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Abstract

Online learning to rank is a core problem in in-
formation retrieval and machine learning. Many
provably efficient algorithms have been recently
proposed for this problem in specific click mod-
els. The click model is a model of how the user
interacts with a list of documents. Though these
results are significant, their impact on practice is
limited, because all proposed algorithms are de-
signed for specific click models and lack conver-
gence guarantees in other models. In this work,
we propose BatchRank, the first online learning
to rank algorithm for a broad class of click mod-
els. The class encompasses two most fundamen-
tal click models, the cascade and position-based
models. We derive a gap-dependent upper bound
on the T -step regret of BatchRank and evaluate
it on a range of web search queries. We observe
that BatchRank outperforms ranked bandits and
is more robust than CascadeKL-UCB, an existing
algorithm for the cascade model.

1. Introduction
Learning to rank (LTR) is a core problem in information
retrieval (Liu, 2011) and machine learning; with numerous
applications in web search, recommender systems and ad
placement. The goal of LTR is to present a list of K docu-
ments out of L that maximizes the satisfaction of the user.
This problem has been traditionally solved by training su-
pervised learning models on manually annotated relevance
judgments. However, strong evidence suggests (Agichtein
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et al., 2006; Zoghi et al., 2016) that the feedback of users,
that is clicks, can lead to major improvements over super-
vised LTR methods. In addition, billions of users interact
daily with commercial LTR systems, and it is finally feasi-
ble to interactively and adaptive maximize the satisfaction
of these users from clicks.

These observations motivated numerous papers on online
LTR methods, which utilize user feedback to improve the
quality of ranked lists. These methods can be divided into
two groups: learning the best ranker in a family of rankers
(Yue & Joachims, 2009; Hofmann et al., 2013); and learn-
ing the best list under some model of user interaction with
the list (Radlinski et al., 2008a; Slivkins et al., 2013), such
as a click model (Chuklin et al., 2015). The click model is
a stochastic model of how the user examines and clicks on
a list of documents. In this work, we focus on online LTR
in click models and address a shortcoming of all past work
on this topic.

More precisely, many algorithms have been proposed and
analyzed for finding the optimal ranked list in the cascade
model (CM) (Kveton et al., 2015a; Combes et al., 2015;
Kveton et al., 2015b; Zong et al., 2016; Li et al., 2016), the
dependent-click model (DCM) (Katariya et al., 2016), and
the position-based model (PBM) (Lagree et al., 2016). The
problem is that if the user interacts with ranked lists using
a different click model, the theoretical guarantees cease to
hold. Then, as we show empirically, these algorithms may
converge to suboptimal solutions. This is a grave issue be-
cause it is well known that no single click model captures
the behavior of an entire population of users (Grotov et al.,
2015). Therefore, it is critical to develop efficient learning
algorithms for multiple click models, which is the aim of
this paper.

We make the following contributions:

• We propose stochastic click bandits, a common frame-
work for online LTR with the objective of maximizing
the number of clicks. Our framework allows learning in
a broad class of click models, which includes the PBM
(Richardson et al., 2007) and CM (Craswell et al., 2008).

• We propose the first algorithm, BatchRank, that is guar-
anteed to learn the optimal solution in a diverse class of
click models. This is of a great practical significance, as
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it is often difficult or impossible to guess the underlying
click model in advance.

• We prove a gap-dependent upper bound on the regret of
BatchRank that scales well with all quantities of inter-
est. The key step in our analysis is a KL scaling lemma
(Section 5.4), which should be of a broader interest.

• We evaluate BatchRank on both CM and PBM queries.
Our results show that BatchRank performs significantly
better than RankedExp3 (Radlinski et al., 2008a), an ad-
versarial online LTR algorithm; and is more robust than
CascadeKL-UCB (Kveton et al., 2015a), an optimal on-
line LTR algorithm for the CM.

We define [n] = {1, . . . , n}. For any sets A and B, we de-
note by AB the set of all vectors whose entries are indexed
by B and take values from A. We use boldface letters to
denote important random variables.

2. Background
This section reviews two fundamental click models (Chuk-
lin et al., 2015), models of how users click on an ordered
list of K documents. The universe of all documents is rep-
resented by ground set D = [L] and we refer to the docu-
ments in D as items. The user is presented a ranked list, an
ordered list of K documents out of L. We denote this list
by R = (d1, . . . , dK) ∈ ΠK(D), where ΠK(D) ⊂ DK is
the set of all K-tuples with distinct elements from D and
dk is the k-th item in R. We assume that the click model
is parameterized by L item-dependent attraction probabil-
ities α ∈ [0, 1]L, where α(d) is the probability that item d
is attractive. The items attract the user independently. For
simplicity and without loss of generality, we assume that
α(1) ≥ . . . ≥ α(L). The reviewed models differ in how
the user examines items, which leads to clicks.

2.1. Position-Based Model

The position-based model (PBM) (Richardson et al., 2007)
is a model where the probability of clicking on an item de-
pends on both its identity and position. Therefore, in addi-
tion to item-dependent attraction probabilities, the PBM is
parameterized by K position-dependent examination prob-
abilities χ ∈ [0, 1]K , where χ(k) is the examination prob-
ability of position k.

The user interacts with a list of itemsR = (d1, . . . , dK) as
follows. The user examines position k ∈ [K] with proba-
bility χ(k) and then clicks on item dk at that position with
probability α(dk). Thus, the expected number of clicks on
listR is

r(R) =

K∑
k=1

χ(k)α(dk) .

In practice, it is often observed that χ(1) ≥ . . . ≥ χ(K)

(Chuklin et al., 2015), and we adopt this assumption in this
work. Under this assumption, the above function is maxi-
mized by the list of K most attractive items

R∗ = (1, . . . ,K) , (1)

where the k-th most attractive item is placed at position k.
In this paper, we focus on the objective of maximizing the
number of clicks. We note that the satisfaction of the user
may not increase with the number of clicks, and that other
objectives have been proposed in the literature (Radlinski
et al., 2008b). The shortcoming of all of these objectives is
that none directly measure the satisfaction of the user.

2.2. Cascade Model

In the cascade model (CM) (Craswell et al., 2008), the user
scans a list of items R = (d1, . . . , dK) from the first item
d1 to the last dK . If item dk is attractive, the user clicks on
it and does not examine the remaining items. If item dk is
not attractive, the user examines item dk+1. The first item
d1 is examined with probability one.

From the definition of the model, the probability that item
dk is examined is equal to the probability that none of the
first k − 1 items are attractive. Since items attract the user
independently, this probability is

χ(R, k) =

k−1∏
i=1

(1− α(di)) . (2)

The expected number of clicks on list R is at most 1, and
is equal to the probability of observing any click,

r(R) =

K∑
k=1

χ(R, k)α(dk) = 1−
K∏
k=1

(1− α(dk)) .

This function is maximized by the list of K most attractive
items R∗ in (1), though any permutation of [K] would be
optimal in the CM. Note that the list R∗ is optimal in both
the PBM and CM.

3. Online Learning to Rank in Click Models
The PBM and CM (Section 2) are similar in many aspects.
First, both models are parameterized by L item-dependent
attraction probabilities. The items attract the user indepen-
dently. Second, the probability of clicking on the item is a
product of its attraction probability, which depends on the
identity of the item; and the examination probability of its
position, which is independent of the identity of the item.
Finally, the optimal solution in both models is the list of K
most attractive itemsR∗ in (1), where the k-th most attrac-
tive is placed at position k.

This suggests that it may be possible to design a learning
algorithm that learns the optimal solution in both models
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from clicks, without knowing the underlying click model.
We propose this algorithm in Section 4. Before we discuss
the algorithm, we present a bandit model that allows us to
learn in both the CM and PBM.

3.1. Stochastic Click Bandit

We refer to our learning problem as a stochastic click ban-
dit. An instance of this problem is a tuple (K,L, Pα, Pχ),
where K is the number of positions, L is the number of
items, Pα is a distribution over binary vectors {0, 1}L, and
Pχ is a distribution over binary matrices {0, 1}ΠK(D)×K .

The learning agent interacts with our problem as follows.
Let (At,Xt)

T
t=1 be T i.i.d. random variables drawn from

Pα ⊗ Pχ, where At ∈ {0, 1}L and At(d) is the attraction
indicator of item d at time t; and Xt ∈ {0, 1}ΠK(D)×K

andXt(R, k) is the examination indicator of position k in
list R ∈ ΠK(D) at time t. At time t, the agent chooses a
list Rt = (dt1, . . . ,d

t
K) ∈ ΠK(D), which depends on past

observations of the agent, and then observes clicks. These
clicks are a function of Rt, At, and Xt. Let ct ∈ {0, 1}K
be the vector of click indicators on all positions at time t.
Then

ct(k) = Xt(Rt, k)At(d
t
k)

for any k ∈ [K]; the item at position k is clicked only if
bothAt(d

t
k) = 1 andXt(Rt, k) = 1.

The goal of the learning agent is to maximize the number
of clicks. Therefore, the number of clicks at time t is the
reward of the agent at time t. We define it as

rt =

K∑
k=1

ct(k) = r(Rt,At,Xt) , (3)

where r : ΠK(D)× [0, 1]L × [0, 1]ΠK(D)×K → [0,K] is a
reward function, which we define as

r(R, A,X) =

K∑
k=1

X(R, k)A(dk)

for any ranked list R ∈ ΠK(D), A ∈ [0, 1]L, and X ∈
[0, 1]ΠK(D)×K .

We adopt the same independence assumptions as in Sec-
tion 2. In particular, we assume that items attract the user
independently.

Assumption 1. For any A ∈ {0, 1}L,

P (At = A) =
∏
d∈D Ber(A(d);α(d)) ,

where Ber(·; θ) denotes the probability mass function of a
Bernoulli distribution with mean θ ∈ [0, 1], which we de-
fine as Ber(y; θ) = θy(1− θ)1−y for any y ∈ {0, 1}.

Moreover, we assume that the attraction of any item is in-
dependent of its examination, in any listR.

Assumption 2. For any listR ∈ ΠK(D) and position k,

E [ct(k) |Rt = R] = χ(R, k)α(dk) ,

where χ ∈ [0, 1]ΠK(D)×K and χ(R, k) = E [Xt(R, k)] is
the examination probability of position k in listR.

We do not make any independence assumptions among the
entries ofXt, and on other interactions ofAt andXt.

From our independence assumptions and the definition of
the reward in (3), the expected reward of listR is

E [r(R,At,Xt)] =

K∑
k=1

χ(R, k)α(dk) = r(R, α, χ) .

We evaluate the performance of a learning agent by its ex-
pected cumulative regret

R(T ) = E

[
T∑
t=1

R(Rt,At,Xt)

]
,

where R(Rt,At,Xt) = r(R∗,At,Xt)− r(Rt,At,Xt)
is the instantaneous regret of the agent at time t and

R∗ = arg maxR∈ΠK(D) r(R, α, χ)

is the optimal list of items, the list that maximizes the ex-
pected reward. To simplify exposition, we assume that the
optimal solution, as a set, is unique.

3.2. Position Bandit

The learning variant of the PBM in Section 2.1 can be for-
mulated in our setting when

∀R,R′ ∈ ΠK(D) : Xt(R, k) = Xt(R′, k) (4)

at any position k ∈ [K]. Under this assumption, the proba-
bility of clicking on item dtk at time t is

E [ct(k) |Rt] = χ(k)α(dtk) ,

where χ(k) is defined in Section 2.1. The expected reward
of list Rt at time t is

E [rt |Rt] =

K∑
k=1

χ(k)α(dtk) .

3.3. Cascading Bandit

The learning variant of the CM in Section 2.2 can be for-
mulated in our setting when

Xt(R, k) =

k−1∏
i=1

(1−At(di)) (5)
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for any list R ∈ ΠK(D) and position k ∈ [K]. Under this
assumption, the probability of clicking on item dtk at time
t is

E [ct(k) |Rt] =

[
k−1∏
i=1

(1− α(dti))

]
α(dtk) .

The expected reward of list Rt at time t is

E [rt |Rt] =

K∑
k=1

[
k−1∏
i=1

(1− α(dti))

]
α(dtk) .

3.4. Additional Assumptions

The above assumptions are not sufficient to guarantee that
the optimal list R∗ in (1) is learnable. Therefore, we make
four additional assumptions, which are quite natural.
Assumption 3 (Order-independent examination). For any
listsR ∈ ΠK(D) andR′ ∈ ΠK(D), and position k ∈ [K]
such that dk = d′k and {d1, . . . , dk−1} =

{
d′1, . . . , d

′
k−1

}
,

Xt(R, k) = Xt(R′, k).

Assumption 3 says that Xt(R, k) does not depend on the
order of d1, . . . , dk−1; and does not depend on dk, . . . , dK
at all. Both the CM and PBM satisfy this assumption, and
this can be validated from (4) and (5).
Assumption 4 (Decreasing examination). For any listR ∈
ΠK(D) and positions 1 ≤ i ≤ j ≤ K, χ(R, i) ≥ χ(R, j).

The above assumption says that a lower position cannot be
examined more than a higher position, in any list R. Both
the CM and PBM satisfy this assumption.
Assumption 5 (Correct examination scaling). For any list
R ∈ ΠK(D) and positions 1 ≤ i ≤ j ≤ K, let α(di) ≤
α(dj) and R′ ∈ ΠK(D) be the same list as R except that
di and dj are exchanged. Then χ(R, j) ≥ χ(R′, j).

The above assumption says that the examination probabil-
ity of a position cannot increase if the item at that position
is swapped for a less-attractive higher-ranked item, in any
list R. Both the CM and PBM satisfy this assumption. In
the CM, the inequality follows directly from the definition
of examination in (2). In the PBM, χ(R, j) = χ(R′, j).
Assumption 6 (Optimal examination). For any list R ∈
ΠK(D) and position k ∈ [K], χ(R, k) ≥ χ(R∗, k).

This assumption says that any position k is least examined
if the first k − 1 items are optimal. Both the CM and PBM
satisfy this assumption. In the CM, the inequality follows
from the definition of examination in (2). In the PBM, we
have that χ(R, k) = χ(R∗, k).

4. Algorithm BatchRank

The design of BatchRank (Algorithm 1) builds on two key
ideas. First, we randomize the placement of items to avoid

Algorithm 1 BatchRank

1: // Initialization
2: for b = 1, . . . , 2K do
3: for ` = 0, . . . , T − 1 do
4: for all d ∈ D do
5: cb,`(d)← 0, nb,`(d)← 0

6: A ← {1} , bmax ← 1
7: I1 ← (1,K), B1,0 ← D, `1 ← 0
8: for t = 1, . . . , T do
9: for all b ∈ A do

10: DisplayItems(b, t)
11: for all b ∈ A do
12: UpdateBatch(b, t)

biases due to the click model. Second, we divide and con-
quer; recursively divide the batches of items into more and
less attractive items. The result is a sorted list of K items,
where the k-th most attractive item is at position k.

BatchRank explores items in batches, which are indexed
by integers b > 0. A batch b is associated with the initial
set of items Bb,0 ⊆ D and a range of positions Ib ∈ [K]2,
where Ib(1) is the highest position in batch b, Ib(2) is the
lowest position in batch b, and len(b) = Ib(2)− Ib(1) + 1
is number of positions in batch b. The batch is explored in
stages, which we index by integers ` > 0. The remaining
items in stage ` of batch b are Bb,` ⊆ Bb,0. The lengths
of the stages quadruple. In particular, any item d ∈ Bb,` in

stage ` is explored n` times, where n` =
⌈
16∆̃−2

` log T
⌉

and ∆̃` = 2−`. At the end of the stage, some items can be
eliminated or the batch can be split into new batches. The
current stage of batch b is `b.

The batches are explored in method DiplayItems (Algo-
rithm 2). The key idea in the method is to randomly order
Bb,` and then display the first least observed items at posi-
tions Ib. This approach has two properties. First, any item
in Bb,` is shown in any list from Bb,` with that item with
the same probability. This is critical to avoid biases due to
the click model. Second, the exploration is rather uniform;
no item in Bb,` is explored more than once than any other
item in Bb,`. We denote the number of clicks on item d by
cb,`(d) and the number of its observations by nb,`(d). At
the end of stage `, all items in Bb,` are observed n` times,
nb,`(d) = n`; and the probability of clicking on item d is
estimated as

ĉb,`(d) = cb,`(d)/n` . (6)

This quantity is the scaled attraction probability of item d,
such that the scaling factor is “similar” for all items inBb,`

(Section 5.2). This allows elimination based on the UCBs
and LCBs on ĉb,`(d).
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Algorithm 2 DisplayItems
1: Input: batch index b, time t

2: `← `b
3: nmin ← mind∈Bb,`

nb,`(d)
4: Bmin ← {d ∈ Bb,` : nb,`(d) = nmin}
5: Bmax ← Bb,` \Bmin

6: Let d1, . . . , d|Bb,`| be a random permutation of items
Bb,` such that Bmin =

{
d1, . . . , d|Bmin|

}
and Bmax ={

d|Bmin|+1, . . . , d|Bb,`|
}

7: // Display items and get feedback
8: for k = Ib(1), . . . , Ib(2) do
9: dtk ← dk−Ib(1)+1

10: if dtk ∈ Bmin then
11: cb,`(d

t
k)← cb,`(d

t
k) + ct(k)

12: nb,`(d
t
k)← nb,`(d

t
k) + 1

The batches are updated in method UpdateBatch (Algo-
rithm 3). This method has three parts. First, we compute
KL-UCB confidence intervals (Garivier & Cappe, 2011) on
ĉb,`(d) for all d ∈ Bb,` (line 5),

Ub,`(d)← arg max
q∈[ĉb,`(d), 1]

{n`DKL(ĉb,`(d) ‖ q) ≤ δT } ,

Lb,`(d)← arg min
q∈[0, ĉb,`(d)]

{n`DKL(ĉb,`(d) ‖ q) ≤ δT } ,

where DKL(p ‖ q) denotes the Kullback-Leibler divergence
between Bernoulli random variables with means p and q,
and δT = log T + 3 log log T . Then we test whether items
Bb,` can be safely divided into s more attractive items and
the rest (lines 6–13). Finally, if they can be safely divided,
we split the batch into two new batches (lines 19–25). The
first batch contains s items and is associated with positions
Ib(1), . . . , Ib(1) + s − 1. The second batch is associated
with the remaining items and positions. The stage indices
of the new batches are initialized to 0. If several splits are
possible, we choose the largest value of s. When the batch
is not split, we still eliminate items that cannot be at posi-
tion Ib(2) or higher with a high probability (lines 15–17).

The set of active batches is denoted by A, and we explore
and update these batches in parallel. The highest index of
the latest added batch is bmax. Note that bmax ≤ 2K, be-
cause each batch with at least two items is split at a unique
position into two batches. BatchRank is initialized with a
single batch over all positions and items (lines 6–7). Also
note that by the design of UpdateBatch, the following in-
variants hold. First, the positions of active batches A are a
partition of [K] at any time t. Second, each batch contains
at least as many items as is the number of positions in that
batch. Finally, if Ib(2) < K, |Bb,`| = len(b), the number
of items in batch b is equal to the number of positions.

Algorithm 3 UpdateBatch
1: Input: batch index b, time t

2: // End-of-stage elimination
3: `← `b
4: if mind∈Bb,`

nb,`(d) = n` then
5: Compute Ub,`(d) and Lb,`(d) for all d ∈ Bb,`

6: Let B+
k ⊆ Bb,` be the items with k largest LCBs

7: B−k ← Bb,` \B+
k

8: L+
k ← mind∈B+

k
Lb,`(d)

9: // Find a split at the position with the highest index
10: s← 0
11: for k = 1, . . . , len(b)− 1 do
12: if L+

k > maxd∈B−
k
Ub,`(d) then

13: s← k
14: if (s = 0) and (|Bb,`| > len(b)) then
15: // Next elimination stage
16: Bb,`+1 ←

{
d ∈ Bb,` : L+

len(b) ≤ Ub,`(d)
}

17: `b ← `b + 1
18: else if s > 0 then
19: // Split
20: A ← A∪ {bmax + 1, bmax + 2} \ {b}
21: Ibmax+1 ← (Ib(1), Ib(1) + s− 1)
22: Bbmax+1,0 ← B+

s , `bmax+1 ← 0
23: Ibmax+2 ← (Ib(1) + s, Ib(2))
24: Bbmax+2,0 ← B−s , `bmax+2 ← 0
25: bmax ← bmax + 2

5. Analysis
In this section, we state our regret bound for BatchRank.
Before we do so, we discuss our estimator of clicks in (6).
In particular, we show that (6) is the attraction probability
of item d scaled by the average examination probability in
stage ` of batch b. The examination scaling preserves the
order of attraction probabilities, and therefore BatchRank

can operate on (6) in place of α(d).

5.1. Confidence Radii

Fix batch b, positions Ib, stage `, and items Bb,`. Then for
any item d ∈ Bb,`, we can write the estimator in (6) as

ĉb,`(d) =
1

n`

∑
t∈T

Ib(2)∑
k=Ib(1)

ct(k)1
{
dtk = d

}
(7)

and its expected value is

c̄b,`(d) = E [ĉb,`(d)] . (8)

The key step in the design of BatchRank is that we main-
tain confidence radii around (7). This is possible because
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the individual observations in (7),

{Xt(Rt, k)At(d)}t∈{t∈T :dt
k=d} (9)

for any position k in batch b, are i.i.d. in time. Specifically,
by the design of DisplayItems, all items at the first k− 1
positions of batch b are selected randomly from Bb,`; and
independently of the realizations ofXt(Rt, k) andAt(d),
which are also random. The last problem is that the policy
for placing items at positions 1, . . . , Ib(1) − 1 can change
over time, because BatchRank can split any existing batch
independently of the other batches. But this has no effect
on Xt(Rt, k) because the examination of a position does
not depend on the order of higher ranked items (Assump-
tion 3).

5.2. Correct Examination Scaling

Fix batch b, positions Ib, stage `, and itemsBb,`. Since the
examination of a position does not depend on the order of
higher ranked items, and does not depend on lower ranked
items at all (Assumption 3), we can express the probability
of clicking on any item d ∈ Bb,` in (7) as

c̄b,`(d) =
α(d)

|Sd|
∑
R∈Sd

Ib(2)∑
k=Ib(1)

χ(R, k)1{dk = k} , (10)

where

Sd =
{

(e1, . . . , eIb(2)) : d ∈
{
eIb(1), . . . , eIb(2)

}
,

(eIb(1), . . . , eIb(2)) ∈ Πlen(b)(Bb,`)
}

is the set of lists with all permutations ofBb,` on positions
Ib that contain item d, for some fixed higher ranked items
e1, . . . , eIb(1)−1 /∈ Bb,`. Let d∗ ∈ Bb,` be any item such
that α(d∗) ≥ α(d), and c̄b,`(d∗) and Sd∗ be defined analo-
gously to the above. Then we argue that

c̄b,`(d
∗)

α(d∗)
≥ c̄b,`(d)

α(d)
, (11)

the examination scaling of a less attractive item d is never
higher than that of a more attractive item d∗.

Before we prove (11), note that for any list R ∈ Sd, there
exists one and only one list in Sd∗ that differs fromR only
in that items d and d∗ are exchanged. Let this list be R∗.
We analyze three cases. First, suppose that list R does not
contain item d∗. Then by Assumption 3, the examination
probabilities of d in R and d∗ in R∗ are the same. Sec-
ond, let item d∗ be ranked higher than item d in R. Then
by Assumption 5, the examination probability of d in R
is not higher than that of d∗ in R∗. Third, let item d∗ be
ranked lower than item d inR. Then by Assumption 3, the
examination probabilities of d in R and d∗ in R∗ are the
same, because they do not depend on lower ranked items.
Finally, note that |Sd| = |Sd∗ |. From the definition in (10),
it follows that (11) holds.

5.3. Regret Bound

For simplicity of exposition, let α(1) > . . . > α(L) > 0.
Let αmax = α(1), and χ∗(k) = χ(R∗, k) for all k ∈ [K].
The regret of BatchRank is bounded below.

Theorem 1. For any stochastic click bandit in Section 3.1
that satisfies Assumptions 1 to 6 and T ≥ 5, the expected
T -step regret of BatchRank is bounded as

R(T ) ≤ 128K3L

(1− αmax)∆min
log T + 2KL(6e+ 2K) ,

where ∆min = mink∈[K] {α(k)− α(k + 1)}.

Proof. The key idea is to bound the expected T -step regret
in any batch (Lemma 7 in Appendix). Since the number of
batches is at most 2K, the regret of BatchRank is at most
2K times larger than that of in any batch.

The regret in a batch is bounded as follows. Let all confi-
dence intervals hold, Ib be the positions of batch b, and the
maximum gap in batch b be

∆max = maxd∈{Ib(1),...,Ib(2)−1}[α(d)− α(d+ 1)] .

If the gap of item d in batch b is O(K∆max), its regret is
dominated by the time that the batch splits, and we bound
this time in Lemma 6 in Appendix. Otherwise, the item is
likely to be eliminated before the split, and we bound this
time in Lemma 5 in Appendix. Now take the maximum of
these upper bounds.

5.4. Discussion

Our upper bound in Theorem 1 is logarithmic in the num-
ber of steps T , linear in the number of items L, and poly-
nomial in the number of positions K. To the best of our
knowledge, this is the first gap-dependent upper bound on
the regret of a learning algorithm that has sublinear regret
in both the CM and PBM. The gap ∆min characterizes the
hardness of sorting K + 1 most attractive items, which is
sufficient for solving our problem. In practice, the maxi-
mum attraction probability αmax is bounded away from 1.
Therefore, the dependence on (1− αmax)−1 is not critical.
In most of the queries in Section 6, αmax ≤ 0.9.

We believe that the cubic dependence on K is not far from
being optimal. In particular, consider the problem of learn-
ing the most clicked item-position pair in the PBM (Sec-
tion 2.1), which is easier than our problem. This problem
can be solved as a stochastic rank-1 bandit (Katariya et al.,
2017b) by Rank1Elim. Now consider the following PBM.
The examination probability of the first position is close to
one and the examination probabilities of all other positions
are close to zero. Then the regret bound of Katariya et al.
(2017b) is O([K3 + K2L∆−1

min] log n), because µ is close
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Figure 1. The expected per-step regret of BatchRank (red), CascadeKL-UCB (blue), and RankedExp3 (gray) on three problems. The
results are averaged over 10 runs.

to 1/K. Note that the gap-dependent term nearly matches
our upper bound.

The KL confidence intervals in BatchRank are necessary
to achieve sample efficiency. In particular, as we prove in
Lemma 9 in Appendix,

(1−m)χDKL(α ‖α∗) ≤ DKL(χα ‖χα∗)

for any χ, α, α∗ ∈ [0, 1] and m = max {α, α∗}. The con-
sequence is that any two arms with scaled rewards χα and
χα∗ can be distinguished in O(χ−1(α∗ − α)−2) observa-
tions for any scaling factor χ, as long as m is not close to
1. Now note that the per-step regret due to the suboptimal
arm is χ(α∗ − α), and thus the total regret due to that arm
is O((α∗ − α)−1), independent of χ. This is a major im-
provement over UCB1 confidence radii, which would only
lead to O(χ−1(α∗ − α)−1) total regret. Because χ can be
exponentially small in our problem, such a dependence is
undesirable.

The elimination step in lines 18–20 of UpdateBatch is
also necessary. The T -step regret of BatchRank would be
O(L2 log T ) without it.

6. Experiments
We experiment with the Yandex dataset (Yandex), a dataset
of 35 million (M) search sessions, each of which may con-
tain multiple queries. The query is a pair of displayed doc-
uments at positions 1 to 10 and clicks on those documents.
We select 60 frequent search queries, and learn their CMs
and PBMs using PyClick (Chuklin et al., 2015), which is
an open-source library of click models for web search. In
each query, our goal it to rerank L = 10 most attractive
items with the objective of maximizing the expected num-
ber of clicks at the first K = 5 positions. This resembles a
real-world setting, where the learning agent would only be
allowed to rerank highly attractive items, and not allowed
to explore unattractive items (Zoghi et al., 2016).

BatchRank is compared to two methods, CascadeKL-UCB
(Kveton et al., 2015a) and RankedExp3 (Radlinski et al.,
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Figure 2. The comparison of BatchRank (red), CascadeKL-UCB
(blue), and RankedExp3 (gray) in the CM and PBM. In the top
plots, we report the per-step regret as a function of time T , aver-
aged over 60 queries and 10 runs per query. In the bottom plots,
we show the distribution of the regret at T = 10M.

2008a). CascadeKL-UCB is an optimal algorithm for learn-
ing to rank in the cascade model. RankedExp3 is a variant
of ranked bandits (Section 7) where the base bandit algo-
rithm is Exp3 (Auer et al., 1995). This approach is popular
in practice and does not make any independence assump-
tions on the attractions of items.

Many solutions in our queries are near optimal, and there-
fore the optimal solutions are hard to learn. Therefore, we
decided to evaluate the performance of algorithms by their
expected per-step regret, in up to 10M steps. If a solution
is suboptimal and does not improve over time, its expected
per-step regret remains constant and is bounded away from
zero, and this can be easily observed even if the gap of the
solution is small. We expect this when CascadeKL-UCB is
applied to the PBM, since the method has no guarantees in
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this model. The reported regret is averaged over periods of
100k steps to reduce randomness.

We report the performance of all compared algorithms on
two CMs and one PBM in Figure 1. The plots are chosen
to represent general trends in this experiment. In the CM,
CascadeKL-UCB performs very well on most queries. This
is not surprising since CascadeKL-UCB is designed for the
CM. BatchRank often learns the optimal list quickly (Fig-
ure 1a). In the PBM, CascadeKL-UCB may converge to a
suboptimal solution. Then its per-step regret remains con-
stant and is bounded away from zero (Figure 1c). In such
case, RankedExp3 can learn a better solution at T = 10M
steps. Finally, BatchRank outperforms RankedExp3 in all
queries and click models.

We report the average performance of all compared algo-
rithms in both click models in Figure 2. These trends con-
firm our findings in Figure 1. In the CM, CascadeKL-UCB
outperforms BatchRank. In the PBM, we observe the op-
posite, and BatchRank outperforms CascadeKL-UCB after
T = 2M steps. The regret of CascadeKL-UCB is constant
and bounded away from zero. This trend can be explained
by the histograms in Figure 2. In about 60 runs out of 600,
CascadeKL-UCB converges to suboptimal solutions whose
regret is 10−3. In comparison, the behavior of BatchRank
is more robust and we do not observe many runs where its
regret is of that magnitude.

We are delighted with the performance of BatchRank. Al-
though it is not designed to be optimal (Section 5.4), it is
more robust than CascadeKL-UCB and clearly outperforms
RankedExp3. The performance of CascadeKL-UCB is un-
expectedly good. Although it does not have any guarantee
in the PBM, it performs well on many queries. We plan to
investigate this in our future work.

7. Related Work
A popular approach to online learning to rank are ranked
bandits (Radlinski et al., 2008a; Slivkins et al., 2013). The
key idea in ranked bandits is to model each position in the
recommended list as an individual bandit problem, which
is then solved by a base bandit algorithm. This algorithm
is typically adversarial (Auer et al., 1995) because the dis-
tribution of clicks on lower positions is affected by higher
positions. We compare to ranked bandits in Section 6.

Online learning to rank in click models (Craswell et al.,
2008; Chuklin et al., 2015) was recently studied in several
papers (Kveton et al., 2015a; Combes et al., 2015; Kveton
et al., 2015b; Katariya et al., 2016; Zong et al., 2016; Li
et al., 2016; Lagree et al., 2016). In all of these papers, the
attraction probabilities of items are estimated from clicks
and the dynamics of the click model. The model is known
to the learning agent, and the agent has no guarantees be-

yond this model.

The problem of finding the most clicked item-position pair
in the PBM, which is arguably easier than our problem of
finding K most clicked item-position pairs, can be solved
as a stochastic rank-1 bandit (Katariya et al., 2017b;a). We
discuss our relation to these works in Section 5.4.

Our problem can be also viewed as an instance of partial
monitoring, where the attraction indicators of items are un-
observed. General partial-monitoring algorithms (Agrawal
et al., 1989; Bartok et al., 2012; Bartok & Szepesvari, 2012;
Bartok et al., 2014) are unsuitable for our setting because
their computational complexity is polynomial in the num-
ber of actions, which is exponential in K.

The click model is a model of how the users interacts with
a list of documents (Chuklin et al., 2015), and many such
models have been proposed (Becker et al., 2007; Richard-
son et al., 2007; Craswell et al., 2008; Chapelle & Zhang,
2009; Guo et al., 2009a;b). Two fundamental click models
are the CM (Craswell et al., 2008) and PBM (Richardson
et al., 2007). These models have been traditionally stud-
ied separately. In this work, we show that learning to rank
problems in these models can be solved by the same algo-
rithm, under reasonable assumptions.

8. Conclusions
We propose stochastic click bandits, a framework for on-
line learning to rank in a broad class of click models that
encompasses two most fundamental click models, the cas-
cade and position-based models. In addition, we propose a
computationally and sample efficient algorithm for solving
our problems, BatchRank, and derive an upper bound on
its T -step regret. Finally, we evaluate BatchRank on web
search queries. Our algorithm performs significantly bet-
ter than ranked bandits (Radlinski et al., 2008a), a popular
online learning to rank approach; and is more robust than
CascadeKL-UCB (Kveton et al., 2015a), an existing algo-
rithm for online learning to rank in the cascade model.

The goal of this work is not to propose the optimal algo-
rithm for our setting, but to demonstrate that online learn-
ing to rank in multiple click models is possible with theo-
retical guarantees. We strongly believe that the design of
BatchRank, as well as its analysis, can be improved. For
instance, BatchRank resets its estimators of clicks in each
batch, which is wasteful. In addition, based on the discus-
sion in Section 5.4, our analysis may be loose by a factor
of K. We hope that the practically relevant setting, which
is introduced in this paper, will spawn new enthusiasm in
the community and lead to more work in this area.
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A. Notation
Symbol Definition
α(d) Attraction probability of item d

αmax Highest attraction probability, α(1)

A Binary attraction vector, where A(d) is the attraction indicator of item d

Pα Distribution over binary attraction vectors
A Set of active batches
bmax Index of the last created batch
Bb,` Items in stage ` of batch b
ct(k) Indicator of the click on position k at time t
cb,`(d) Number of observed clicks on item d in stage ` of batch b
ĉb,`(d) Estimated probability of clicking on item d in stage ` of batch b
c̄b,`(d) Probability of clicking on item d in stage ` of batch b, E [ĉb,`(d)]

D Ground set of L items 1, . . . , L, which are sorted in decreasing order of attraction
δT log T + 3 log log T

∆̃` 2−`

Ib Interval of positions in batch b
K Number of positions to display items
len(b) Number of positions to display items in batch b
L Number of items
Lb,`(d) High-probability lower bound on c̄b,`(d)

n` Number of times that each item is observed in stage `
nb,` Number of observations of item d in stage ` of batch b
ΠK(D) Set of all K-tuples with distinct elements from D
r(R, A,X) Reward of listR, for attraction and examination indicators A and X
r(R, α, χ) Expected reward of listR
R = (d1, . . . , dK) List of K items, where dk is the k-th item inR
R∗ = (1, . . . ,K) Optimal list of K items
R(R, A,X) Regret of listR, for attraction and examination indicators A and X
R(T ) Expected cumulative regret in T steps
T Horizon of the experiment
Ub,`(d) High-probability upper bound on c̄b,`(d)

χ(R, k) Examination probability of position k in listR
χ∗(k) Examination probability of position k in the optimal listR∗

X Binary examination matrix, where X(R, k) is the examination indicator of position k in listR
Pχ Distribution over binary examination matrices
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B. Proof of Theorem 1
Let Rb,` be the stochastic regret associated with state ` of batch b. Then the expected T -step regret of MergeRank can be
decomposed as

R(T ) ≤ E

[
2K∑
b=1

T−1∑
`=0

Rb,`

]

because the maximum number of batches is 2K. Let

χ̄b,`(d) =
c̄b,`(d)

α(d)
(12)

be the average examination probability of item d in stage ` of batch b. Let

Eb,` =

{
Event 1: ∀d ∈ Bb,` : c̄b,`(d) ∈ [Lb,`(d),Ub,`(d)] ,

Event 2: ∀Ib ∈ [K]2, d ∈ Bb,`, d
∗ ∈ Bb,` ∩ [K] s.t. ∆ = α(d∗)− α(d) > 0 :

n` ≥
16K

χ∗(Ib(1))(1− αmax)∆2
log T =⇒ ĉb,`(d) ≤ χ̄b,`(d)[α(d) + ∆/4] ,

Event 3: ∀Ib ∈ [K]2, d ∈ Bb,`, d
∗ ∈ Bb,` ∩ [K] s.t. ∆ = α(d∗)− α(d) > 0 :

n` ≥
16K

χ∗(Ib(1))(1− αmax)∆2
log T =⇒ ĉb,`(d

∗) ≥ χ̄b,`(d∗)[α(d∗)−∆/4]

}
be “good events” in stage ` of batch b, where c̄b,`(d) is the probability of clicking on item d in stage ` of batch b, and we
define it in (8); and ĉb,`(d) is its estimate from n` observations. Let Eb,` be the complement of Eb,`. Let E be the “good
event” that all events Eb,` happen; and E be its complement, the “bad event” that at least one event Eb,` does not happen.
Then the expected T -step regret can be bounded from above as

R(T ) ≤ E

[
2K∑
b=1

T−1∑
`=0

Rb,`1{E}

]
+ TP (E) ≤

2K∑
b=1

E

[
T−1∑
`=0

Rb,`1{E}

]
+ 2KL(6e+ 2K) ,

where the second inequality is from Lemma 2. Now we apply Lemma 7 to each batch b and get that

2K∑
b=1

E

[
T−1∑
`=0

Rb,`1{E}

]
≤ 128K3L

(1− αmax)∆min
log T .

This concludes our proof.
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C. Upper Bound on the Probability of Bad Event E
Lemma 2. Let E be defined as in the proof of Theorem 1 and T ≥ 5. Then

P (E) ≤ 2KL(6e+ 2K)

T
.

Proof. By the union bound,

P (E) ≤
2K∑
b=1

T−1∑
`=0

P (Eb,`) .

Now we bound the probability of each event in Eb,` and then sum them up.

Event 1

The probability that event 1 in Eb,` does not happen is bounded as follows. Fix Ib andBb,`. For any d ∈ Bb,`,

P (c̄b,`(d) /∈ [Lb,`(d),Ub,`(d)]) ≤ P (c̄b,`(d) < Lb,`(d)) + P (c̄b,`(d) > Ub,`(d))

≤
2e
⌈
log(T log3 T ) log n`

⌉
T log3 T

≤
2e
⌈
log2 T + log(log3 T ) log T

⌉
T log3 T

≤
2e
⌈
2 log2 T

⌉
T log3 T

≤ 6e

T log T
,

where the second inequality is by Theorem 10 of Garivier & Cappe (2011), the third inequality is from T ≥ n`, the fourth
inequality is from log(log3 T ) ≤ log T for T ≥ 5, and the last inequality is from

⌈
2 log2 T

⌉
≤ 3 log2 T for T ≥ 3. By the

union bound,

P (∃d ∈ Bb,` s.t. c̄b,`(d) /∈ [Lb,`(d),Ub,`(d)]) ≤ 6eL

T log T

for any Bb,`. Finally, since the above inequality holds for any Bb,`, the probability that event 1 in Eb,` does not happen is
bounded as above.

Event 2

The probability that event 2 in Eb,` does not happen is bounded as follows. Fix Ib andBb,`, and let k = Ib(1). If the event
does not happen for items d and d∗, then it must be true that

n` ≥
16K

χ∗(k)(1− pmax)∆2
log T , ĉb,`(d) > χ̄b,`(d)[α(d) + ∆/4] .

From the definition of the average examination probability in (12) and a variant of Hoeffding’s inequality in Lemma 8, we
have that

P (ĉb,`(d) > χ̄b,`(d)[α(d) + ∆/4]) ≤ exp [−n`DKL(χ̄b,`(d)[α(d) + ∆/4] ‖ c̄b,`(d))] .

From Lemma 9, χ̄b,`(d) ≥ χ∗(k)K−1 (Lemma 3), and Pinsker’s inequality, we have that

exp [−n`DKL(χ̄b,`(d)[α(d) + ∆/4] ‖ c̄b,`(d))] ≤ exp [−n`χ̄b,`(d)(1− αmax)DKL(α(d) + ∆/4 ‖α(d))]

≤ exp

[
−n`

χ∗(k)(1− pmax)∆2

8K

]
.
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From our assumption on n`, we conclude that

exp

[
−n`

χ∗(k)(1− pmax)∆2

8K

]
≤ exp[−2 log T ] =

1

T 2
.

Finally, we chain all above inequalities and get that event 2 in Eb,` does not happen for any fixed Ib, Bb,`, d, and d∗ with
probability of at most T−2. Since the maximum numbers of items d and d∗ are L and K, respectively, the event does not
happen for any fixed Ib and Bb,` with probability of at most KLT−2. In turn, the probability that event 2 in Eb,` does not
happen is bounded as KLT−2.

Event 3

This bound is analogous to that of event 2.

Total probability

The maximum number of elimination stages in BatchRank is log T and the maximum number of batches is 2K. So, by
the union bound,

P (E) ≤
(

6eL

T log T
+
KL

T 2
+
KL

T 2

)
(2K log T ) ≤ 2KL(6e+ 2K)

T
.

This concludes our proof.
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D. Upper Bound on the Regret in Individual Batches
Lemma 3. For any batch b, positions Ib, stage `, setBb,`, and item d ∈ Bb,`,

χ∗(k)

K
≤ χ̄b,`(d) ,

where k = Ib(1) is the highest position in batch b.

Proof. The proof follows from two observations. First, by Assumption 6, position k is least examined when the items
at positions 1, . . . , k − 1 are 1, . . . , k − 1. Second, by the design of DisplayItems, item d is placed at position k with
probability of at least 1/K.

Lemma 4. Let event E happen and T ≥ 5. For any batch b, positions Ib, set Bb,0, and items d, d∗ ∈ Bb,0 such that ∆ =
α(d∗)− α(d) > 0, let k = Ib(1) be the highest position in batch b and ` be the first stage where

∆̃` <

√
χ∗(k)(1− αmax)

K
∆ .

Then Ub,`(d) < Lb,`(d
∗).

Proof. From the definition of n` in BatchRank and our assumption on ∆̃`,

n` ≥
16

∆̃2
`

log T >
16K

χ∗(k)(1− αmax)∆2
log T . (13)

Let µ = χ̄b,`(d) and suppose that Ub,`(d) ≥ µ[α(d) + ∆/2] holds. Then from this assumption, the definition of Ub,`(d),
and event 2 in Eb,`,

DKL(ĉb,`(d) ‖Ub,`(d)) ≥ DKL(ĉb,`(d) ‖µ[α(d) + ∆/2])1{ĉb,`(d) ≤ µ[α(d) + ∆/2]}
≥ DKL(µ[α(d) + ∆/4] ‖µ[α(d) + ∆/2]) .

From Lemma 9, µ ≥ χ∗(k)K−1 (Lemma 3), and Pinsker’s inequality, we have that

DKL(µ[α(d) + ∆/4] ‖µ[α(d) + ∆/2]) ≥ µ(1− αmax)DKL(α(d) + ∆/4 ‖α(d) + ∆/2)

≥ χ∗(k)(1− αmax)∆2

8K
.

From the definition of Ub,`(d), T ≥ 5, and above inequalities,

n` =
log T + 3 log log T

DKL(ĉb,`(d) ‖Ub,`(d))
≤ 2 log T

DKL(ĉb,`(d) ‖Ub,`(d))
≤ 16K log T

χ∗(k)(1− αmax)∆2
.

This contradicts to (13), and therefore it must be true that Ub,`(d) < µ[α(d) + ∆/2] holds.

On the other hand, let µ∗ = χ̄b,`(d
∗) and suppose that Lb,`(d∗) ≤ µ∗[α(d∗) − ∆/2] holds. Then from this assumption,

the definition of Lb,`(d∗), and event 3 in Eb,`,

DKL(ĉb,`(d
∗) ‖Lb,`(d∗)) ≥ DKL(ĉb,`(d

∗) ‖µ∗[α(d∗)−∆/2])1{ĉb,`(d∗) ≥ µ∗[α(d∗)−∆/2]}
≥ DKL(µ∗[α(d∗)−∆/4] ‖µ∗[α(d∗)−∆/2]) ,

From Lemma 9, µ∗ ≥ χ∗(k)K−1 (Lemma 3), and Pinsker’s inequality, we have that

DKL(µ∗[α(d∗)−∆/4] ‖µ∗[α(d∗)−∆/2]) ≥ µ∗(1− αmax)DKL(α(d∗)−∆/4 ‖α(d∗)−∆/2)

≥ χ∗(k)(1− αmax)∆2

8K
.
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From the definition of Lb,`(d∗), T ≥ 5, and above inequalities,

n` =
log T + 3 log log T

DKL(ĉb,`(d) ‖Lb,`(d∗))
≤ 2 log T

DKL(ĉb,`(d∗) ‖Lb,`(d∗))
≤ 16K log T

χ∗(k)(1− αmax)∆2
.

This contradicts to (13), and therefore it must be true that Lb,`(d∗) > µ∗[α(d∗)−∆/2] holds.

Finally, based on inequality (11),

µ∗ =
c̄b,`(d

∗)

α(d∗)
≥ c̄b,`(d)

α(d)
= µ ,

and item d is guaranteed to be eliminated by the end of stage ` because

Ub,`(d) < µ[α(d) + ∆/2]

≤ µα(d) +
µ∗α(d∗)− µα(d)

2

= µ∗α(d∗)− µ∗α(d∗)− µα(d)

2
≤ µ∗[α(d∗)−∆/2]

< Lb,`(d
∗) .

This concludes our proof.

Lemma 5. Let event E happen and T ≥ 5. For any batch b, positions Ib where Ib(2) = K, set Bb,0, and item d ∈ Bb,0

such that d > K, let k = Ib(1) be the highest position in batch b and ` be the first stage where

∆̃` <

√
χ∗(k)(1− αmax)

K
∆

for ∆ = α(K)− α(d). Then item d is eliminated by the end of stage `.

Proof. Let B+ = {k, . . . ,K}. Now note that α(d∗)− α(d) ≥ ∆ for any d∗ ∈ B+. By Lemma 4, Lb,`(d∗) > Ub,`(d) for
any d∗ ∈ B+; and therefore item d is eliminated by the end of stage `.

Lemma 6. Let E happen and T ≥ 5. For any batch b, positions Ib, and set Bb,0, let k = Ib(1) be the highest position in
batch b and ` be the first stage where

∆̃` <

√
χ∗(k)(1− αmax)

K
∆max

for ∆max = α(s)− α(s+ 1) and s = arg max
d∈{Ib(1),...,Ib(2)−1}

[α(d)− α(d+ 1)]. Then batch b is split by the end of stage `.

Proof. Let B+ = {k, . . . , s} and B− = Bb,0 \ B+. Now note that α(d∗) − α(d) ≥ ∆max for any (d∗, d) ∈ B+ × B−.
By Lemma 4, Lb,`(d∗) > Ub,`(d) for any (d∗, d) ∈ B+ ×B−; and therefore batch b is split by the end of stage `.

Lemma 7. Let event E happen and T ≥ 5. Then the expected T -step regret in any batch b is bounded as

E

[
T−1∑
`=0

Rb,`

]
≤ 64K2L

(1− αmax)∆max
log T .

Proof. Let k = Ib(1) be the highest position in batch b. Choose any item d ∈ Bb,0 and let ∆ = α(k)− α(d).

First, we show that the expected per-step regret of any item d is bounded by χ∗(k)∆ when event E happens. Since event
E happens, all eliminations up to any stage ` of batch b are correct. Therefore, the items at positions 1, . . . , k − 1 are
1, . . . , k − 1; and position k is examined with probability χ∗(k). This is the highest examination probability in batch b
(Assumption 4). Finally, our upper bound follows from the fact that the reward in (3) is linear in individual items.



Online Learning to Rank in Stochastic Click Models

Our analysis has two parts. First, suppose that ∆ ≤ 2K∆max for ∆max in Lemma 6. By Lemma 6, batch b splits when the
number of steps in a stage is at least

16K

χ∗(k)(1− αmax)∆2
max

log T ,

and therefore the maximum regret due to item d in the last stage before the split is

16Kχ∗(k)∆

χ∗(k)(1− αmax)∆2
max

log T ≤ 32K2∆max

(1− αmax)∆2
max

log T =
32K2

(1− αmax)∆max
log T .

Now suppose that ∆ > 2K∆max. This implies that item d is easy to distinguish from item K. In particular,

∆ = α(k)− α(d) = α(k)− α(K) + α(K)− α(d)

by definition; and since K∆max > α(k)− α(K) from the definition of ∆max and k ≤ K, we get that

α(K)− α(d) = ∆− (α(k)− α(K)) ≥ ∆−K∆max ≥
∆

2
.

By Lemma 5, the maximum regret due to item d before it is eliminated is

16Kχ∗(k)∆

χ∗(k)(1− αmax)(α(K)− α(d))2
log T ≤ 64K

(1− αmax)∆
log T ≤ 32

(1− αmax)∆max
log T ,

where the last inequality is from our assumption that ∆ > 2K∆max.

Since the number of steps between consecutive stages quadruples, and BatchRank resets all estimators at the beginning of
each stage, the maximum expected regret due to any item d in batch b, before that item is eliminated or the batch splits, is
at most twice of that in the last stage, and hence

E

[
T−1∑
`=0

Rb,`

]
≤ 64K2 |Bb,0|

(1− αmax)∆max
log T .

This concludes our proof.
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E. Technical Lemmas
Lemma 8. Let (X1)ni=1 be n i.i.d. Bernoulli random variables, µ̄ =

∑n
i=1Xi, and µ = E [µ̄]. Then

P (µ̄ ≥ µ+ ε) ≤ exp[−nDKL(µ+ ε ‖µ)]

for any ε ∈ [0, 1− µ], and

P (µ̄ ≤ µ− ε) ≤ exp[−nDKL(µ− ε ‖µ)]

for any ε ∈ [0, µ].

Proof. We only prove the first claim. The other claim follows from symmetry.

From inequality (2.1) of Hoeffding (1963), we have that

P (µ̄ ≥ µ+ ε) ≤

[(
µ

µ+ ε

)µ+ε(
1− µ

1− (µ+ ε)

)1−(µ+ε)
]n

for any ε ∈ [0, 1− µ]. Now note that[(
µ

µ+ ε

)µ+ε(
1− µ

1− (µ+ ε)

)1−(µ+ε)
]n

= exp

[
n

[
(µ+ ε) log

µ

µ+ ε
+ (1− (µ+ ε)) log

1− µ
1− (µ+ ε)

]]
= exp

[
−n
[
(µ+ ε) log

µ+ ε

µ
+ (1− (µ+ ε)) log

1− (µ+ ε)

1− µ

]]
= exp[−nDKL(µ+ ε ‖µ)] .

This concludes the proof.

Lemma 9. For any c, p, q ∈ [0, 1],

c(1−max {p, q})DKL(p ‖ q) ≤ DKL(cp ‖ cq) ≤ cDKL(p ‖ q) . (14)

Proof. The proof is based on differentiation. The first two derivatives of DKL(cp ‖ cq) with respect to q are

∂

∂q
DKL(cp ‖ cq) =

c(q − p)
q(1− cq)

,
∂2

∂q2
DKL(cp ‖ cq) =

c2(q − p)2 + cp(1− cp)
q2(1− cq)2

;

and the first two derivatives of cDKL(p ‖ q) with respect to q are

∂

∂q
[cDKL(p ‖ q)] =

c(q − p)
q(1− q)

,
∂2

∂q2
[cDKL(p ‖ q)] =

c(q − p)2 + cp(1− p)
q2(1− q)2

.

The second derivatives show that both DKL(cp ‖ cq) and cDKL(p ‖ q) are convex in q for any p. The minima are at q = p.

We fix p and c, and prove (14) for any q. The upper bound is derived as follows. Since

DKL(cp ‖ cx) = cDKL(p ‖x) = 0

when x = p, the upper bound holds when cDKL(p ‖x) increases faster than DKL(cp ‖ cx) for any p < x ≤ q, and when
cDKL(p ‖x) decreases faster than DKL(cp ‖ cx) for any q ≤ x < p. This follows from the definitions of ∂

∂xDKL(cp ‖ cx)

and ∂
∂x [cDKL(p ‖x)]. In particular, both derivatives have the same sign and

∣∣ ∂
∂xDKL(cp ‖ cx)

∣∣ ≤ ∣∣ ∂∂x [cDKL(p ‖x)]
∣∣ for

any feasible x ∈ [min {p, q} ,max {p, q}].

The lower bound is derived as follows. The ratio of ∂
∂x [cDKL(p ‖x)] and ∂

∂xDKL(cp ‖ cx) is bounded from above as

∂
∂x [cDKL(p ‖x)]
∂
∂xDKL(cp ‖ cx)

=
1− cx
1− x

≤ 1

1− x
≤ 1

1−max {p, q}

for any x ∈ [min {p, q} ,max {p, q}]. Therefore, we get a lower bound on DKL(cp ‖ cx) when we multiply cDKL(p ‖x)
by 1−max {p, q}.


