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Abstract

LSTD is a popular algorithm for value func-
tion approximation. Whenever the number
of features is larger than the number of sam-
ples, it must be paired with some form of reg-
ularization. In particular, `1-regularization
methods tend to perform feature selection
by promoting sparsity, and thus, are well-
suited for high–dimensional problems. How-
ever, since LSTD is not a simple regression
algorithm, but it solves a fixed–point prob-
lem, its integration with `1-regularization is
not straightforward and might come with
some drawbacks (e.g., the P-matrix assump-
tion for LASSO-TD). In this paper, we in-
troduce a novel algorithm obtained by inte-
grating LSTD with the Dantzig Selector. We
investigate the performance of the proposed
algorithm and its relationship with the exist-
ing regularized approaches, and show how it
addresses some of their drawbacks.

1. Introduction

An important problem in reinforcement learning
(RL) (Sutton & Barto, 1998) is to estimate the quality
of a given policy through the computation of its value
function (e.g., in the policy evaluation step of a policy
iteration). Oftentimes, the state space is to large, and
thus, approximation schemes must be used to repre-
sent the value function. Furthermore, whenever the
model (reward function and probability transitions) is
unknown, the best approximation should be computed
using a set of sampled transitions. Many algorithms
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have been designed to solve this approximation prob-
lem. Among them, LSTD (Least-Squares Temporal
Differences) (Bradtke & Barto, 1996) is the most pop-
ular. Using a linear parametric representation, LSTD
computes the fixed-point of the Bellman operator com-
posed with the orthogonal projection.

In many practical scenarios, the number of features of
the linear approximation is much larger than the num-
ber of available samples. For example, one may want
to consider a very rich function space, such that the
actual value function lies in it. Unfortunately, in this
case, learning is prone to overfitting. A standard ap-
proach to face this problem is to introduce some form
of regularization. While LSTD has been often paired
with `2-regularization, only recently `1-regularization
(see Sec. 2.2 for a thorough review of the main `1-
regularized algorithms) has been considered to deal
with high–dimensional problems. This approach is
particularly appealing since `1-regularization implic-
itly performs feature selection and targets sparse solu-
tions. In particular, LASSO-TD (Kolter & Ng, 2009)
can be seen as en extension of LASSO (Tibshirani,
1996) to temporal difference learning, to which it re-
duces when setting the discount factor to zero. How-
ever, LASSO-TD is not derived from a proper con-
vex optimization problem, and thus, it requires some
assumptions that might not hold in an off-policy set-
ting. Although other algorithms have been proposed
to overcome these drawbacks (e.g., `1-PBR by Geist
& Scherrer (2011)), other disadvantages may appear.

This paper introduces a new algorithm, Dantzig-LSTD
(D-LSTD for short, see Sec. 3), which extends the
Dantzig Selector (DS) (Candes & Tao, 2007) to tempo-
ral difference learning. Instead of solving a fixed-point
problem as in LASSO-TD, it can simply be cast as a
linear program, thus allowing to use any off-the-shelf
solver. Furthermore, since the underlying optimiza-
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tion problem is convex, it can handle off-policy learn-
ing in a principled way. Yet, when LASSO-TD is well
defined, both algorithms provide similar solutions (see
Prop. 2), as DS does w.r.t. LASSO. We show that for
some oracle choice of the regularization factor, the D-
LSTD solution converges quickly to the LSTD solution
(at a rate depending only logarithmically on the num-
ber of features), as shown in Theorem 1. This new
algorithm also opens some issues, namely how well is
the true value function estimated and how to efficiently
choose the regularization factor. These points are dis-
cussed in Sec. 4. Finally, we report some illustrative
empirical results in Sec. 5.

2. LSTD and Related Work

A Markov reward process1 (MRP) is a tuple
{S, P,R, γ}, where S is a finite state space, P =
(p(s′|s))1≤s,s′≤|S| is the transition matrix, R =
(r(s))1≤s≤|S| with ‖R‖∞ ≤ rmax is the reward vector,
and γ is a discount factor. The value function V is de-
fined as the expected cumulative reward from a given
state s, V (s) = E[

∑∞
t=0 γ

trt|s0 = s]. It is the unique
fixed-point of the Bellman operator T : V → R+γPV .

In many practical applications, the model of the MRP
(i.e., the reward R and transitions P ) is unknown and
only a set of n transitions {(si, ri, s′i)1≤i≤n} is avail-
able. In general, we assume that states s1, . . . , sn are
sampled from a sampling distribution µ (not necessar-
ily the stationary distribution of the MRP) and the
next states s′1, . . . , s

′
n are generated according to the

transition probabilities p(·|si). Whenever the state
space is too large, the value function cannot be com-
puted exactly at each state and a function approxi-
mation scheme is needed. We consider value functions
V̂θ defined as a linear combination of p basis functions
φi(s), that is V̂θ(s) =

∑p
i=1 θiφi(s) = θ>φ(s). We

denote by Φ ∈ R|S|×p the feature matrix whose rows
contain the feature vectors φ(s)> for any s ∈ S. This
defines a hypothesis space H = {Φθ|θ ∈ Rp}, which
contains all the value functions that can be represented
by the features φ. The objective is to find the function
V̂θ∗ that approximates V the best.

2.1. LSTD

Let Πµ denote the orthogonal projection onto H w.r.t.
the sampling distribution µ. If Dµ is the diagonal
matrix with elements µ(s) and Mµ = Φ>DµΦ is the
Gram matrix, then the projection operator is Πµ =
ΦM−1

µ Φ>Dµ. Motivated by the fact that the value

1This can easily be extended to Markovian decision pro-
cesses that reduce to MRPs for fixed policies.

function is the fixed point of the Bellman operator
T , the LSTD algorithm computes the fixed–point of
the joint ΠµT operator: V̂θ∗ = ΠµT V̂θ∗ . Let us define
A ∈ Rp×p and b ∈ Rp as A = Φ>Dµ(I−γP )Φ and b =
Φ>DµR. In the following we assume that A and Mµ

are invertible. It can be shown through simple algebra
that V̂θ∗ is the fixed-point of ΠµT if and only if θ∗ is
the (unique) solution to Aθ∗ = b. This relationship is
particularly interesting since it shows that computing
the fixed point ΠµT is equivalent to solving a linear
system of equations defined by A and b.

Since P and R are not usually known, we have to
rely on sample–based estimates. In particular, we de-
fine Φ̃ (resp. Φ̃′) ∈ Rn×p the empirical feature ma-
trices whose rows contain the feature vectors φ(si)

>

(resp φ(s′i)
>), and R̃ ∈ Rn the reward vector of row-

components ri. The random matrices Ã and b̃ are
then defined as Ã = 1

n Φ̃>∆Φ̃ and b̃ = 1
n Φ̃>R̃ with

∆Φ̃ = Φ̃ − γΦ̃′. LSTD computes the solution θ0 of
the sample–based linear system Ãθ0 = b̃. We no-
tice that both Ã and b̃ are unbiased estimators of the
model–based matrices A and b (i.e., E[Ã] = A and
E[b̃] = b), thus suggesting that as the number of sam-
ples increases, the solution of LSTD θ0 converges to
the model–based solution θ∗. Since LSTD computes
the fixed point of the joint operator ΠµT , then the
sample–based LSTD solution can also be formulated
in an equivalent form as the solution of two nested
optimization problems:{

ωθ = argminω ‖R̃+ γΦ̃′θ − Φ̃ω‖22
θ0 = argminθ ‖Φ̃θ − Φ̃ωθ‖22

, (1)

where the first equation projects the image of the es-
timated value function V̂θ under the Bellman operator
T onto the hypothesis space H, and the second one
solves the related fixed-point problem.

2.2. Related Work

When the number of samples is close or smaller than
the number of features, the matrix Ã is ill–conditioned
and some form of regularization should be employed
to solve the LSTD problem. In this section, we review
the state–of–the–art regularized LSTD algorithms.

The formulation of LSTD in Eq. 1 is particularly
helpful in understanding the different regularization
schemes that could be applied to LSTD. In particular,
each of the minimizations relative to the operators Πµ

and T can be regularized, thus obtaining:{
ωθ = argminω ‖R̃+ γΦ̃′θ − Φ̃ω‖22 + λ1pen1(ω)

θλ1,λ2
= argminθ ‖Φ̃θ − Φ̃ωθ‖22 + λ2pen2(θ)

.
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pen1 \ pen2 ∅ ‖.‖2 ‖.‖1
∅ LSTD X `1-PBR

‖.‖2 X `2,2-LSTD `2,1-LSTD
‖.‖1 LASSO-TD ? ?

Table 1. Summary of the existing regularized LSTD algo-
rithms (except `1-LSTD). Checkmarks are special cases of
other algorithms and question marks represent combina-
tions that have not been yet studied in the literature.

With this formulation, all the regularization schemes
for LSTD (except `1-LSTD, which we discuss at the
end of this section) can be summarized as in Tab. 1.

Ridge regression (i.e., `2-regularization) is the most
common form of regularization and it simply adds a
term λI to Ã. This corresponds to λ1pen1(ω) = λ‖ω‖22
and λ2 = 0 and it has been generalized by Farah-
mand et al. (2008) with `2,2-LSTD, where both penalty
terms use an `2-norm regularization. Although these
approaches can help in dealing with ill–defined Ã ma-
trices, they are not specifically designed for the case of
n � p, where the optimal solution is sparse. In fact,
it is well-known that, unlike `1–regularization, `2 does
not promote sparsity, and thus, it might fail when the
number of samples is much smaller than the number
of features.

The `1-regularization has been introduced more re-
cently with LASSO-TD, where the projection is re-
placed by an `1-penalized projection. In this case,
the nested optimization problem in Eq. 1 reduces
to solving the fixed-point problem (if well defined):
θl,λ = argminθ ‖R̃+γΦ̃′θl,λ−Φ̃θ‖22 +λ‖θ‖1. This algo-
rithm has been first introduced by Kolter & Ng (2009)
under the name LARS-TD, where it is solved using an
ad–hoc variation of the LARS algorithm (Efron et al.,
2004). For LARS-TD to find a solution, Ã must be a
P-matrix.2 Unfortunately, this may not be true when
the sampling and stationary distributions are different
(off-policy learning). Although this does not always
affect the performance in practice (see some of the ex-
periments reported in Kolter & Ng 2009), it would be
desirable to remove or relax this condition. The LARS-
TD idea is further developed by Johns et al. (2010),
where LASSO-TD is reframed as a linear complemen-
tary problem. This allows using any off-the-shelf LCP
solver (notably some of them allow warm-starts, which
may be of interest in a policy iteration context), but
the P-matrix condition is still required, since it is in-
herent to the optimization problem and not to how it
is actually solved. Finally, the theoretical properties
of LASSO-TD were analyzed by Ghavamzadeh et al.

2A P-matrix is a matrix that all its principal minors are
positive (generalizing positive definite matrices).

(2011), who provided prediction error bounds in the
on-policy fixed design setting (i.e., the performance is
evaluated on the points in the training set). In par-
ticular, they show that, similarly to LASSO in regres-
sion, the prediction error depends on the sparsity of
the projection of the value function (i.e., the `0-norm
of the θ parameter of ΠµV ), and it scales only loga-
rithmically with the number of features. This implies
that even if the dimensionality of H is much larger
than the number of samples, the LASSO-TD accu-
rately approximates the true value function in the on–
policy setting. In order to alleviate the P-matrix prob-
lem, the `1-PBR (Projected Bellman residual) (Geist
& Scherrer, 2011) and the `2,1-LSTD (Hoffman et al.,
2011) algorithms have been proposed. The idea is
to place the `1-regularization term in the fixed-point
equation instead of the projection equation. This cor-
responds to adding an `1-penalty term to the projected
Bellman residual minimization (writing Π̃ the empiri-
cal projection and T̃ the sampled Bellman operator):
θpbr,λ = argminθ ‖Π̃(Φ̃θ−T̃ (Φ̃θ))‖2+λ‖θ‖1. Since this
is a convex optimization problem, there is no problem
for Ã not being a P-matrix, and off-the-shelf LASSO
solvers can be used. However, this comes at the cost
of a high computational cost if n� p (notably in the
computation the empirical projection, which could be
as bad as O(p3)), and there is no theoretical analysis.

Finally, a novel approach has been introduced by Pires
(2011). The idea is to consider the linear system for-
mulation of LSTD (i.e., Aθ = b) and to add an `1-
penalty term to it: θ1,λ = argminθ ‖Ãθ− b̃‖22 + λ‖θ‖1.
We refer to this algorithm as `1-LSTD. Being defined
as a proper convex optimization problem, it does not
have theoretical problems in the off-policy setting and
any standard solver can be used. Notice that for γ = 0,
`1-LSTD does not reduce to a known algorithm.

3. Dantzig-LSTD

The Dantzig-LSTD (D-LSTD for short) algorithm that
we propose in this paper returns an estimate θd,λ
(i.e., a value function Vθd,λ) with a low `1-norm un-

der the constraint that the Bellman residual (R̃ +
γΦ̃′θ − Φ̃θ), namely the correlated Bellman residual
(Φ̃>(R̃ + γΦ̃′θ − Φ̃θ) = b̃− Ãθ), is smaller than a pa-
rameter λ. Formally, D-LSTD solves:

θd,λ = argmin
θ∈Rp

‖θ‖1 subject to ‖Ãθ − b̃‖∞ ≤ λ. (2)

This optimization problem is convex and can be easily
recast as a linear program (LP):

min
u,θ∈Rp

1>u subject to

{
−u ≤ θ ≤ u
−λ1 ≤ Ãθ − b̃ ≤ λ1

.
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This algorithm is closely related to DS (Candes & Tao,
2007), to which it reduces when γ = 0. Being a con-
vex optimization problem, it does not require Ã to be a
P-matrix and it can be solved using any LP solver (no-
tably the efficient primal–dual interior point method
of Candes & Tao 2007, which makes use of the Wood-
bury matrix identity when n� p).

3.1. A Finite Sample Analysis

In this section we study how well the D-LSTD solution
θd,λ compares to θ∗, i.e., the model–based LSTD so-
lution satisfying Aθ∗ = b. The analysis follows similar
steps as in Pires (2011) for `1-LSTD. In the following,
we use the assumption that the samples are generated
i.i.d. from an arbitrary sampling distribution µ. We
leave as future work the extension to Markov design
(i.e., when the samples are generated from a single
trajectory of the policy under evaluation).

Theorem 1. Let B∞,φ = maxs∈S ‖φ(s)‖∞, the D-
LSTD solution θd,λ (Eq. 2) satisfies

inf
λ
‖Aθd,λ − b‖∞ ≤ (3)

2 (‖θ∗‖1(1 + γ)B∞,φ + rmax)B∞,φ

√
4

n
ln

8p

δ
,

with probability at least 1− δ.

Proof. (sketch) We first need a concentration result
for the `∞-norm. Let x1, . . . , xn be i.i.d. random vec-
tors with mean x̄ ∈ Rd and bounded by ‖xi‖∞ ≤ B.
Using Hoeffding inequality and a union bound, it
is easy to show that with probability greater that

1 − δ, one has ‖ 1
n

∑n
i=1 xi − x̄‖∞ ≤ B

√
2
n ln 2d

δ . Let

∆A,max = ‖A − Ã‖max (entrywise max norm) and

∆b,max = ‖b − b̃‖∞. We have the following con-
sistency inequality: ‖Aθ‖∞ ≤ ‖A‖max‖θ‖1. Com-
bined with the triangle inequality, this gives: |‖Aθ −
b‖∞ − ‖Ãθ − b̃‖∞| ≤ ∆A,max‖θ‖1 + ∆b,max. Let us
choose λ = ∆A,max‖θ∗‖1 + ∆b,max. The previous in-

equality implies that ‖Ãθ∗ − b̃‖∞ ≤ λ (recall that
Aθ∗ = b). Combined with the fact that θd,λ mini-
mizes Eq. 2, we have that ‖θd,λ‖1 ≤ ‖θ∗‖1. Combin-
ing the previous results, we obtain ‖Aθd,λ − b‖∞ ≤
2∆A,max‖θ∗‖1 + 2∆b,max. The concentration result
for ‖.‖∞ can be used to bound ∆A,max and ∆b,max,
which gives the stated result, using the fact that
‖φ(si)(φ(si) − γφ(s′i))

T ‖max ≤ B2
∞,φ(1 + γ) and that

‖φ(si)ri‖∞ ≤ B∞,φrmax.

Since the algorithm is specifically designed for the
high–dimensional setting (n� p), it is critical to study

the dependency of the performance on n and p. Up to
constant terms, the previous bound can be written as

inf
λ
‖Aθd,λ − b‖∞ ≤ O

(
‖θ∗‖1

√
1

n
ln
p

δ

)
.

First we notice that as the number of samples in-
creases, the error of θd,λ tends to zero, thus implying
that it matches the performance of the model–based
LSTD solution θ∗. Furthermore, the dependency on
the number of features p is just logarithmic, while the
`1-norm of θ∗ is assumed to be small whenever the
solution is sparse. This suggests that D-LSTD could
work well even in the case n� p whenever the problem
admits a sparse LSTD solution. Finally, we also no-
tice that there is no specific assumption regarding the
learning setting, except that A should be invertible.
This is particularly important because it means that,
unlike most of the other results available for LSTD
(e.g., see Ghavamzadeh et al. 2011), this result holds
also in the off-policy setting. The main drawback of
this analysis is that it holds for an oracle choice of
λ. We postpone a discussion about how to choose the
regularizer in practice to Sec. 4.

3.2. Comparison to Other Algorithms

Similar to `1-PBR and `2,1-LSTD, D-LSTD is based on
a well-defined standard convex optimization problem,
which does not require Ã to be a P-matrix (unlike
LASSO-TD) and that can be solved using any off-the-
shelf solvers. Nonetheless, D-LSTD has only one meta-
parameter (instead of two), and in general, it has a
smaller computational cost w.r.t. solving the nested
optimization problems of `1-PBR and `2,1-LSTD.

D-LSTD is also related to LASSO-TD:

Proposition 2. The LASSO-TD solution θl,λ (if it
exists) satisfies the D-LSTD constraints:

‖Ãθl,λ − b̃‖∞ ≤ λ.

Proof. The optimality conditions of LASSO-TD can
be obtained by ensuring that 0 belongs to the sub-
gradient of 1

2‖Φ̃θ − (R̃ + γΦ̃′θl,λ)‖22 + λ‖θ‖1 and then
substituting θ by θl,λ (Kolter & Ng, 2009). This
notably implies that for all 1 ≤ i ≤ p, we have
−λ ≤ (b̃− Ãθl,λ)i ≤ λ, which is the stated result.

Therefore, D-LSTD and LASSO-TD satisfy the same
constraints, but ‖θl,λ‖1 ≥ ‖θd,λ‖1, thus suggesting a
more sparse solution. This is not surprising, since D-
LSTD relates to LASSO-TD in a similar way as DS
does to LASSO (Bickel et al., 2009). However, thanks
to its definition as a convex optimization problem, D-
LSTD avoids the main drawbacks of LASSO-TD (no-
tably the P-matrix requirement).
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Similar to `1-LSTD, D-LSTD is built on the linear
system of equations formulation of LSTD. Both ap-
proaches relax the condition Ãθ = b̃ (using an `2-
norm of the error for `1-LSTD and an `∞-norm for
D-LSTD) while penalizing model complexity through
the `1-norm of the parameter vector. Both algorithms
have the same advantages compared to LASSO-TD
and to `1-PBR/`2,1-LSTD. Their main difference lies
in their convergence rate. A result similar to Theo-
rem 1 exists for `1-LSTD (Pires, 2011):

inf
λ
‖Aθ1,λ − b‖2 ≤ O

(
‖θ∗‖1

√
p2

n
ln

1

δ

)
.

Although controlling the `2-norm (in `1-LSTD) may be
harder than the `∞-norm (as in D-LSTD), `1-LSTD
has a very poor dependency on p, which makes the
bound not informative as n � p. On the other hand,
D-LSTD just has a logarithmic dependency on p.

4. Discussion

In this section, we discuss how the error ||Aθ − b||
relates to the value function prediction error and how
to choose the regularizer λ in practice.

4.1. From the Parameters to the Value

Similar to Yu & Bertsekas (2010), we can link V − V̂θ
to Aθ − b as in the next theorem.

Theorem 3. For any V̂θ = Φθ, we have the
component–wise equality:

V − V̂θ = (I − γΠµP )−1((V −ΠµV ) + ΦM−1
µ (Aθ̂ − b)).

Proof. Recall that V = TV (for the true value func-
tion) and that V̂θ = ΠµV̂θ (for an estimate V̂θ = Φθ
belonging to the hypothesis space). We have that:

V −ΠµV = V −ΠµTV − (V̂θ −ΠµT V̂θ) + (V̂θ −ΠµT V̂θ)

= (I − γΠµP )(V − V̂θ) + Πµ(V̂θ − T V̂θ),
V − V̂θ = (I − γΠµP )−1

(
(V −ΠµV ) + Πµ(T V̂θ − V̂θ)

)
.

Note that Πµ(T V̂θ − V̂θ) = ΦM−1
µ (b − Aθ) gives the

result.

In order to have the final prediction error, we apply the
`∞-norm to Theorem 3. Let Lφµ = maxs ‖M−1

µ φ(s)‖1,
using Theorem 1, we obtain

inf
λ
‖V − V̂θd,λ‖∞ ≤ ‖(I − γΠµP )−1‖∞×(
‖V −ΠµV ‖∞ +O

(
‖θ∗‖1Lφµ

√
1

n
ln
p

δ

))
.

In general, the previous expression cannot be sim-
plified any further. Nonetheless, under a high–
dimensional assumption ΠµP = P and ΠµR = R.
Therefore, the hypothesis space H is stable by the
Bellman operator T and V ∈ H. In this case, we
have ‖V − ΠµV ‖∞ = 0 and it can be shown that
‖(I − γΠµP )−1‖∞ = 1

1−γ . Thus, we obtain the bound

(valid also in the off-policy case):

inf
λ
‖V − V̂θd,λ‖∞ ≤ O

(
‖θ∗‖1Lφµ

1− γ

√
1

n
ln
p

δ

)
.

The main critical term in this bound is Lφµ, which
might hide a dependency on the number of features
p. In fact, although the specific value of Lφµ depends
on the feature space, it is possible to find cases when
it grows as

√
p (consider an orthonormal basis), thus

potentially neutralizing the low dependency on p in
Theorem 1. It is an open question whether this de-
pendency on p is intrinsic to the algorithm or is an ar-
tifact of the proof. In fact, if θd,λ solves the linear sys-
tem of equations accurately, then we expect that the
corresponding function V̂θd,λ performs almost as well

as the model–based solution V̂θ∗ . The experiments of
Section 5 seem to confirm this conjecture.

4.2. Cross Validation

The result of Theorem 1 holds for an oracle value of
λ. In practice, the choice of λ can only be directed
by the available data. This issue is of great prac-
tical importance, though not often discussed in the
RL literature (especially for `1-penalized LSTD vari-
ations). In supervised learning, algorithms minimize
a risk being defined as the (empirical) expectation of
some loss function. Cross-validation consists in using
an independent sample to estimate the true risk func-
tion, and the meta-parameter is selected as the one
minimizing the estimated true risk. However, for value
function estimation, there is no such risk, and cross-
validation cannot be used. A general model selection
method has been derived for value function estimation
by Farahmand & Szepesvári (2011). However, we may
devise an ad–hoc (and simple) solution for D-LSTD.
Since D-LSTD is defined as a proper convex optimiza-
tion problem (which reduces to a supervised learning
problem when γ tends to 0), one may be tempted to
use standard cross-validation. Unfortunately, this is
not directly possible. Indeed, ‖Ãθ − b̃‖∞ is the loss
(‖.‖∞) of an empirical average (Ã and b̃) rather than
the empirical expectation of a loss. However, we can
still consider some heuristics. Assume that we want
to estimate ‖Aθ − b‖∞ for some fixed parameter vec-
tor θ. Let Ã, b̃ be unbiased estimates of A, b, then
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‖Aθ−b‖∞ ≤ E[‖Ãθ−b̃‖∞] (Jensen’s inequality). Thus,
given an independent set of samples, we have access to
an unbiased estimate of an upper–bound of ‖Aθ−b‖∞.
Based on this evidence, we propose a K-fold cross-
validation-based heuristic for D-LSTD. Assume that
the training set is split in K folds Fk. Let θ

(−k)
d,λ de-

note the estimate trained without Fk, and ÃFk and
b̃Fk be the quantities computed with only the samples
in Fk. A heuristic is to choose the λ that minimizes

J1(λ) =
1

K

K∑
i=1

‖ÃFkθ
(−k)
d,λ − b̃Fk‖∞. (4)

However, since we are interested in the case n � p
and the estimate ÃFk is computed with n

K samples, it
may have a high variance. An alternative (which we
empirically found to be more efficient), at the cost of
adding some bias, is to choose λ by minimizing

J2(λ) =
1

K

K∑
i=1

‖Ãθ(−k)
d,λ − b̃‖∞. (5)

A similar heuristic can be devised for `1-LSTD. Al-
though the previous heuristic worked well in our ex-
periments, it does not have any theoretical guarantees.
A different model selection strategy has been devised
for `1-LSTD by Pires (2011). It consists in choosing

λ̂ = argmin[a,b] ‖Ãθ1,λ − b̃‖22 + λ′‖θ1,λ‖1 with [a, b] an
exponential grid and λ′ can be computed from data
(no oracle choice). This does not require splitting the
learning set while ensuring a bound for ‖Aθ1,λ̂ − b‖2.
We leave the adaptation of this model selection strat-
egy to D-LSTD for future work.

5. Illustration and Experiment

Sec. 5.1 presents an example that shows D-LSTD al-
leviates the potential problem of off-policy learning.
Sec. 5.2 reports a more complex corrupted chain il-
lustrating the case of n � p, in an on- and off-policy
setting, and studies (heuristic) cross-validation.

5.1. A Pathological MDP

We consider a simple two-state MDP (e.g., see Kolter
& Ng 2009). The transition matrix and reward vector

are P =

(
0 1
0 1

)
and R =

(
0 −1

)>
. The optimal

value function is therefore V = −1
1−γ

(
γ 1

)>
with γ

the discount factor. Let us consider the one-feature ap-

proximation Φ =
(
1 2

)>
. We compare the (asymp-

totic) regularization paths of LASSO-TD (Kolter &
Ng, 2009), `1-LSTD and D-LSTD, in the on-policy and
off-policy cases (where LASSO-TD fails).
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Figure 1. Two-state MDP, regularization paths.

On-policy Case. In the on-policy case, the sampling
distribution is µ> =

(
0 1

)
. The regularization paths

for each algorithm can be computed easily by solving
analytically the optimality conditions (there is only
one parameter) and they are reported in Fig. 1, top
panels. LASSO-TD and D-LSTD have the same regu-
larization path. This was expected, as there is only one
parameter, but this is not true in general (recall that
LASSO-TD and D-LSTD inherit the same differences
as LASSO and DS).

Off-policy Case. Let us now consider the uniform
distribution µ> =

(
1
2

1
2

)
. For γ > 5

6 , A is not a P-
matrix and LASSO-TD does not have a unique solu-
tion, nor a piecewise linear regularization path. Paths
are shown on Fig. 1, bottom panels. The `1-LSTD’s
path is still well-defined. LASSO-TD has more than
one solution. The interesting fact here is that D-
LSTD’s path is well-defined, there is always a unique
solution, and the path is piecewise linear. Note that
both in the on- and off-policy cases all the algorithms
provide the LSTD solution for λ = 0.

5.2. Corrupted Chain

We consider the same chain problem as in Kolter &
Ng (2009) and Hoffman et al. (2011). The state s
has s̄ + 1 components si. The first one is an in-
teger (s1 ∈ {1 . . . 20}) that evolves according to a
20-state, 2-action MDP (states are connected by a
chain, the action chooses the direction, and the prob-
ability of success is 0.9). All other state compo-
nents are random Gaussian noises si+1

t ∼ N (0, 1).
The reward is +1 if s1

t = 1 or 20. The feature
vector φ(s) ∈ Rs̄+6 consists of an intercept (con-
stant function), 5 radial basis functions correspond-
ing to the first state component, and s̄ identity
functions corresponding to the irrelevant components:

φ(s) =
(
1 RBF1(s1) . . .RBF5(s1) s2 . . . ss̄+1

)>
.We
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Figure 2. Corrupted chain problem – on-policy setting.

compare LASSO-TD (with its LARS-like implemen-
tation), `1-LSTD, and D-LSTD (for which we used
`1-magic (Romberg, 2005)).3 We standardize the data
by removing the intercept, centering the observations,
centering and standardizing the features Φ̃, and apply-
ing the same transformation (computed from Φ̃) to Φ̃′.
The intercept can be computed analytically, it is the
mean Bellman error (without regularization, this al-
lows recovering the LSTD solution). We also consider
`2,∅-LSTD, i.e., the standard `2-penalized LSTD.

On-policy Evaluation. We first study the on-policy
problem. The evaluated policy is the optimal one (go-
ing left if s1 ≤ 10, and right otherwise). We sample
400 transitions (20 trajectories of length 20 started
randomly on {1 . . . 20}) and vary the number s̄ of ir-
relevant features between 800 and 1400. Results are
presented in Fig. 2, averaged over 20 independent runs.
For LARS-TD, we computed the whole regularization
path (at least until too many features are added) and
trained the other algorithms for a set of regularization
parameters (logarithmically spaced between 10−3 and
10). Each time, we report the best prediction error
(on 500 test points, such that the first state compo-
nent is uniformly sampled from {1 . . . 20}), computed
w.r.t. the true value function (therefore, this is an ora-
cle choice). All `1-penalized approaches perform signif-
icantly better than the `2-penalization ones, showing
that their performance have only a very mild depen-
dency on the dimensionality p (as predicted by The-
orem 1). Among them, LASSO-TD seems to be con-
sistently better, followed closely by D-LSTD and `1-
LSTD. For LASSO-TD and `2,∅-LSTD, these results
are consistent with those published by Hoffman et al.
(2011). Notice that there was more choice of regular-
ization parameters for LASSO-TD, as the whole reg-
ularization path was computed. This may explain the

3We also considered `1-PBR/`2,1-LSTD. Results are not
reported for the sake of clarity, but they behave like `1-
LSTD, so worse than LASSO-TD/D-LSTD.

Algorithm Error (mean ± std)

`2,∅-LSTD (oracle) 2.82± 0.58
LASSO-TD (oracle) 0.26± 0.10
`1-LSTD (cv, J1/J2) 4.14± 0.84/0.34± 0.12
D-LSTD (cv, J1/J2) 0.65± 0.18/0.23± 0.11

Table 2. Cross-validation.
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Figure 3. Corrupted chain problem – off-policy setting.

better results of LASSO-TD compared to D-LSTD.

Heuristic Cross-validation. All results of Fig. 2
require an oracle to choose the right regularization pa-
rameter. This is not practical in a real setting. As
explained in Sec. 4, `1-LSTD and D-LSTD can benefit
from a heuristic cross-validation scheme. We tested
K-fold cross-validation (with K = 5) on this problem,
with the schemes J1 (Eq. 4) and J2 (Eq. 5) for n = 400
training samples and s̄ = 800 irrelevant features (re-
sults averaged over 20 independent runs). Results are
reported in Tab. 2. The error is computed as before,
but here it is not used to choose the regularization pa-
rameter. The results for J1 are quite bad, probably
due to the high variance of the related estimator (still,
for D-LSTD, the right regularization parameter is of-
ten chosen, apart from a few outliers). The J2 scheme
is much better, comparable to the oracle scheme (see
Fig. 2). Comparing the results of the J2 heuristic using
a Behrens-Fisher t-test, `1-LSTD and LASSO-TD are
different (5% risk), but not D-LSTD and LASSO-TD.

Off-policy Evaluation. Here we test the off-policy
evaluation problem. Let πopt be the optimal pol-
icy (going left if s1 ≤ 10 and right otherwise) and
πworst = 1 − πopt (going right if s1 ≤ 10 and left oth-
erwise). We define πα = (1 − α)πopt + απworst, with
α ∈ [0, 1

2 ]. Let also µα be the corresponding station-
ary distribution and recall V is the true value func-
tion. We consider the same problem as before, with
s̄ = 800. For values of α varying from 0 to 0.5, we
sample n = 400 chain states according to µα as well
as the associated transitions according to the optimal
policy. The regularization parameter is chosen to min-
imize the error between the true value function and the
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estimated one on the training set (thus, an oracle-like
selection procedure), for all algorithms. Results are
averaged over 50 independent runs. Fig. 3 shows the
error ‖V̂α − V ‖µα as a function of α. The term 0 cor-
responds to the zero prediction, that is ‖V ‖µα . In all
cases, D-LSTD seems to be slightly better than the
others, and things get worse as going away from the
stationary distribution (as α increases). In no case
LASSO-TD seems to suffer from off-policy learning,
suggesting that in this case the P -matrix condition
is satisfied. Also, the difference between `2- and `1-
schemes decreases as α increases. An `1-schemes may
help when there are much more features than samples,
but there is little to do when the mismatch between
distributions increases. Even if not reported, all ap-
proaches performed equally bad when α tends to one,
since there is no more valuable information in the data.

6. Conclusion

In this paper, we introduced the Dantzig-LSTD al-
gorithm with the objective of removing the drawbacks
of existing `1-schemes for temporal difference learning.
Since D-LSTD is defined as a standard linear program,
it does not require Ã to be a P-matrix and can be com-
puted using any LP solver. The D-LSTD estimate is
a good approximation of the asymptotic LSTD solu-
tion in the sense of Theorem 1. It is also close to the
LASSO-TD estimate (whenever well defined) in the
sense of Prop. 2. In fact, D-LSTD inherits the same
difference that the Dantzig selector has w.r.t. LASSO.
Also, our preliminary experiments show that D-LSTD
performs at least as well as LASSO-TD.

There are still a number of issues that need further in-
vestigation. As discussed in Sec. 4, when moving from
the linear system of equations to the prediction error,
an additional dependency on the number of features
seems to appear. To which extent this dependency is
an artifact of the proof or a characteristic of the algo-
rithm is not fully clear yet. As for the choice of the
regularization parameter, we plan to adapt the model
selection scheme of `1-LSTD (Pires, 2011) to D-LSTD
and test it. Finally, we plan to test D-LSTD in control
schemes (i.e., policy iteration).
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