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Abstract

We consider influence maximization (IM) in so-
cial networks, which is the problem of maximiz-
ing the number of users that become aware of a
product by selecting a set of “seed” users to ex-
pose the product to. While prior work assumes
a known model of information diffusion, we pro-
pose a novel parametrization that not only makes
our framework agnostic to the underlying diffu-
sion model, but also statistically efficient to learn
from data. We give a corresponding monotone,
submodular surrogate function, and show that it
is a good approximation to the original IM ob-
jective. We also consider the case of a new mar-
keter looking to exploit an existing social net-
work, while simultaneously learning the factors
governing information propagation. For this, we
propose a pairwise-influence semi-bandit feed-
back model and develop a LinUCB-based ban-
dit algorithm. Our model-independent analysis
shows that our regret bound has a better (as com-
pared to previous work) dependence on the size
of the network. Experimental evaluation sug-
gests that our framework is robust to the under-
lying diffusion model and can efficiently learn a
near-optimal solution.

1. Introduction
The aim of viral marketing is to spread awareness about
a specific product via word-of-mouth information propa-
gation over a social network. More precisely, marketers
(agents) aim to select a fixed number of influential users
(called seeds) and provide them with free products or dis-
counts. They assume that these users will influence their
neighbours and, transitively, other users in the social net-
work to adopt the product. This will thus result in infor-
mation propagating across the network as more users adopt
or become aware of the product. The marketer has a bud-
get on the number of free products and must choose seeds
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in order to maximize the influence spread which is the ex-
pected number of users that become aware of the product.
This problem is referred to as influence maximization (IM).

Existing solutions to the IM problem require as input, the
underlying diffusion model which describes how informa-
tion propagates through the network. The IM problem has
been studied under various probabilistic diffusion models
such as independent cascade (IC) and linear threshold (LT)
models (Kempe et al., 2003). Under these common mod-
els, there has been substantial work on developing efficient
heuristics and approximation algorithms (Chen et al., 2009;
Leskovec et al., 2007; Goyal et al., 2011b;a; Tang et al.,
2014; 2015).

Unfortunately, knowledge of the underlying diffusion
model and its parameters is essential for the existing IM
algorithms to perform well. For example, Du et al. (2014)
empirically showed that misspecification of the diffusion
model can lead to choosing bad seeds and consequently to
a low spread. In practice, it is not clear how to choose from
amongst the increasing number of plausible diffusion mod-
els (Kempe et al., 2003; Gomez Rodriguez et al., 2012; Li
et al., 2013). Even if we are able to choose a diffusion
model according to some prior information, the number of
parameters for these models scales with the size of the net-
work (for example, it is equal to the number of edges for
both the IC and LT models) and it is not clear how to set
these. Goyal et al. (2011a) showed that even when assum-
ing the IC or LT model, correct knowledge of the model
parameters is critical to choosing good seeds that lead to
a large spread. Some papers try to learn these parameters
from past propagation data (Saito et al., 2008; Goyal et al.,
2010; Netrapalli & Sanghavi, 2012). However in practice,
such data is hard to obtain and the large number of param-
eters makes this learning challenging.

To overcome these difficulties, we propose a novel
parametrization for the IM problem in terms of pairwise
reachability probabilities (Section 2). This parametrization
depends only on the state of the network after the informa-
tion diffusion has taken place. Since it does not depend on
how information diffuses, it is agnostic to the underlying
diffusion model. To select seeds based on these reachabil-
ity probabilities, we propose a monotone and submodular
surrogate objective function based on the notion of maxi-
mum reachability (Section 3). Our surrogate function can
be optimized efficiently and is a a good approximation to
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the IM objective. We theoretically bound the quality of this
approximation. Our parametrization may be of indepen-
dent interest to the IM community.

Next, we consider learning how to choose good seeds in an
online setting. Specifically, we focus on the case of a new
marketer looking to exploit an existing network to market
their product. They need to choose a good seed set, while
simultaneously learning the factors affecting information
propagation. This motivates the learning framework of IM
semi-bandits (Vaswani et al., 2015; Chen et al., 2016; Wen
et al., 2017). In these works, the marketer performs IM
over multiple “rounds” and learns about the factors gov-
erning the diffusion on the fly. Each round corresponds
to an IM attempt for the same or similar products. Each
attempt incurs a loss in the influence spread (measured in
terms of cumulative regret) because of the lack of knowl-
edge about the diffusion process. The aim is to minimize
the cumulative regret incurred across multiple such rounds.
This leads to the classic exploration-exploitation trade-off
where the marketer must either choose seeds that either im-
prove their knowledge about the diffusion process (“explo-
ration”) or find a seed set that leads to a large expected
spread (“exploitation”). Note that all previous works on
IM semi-bandits assume the IC model.

We propose a novel semi-bandit feedback model based on
pairwise influence (Section 4). Our feedback model is
weaker than the edge-level feedback proposed in (Chen
et al., 2016; Wen et al., 2017). Under this feedback, we for-
mulate IM semi-bandit as a linear bandit problem and pro-
pose a scalable LinUCB-based algorithm (Section 5). We
bound the cumulative regret of this algorithm (Section 6)
and show that our regret bound has the optimal dependence
on the time horizon, is linear in the cardinality of the seed
set, and as compared to the previous literature, has a bet-
ter dependence on the size of the network. In Section 7,
we describe how to construct features based on the graph
Laplacian eigenbasis and describe a practical implementa-
tion of our algorithm. Finally, in Section 8, we empirically
evaluate our proposed algorithm on a real-world network
and show that it is statistically efficient and robust to the
underlying diffusion model.

2. Influence Maximization
The IM problem is characterized by the triple (G, C,D),
where G is a directed graph encoding the topology of the
social network, C is the collection of feasible seed sets,
and D is the underlying diffusion model. Specifically,
G = (V, E), where V = {1, 2, . . . , n} and E are the node
and edge sets of G, with cardinalities n = |V| andm = |E|,
respectively. The collection of feasible seed sets C is de-
termined by a cardinality constraint on the sets and pos-
sibly some combinatorial constraints (e.g. matroid con-
straints) that rule out some subsets of V . This implies that
C ⊆ {S ⊆ V : |S| ≤ K}, for some K ≤ n. The diffu-
sion model D specifies the stochastic process under which

influence is propagated across the social network once a
seed set S ∈ C is selected. Without loss of generality, we
assume that all stochasticity in D is encoded in a random
vector w, referred to as the diffusion random vector. Note
that throughout this paper, we denote vectors in bold case.
We assume that each diffusion has a corresponding w sam-
pled independently from an underlying probability distri-
bution P specific to the diffusion model. For the widely-
used models IC and LT, w is anm-dimensional binary vec-
tor encoding edge activations for all the edges in E , and P
is parametrized by m influence probabilities, one for each
edge. Once w is sampled, we use D(w) to refer to the par-
ticular realization of the diffusion model D. Note that by
definition, D(w) is deterministic, conditioned on w.

Given the above definitions, an IM attempt can be de-
scribed as: the marketer first chooses a seed set S ∈ C
and then nature independently samples a diffusion random
vector w ∼ P. Note that the influenced nodes in the dif-
fusion are completely determined by S and D(w). We use
the indicator 1

(
S, v,D(w)

)
∈ {0, 1} to denote if the node

v is influenced under the seed set S and the particular real-
ization D(w). For a given (G,D), once a seed set S ⊆ C is
chosen, for each node v ∈ V , we use F (S, v) to denote the
probability that v is influenced under the seed set S, i.e.,

F (S, v) = E
[
1
(
S, v,D(w)

)∣∣S] (1)

where the expectation is over all possible realizations
D(w). We denote by F (S) =

∑
v∈V F (S, v), the ex-

pected number of nodes that are influenced when the seed
set S is chosen. The aim of the IM problem is to max-
imize F (S) subject to the constraint S ∈ C, i.e., to find
S∗ ∈ arg maxS∈C F (S). Although IM is an NP-hard prob-
lem in general, under common diffusion models such as IC
and LT, the objective function F (S) is monotone and sub-
modular, and thus, a near-optimal solution can be computed
in polynomial time using a greedy algorithm (Nemhauser
et al., 1978). In this work, we assume that D is any diffu-
sion model satisfying the following monotonicity assump-
tion:

Assumption 1. For any v ∈ V and any subsets S1 ⊆ S2 ⊆
V , if F (S1, v) ≤ F (S2, v), then F (S, v) is monotone in S .

Note that all progressive diffusion models (models where
once the user is influenced, they can not change their state),
including those in (Kempe et al., 2003; Gomez Rodriguez
et al., 2012; Li et al., 2013) satisfy Assumption 1.

3. Surrogate Objective
We now motivate and propose a surrogate objective for
the IM problem based on the notion of maximal pairwise
reachability. We start by defining some useful notation.
For any set S ⊆ V and any set of “pairwise probabilities”
p : V × V → [0, 1], for all nodes v ∈ V , we define

f(S, v, p) = maxu∈S pu,v (2)
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where pu,v is the pairwise probability associated with the
ordered node pair (u, v). We further define f(S, p) =∑
v∈V f(S, v, p). Note that for all p, f(S, p) is always

monotone and submodular in S (Krause & Golovin, 2012).

For any pair of nodes u, v ∈ V , we define the pairwise
reachability from u to v as p∗u,v = F ({u}, v), i.e., the prob-
ability that v will be influenced, if u is the only seed node
under graph G and diffusion model D. Throughout this pa-
per, we use “source node” and “seed” interchangeably and
refer to the nodes not in the seed set S as “target” nodes.
We define f(S, v, p∗) = maxu∈S p

∗
u,v as the maximal pair-

wise reachability from the seed set S to the target node v.

Our proposed surrogate objective for the IM problem is
f(S, p∗) =

∑
v∈V f(S, v, p∗). Based on this objective, an

approximate solution S̃ to the IM problem can be obtained
by maximizing f(S, p∗) under the constraint S ∈ C,

S̃ ∈ arg maxS∈C f(S, p∗) (3)

Recall that S∗ is the optimal solution to the IM problem.
To quantify the quality of the surrogate, we define the sur-
rogate approximation factor as ρ = f(S̃, p∗)/F (S∗). The
following theorem, (proved in Appendix A) states that we
can obtain the following upper and lower bounds on ρ:

Theorem 1. For any graph G, seed set S ∈ C, and diffusion
model D satisfying Assumption 1,

1 f(S, p∗) ≤ F (S),

2 If F (S) is submodular in S, then 1/K ≤ ρ ≤ 1.

The above theorem implies that for any progressive model
satisfying Assumption 1, maximizing f(S, p∗) is equiva-
lent to maximizing a lower-bound on the true spread F (S).
For both IC and LT models, F (S) is both monotone and
submodular, and the approximation factor can be bounded
from below by 1/K. In Section 8, we empirically show
that in cases of practical interest, f(S, p∗) is a good ap-
proximation to F (S) and that ρ is much larger than 1/K.

Finally, note that solving S̃ ∈ arg maxS∈C f(S, p∗) ex-
actly might be computationally intractable and thus we
need to compute a near-optimal solution based on an ap-
proximation algorithm. In this paper, we refer to such ap-
proximation algorithms as oracles to distinguish them from
learning algorithms. Let ORACLE be a specific oracle and
let Ŝ ∆

= ORACLE(G, C, p) be the seed set output by it. For
any α ∈ [0, 1], we say that ORACLE is an α-approximation
algorithm if for all p : V × V → [0, 1], f(Ŝ, p) ≥
αmaxS∈C f(S, p). For our particular case, since f(S, p∗)
is submodular, a valid oracle is the greedy algorithm which
gives an α = 1 − 1/e approximation (Nemhauser et al.,
1978). Hence, given the knowledge of p∗, we can obtain
an approcimate solution to the IM problem without know-
ing the exact underlying diffusion model.

4. Influence Maximization Semi-Bandits
We now focus on the case of a new marketer trying to learn
the pairwise reachabilities by repeatedly interacting with
the network. We describe the observable feedback (Sec-
tion 4.2) and the learning framework (Section 4.3).

4.1. Influence Maximization Semi-Bandits

In an influence maximization semi-bandit problem, the
agent (marketer) knows both G and C, but does not know
the diffusion model D. Specifically, the agent knows nei-
ther the model ofD, for instance whether D is the IC or LT
model; nor its parameters, for instance the influence proba-
bilities in the IC or LT model. Consider a scenario in which
the agent interacts with the social network for T rounds. At
each round t ∈ {1, . . . , T}, the agent first chooses a seed
set St ∈ C based on its prior knowledge and past obser-
vations and then nature independently samples a diffusion
random vector wt ∼ P. Influence thus diffuses in the social
network from St according to D(wt). The agent’s reward
at round t is the number of the influenced nodes

rt =
∑
v∈V 1

(
St, v,D(wt)

)
.

Recall that by definition, E [rt|St,D(wt)] = F (St). After
each such IM attempt, the agent observes the pairwise in-
fluence feedback (described next) and uses it to improve the
subsequent IM attempts. The agent’s objective is to maxi-
mize the expected cumulative reward across the T rounds,
i.e., to maximize E

[∑T
t=1 rt

]
. This is equivalent to mini-

mizing the cumulative regret defined subsequently.

4.2. Pairwise Influence Feedback Model

We propose a novel IM semi-bandit feedback model re-
ferred to as pairwise influence feedback. Under this feed-
back model, at the end of each round t, the agent observes
1
(
{u}, v,D(wt)

)
for all u ∈ St and all v ∈ V . In other

words, it observes whether or not v would be influenced, if
the agent selects S = {u} as the seed set under the diffu-
sion model D(wt). This form of semi-bandit feedback is
plausible in most IM scenarios. For example, on sites like
Facebook, we can identify the user who influenced another
user to “share” or “like” an article, and thus, can transi-
tively trace the propagation to the seed which started the
diffusion. Note that our assumption is strictly weaker than
(and implied by) edge level semi-bandit feedback (Chen
et al., 2016; Wen et al., 2017): from edge level feedback,
we can identify the edges along which the diffusion trav-
elled, and thus, determine whether a particular source node
is responsible for activating a target node. However, from
pairwise feedback, it is impossible to infer a unique edge
level feedback.

4.3. Linear Generalization

Parametrizing the problem in terms of reachability prob-
abilities results in O(n2) parameters that need to be
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learned. Without any structural assumptions, this becomes
intractable for large networks. To develop statistically effi-
cient algorithms for large-scale IM semi-bandits, we make
a linear generalization assumption similar to (Wen et al.,
2015; 2017). Assume that each node v ∈ V is associated
with two vectors of dimension d, the seed (source) weight
θ∗v ∈ <d and the target feature xv ∈ <d. We assume that
the target feature xv is known, whereas θ∗v is unknown and
needs to be learned. The linear generalization assumption
is stated as:

Assumption 2. For all u, v ∈ V , p∗u,v can be “well ap-
proximated” by the inner product of θ∗u and xv , i.e.,

p∗u,v ≈ 〈θ
∗
u,xv〉

∆
= x>v θ

∗
u

Note that for the tabular case (the case without generaliza-
tion across p∗u,v), we can always choose xv = ev ∈ <n and

θ∗u =
[
p∗u,1, . . . , p

∗
u,n

]T
, where ev is an n-dimensional in-

dicator vector with the v-th element equal to 1 and all other
elements equal to 0. However, in this case d = n, which
is not desirable. Constructing target features when d � n
is non-trivial. We discuss a feature construction approach
based on the unweighted graph Laplacian in Section 7. We
use matrixX ∈ <d×n to encode the target features. Specif-
ically, for v = 1, . . . , n, the v-th column of X is set as xv .
Note that X = I ∈ <n×n in the tabular case.

Finally, note that under Assumption 2, estimating the
reachability probabilities becomes equivalent to estimating
n (one for each source) d-dimensional weight vectors. This
implies that Assumption 2 reduces the number of parame-
ters to learn from O(n2) to O(dn), and thus, is important
for developing statistically efficient algorithms for large-
scale IM semi-bandits.

4.4. Performance Metric

We benchmark the performance of an IM semi-bandit algo-
rithm by comparing its spread against the attainable influ-
ence assuming perfect knowledge ofD. Since it is NP-hard
to compute the optimal seed set even when with perfect
knowledge, similar to (Wen et al., 2017; Chen et al., 2016),
we measure the performance of an IM semi-bandit algo-
rithm by scaled cumulative regret. Specifically, if St is the
seed set selected by the IM semi-bandit algorithm at round
t, for any κ ∈ (0, 1), the κ-scaled cumulative regret Rκ(T )
in the first T rounds is defined as

Rκ(T ) = T · F (S∗)− 1

κ
E
[∑T

t=1 F (St)
]
. (4)

5. Algorithm
In this section, we propose a LinUCB-based IM semi-
bandit algorithm, called diffusion-independent LinUCB
(DILinUCB), whose pseudocode is in Algorithm 1. As its
name suggests, DILinUCB is applicable to IM semi-bandits

Algorithm 1 Diffusion-Independent LinUCB (DILinUCB)
1: Input: G = (V, E), C, oracle ORACLE, target feature

matrix X ∈ Rd×n, algorithm parameters c, λ, σ > 0

2: Initialize Σu,0 ← λId, bu,0 ← 0, θ̂u,0 ← 0 for all
u ∈ V , and UCB pu,v ← 1 for all u, v ∈ V

3: for t = 1 to T do
4: Choose St ← ORACLE (G, C, p)
5: for u ∈ St do
6: Get pairwise influence feedback yu,t
7: bu,t ← bu,t−1 +Xyu,t
8: Σu,t ← Σu,t−1 + σ−2XXT

9: θ̂u,t ← σ−2Σ−1
u,tbu,t

10: pu,v ← Proj[0,1]

[
〈θ̂u,txv〉+ c‖xv‖Σ−1

u,t

]
, ∀v ∈

V
11: end for
12: for u 6∈ St do
13: bu,t = bu,t−1

14: Σu,t = Σu,t−1

15: end for
16: end for

with any diffusion model D satisfying Assumption ]refas-
sum:monotone. The only requirement to apply DILinUCB
is that the IM semi-bandit provides the pairwise influence
feedback described in Section 4.2.

The inputs to DILinUCB include the network topology G,
the collection of the feasible sets C, the optimization algo-
rithm ORACLE, the target feature matrix X , and three algo-
rithm parameters c, λ, σ > 0. The parameter λ is a regular-
ization parameter whereas σ is proportional to the noise in
the observations and hence controls the learning rate. For
each source node u ∈ V and time t, we define the Gram
matrix Σu,t ∈ <d×d, and bu,t ∈ <d as the vector summa-
rizing the past propagations from u. The vector θu,t is the
source weight estimate for node u at round t. The mean
reachability probability from u to v is given by 〈θ̂u,t,xv〉,
whereas its variance is given as ‖xv‖Σ−1

u,t
=
√
xTv Σ−1

u,txv .
Note that Σu and bu are sufficient statistics for computing
UCB estimates pu,v for all v ∈ V . The parameter c trades
off the mean and variance in the UCB estimates and thus
controls the “degree of optimism” of the algorithm.

All the Gram matrices are initialized to λId, where Id de-
notes the d-dimensional identity matrix whereas the vectors
bu,0 and θu,0 are set to d-dimensional all-zeros vectors. At
each round t, DILinUCB first uses the existing UCB esti-
mates to compute the seed set St based on the given ora-
cle ORACLE (line 4 of Algorithm 1). Then, it observes the
pairwise reachability vector yu,t for all the selected seeds
in St. The vector yu,t is an n-dimensional column vector
such that yu,t(v) = 1 ({u}, v,D(wt)) indicating whether
node v is reachable from the source u at round t. Finally,
for each of the K selected seeds u ∈ St, DILinUCB up-
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dates the sufficient statistics (lines 7 and 8 of Algorithm 1)
and the UCB estimates (line 10 of Algorithm 1). Here,
Proj[0,1][·] projects a real number onto the [0, 1] interval.

6. Regret Bound
In this section, we derive a regret bound for DILinUCB,
under (1) Assumption 1, (2) perfect linear generalization
i.e. p∗u,v = 〈θ∗u,xv〉 for all u, v ∈ V , and (3) the assump-
tion that ||xv||2 ≤ 1 for all v ∈ V . Notice that (2) is the
standard assumption for linear bandit analysis (Dani et al.,
2008), and (3) can always be satisfied by rescaling the tar-
get features. Our regret bound is stated below:

Theorem 2. For any λ, σ > 0, any feature matrix X , any
α-approximation oracle ORACLE, and any c satisfying

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log (n2T ) +

√
λmax
u∈V
‖θ∗u‖2,

(5)

if we apply DILinUCB with input (ORACLE, X, c, λ, σ),
then its ρα-scaled cumulative regret is upper-bounded as

Rρα(T ) ≤ 2c

ρα
n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (6)

For the tabular case X = I , we obtain a tighter bound

Rρα(T ) ≤ 2c

ρα
n

3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (7)

Recall that ρ specifies the quality of the surrogate ap-
proximation. Notice that if we choose λ = σ = 1,
and choose c s.t. Inequality 5 is tight, then our regret
bound is Õ(n2d

√
KT/(αρ)) for general feature matrix X ,

and Õ(n2.5
√
KT/(αρ)) in the tabular case. Here the Õ

hides log factors. We now briefly discuss the tightness
of our regret bounds. First, note that the O(1/ρ) factor
is due to the surrogate objective approximation discussed
in Section 3, and the O(1/α) factor is due to the fact
that ORACLE is an α-approximation algorithm. Second,
note that the Õ(

√
T )-dependence on time is near-optimal,

and the Õ(
√
K)-dependence on the cardinality of the seed

sets is standard in the combinatorial semi-bandit literature
(Kveton et al., 2015). Third, for general X , notice that the
Õ(d)-dependence on feature dimension is standard in lin-
ear bandit literature (Dani et al., 2008; Wen et al., 2015). To
explain the Õ(n2) factor in this case, notice that one O(n)
factor is due to the magnitude of the reward (the reward
is from 0 to n, rather than 0 to 1), whereas one Õ(

√
n)

factor is due to the statistical dependence of the pairwise
reachabilities. Assuming statistical independence between
these reachabilities (similar to Chen et al. (2016)), we can
shave off this Õ(

√
n) factor. However this assumption is

unrealistic in practice. Another Õ(
√
n) is due to the fact

that we learn one θ∗u for each source node u (i.e. there is
no generalization across the source nodes). Finally, for the

tabular case X = I , the dependence on d no longer exists,
but there is another Õ(

√
n) factor due to the fact that there

is no generalization across target nodes.

We conclude this section by sketching the proof for The-
orem 2 (the detailed proof is available in Appendix B and
Appendix C). We define the “good event” as

F = {|xTv (θ̂u,t−1 − θ∗u)| ≤ c‖xv‖Σ−1
u,t−1

∀u, v ∈ V, t ≤ T},

and the “bad event” F as the complement of F . We then
decompose the ρα-scaled regret Rρα(T ) over F and F ,
and obtain the following inequality:

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V

‖xv‖Σ−1
u,t−1

∣∣∣∣∣F
}

+
P (F)
ρ

nT,

where P (F) is the probability of F . The regret bounds
in Theorem 2 are derived based on worst-case bounds
on
∑T
t=1

∑
u∈St

∑
v∈V ‖xv‖Σ−1

u,t−1
(Appendix B.2), and a

bound on P (F) based on the “self-normalized bound for
matrix-valued martingales” developed in Theorem 3 (Ap-
pendix C).

7. Practical Implementation
In this section, we briefly discuss how to implement our
proposed algorithm, DILinUCB, in practical semi-bandit
IM problems. Specifically, we will discuss how to construct
features in Section 7.1, how to enhance the practical per-
formance of DILinUCB based on Laplacian regularization
in Section 7.2, and how to implement DILinUCB computa-
tionally efficiently in real-world problems in Section 7.3.

7.1. Target Feature Construction

Although DILinUCB is applicable with any target feature
matrix X , in practice, its performance is highly dependent
on the “quality” of X . In this subsection, we motivate and
propose a systematic feature construction approach based
on the unweighted Laplacian matrix of the network topol-
ogy G. For all u ∈ V , let p∗u ∈ <n be the vector encoding
the reachabilities from the seed u to all the target nodes
v ∈ V . Intuitively, p∗u tends to be a smooth graph function
in the sense that target nodes close to each other (e.g., in the
same community) tend to have similar reachabilities from
u. From (Belkin et al., 2006; Valko et al., 2014), we know
that a smooth graph function (in this case, the reachability
from a source) can be expressed as a linear combination of
eigenvectors of the weighted Laplacian of the network. In
our case, the edge weights correspond to influence prob-
abilities and are unknown in the IM semi-bandit setting.
However, we use the above intuition to construct target fea-
tures based on the unweighted Laplacian of G. Specifically,
for a given d = 1, 2, . . . , n, we set the feature matrix X to
be the bottom d eigenvectors (associated with d smallest
eigenvalues) of the unweighted Laplacian of G. Other ap-
proaches to construct target features include the neighbour-
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hood preserving node-level features as described in (Grover
& Leskovec, 2016; Perozzi et al., 2014). We leave the in-
vestigation of other feature construction approaches to fu-
ture work.

7.2. Laplacian Regularization

One limitation of our proposed DILinUCB algorithm is that
it does not generalize across the seed nodes u. Specifi-
cally, it needs to learn the source node feature θ∗u for each
source node u separately, which is inefficient for large-
scale semi-bandit IM problems. Similar to target features,
the source features also tend to be smooth in the sense
that ‖θ∗u1

− θ∗u2
‖2 is “small” if nodes u1 and u2 are adja-

cent. We use this idea to design a prior which ties together
the source features for different nodes, and hence transfers
information between them. This idea of Laplacian regu-
larization has been used in multi-task learning (Evgeniou
et al., 2005) and for contextual-bandits in (Cesa-Bianchi
et al., 2013; Vaswani et al., 2017). Specifically, at each
round t, we compute θ̂u,t by minimizing the following ob-
jective w.r.t θu:

t∑
j=1

∑
u∈St

(yu,j −XTθu)2 + λ2

∑
(u1,u2)∈E

||θu1
− θu2

||22

where λ2 ≥ 0 is the regularization parameter. The imple-
mentation details are provided in Appendix D.

7.3. Computational Complexity

We now characterize the computational complexity of
DILinUCB, and discuss how to implement it efficiently.
Note that at each time t, DILinUCB needs to first com-
pute a solution St based on ORACLE, and then update the
UCBs. Since Σu,t is positive semi-definite, the linear sys-
tem in line 9 of Algorithm 1 can be solved using con-
jugate gradient in O(d2) time. It is straightforward to
see the computational complexity to update the UCBs is
O(Knd2). The computational complexity to compute St
is dependent on ORACLE. For the classical setting in which
C = {S ⊆ V : |S| ≤ K} and ORACLE is the greedy algo-
rithm, the computational complexity is O(Kn). To speed
this up, we use the idea of lazy evaluations for submodular
maximization proposed in (Minoux, 1978; Leskovec et al.,
2007). It is known that this results in improved running
time in practice.

8. Experiments
8.1. Empirical Verification of Surrogate Objective

In this subsection, we empirically verify that the surrogate
f(S, p∗) proposed in Section 3 is a good approximation of
the true IM objective F (S). We conduct our tests on ran-
dom Kronecker graphs, which are known to capture many
properties of real-world social networks (Leskovec et al.,
2010). Specifically, we generate a social network instance
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Figure 1. Experimental verification of surrogate objective.

(G,D) as follows: we randomly sample G as a Kronecker
graph with n = 256 and sparsity equal to 0.03 1 (Leskovec
et al., 2005). We choose D as the IC model and sample
each of its influence probabilities independently from the
uniform distribution U(0, 0.1). Note that this range of in-
fluence probabilities is guided by the empirical evidence
in (Goyal et al., 2010; Barbieri et al., 2013). To weaken
the dependence on a particular instance, all the results in
this subsection are averaged over 10 randomly generated
instances.

We first numerically estimate the pairwise reachabilities p∗
for all 10 instances based on social network simulation. In a
simulation, we randomly sample a seed set S with cardinal-
ity K between 1 and 35, and record the pairwise influence
indicator yu(v) from each source u ∈ S to each target node
v in this simulation. The reachability p∗u,v is estimated by
averaging the yu(v) values across 50k such simulations.

Based on the p∗ so estimated, we compare f(S, p∗) and
F (S) as K, the seed set cardinality, varies from 2 to 35.
For eachK and each social network instance, we randomly
sample 100 seed sets S with cardinality K. Then, we eval-
uate f(S, p∗) based on the estimated p∗; and numerically
evaluate F (S) by averaging results of 500 influence sim-
ulations (diffusions). For each K, we average both F (S)
and f(S, p∗) across the random seed sets in each instance
as well as across the 10 instances. We plot the average
F (S) and f(S, p∗) as a function of K in Figure 1(a). The
plot shows that f(S) is a good lower bound on the true
expected spread F (S), especially for low K.

Finally, we empirically quantify the surrogate approxima-
tion factor ρ. As before, we vary K from 2 to 35 and av-
erage across 10 instances. Let α∗ = 1 − e−1. For each
instance and each K, we first use the estimated p∗ and the
greedy algorithm to find an α∗-approximation solution S̃g
to the surrogate problem maxS f(S, p∗). We then use the
state-of-the-art IM algorithm (Tang et al., 2014) to com-
pute an α∗-approximation solution S∗g to the IM problem
maxS F (S). Since F (S∗g ) ≥ αF (S∗) (Nemhauser et al.,

1978), UB
∆
= F (S∗g )/α∗ is an upper bound on F (S∗).

From Theorem 1, LB
∆
= F (S∗g )/K ≤ F (S∗)/K is a lower

1Based on the sparsity of typical social networks.



Model-Independent Online Learning for Influence Maximization

bound on f(S̃, p∗). We plot the average values (over 10 in-
stances) ofF (S∗g ), f(S̃g, p∗), UB and LB againstK in Fig-
ure 1(b). We observe that the difference in spreads does not
increase rapidly withK. Although ρ is lower-bounded with
1
K , in practice for all K ∈ [2, 35], ρ ≥ α∗f(S̃g,p∗)

F (S∗
g ) ≥ 0.55.

This shows that in practice, our surrogate approximation is
reasonable even for large K.

8.2. Performance of DILinUCB

We now demonstrate the performances of variants of
DILinUCB and compare them with the start of the art. We
choose the social network topology G as a subgraph of the
Facebook network available at (Leskovec & Krevl, 2014),
which consists of n = 4k nodes andm = 88k edges. Since
true diffusion model is unavailable, we assume the diffu-
sion model D is either an IC model or an LT model, and
sample the edge influence probabilities independently from
the uniform distribution U(0, 0.1). We also choose T = 5k
rounds.

We compare DILinUCB against the CUCB algorithm (Chen
et al., 2016) in both the IC model and the LT model, with
K = 10. CUCB (referred to as CUCB(K) in plots) assumes
the IC model, edge-level feedback and learns the influence
probability for each edge independently. We demonstrate
the performance of three variants of DILinUCB - the tabular
case with X = I , independent estimation for each source
node using target features (Algorithm 1) and Laplacian
regularized estimation with target features (Appendix D).
In the subsequent plots, to emphasize the dependence on
K and d, these are referred to as TAB(K), I(K,d) and
L(K,d) respectively. We construct features as described in
Section 7.1. Similar to spectral clustering (Von Luxburg,
2007), the gap in the eigenvalues of the unweighted Lapla-
cian can be used to choose the number of eigenvectors d.
In our case, we choose the bottom d = 50 eigenvectors
for constructing target features and show the effect of vary-
ing d in the next experiment. Similar to (Gentile et al.,
2014), all hyper-parameters for our algorithm are set using
an initial validation set of 500 rounds. The best validation
performance was observed for λ = 10−4 and σ = 1.

We now briefly discuss the performance metrics used in
this section. For all S ⊆ V and all t = 1, 2 . . ., we
define rt(S) =

∑
v∈V I (S, v,D(wt)), which is the re-

alized reward at time t if S is chosen at that time. One
performance metric is the per-step reward. Specifically,
in one simulation, the per-step reward at time t is defined
as

∑t
s=1 rs
t . Another performance metric is the cumula-

tive regret. Since it is computationally intractable to de-
rive S∗, our regret is measured with respect to S∗g , the α∗-
approximation solution discussed in Section 8.1. In one
simulation, the cumulative regret at time t is defined as
R(t) =

∑t
s=1

[
rs(S∗g )− rs(Ss)

]
. All the subsequent re-

sults are averaged across 5 independent simulations.

Figures 2(a) and 2(b) show the cumulative regret when the

underlying diffusion model is IC and LT, respectively. We
have the following observations: (i) As compared to CUCB,
the cumulative regret increases at a slower rate for all vari-
ants of DILinUCB, under both the IC and LT models, and
for both the tabular case and case with features. (ii) Ex-
ploiting target features (linear generalization) in DILinUCB
leads to a much smaller cumulative regret. (iii) CUCB is not
robust to model misspecification: it has a near linear cumu-
lative regret under LT model. (iv) Laplacian regularization
has little effect on the cumulative regret in these two cases.
These observations clearly demonstrate the two main ad-
vantages of DILinUCB: it is both statistically efficient and
robust to diffusion model misspecification. To explain (iv),
we argue that the current combination of T , K, d and n
results in sufficient feedback for independent estimation to
perform well and hence it is difficult to observe any addi-
tional benefit of Laplacian regularization. We provide ad-
ditional evidence for this argument in the next experiment.

In Figure 3(a), we quantify the effect of varying d when the
underlying diffusion model is IC and make the following
observations: (i) The cumulative regret for both d = 10
and d = 100 is higher than that for d = 50. (ii) Laplacian
regularization leads to observably lower cumulative regret
when d = 100. Observation (iii) implies that d = 10 does
not provide enough expressive power for linear generaliza-
tion across the nodes of the network, whereas it is relatively
difficult to estimate 100-dimensional θ∗u vectors within 5k
rounds. Observation (iv) implies that tying source node es-
timates together imposes an additional bias which becomes
important while learning higher dimensional coefficients.
This shows the potential benefit of using Laplacian regu-
larization for larger networks, where we will need higher
d for linear generalization across nodes. We obtain similar
results under the LT model.

In Figures 3(b) and 3(c), we show the effect of varying
K on the per-step reward. We compare CUCB and the in-
dependent version of our algorithm when the underlying
model is IC and LT. We make the following observations:
(i) For both IC and LT, the per-step reward for all meth-
ods increases with K. (ii) For the IC model, the per-
step reward for our algorithm is higher than CUCB when
K = {5, 10, 20}, but the difference in the two spreads de-
creases with K. For K = 50, CUCB outperforms our al-
gorithm. (iii) For the LT model, the per-step reward of our
algorithm is substantially higher than CUCB for all K. Ob-
servation (i) is readily explained since both IC and LT are
progressive models, and satisfy Assumption 1. To explain
(ii), note that CUCB is correctly specified for the IC model.
AsK becomes higher, more edges become active and CUCB
observes more feedback. It is thus able to learn more effi-
ciently, leading to a higher per-step reward compared to our
algorithm when K = 50. Observation (iii) again demon-
strates that CUCB is not robust to diffusion model misspeci-
fication, while DILinUCB is.
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Figure 2. Comparing DILinUCB and CUCB on the Facebook subgraph with K = 10.
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Figure 3. Effects of varying d or K.

9. Related Work
IM semi-bandits have been studied in several recent pa-
pers (Wen et al., 2017; Chen et al., 2016; Vaswani et al.,
2015; Carpentier & Valko, 2016). Chen et al. (2016) stud-
ied IM semi-bandit under edge-level feedback and the IC
diffusion model. They formulated it as a combinatorial
multi-armed bandit problem and proposed a UCB algo-
rithm (CUCB). They only consider the tabular case, and de-
rive an O(n3) regret bound that also depends on the recip-
rocal of the minimum observation probability p of an edge.
This can be problematic in for example, a line graph with
L edges where all edge weights are 0.5. Then 1/p is 2L−1,
implying an exponentially large regret. Moreover, they as-
sume that source nodes influence the target nodes indepen-
dently, which is not true in most practical social networks.
In contrast, both our algorithm and analysis are diffusion
independent, and our analysis does not require the “inde-
pendent influence” assumption made in (Chen et al., 2016).
Our regret bound isO(n2.5) in the tabular case andO(n2d)
in the general linear bandit case. Vaswani et al. (2015)
use ε-greedy and Thompson sampling algorithms for a dif-
ferent and more challenging feedback model, where the
learning agent observes influenced nodes but not the edges.
They do not give any theoretical guarantees. Concurrent
to our work, Wen et al. (2017) consider a linear general-
ization model across edges and prove regret bounds under

edge-level feedback. Note that all of the above papers as-
sume the IC diffusion model.

Carpentier & Valko (2016); Fang & Tao (2014) consider
a simpler local model of influence, in which information
does not transitively diffuse across the network. Lei et al.
(2015) consider the related, but different, problem of max-
imizing the number of unique activated nodes across mul-
tiple rounds. They do not provide any theoretical analysis.

10. Conclusion
In this paper, we described a novel model-independent
parametrization and a corresponding surrogate objective
function for the IM problem. We used this parametriza-
tion to propose DILinUCB, a diffusion-independent learn-
ing algorithm for IM semi-bandits. We conjecture that with
an appropriate generalization across source nodes, it may
be possible to get a more statistically efficient algorithm
and get rid of an additional O(

√
n) factor in the regret

bound. In the future, we hope to address alternate bandit
algorithms such Thompson sampling, and feedback mod-
els such as node-level in Vaswani et al. (2015).
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Appendices

A. Proof of Theorem 1
Proof. Theorem 1 can be proved based on the definitions of monotonicity and submodularity. Note that from Assumption 1,
for any seed set S ∈ C, any seed node u ∈ S, and any target node v ∈ V , we have F ({u}, v) ≤ F (S, v), which implies
that

f(S, v, p∗) = max
u∈S

F ({u}, v) ≤ F (S, v),

hence
f(S, p∗) =

∑
v∈V

f(S, v, p∗) ≤
∑
v∈V

F (S, v) = F (S).

This proves the first part of Theorem 1.

We now prove the second part of the theorem. First, note that from the first part, we have

f(S̃, p∗) ≤ F (S̃) ≤ F (S∗),

where the first inequality follows from the first part of this theorem, and the second inequality follows from the definition
of S∗. Thus, we have ρ ≤ 1. To prove that ρ ≥ 1/K, we assume that S = {u1, u2, . . . , uK}, and define Sk =
{u1, u2, . . . , uk} for k = 1, 2, . . . ,K. Thus, for any S ⊆ V with |S| = K, we have

F (S) =F (S1) +

K−1∑
k=1

[F (Sk+1)− F (Sk)]

≤
K∑
k=1

F ({uk}) =

K∑
k=1

∑
v∈V

F ({uk}, v)

≤
∑
v∈V

K max
u∈S

F ({u}, v) = K
∑
v∈V

f(S, v, p∗) = Kf(S, p∗),

where the first inequality follows from the submodularity of F (·). Thus we have

F (S∗) ≤ Kf(S∗, p∗) ≤ Kf(S̃, p∗),

where the second inequality follows from the definition of S̃. This implies that ρ ≥ 1/K.

B. Proof of Theorem 2
We start by defining some useful notations. We use Ht to denote the “history” by the end of time t. For any node pair
(u, v) ∈ V × V and any time t, we define the upper confidence bound (UCB) Ut(u, v) and the lower confidence bound
(LCB) Lt(u, v) respectively as

Ut(u, v) = Proj[0,1]

(
〈θ̂u,t−1,xv〉+ c

√
xTv Σ−1

u,t−1xv

)
Lt(u, v) = Proj[0,1]

(
〈θ̂u,t−1,xv〉 − c

√
xTv Σ−1

u,t−1xv

)
(8)

Notice that Ut is the same as the UCB estimate p defined in Algorithm 1. Moreover, we define the “good event” F as

F =

{
|xTv (θ̂u,t−1 − θ∗u)| ≤ c

√
xTv Σ−1

u,t−1xv, ∀u, v ∈ V, ∀t ≤ T
}
, (9)

and the “bad event” F as the complement of F .
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B.1. Regret Decomposition

Recall that the realized scaled regret at time t is Rραt = F (S∗)− 1
ραF (St), thus we have

Rραt =F (S∗)− 1

ρα
F (St)

(a)
=

1

ρ
f(S̃, p∗)− 1

ρα
F (St)

(b)

≤ 1

ρ
f(S̃, p∗)− 1

ρα
f(St, p∗), (10)

where equality (a) follows from the definition of ρ (i.e. ρ is defined as ρ = f(S̃, p∗)/F (S∗)), and inequality (b) follows
from f(St, p∗) ≤ F (St) (see Theorem 1). Thus, we have

Rρα(T ) =E

[
T∑
t=1

Rραt

]

≤ 1

ρ
E

{
T∑
t=1

[
f(S̃, p∗)− f(St, p∗)/α

]}

=
P (F)

ρ
E

{
T∑
t=1

[
f(S̃, p∗)− f(St, p∗)/α

]∣∣∣∣∣F
}

+
P (F)

ρ
E

{
T∑
t=1

[
f(S̃, p∗)− f(St, p∗)/α

]∣∣∣∣∣F
}

≤ 1

ρ
E

{
T∑
t=1

[
f(S̃, p∗)− f(St, p∗)/α

]∣∣∣∣∣F
}

+
P (F)

ρ
nT, (11)

where the last inequality follows from the naive bounds P (F) ≤ 1 and f(S̃, p∗) − f(St, p∗)/α ≤ n. Notice that under
“good” event F , we have

Lt(u, v) ≤ p∗uv = xTv θ
∗
u ≤ Ut(u, v) (12)

for all node pair (u, v) and for all time t ≤ T . Thus, we have f(S, Lt) ≤ f(S, p∗) ≤ f(S, Ut) for all S and t ≤ T under
event F . So under event F , we have

f(St, Lt)
(a)

≤ f(St, p∗)
(b)

≤ f(S̃, p∗)
(c)

≤ f(S̃, Ut) ≤ max
S∈C

f(S, Ut)
(d)

≤ 1

α
f(St, Ut)

for all t ≤ T , where inequalities (a) and (c) follow from (12), inequality (b) follows from S̃ ∈ arg maxS∈C f(S, p∗), and
inequality (d) follows from the fact that ORACLE is an α-approximation algorithm. Specifically, the fact that ORACLE is an
α-approximation algorithm implies that f(St, Ut) ≥ αmaxS∈C f(S, Ut).

Consequently, under event F , we have

f(S̃, p∗)− 1

α
f(St, p∗) ≤

1

α
f(St, Ut)−

1

α
f(St, Lt)

=
1

α

∑
v∈V

[
max
u∈St

Ut(u, v)−max
u∈St

Lt(u, v)

]
≤ 1

α

∑
v∈V

∑
u∈St

[Ut(u, v)− Lt(u, v)]

≤
∑
v∈V

∑
u∈St

2c

α

√
xTv Σ−1

u,t−1xv. (13)

So we have

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

∣∣∣∣∣F
}

+
P (F)

ρ
nT. (14)

In the remainder of this section, we will provide a worst-case bound on
∑T
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv (see Ap-

pendix B.2) and a bound on the probability of “bad event” P (F) (see Appendix B.3).
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B.2. Worst-Case Bound on
∑T
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

Notice that
T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv =
∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv

For each u ∈ V , we define Ku =
∑T
t=1 1 [u ∈ St] as the number of times at which u is chosen as a source node, then we

have the following lemma:

Lemma 1. For all u ∈ V , we have

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

) .

Moreover, when X = I , we have

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) .

Proof. To simplify the exposition, we use Σt to denote Σu,t, and define zt,v =
√
xTv Σ−1

u,t−1xv for all t ≤ T and all v ∈ V .
Recall that

Σt = Σt−1 +
1 [u ∈ St]

σ2
XXT = Σt−1 +

1 [u ∈ St]
σ2

∑
v∈V

xvx
T
v .

Note that if u /∈ St, Σt = Σt−1. If u ∈ St, then for any v ∈ V , we have

det [Σt] ≥ det

[
Σt−1 +

1

σ2
xvx

T
v

]
= det

[
Σ

1
2
t−1

(
I +

1

σ2
Σ
− 1

2
t−1xvx

T
v Σ
− 1

2
t−1

)
Σ

1
2
t−1

]
= det [Σt−1] det

[
I +

1

σ2
Σ
− 1

2
t−1xvx

T
v Σ
− 1

2
t−1

]
= det [Σt−1]

(
1 +

1

σ2
xTv Σ−1

t−1xv

)
= det [Σt−1]

(
1 +

z2
t−1,v

σ2

)
.

Hence, we have

det [Σt]
n ≥ det [Σt−1]

n
∏
v∈V

(
1 +

z2
t−1,v

σ2

)
. (15)

Note that the above inequality holds for any X . However, if X = I , then all Σt’s are diagonal and we have

det [Σt] = det [Σt−1]
∏
v∈V

(
1 +

z2
t−1,v

σ2

)
. (16)

As we will show later, this leads to a tighter regret bound in the tabular (X = I) case.

Let’s continue our analysis for general X . The above results imply that

n log (det [Σt]) ≥ n log (det [Σt−1]) + 1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
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and hence

n log (det [ΣT ]) ≥n log (det [Σ0]) +

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)

=nd log(λ) +

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
. (17)

On the other hand, we have that

Tr [ΣT ] = Tr

[
Σ0 +

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V

xvx
T
v

]

= Tr [Σ0] +

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V

Tr
[
xvx

T
v

]
=λd+

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V
‖xv‖2 ≤ λd+

nKu

σ2
, (18)

where the last inequality follows from the assumption that ‖xv‖ ≤ 1 and the definition of Ku. From the trace-determinant
inequality, we have 1

d Tr [ΣT ] ≥ det [ΣT ]
1
d . Thus, we have

dn log

(
λ+

nKu

dσ2

)
≥ dn log

(
1

d
Tr [ΣT ]

)
≥ n log (det [ΣT ]) ≥ dn log(λ) +

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
.

That is
T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
≤ dn log

(
1 +

nKu

dλσ2

)
Notice that z2

t−1,v = xTv Σ−1
t−1xv ≤ xTv Σ−1

0 xv = ‖xv‖2
λ ≤ 1

λ . Moreover, for all y ∈ [0, 1/λ], we have log
(
1 + y

σ2

)
≥

λ log
(
1 + 1

λσ2

)
y based on the concavity of log(·). Thus, we have

λ log

(
1 +

1

λσ2

) T∑
t=1

1 (u ∈ St)
∑
v∈V

z2
t−1,v ≤ dn log

(
1 +

nKu

dλσ2

)
.

Finally, from Cauchy-Schwarz inequality, we have that

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√√√√ T∑
t=1

1 (u ∈ St)
∑
v∈V

z2
t−1,v.

Combining the above results, we have

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

) . (19)

This concludes the proof for general X . Based on (16), the analysis for the tabular (X = I) case is similar, and we omit
the detailed analysis. In the tabular case, we have

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) . (20)
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We now develop a worst-case bound. Notice that for general X , we have

∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
∑
u∈V

√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

)
(a)

≤ n

√
d log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) ∑
u∈V

√
Ku

(b)

≤ n

√
d log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) √n√∑
u∈V

Ku

(c)
=n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) , (21)

where inequality (a) follows from the naive bound Ku ≤ T , inequality (b) follows from Cauchy-Schwarz inequality, and
equality (c) follows from

∑
u∈V Ku = KT . Similarly, for the special case with X = I , we have

∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
∑
u∈V

√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) ≤ n
3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) . (22)

This concludes the derivation of a worst-case bound.

B.3. Bound on P
(
F
)

We now derive a bound on P
(
F
)

based on the “Self-Normalized Bound for Matrix-Valued Martingales” developed in The-
orem 3 (see Theorem 3). Before proceeding, we define Fu for all u ∈ V as

Fu =

{
|xTv (θ̂u,t−1 − θ∗u)| ≤ c

√
xTv Σ−1

u,t−1xv, ∀v ∈ V, ∀t ≤ T
}
, (23)

and the Fu as the complement of Fu. Note that by definition, F =
⋃
u∈V Fu. Hence, we first develop a bound on P

(
Fu
)
,

then we develop a bound on P
(
F
)

based on union bound.

Lemma 2. For all u ∈ V , all σ, λ > 0, all δ ∈ (0, 1), and all

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
+
√
λ‖θ∗u‖2

we have P
(
Fu
)
≤ δ.

Proof. To simplify the expositions, we omit the subscript u in this proof. For instance, we use θ∗, Σt, yt and bt to
respectively denote θ∗u, Σu,t, yu,t and bu,t. We also use Ht to denote the “history” by the end of time t, and hence
{Ht}∞t=0 is a filtration. Notice that Ut isHt−1-adaptive, and hence St and 1 [u ∈ St] are alsoHt−1-adaptive. We define

ηt =

{
yt −XT θ∗ if u ∈ St
0 otherwise ∈ <n and Xt =

{
X if u ∈ St
0 otherwise ∈ <d×n (24)

Note that Xt is Ht−1-adaptive, and ηt is Ht-adaptive. Moreover, ‖ηt‖∞ ≤ 1 always holds, and E [ηt|Ht−1] = 0.
To simplify the expositions, we further define yt = 0 for all t s.t. u /∈ St. Note that with this definition, we have
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ηt = yt −XT
t θ
∗ for all t. We further define

V t =nσ2Σt = nσ2λI + n

t∑
s=1

XsX
T
s

St =

t∑
s=1

Xsηs =

t∑
s=1

Xs

[
ys −XT

s θ
∗] = bt − σ2 [Σt − λI] θ∗ (25)

Thus, we have Σtθ̂t = σ−2bt = σ−2St + [Σt − λI]θ∗, which implies

θ̂t − θ∗ = Σ−1
t

[
σ−2St − λθ∗

]
. (26)

Consequently, for any v ∈ V , we have∣∣∣xTv (θ̂t − θ∗)∣∣∣ =
∣∣xTv Σ−1

t

[
σ−2St − λθ∗

]∣∣ ≤√xTv Σ−1
t xv‖σ−2St − λθ∗‖Σ−1

t

≤
√
xTv Σ−1

t xv

[
‖σ−2St‖Σ−1

t
+ ‖λθ∗‖Σ−1

t

]
, (27)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality follows from triangular
inequality. Note that ‖λθ∗‖Σ−1

t
= λ‖θ∗‖Σ−1

t
≤ λ‖θ∗‖Σ−1

0
=
√
λ‖θ∗‖2. On the other hand, since Σ−1

t = nσ2V
−1

t , we

have ‖σ−2St‖Σ−1
t

=
√
n
σ ‖St‖V −1

t
. Thus, we have

∣∣∣xTv (θ̂t − θ∗)∣∣∣ ≤√xTv Σ−1
t xv

[√
n

σ
‖St‖V −1

t
+
√
λ‖θ∗‖2

]
. (28)

From Theorem 3, we know with probability at least 1− δ, for all t ≤ T , we have

‖St‖2V −1
t

≤ 2 log

(
det
(
V t
)1/2

det (V )
−1/2

δ

)
≤ 2 log

(
det
(
V T
)1/2

det (V )
−1/2

δ

)
,

where V = nσ2λI . Note that from the trace-determinant inequality, we have

det
[
V T
] 1
d ≤

Tr
[
V T
]

d
≤ nσ2λd+ n2T

d
,

where the last inequality follows from Tr
[
XtX

T
t

]
≤ n for all t. Note that det [V ] =

[
nσ2λ

]d
, with a little bit algebra, we

have

‖St‖V −1
t
≤

√
d log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
∀t ≤ T

with probability at least 1− δ. Thus, if

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
+
√
λ‖θ∗‖2,

then Fu holds with probability at least 1− δ. This concludes the proof of this lemma.

Hence, from the union bound, we have the following lemma:

Lemma 3. For all σ, λ > 0, all δ ∈ (0, 1), and all

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(n
δ

)
+
√
λmax
u∈V
‖θ∗u‖2 (29)
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we have P
(
F
)
≤ δ.

Proof. This lemma follows directly from the union bound. Note that for all c satisfying Equation 29, we have P
(
Fu
)
≤ δ

n

for all u ∈ V , which implies P
(
F
)

= P
(⋃

u∈V Fu
)
≤
∑
u∈V P

(
Fu
)
≤ δ.

B.4. Conclude the Proof

Note that if we choose

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log (n2T ) +

√
λmax
u∈V
‖θ∗u‖2, (30)

we have P
(
F
)
≤ 1

nT . Hence for general X , we have

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

∣∣∣∣∣F
}

+
1

ρ

≤ 2c

ρα
n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (31)

Note that with c = 1
σ

√
dn log

(
1 + nT

σ2λd

)
+ 2 log (n2T ) +

√
λmaxu∈V ‖θ∗u‖2, this regret bound is Õ

(
n2d
√
KT

ρα

)
. Simi-

larly, for the special case X = I , we have

Rρα(T ) ≤ 2c

ρα
n

3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (32)

Note that with c = n
σ

√
log
(
1 + T

σ2λ

)
+ 2 log (n2T ) +

√
λmaxu∈V ‖θ∗u‖2 ≤ n

σ

√
log
(
1 + T

σ2λ

)
+ 2 log (n2T ) +

√
λn,

this regret bound is Õ
(
n

5
2
√
KT

ρα

)
.

C. Self-Normalized Bound for Matrix-Valued Martingales
In this section, we derive a “self-normalized bound” for matrix-valued Martingales. This result is a natural generalization
of Theorem 1 in Abbasi-Yadkori et al. (2011).

Theorem 3. (Self-Normalized Bound for Matrix-Valued Martingales) Let {Ht}∞t=0 be a filtration, and {ηt}∞t=1 be a <K-
valued Martingale difference sequence with respect to {Ht}∞t=0. Specifically, for all t, ηt isHt-measurable and satisfies (1)
E [ηt|Ht−1] = 0 and (2) ‖ηt‖∞ ≤ 1 with probability 1 conditioning on Ht−1. Let {Xt}∞t=1 be a <d×K-valued stochastic
process such that Xt isHt−1 measurable. Assume that V ∈ <d×d is a positive-definite matrix. For any t ≥ 0, define

V t = V +K

t∑
s=1

XsX
T
s St =

t∑
s=1

Xsηs. (33)

Then, for any δ > 0, with probability at least 1− δ, we have

‖St‖2V −1
t

≤ 2 log

(
det
(
V t
)1/2

det (V )
−1/2

δ

)
∀t ≥ 0. (34)

We first define some useful notations. Similarly as Abbasi-Yadkori et al. (2011), for any λ ∈ <d and any t, we define Dλ
t

as

Dλ
t = exp

(
λTXtηt −

K

2
‖XT

t λ‖22
)
, (35)

and Mλ
t =

∏t
s=1D

λ
s with convention Mλ

0 = 1. Note that both Dλ
t and Mλ

t are Ht-measurable, and
{
Mλ
t

}∞
t=0

is a
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supermartingale with respect to the filtration {Ht}∞t=0. To see it, notice that conditioning onHt−1, we have

λTXtηt = (XT
t λ)T ηt ≤ ‖XT

t λ‖1‖ηt‖∞ ≤ ‖XT
t λ‖1 ≤

√
K‖XT

t λ‖2

with probability 1. This implies that λTXtηt is conditionally
√
K‖XT

t λ‖2-subGaussian. Thus, we have

E
[
Dλ
t

∣∣Ht−1

]
= E

[
exp

(
λTXtηt

)∣∣Ht−1

]
exp

(
−K

2
‖XT

t λ‖22
)
≤ exp

(
K

2
‖XT

t λ‖22 −
K

2
‖XT

t λ‖22
)

= 1.

Thus,
E
[
Mλ
t

∣∣Ht−1

]
= Mλ

t−1E
[
Dλ
t

∣∣Ht−1

]
≤Mλ

t−1.

So
{
Mλ
t

}∞
t=0

is a supermartingale with respect to the filtration {Ht}∞t=0. Then, following Lemma 8 of Abbasi-Yadkori
et al. (2011), we have the following lemma:

Lemma 4. Let τ be a stopping time with respect to the filtration {Ht}∞t=0. Then for any λ ∈ <d, Mλ
τ is almost surely

well-defined and E
[
Mλ
τ

]
≤ 1.

Proof. First, we argue that Mλ
τ is almost surely well-defined. By Doob’s convergence theorem for nonnegative super-

martingales, Mλ
∞ = limt→∞Mλ

t is almost surely well-defined. Hence Mλ
τ is indeed well-defined independent of τ <∞

or not. Next, we show that E
[
Mλ
τ

]
≤ 1. Let Qλt = Mλ

min{τ,t} be a stopped version of
{
Mλ
t

}∞
t=1

. By Fatou’s Lemma, we
have E

[
Mλ
τ

]
= E

[
lim inft→∞Qλt

]
≤ lim inft→∞ E

[
Qλt
]
≤ 1.

The following results follow from Lemma 9 of Abbasi-Yadkori et al. (2011), which uses the “method of mixtures” tech-
nique. Let Λ be a Gaussian random vector in <d with mean 0 and covariance matrix V −1, and independent of all the other
random variables. Let H∞ be the tail σ-algebra of the filtration, i.e. the σ-algebra generated by the union of all events
in the filtration. We further define Mt = E

[
MΛ
t

∣∣H∞] for all t = 0, 1, . . . and t = ∞. Note that M∞ is almost surely
well-defined since Mλ

∞ is almost surely well-defined.

Let τ be a stopping time with respect to the filtration {Ht}∞t=0. Note that Mτ is almost surely well-defined since M∞ is
almost surely well-defined. Since E

[
Mλ
τ

]
≤ 1 from Lemma 4, we have

E [Mτ ] = E
[
MΛ
τ

]
= E

[
E
[
MΛ
τ

∣∣Λ]] ≤ 1.

The following lemma follows directly from the proof for Lemma 9 of Abbasi-Yadkori et al. (2011), which can be derived
by algebra. The proof is omitted here.

Lemma 5. For all finite t = 0, 1, . . ., we have

Mt =

(
det(V )

det(V t)

)1/2

exp

(
1

2
‖St‖V −1

t

)
. (36)

Note that Lemma 5 implies that for finite t, ‖St‖2
V

−1
t

> 2 log

(
det(V t)

1/2
det(V )−1/2

δ

)
and Mt >

1
δ are equivalent.

Consequently, for any stopping time τ , the event{
τ <∞, ‖Sτ‖2V −1

τ

> 2 log

(
det
(
V τ
)1/2

det (V )
−1/2

δ

)}

is equivalent to
{
τ <∞, Mτ >

1
δ

}
. Finally, we prove Theorem 3:

Proof. We define the “bad event” at time t = 0, 1, . . . as:

Bt(δ) =

{
‖St‖2V −1

t

> 2 log

(
det
(
V t
)1/2

det (V )
−1/2

δ

)}
.
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We are interested in bounding the probability of the “bad event”
⋃∞
t=1Bt(δ). Let Ω denote the sample space, for any

outcome ω ∈ Ω, we define τ(ω) = min{t ≥ 0 : ω ∈ Bt(δ)}, with the convention that min ∅ = +∞. Thus, τ
is a stopping time. Notice that

⋃∞
t=1Bt(δ) = {τ < ∞}. Moreover, if τ < ∞, then by definition of τ , we have

‖Sτ‖2
V

−1
τ

> 2 log

(
det(V τ)

1/2
det(V )−1/2

δ

)
, which is equivalent to Mτ >

1
δ as discussed above. Thus we have

P

( ∞⋃
t=1

Bt(δ)

)
(a)
= P (τ <∞)

(b)
= P

(
‖Sτ‖2V −1

τ

> 2 log

(
det
(
V τ
)1/2

det (V )
−1/2

δ

)
, τ <∞

)
(c)
= P (Mτ > 1/δ, τ <∞)

≤P (Mτ > 1/δ)

(d)

≤ δ,

where equalities (a) and (b) follow from the definition of τ , equality (c) follows from Lemma 5, and inequality (d) follows
from Markov’s inequality. This concludes the proof for Theorem 3.

We conclude this section by briefly discussing a special case. If for any t, the elements of ηt are statistically independent
conditioning on Ht−1, then we can prove a variant of Theorem 3: with V t = V +

∑t
s=1XsX

T
s and St =

∑t
s=1Xsηs,

Equation 34 holds with probability at least 1− δ. To see it, notice that in this case

E
[
exp

(
λTXtηt

)∣∣Ht−1

]
=E

[
K∏
k=1

exp
(
(XT

t λ)(k)ηt(k)
)∣∣∣∣∣Ht−1

]
(a)
=

K∏
k=1

E
[
exp

(
(XT

t λ)(k)ηt(k)
)∣∣Ht−1

]
(b)

≤
K∏
k=1

exp

(
(XT

t λ)(k)2

2

)
= exp

(∥∥XT
t λ
∥∥2

2

)
, (37)

where (k) denote the k-th element of the vector. Note that the equality (a) follows from the conditional indepen-
dence of the elements in ηt, and inequality (b) follows from |ηt(k)| ≤ 1 for all t and k. Thus, if we redefine
Dλ
t = exp

(
λTXtηt − 1

2‖X
T
t λ‖22

)
, and Mλ

t =
∏t
s=1D

λ
s , we can prove that {Mλ

t }t is a supermartingale. Consequently,
using similar analysis techniques, we can prove the variant of Theorem 3 discussed in this paragraph.

D. Laplacian Regularization
As explained in section 7, enforcing Laplacian regularization leads to the following optimization problem:

θ̂t = arg min
θ

[

t∑
j=1

∑
u∈St

(yu,j − θuX)2 + λ2

∑
(u1,u2)∈E

||θu1 − θu2 ||22]

Here, the first term is the data fitting term, whereas the second term is the Laplacian regularization terms which enforces
smoothness in the source node estimates. This can optimization problem can be re-written as follows:

θ̂t = arg min
θ

[ t∑
j=1

∑
u∈St

(yu,j − θuX)2 + λ2θ
T (L⊗ Id)θ

]
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Here, θ ∈ <dn is the concatenation of the n d-dimensional θu vectors and A ⊗ B refers to the Kronecker product of
matrices A and B. Setting the gradient of equation 38 to zero results in solving the following linear system:

[XXT ⊗ In + λ2L⊗ Id]θ̂t = bt (38)

Here bt corresponds to the concatenation of the n d-dimensional vectors bu,t. This is the Sylvester equation and there exist
sophisticated methods of solving it. For simplicity, we focus on the special case when the features are derived from the
Laplacian eigenvectors (Section 7).

Let βt be a diagonal matrix such that βtu, u refers to the number of times node u has been selected as the source. Since the
Laplacian eigenvectors are orthogonal, when using Laplacian features, XXT ⊗ In = β⊗ Id. We thus obtain the following
system:

[(β + λ2L)⊗ Id]θ̂t = bt (39)

Note that the matrix (β + λ2L) and thus (β + λ2L) ⊗ Id is positive semi-definite and can be solved using conjugate
gradient (Hestenes & Stiefel, 1952).

For conjugate gradient, the most expensive operation is the matrix-vector multiplication (β + λ2L)⊗ Id]v for an arbitrary
vector v. Let vec be an operation that takes a d× n matrix and stacks it column-wise converting it into a dn-dimensional
vector. Let V refer to the d × n matrix obtained by partitioning the vector v into columns of V . Given this notation, we
use the property that (BT ⊗ A)v = vec(AV B). This implies that the matrix-vector multiplication can then be rewritten
as follows:

(β + λ2L)⊗ Idv = vec(V
(
β + λ2L

T
)
) (40)

Since β is a diagonal matrix, V β is an O(dn) operation, whereas V LT is an O(dm) operation since there are only m
non-zeros (corresponding to edges) in the Laplacian matrix. Hence the complexity of computing the mean θ̂t is an order
O((d(m + n))κ) where κ is the number of conjugate gradient iterations. In our experiments, similar to (Vaswani et al.,
2017), we warm-start with the solution at the previous round and find that κ = 5 is enough for convergence.

Unlike independent estimation where we update the UCB estimates for only the selected nodes, when using Laplacian
regularization, the upper confidence values for each reachability probability need to be recomputed in each round. Once
we have an estimate of θ, calculating the mean estimates for the reachabilities for all u, v requires O(dn2) computation.
This is the most expensive step when using Laplacian regularization.

We now describe how to compute the confidence intervals. For this, letD denote the diagonal of (β + λ2L)−1. The UCB
value zu,v,t can then be computed as:

zu,v,t =
√
Du||xv||2 (41)

The `2 norms for all the target nodes v can be pre-computed. If we maintain the D vector, the confidence intervals for all
pairs can be computed in O(n2) time.

Note thatDt requires O(n) storage and can be updated across rounds in O(K) time using the Sherman Morrison formula.
Specifically, ifDu,t refers to the uth element in the vectorDt, then

Du,t+1 =


Du,t

(1 +Du,t)
, ifu ∈ St

Du,t, otherwise

Hence, the total complexity of implementing Laplacian regularization is O(dn2). We need to store the θ vector, the
Laplacian and the diagonal vectors β andD. Hence, the total memory requirement is O(dn+m).


