given hierarchy. In this
section, we extend hierarchical optimality to the av-
erage reward model and propose an algorithm for the
discrete-time average reward model and an algorithm
for the continuous-time average reward model. In or-
der to guarantee hierarchical optimality, we define only
one global gain for the entire hierarchy in both average
reward HRL algorithms proposed here.

To simplify exposition of our previous average reward
algorithms, we assumed that for every possible station-
ary policy of each subtask in the hierarchy, the embed-
ded Markov chain has a unichain transition probability
matrix. Under this assumption every subtask in the
hierarchy is a unichain SMDP. This means the gain of
every subtask in the hierarchy does not vary with ini-
tial state. In the average reward algorithms described
in this paper, we focus on the global optimality of the
hierarchical policy instead of local optimality of each
individual subtask in the hierarchy and we use a global
gain for the hierarchy instead of separate gain for each
individual subtask in the hierarchy. Therefore, we can
relax this assumption here to assuming only that for
every possible stationary policy consistent with the
overall hierarchy, the embedded Markov chain has a
unichain transition probability matrix and as a result
the whole task can be modeled as a unichain SMDP.
This means the expected average reward of every sta-
tionary hierarchical policy for the overall problem does
not vary with initial state.

We now describe new average reward HRL algorithms
based on the HO-MAXQ framework. At the center
of the MAXQ method for HRL is the MAXQ value
function decomposition. We show how the overall ad-
justed value function for a hierarchical policy h is de-
composed into a collection of adjusted value functions
for individual subtasks in the discrete-time average re-
ward MAXQ method. The projected h function of
hierarchical policy π on subtask Mi, denoted hπ(i, s),
is the average adjusted sum of rewards earned of fol-

lowing policy πi (and the policies of all descendants of
Mi) starting in state s until Mi terminates plus the
expected average adjusted reward outside the current
subtask Mi:

hπ(i, s) = lim
N→∞

Eπ
s {

N−1
∑

u=0

(r(su, au)− gπ)} (2)

where gπ is the global gain of the hierarchy. Now let
us suppose that the first action chosen by π is invoked
and executes for a number of steps and terminates in
state s′ according to P π

i (s′|s, a) and after that subtask
Mi itself executes for number of steps N1 and termi-
nates in state s′′ according to transition probability
P term

i (s′′, N1|s
′, πi(s)). We can write Equation 2 in

the form of a Bellman equation:

h
π
(i, s) = r(s, πi(s)) − g

π
yi(s, πi(s)) +

∑

s′∈Si

Pi(s
′
|s, πi(s))h

π
(i, s

′
)

+
∑

s′′∈Si,N1

PEX(i)(s
′′

, N1|s
′
, πi(s))h

π
(parent(i), s

′′
)

(3)

Since r(s, πi(s)) is the expected total reward between
two decision epochs of subtask i, given that the system
occupies state s at the first decision epoch and decision
maker chooses action πi(s), we have

r(s, πi(s)) = V
π

yi(s,πi(s))(πi(s), s) = h
π
(πi(s), s) + g

π
yi(s, πi(s))

By replacing r(s, πi(s)) from the above expression,
Equation 3 can be written as

h
π
(i, s) = h

π
(πi(s), s) +

∑

s′∈Si

Pi(s
′
|s, πi(s))h

π
(i, s

′
)

+
∑

s′′∈Si,N1

PEX(i)(s
′′

, N1|s
′
, πi(s))h

π
(parent(i), s

′′
)

(4)

We can re-state Equation 4 for action-value function
decomposition as follows:

Rπ(i, s, a) = hπ(a, s) +
∑

s′∈Si
Pi(s

′|s, a)Rπ(i, s′, πi(s
′))+

∑

s′′∈Si,N1
PEX(i)(s

′′, N1|s
′, πi(s))R

π(parent(i), s′′, πparent(i)(s
′′))

In the above equation, the second term is called the
completion function and is denoted by Cπ(i, s, a). The
third term is called the external completion function
and is denoted by CEπ(i, s, a). With this definition,
we can express the R function recursively as

R
π(i, s, a) = h

π(a, s) + C
π(i, s, a) + CE

π(i, s, a)

The above formulas can be used to obtain update
equations for h function, completion function C and
external completion function CE in discrete-time av-
erage reward framework. Pseudo-code for the result-
ing algorithm is shown in Algorithm 1. As men-
tioned above the overall task is modeled by an unichain
SMDP. Therefore, after running for appropriate time,
this algorithm should generate a gain-optimal policy
that maximizes average reward for the overall task.
It does not necessarily produce bias-optimal (or T-
optimal) policies that also maximize the finite reward
to absorbing goal states (Mahadevan, 1996).

Algorithm 1 A discrete-time hierarchically optimal
average reward RL algorithm. A continuous-time ver-
sion requires minor changes in steps 5 and 7.

1: Function AR-HO-MAXQ(Task i, State s)
2: let Seq= {} be the sequence of states visited while

executing i

3: if i is a primitive MaxNode then

4: execute action i in state s, observe state s′ and
reward r(s′, s, i)

5: ht+1(i, s)
α
←− [r(s′, s, i)− gt]

6: if i is a non-random action then

7: update the global average reward

gt+1 = rt+1

nt+1
= rt+r(s′,s,i)

nt+1

8: end if

9: push state s into the beginning of Seq
10: else

11: while i has not terminated do

12: choose action a according to the current ex-
ploration policy πi(s)

13: let ChildSeq=AR-HO-MAXQ(a,s), where
ChildSeq is the sequence of states visited
while executing action a

14: observe result state s′

15: let a∗ = argmaxa′∈Ai(s′)[Ct(i, s
′, a′)+

ht(a
′, s′)]

16: for each s in ChildSeq from the beginning
do

17: Ct+1(i, s, a)
α
←− [Ct(i, s

′, a∗) + ht(a
∗, s′)]

18: CEt+1(a, s, a′′)
α
←−

argmaxa′∈Ai(s′)Qt(i, s
′, a′)

19: end for

20: append ChildSeq onto the front of Seq
21: s = s′

22: end while

23: end if

24: return Seq
25: end AR-HO-MAXQ

In update formula for CE in line 18, action a′′ is the
subtask of action a that is taken in state s.

This algorithm can be easily extended to continuous-
time by changing the update formulas for h and g in
lines 5 and 7 as

ht+1(i, s)
α
←− [k(s, i) + r(s′, s, i)τ − gtτ]

gt+1 =
rt+1

tt+1
= rt+k(s,i)+r(s′,s,i)τ

tt+τ

where τ is the time elapsing between states s and s′,
k(s, i) is the fixed reward of taking action i in state s

and r(s′, s, i) is the reward rate for the time the natural
process remains in state s′ between decision epochs.

6. Experimental Results

In this section, we first apply the discrete-time average
reward HO-MAXQ algorithm proposed in this paper
to a modified version of the well-known taxi problem
(Dietterich, 2000), and then we will turn to a more
complex AGV domain and apply both discrete-time
and continuous-time average reward HO-MAXQ algo-
rithms to the AGV scheduling task.

6.1 Modified Taxi Problem

Unlike the original taxi problem (Dietterich, 2000), the
version used in this paper is a continuing task. A 5-
by-5 grid world inhabited by a taxi agent is shown in
figure 2. There are four stations, marked as B(lue),
G(reen), R(ed) and Y(ellow). The taxi starts in a ran-
domly chosen location and passengers randomly ap-
pear at these four stations. The passenger at each
station wishes to be transported to one of the three
other stations (also chosen randomly). The taxi must
go to one of the passenger’s locations, pick up the
passenger, go to its destination location and drop off
the passenger there. Then, passengers once again ran-
domly appear in four stations and the task continues.
Each navigation action with probability 0.7 causes the
taxi to move one cell in the corresponding direction,
and with probability 0.3 moves the agent in one of the
other three directions, each with probability 0.1. The
system performance is measured in terms of the num-
ber of passengers deposited at their destinations per
a fixed number of time steps. The state variables in
this task are taxi location, taxi status, status of each
station (whether there is a passenger waiting at that
station or not), and destination of passenger at each
station, which equals 512,000 states.

Figure 3 compares the proposed discrete-time aver-
age reward HO-MAXQ algorithm with the discrete-
time discounted reward HO-MAXQ algorithm (Andre
& Russell, 2002) showing the better performance of
our proposed average reward algorithm.

Y: Yellow Station

R: Red Station

G: Green Station

B: Blue Station

T: Taxi

0 1 2 3 4

0

1

2

3

4 G

B

R

Y

T

Figure 2. The Taxi Domain

0

1000

2000

3000

4000

5000

6000

7000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

N
um

be
r

of
 tr

an
sp

or
te

d
pa

ss
en

ge
rs

 in
 1

00
00

0
tim

e
st

ep
s

Time step since start of simulation

Discrete-time Hierarchically Optimal Average Reward MAXQ
Discrete-time Hierarchically Optimal Discounted Reward MAXQ

Figure 3. This plot shows that the average reward HO-
MAXQ algorithm proposed in this paper works better than
the discounted reward HO-MAXQ (with discount factor
0.9) on the modified taxi problem.

6.2 AGV Scheduling Problem

We now apply both discrete-time and continuous-time
average reward algorithms proposed in this paper to
an AGV scheduling task. Automated Guided Vehi-
cles (AGVs) are used in flexible manufacturing systems
(FMS) for material handling. Any FMS using AGVs
faces the problem of optimal scheduling the paths of
AGVs in the system. Also, when a vehicle becomes
available, and multiple move requests are queued, a
decision needs to be made as to which request should
be serviced by that vehicle. Hence, AGV scheduling
requires dynamic dispatching rules, which are depen-
dent on the state of the system like the number of parts
in each buffer, the state of the AGV, the location of
the AGV, and the processing going on at the worksta-
tions. The system performance is usually measured in
terms of the throughput, which is the number of fin-
ished assemblies deposited at the unloading deck per
a fixed number of time steps.

Figure 4 shows the layout of a factory environment
with three machines. Parts of type i have to be carried
to drop off station at machine i (Di) and the assem-
bled parts brought back into the warehouse. The state

variables in this task are number of parts/assemblies in
each buffer, part availability in the warehouse, AGV’s
status (what each AGV is carrying), and AGV’s loca-
tion, which results in 1,347,192 states.

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:

D:

P:

Drop off Buffer

Pick up Buffer

Warehouse

Figure 4. An AGV optimization task with an AGV agent
(not shown) which carries raw materials and finished as-
semblies between the machines and the warehouse.

In this paper, we describe two sets of experiments
on the above AGV scheduling task and compare the
performance and speed of the algorithms proposed in
this paper with other related algorithms. We model
the AGV scheduling task using both discrete-time and
continuous-time models, and compare three HRL al-
gorithms: average reward HO-MAXQ, discounted re-
ward HO-MAXQ and average reward recursively opti-
mal MAXQ as well as non-hierarchical average reward
algorithm. In both sets of experiments, we use the task
graph for the AGV scheduling task shown in figure 5
and discount factors 0.9 and 0.95 for discounted re-
ward algorithm. In both cases, using a discount factor
of 0.95 yielded better performance.

Root

DA2DA1DM2DM1

DM1 DM2

Load PutNavLoad

Nav Load Put

Forward Left Right

leftforward right

NavPuti

NavPuti: Navigate to Dropoff Station i

NavLoad: Navigate to Loading Deck

DAi: Deliver Assembly to Station i

Max Node

Q Node

:

:
DMi: Deliver Material to Station i

(b)

Figure 5. A hierarchical decomposition of the value func-
tion for an AGV scheduling task.

The discrete-time experimental results were gener-
ated with the following model parameters. The inter-
arrival time for parts at the warehouse is uniformly

distributed with a mean of 12 time steps and variance
of 2 time steps. The percentage of Part1, Part2 and
Part3 in the part arrival process are 40, 35 and 25 re-
spectively. The time required for assembling the var-
ious parts are Poisson random variables with means
6, 10 and 12 time steps for Part1, Part2 and Part3
respectively.

The continuous-time experimental results were gener-
ated with the following model parameters. The time
required for execution of each primitive action is a nor-
mal random variable with mean 10 seconds and vari-
ance 2 seconds. The inter-arrival time for parts at
the warehouse is uniformly distributed with a mean
of 100 seconds and variance of 20 seconds. The per-
centage of Part1, Part2 and Part3 in the part arrival
process are 40, 35 and 25 respectively. The time re-
quired for assembling the various parts are normal ran-
dom variables with means 100, 120 and 180 seconds
for Part1, Part2 and Part3 respectively, and variance
20 seconds. In both cases, each experiment was con-
ducted five times and the results averaged.

Figure 6 compares the proposed discrete-time average
reward HO-MAXQ algorithm with the discrete-time
discounted reward HO-MAXQ algorithm (Andre &
Russell, 2002) and the discrete-time average reward re-
cursively optimal algorithm described in our previous
work (Ghavamzadeh & Mahadevan, 2001). The graph
clearly shows the improved performance of the pro-
posed discrete-time average reward algorithm. This
figure also shows that the average reward HO-MAXQ
algorithm converges faster to the same throughput as
the non-hierarchical average reward algorithm. The
non-hierarchical average reward algorithm used in this
experiment is relative value iteration (RVI) Q-learning
(Abounadi et al., 2001). The difference in conver-
gence speed becomes more significant as we increase
the number of states.

Figure 7 compares the continuous-time average reward
HO-MAXQ algorithm proposed in this paper with the
continuous-time discounted reward HO-MAXQ algo-
rithm and the continuous-time average reward recur-
sively optimal algorithm from our previous work. The
graph shows that the average reward HO-MAXQ con-
verges to the same performance as the discounted re-
ward HO-MAXQ algorithm. Both clearly have better
performance than the average reward recursively opti-
mal algorithm. This figure also shows that the average
reward HO-MAXQ algorithm converges faster to the
same throughput as the non-hierarchical average re-
ward algorithm. The non-hierarchical average reward
algorithm used in this experiment is a continuous-time
version of the relative value iteration (RVI) Q-learning

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time step since start of simulation

Discrete-time Recursively Optimal Average Reward MAXQ
Discrete-time Hierarchically Optimal Average Reward MAXQ

Discrete-time Hierarchically Optimal Discounted Reward MAXQ
Discrete-time Non-Hierarchical Average Reward using RVI Q-Learning

Figure 6. This plot shows that in the discrete-time case,
the average reward HO-MAXQ algorithm proposed in this
paper outperforms both the discounted reward HO-MAXQ
HRL algorithm and our earlier average reward recursively
optimal algorithm on the AGV scheduling task. It also
demonstrates the faster convergence of the average reward
HO-MAXQ algorithm comparing to the non-hierarchical
average reward algorithm (RVI Q-learning).

(Abounadi et al., 2001). The difference in conver-
gence speed becomes more significant as we increase
the number of states.

These results are consistent with the hypothesis that
the undiscounted optimality paradigm is superior to
discounted framework for learning a gain-optimal pol-
icy, since undiscounted methods do not need careful
tuning of the discount factor to find gain-optimal poli-
cies.

7. Conclusions and Future Work

This paper describes two new hierarchically optimal
average reward HRL algorithms based on the hierar-
chically optimal MAXQ (HO-MAXQ) decomposition
introduced in (Andre & Russell, 2002). The effective-
ness of both algorithms was demonstrated by apply-
ing them to a modified version of the well-known taxi
problem (Dietterich, 2000) as well as a real-world AGV
scheduling problem. The proposed algorithms have
been designed to converge to a hierarchically optimal
policy instead of a recursively optimal policy as in our
previous work. Both proposed algorithms in this paper
use a single gain for the entire hierarchy.

Hierarchical average reward reinforcement learning de-
serves further investigation. Almost all HRL ap-
proaches, such as HAMs (Parr, 1998), options (Sut-
ton et al., 1999) and MAXQ (Dietterich, 2000) assume
that subtasks always terminate. However, another ap-

0

50

100

150

200

250

300

350

400

450

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Continuous-time Recursively Optimal Average Reward MAXQ
Continuous-time Hierarchically Optimal Average Reward MAXQ

Continuous-time Hierarchically Optimal Discounted Reward MAXQ
Continuous-time Non-Hierarchical Average Reward using RVI Q-Learning

Figure 7. This plot shows that in the continuous-time case,
the average reward HO-MAXQ algorithm proposed in this
paper converges to the same performance as the discounted
reward HO-MAXQ algorithm, and both outperform the re-
cursively optimal average reward algorithm on the AGV
scheduling task. It also demonstrates the faster conver-
gence of the average reward HO-MAXQ algorithm compar-
ing to the flat average reward algorithm (RVI Q-learning).

proach in building a HRL framework based on the av-
erage reward SMDP model is to assume subtasks are
continuing and cyclical, just as the overall task in the
AGV problem is, and policies switch among these non-
terminating subtasks using interruptions. We could
also imagine a framework based on a mixture of ter-
minating and continuing subtasks.

Many practical and theoretical issues remain to be
studied in this research. We have not demonstrated
a proof of convergence of the two proposed aver-
age reward algorithms. Average-reward RL conver-
gence proofs are fairly intricate (Abounadi et al.,
2001), but it would be instructive to theoretically ana-
lyze these average reward hierarchically optimal algo-
rithms, which use one global gain for the entire hierar-
chy, and compare them with their recursively optimal
counterparts, which use separate gains for every sub-
task in the hierarchy. It is obvious that these average
reward HRL algorithms can be applied to many other
cyclical tasks in manufacturing (Gershwin, 1994).

References

Abounadi, J., Bertsekas, D. P., & Borkar, V. S. (2001).
Learning algorithms for markov decision processes
with average cost. SIAM Journal on Control and
Optimization, 40, 681–698.

Andre, D., & Russell, S. (2002). State abstraction
for programmable reinforcement learning agents. To

appear in the Proceedings of the Eighteenth AAAI.

Bradtke, S. J., & Duff, M. O. (1995). Reinforcement
learning methods for continuous-time markov deci-
sion problems. In S. Minton (Ed.), Advances in neu-
ral information processing systems, vol. 7, 393–400.
Cambridge, MA.: MIT Press.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposi-
tion. Artificial Intelligence Research, 13, 227–303.

Gershwin, S. (1994). Manufacturing systems engineer-
ing. Prentice Hall.

Ghavamzadeh, M., & Mahadevan, S. (2001).
Continuous-time hierarchical reinforcement learn-
ing. Proceedings of the Eighteenth International
Conference on Machine Learning (pp. 186–193).

Howard, R. A. (1971). Dynamic probabilistic systems:
Semi-markov and decision processes. John Wiley
and Sons.

Mahadevan, S. (1996). Average reward reinforcement
learning: foundations, algorithms, and empirical re-
sults. Machine Learning, 22, 159–196.

Mahadevan, S., Marchalleck, N., Das, T., & Gosavi,
A. (1997). Self-improving factory simulation us-
ing continuous-time average reward reinforcement
learning. Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning.

Parr, R. E. (1998). Hierarchical control and learning
for markov decision processes. Doctoral disserta-
tion, Department of Computer Science, University
of California, Berkeley.

Puterman, M. L. (1994). Markov decision processes.
New York, USA: Wiley Interscience.

Schwartz, A. (1993). A reinforcement learning method
for maximizing undiscounted rewards. Proceedings
of the Tenth International Conference on Machine
Learning.

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial
Intelligence, 181–211.

Tadepalli, P., & Ok, D. (1996). Auto-exploratory av-
erage reward reinforcement learning. Proceedings of
the Thirteenth AAAI (pp. 881–887).

Wang, G., & Mahadevan, S. (1999). Hierarchical op-
timization of policy-coupled semi-markov decision
processes. Proceedings of the Sixteenth International
Conference on Machine Learning.

