
PID Accelerated Value Iteration Algorithm

Amir-massoud Farahmand 1 2 Mohammad Ghavamzadeh 3

Abstract
The convergence rate of Value Iteration (VI), a
fundamental procedure in dynamic programming
and reinforcement learning, for solving MDPs can
be slow when the discount factor is close to one.
We propose modifications to VI in order to poten-
tially accelerate its convergence behaviour. The
key insight is the realization that the evolution of
the value function approximations (Vk)k≥0 in the
VI procedure can be seen as a dynamical system.
This opens up the possibility of using techniques
from control theory to modify, and potentially
accelerate, this dynamics. We present such mod-
ifications based on simple controllers, such as
PD (Proportional-Derivative), PI (Proportional-
Integral), and PID. We present the error dynamics
of these variants of VI, and provably (for certain
classes of MDPs) and empirically (for more gen-
eral classes) show that the convergence rate can
be significantly improved. We also propose a gain
adaptation mechanism in order to automatically
select the controller gains, and empirically show
the effectiveness of this procedure.

1. Introduction
Value Iteration (VI) is a key algorithm for solving Dynamic
Programming (DP) problems, and its sampled-based vari-
ants are the basis for many Reinforcement Learning (RL)
algorithms, e.g., TD-like sample-based asynchronous up-
date algorithms (Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 2019) and Fitted Value Iteration procedures (Ernst
et al., 2005; Munos & Szepesvári, 2008; Farahmand et al.,
2009; Mnih et al., 2015; Tosatto et al., 2017; Chen & Jiang,
2019). VI finds the fixed point of the Bellman Tπ or the
Bellman optimality T ∗ operators, which are the value or
action-value functions of policy π or the optimal policy,
by repeatedly applying the Bellman operator to the current

1Vector Institute, Toronto, Canada 2Department of Computer
Science, University of Toronto, Canada 3Google Research, Moun-
tain View, California, USA. Correspondence to: Amir-massoud
Farahmand <farahmand@vectorinstitute.ai>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

approximation of the value or action-value functions, i.e.,
Vk+1 ← TπVk or Qk+1 ← T ∗Qk. For discounted MDPs,
the Bellman operator is a contraction, and standard fixed-
point iteration results, such as Banach fixed-point theorem,
guarantee the convergence of the sequence generated by VI
to the true value function (either the optimal one or the one
of a given policy, depending on the choice of the Bellman
operator). The convergence of VI to the value function de-
pends on the discount factor γ < 1 and is of O(γk). This is
slow when γ ≈ 1. The goal of this research is to investigate
whether one might accelerate the convergence of VI, i.e.,
developing a procedure that converges to the value function
faster than the conventional VI.

This work brings tools from control theory to accelerate VI.
The goal of control theory, generally speaking, is to design
a controller for a given dynamical system in order to make it
behave in a certain desired way. Depending on the problem,
the desired behaviour can be convergence to a set-point
with a certain speed or robustness to disturbances. Casting
the VI procedure as a dynamical system, we may wonder
whether we can design a controller to modify its dynamics,
and perhaps make it faster or more robust to disturbances.

This paper investigates this question in some details. We
establish a connection between VI and dynamical systems
in Section 2. This connection allows us to take the novel
perspective of using controllers to modify, and in partic-
ular to accelerate, the dynamics of VI. We introduce ac-
celerated variants of VI by coupling its dynamics with PD
(Proportional-Derivative), PI (Proportional-Integral), and
PID controllers (Section 3). These controllers are among
the simplest and yet most ubiquitous and effective classes
of controllers in the arsenal of control theory and engineer-
ing. We call the resulting algorithms accelerated VI, and
refer to them by PD/PI/PID VI. As an example of such
a controller, the update rule of the (simplified) PD VI is
Vk+1 = TπVk + κd (Vk − Vk−1). The derivative term
(Vk − Vk−1) measures the rate of change in the value func-
tion. We describe the error dynamics of these accelerated
variants of VI for the policy evaluation problem (when the
Bellman operator is Tπ) in Section 4. We briefly describe
the problem of choosing the controller gains in the same sec-
tion, and describe four different approaches in more details
in Appendix D. Specifically, we provide an analytical solu-
tion for the class of reversible Markov chains in Appendix E.

PID Accelerated Value Iteration Algorithm

We propose a gain adaptation/meta-learning procedure to
automatically select the controller gains in Section 5. We
empirically study the behaviour of these variants on some
simple problems, and observe that they can be effective in
accelerating the convergence of VI (Section 6). Due to the
space limitation, we refer to appendices for more detailed
analyses and studies.

2. Value Iteration as a Dynamical System
We show how the VI algorithm can be represented as a dy-
namical system. This prepares us for the next section when
we use PID controller in order to change VI’s dynamics.
Before that, let us briefly introduce our notations.

We consider a discounted Markov Decision Process (MDP)
(X ,A,R,P, γ) (Bertsekas & Tsitsiklis, 1996; Szepesvári,
2010; Sutton & Barto, 2019). We defer formal definitions
to Appendix A. We only mention that for a policy π, we
denote by Pπ its transition kernel, by rπ : X → R the
expected value of its reward distribution, and by V π and Qπ

its state-value and action-value functions. We also represent
the optimal state and action-value functions by V ∗ and Q∗.
Finally, we define the Bellman operator Tπ : B(X) →
B(X) for policy π and the Bellman optimality operator
T ∗ : B(X ×A)→ B(X ×A) as

(TπV)(x) , rπ(x) + γ

∫
Pπ(dy|x)V (y),

(T ∗Q)(x, a) , r(x, a) + γ

∫
P(dy|x, a) max

a′∈A
Q(y, a′).

The value function V π and optimal action-value functionQ∗

are the fixed points of the operators Tπ and T ∗, respectively.

We start our discussion by describing the VI procedure for
the policy evaluation (PE) problem, which uses the Bellman
operator of a policy π (i.e., Tπ), instead of the problem of
finding the optimal value function (simply referred to as
control), which uses the Bellman optimality operator T ∗.
For the PE problem, the involved dynamical systems are
linear, and the discussion of how to the design controllers
is easier and more intuitive. The methods, however, work
in the control case too, where the operator T ∗ and the in-
volved dynamical systems are nonlinear. Algorithmically, it
does not matter whether the underlying Bellman operator
is linear or not. We also note that even though the devel-
oped algorithms work for general state and action spaces
(computational issues aside), we focus on finite state space
problems in the analysis of the error dynamics in Section 4,
as it allows us to use tools from linear algebra. In this case,
Pπ is a d × d matrix with d = |X | being the number of
states.

Consider the VI procedure for policy evaluation:

Vk+1 = TπVk, (1)

which is a shorthand notation for Vk+1(x) =
(TπVk)(x), ∀x ∈ X . Let us define ek = Vk − V π

as the error between the value function approximation Vk
and true value function V π. The error dynamics can be
written as

ek+1 = Vk+1 − V π = TπVk − V π = TπVk − TπV π

= γPπ(Vk − V π) = γPπek. (2)

The behaviour of this dynamics is related to the eigenvalues
of γPπ. Since Pπ is a stochastic matrix, it has one eigen-
value equal to 1, and the others are all within the interior of
the unit circle. Hence, the largest eigenvalue of γPπ has a
magnitude of γ. As γ < 1, this ensures the (exponential)
stability of this error dynamical system, which behaves as
c1γ

k, for a constant c1 > 0.

With some extra conditions, we can say more about the
location of eigenvalues than merely being within the unit
circle. If the Markov chain induced by Pπ is reversible,
that is, its stationary distribution ρπ satisfies the detailed
balance equation

ρπ(x)Pπ(y|x) = ρπ(y)Pπ(x|y), (3)

for all x, y ∈ X , then all eigenvalues are real.

Let us study the error dynamics (2) more closely. Assume
that Pπ is diagonalizable (having distinct eigenvalues is a
sufficient, but not necessary, condition for diagonalizability).
In this case, there exists a d × d similarity transformation
S such that Pπ = SΛS−1, with Λ = diag(λ1, λ2, . . . , λd).
We denote by εk = S−1ek, the error in the transformed
coordinate system. By multiplying both sides of (2) from
left by S−1, we obtain

S−1ek+1 = γS−1Pπek = γS−1SΛS−1ek

=⇒ εk+1 = γΛεk. (4)

Thus, the dynamics of the i-th component εk(i) of the se-
quence (εk)k≥0 can be written as εk+1(i) = γλiεk(i), for
i = 1, . . . , d. As a result, εk(i) = (γλi)

kε0(i), or more
succinctly εk = γkΛkε0. Therefore, the error dynamics is

ek = S(γΛ)kS−1e0.

Since the eigenvalue with the largest magnitude is λ1 = 1,
the behaviour of the slowest term is of O(γk), which deter-
mines the dominant behaviour of the VI procedure. Note
that if we have complex eigenvalues in Λ, which always
come in conjugate pairs, the error ek of the VI procedure
might show oscillatory, yet convergent, behaviour.

Is it possible to modify this error dynamics, so that we
obtain a faster convergence rate? Changing the behaviour
of a dynamical system is an important topic in control theory.
Depending on whether the underlying dynamics is linear or

PID Accelerated Value Iteration Algorithm

nonlinear, or whether it is known or unknown, etc., various
approaches have been developed, see e.g., Dorf & Bishop
(2008); Khalil (2001); Aström & Wittenmark (1994); Krstic
et al. (1995); Burl (1998); Bertsekas & Shreve (1978); Zhou
& Doyle (1998); Skogestad & Postlethwaite (2005). In this
work, we would like to study the feasibility of using these
techniques for the purpose of accelerating the dynamical
system of obtaining the value function. Introducing some
simple methods for this purpose is the topic of the next
section.

3. PID-Like Controllers for Accelerating VI
PD, PI, and PID (Proportional-Integral-Derivative) are
among the simplest, and yet most practical controllers in
control engineering (Dorf & Bishop, 2008; Ogata, 2010).
They can be used to change the dynamics of a plant (i.e.,
the system to be controlled) to behave in a desired way.
Objectives such as stabilizing the dynamics, improving the
transient behaviour, or improving the robustness to external
disturbances are commonly achieved using these controllers.
They have been used to control both linear and nonlinear
dynamical systems. Even though they are not necessarily
optimal controllers for a given plant, their ease of use and
robustness have made them the controller of choice in many
applications. We now show how these controllers can be
used for changing the dynamics of the VI algorithm.

P Controller. To see how VI can be viewed as a Propor-
tional feedback controller, consider the plant to be a simple
integrator with uk being its input,

Vk+1 = Vk + uk. (5)

As the desired value (known as reference signal in control
engineering parlance) of this system is V π, the feedback
error is ek = Vk − V π. The controller is the transforma-
tion that takes ek and generates uk. A proportional linear
controller generates uk by multiplying ek by a matrix Kp.
Let us choose the matrix of the form Kp = −κp(I− γPπ),
with κp being a real number. Therefore,

uk = −κp(I− γPπ)ek. (6)

With this choice of controller, the dynamics of the feedback
controlled system would be

Vk+1 = Vk + uk = Vk − κp(I− γPπ)(Vk − V π).

This can be simplified, by adding and subtracting rπ and
some simple algebraic manipulations, to

Vk+1 = (1− κp)Vk − κp
(
− V π + (rπ + γPπV π)

− (rπ + γPπVk)
)

= (1− κp)Vk − κp (−V π + TπV π − TπVk)

= (1− κp)Vk + κpT
πVk, (7)

where we used V π = TπV π in the last step. With the choice
of κp = 1, this proportional controller for the specified plant
is the same as the conventional VI (1).1

The control signal generated by this particular controller (6)
is closely related to the Bellman residual. Recall that the
Bellman residual of a value function V is BR(V) = TπV −
V . Since V π = TπV π and e = V − V π , we may write

BR(V) = TπV − V = (TπV − V π)− (V − V π)

= (TπV − TπV π)− (V − V π)

= γPπe− e = −(I− γPπ)e. (8)

So the dynamics of the P variant of VI (7) can be written as

Vk+1 = Vk + κpBR(Vk). (9)

Comparing with (5), we see that the P variant of VI is a
simple integrator with a control signal uk that is proportional
to the Bellman residual.

We now introduce the PD, PI, and PID variants of VI.

PD Controller. We start with a simplified PD variant.
Given a scalar gain κd, we define it as

Vk+1 = TπVk + κd (Vk − Vk−1) . (10)

The term (Vk − Vk−1) is the derivative term of a PD con-
troller.2 The role of the derivative term can be thought of
as approximating the value function Vk+1 using a linear
extrapolation based on the most recent values Vk and Vk−1.
When the change between Vk and Vk−1 is large, this term
encourages a large change to Vk+1.

More generally, we can allow the P term to have a gain κp
other than 1, and instead of using a scalar gain κd, we can
use a matrix gain Kd ∈ Rd×d. This leads to

Vk+1 = (1−κp)Vk + κpT
πVk +Kd (Vk − Vk−1) . (11)

With the choice of Kd = κdI and κp = 1, we retrieve (10).
Note that adding a derivative term does not change the fixed
point of the Bellman operator, as at the fixed point we have
V π = (1− κp)V π + κpT

πV π +Kd(V
π − V π) = TπV π .

The addition of the derivative term, however, can change
the convergence property to the fixed point. The goal is to
find the controller gains to accelerate this convergence. We
study the dynamics in Section 4.

PI Controller. The PI controller is defined as the following
coupled equations:

zk+1 = βzk + αBR(Vk),

Vk+1 = TπVk +KI [βzk + αBR(Vk)] ,
(12)

1This iterative procedure is known as the Krasnoselskii iteration
in the fixed-point iteration literature (Berinde, 2007). It is reduced
to the Picard iteration for κp = 1 of the conventional VI.

2It is technically a finite difference and not a derivative. Yet, it
is common to call it a derivative term.

PID Accelerated Value Iteration Algorithm

where α, β are scalars and KI is a matrix with an appropri-
ate size. When we use a scalar integrator gain κI , we replace
KI with κI . Here we present the special case with κp = 1,
but generalization is the same as before (and we show a
more general PID case soon). The variable zk is the expo-
nentially weighted average of the Bellman residuals BR(Vi),
for i ≤ k. From the filtering theory perspective, it is an auto-
regressive filter that performs low-pass filtering over the
sequence of Bellman residuals (as long as |β| < 1). The
additional integrator term KI [βzk + αBR(Vk)] = KIzk+1

adds this weighted average of the past Bellman residuals to
the current approximation of the value function. This is sim-
ilar to the momentum term in SGD, with a difference that
instead of gradients, we are concerned about the Bellman
residuals.3 Note that (z, V) = (0, V π) is the fixed point of
this modified dynamics. So as long as this new dynamics
is stable, its Vk converges to the desired value function V π .
The dynamics depends on the choice of the controller gains.
We will study it in Section 4.

PID Controller. Finally, the PID variant would be

zk+1 =βzt + αBR(Vk),

Vk+1 =(1−Kp)Vk +KpT
πVk +KI [βzk + αBR(Vk)] +

Kd(Vk − Vk−1). (13)

Control Case. The accelerated VI for control is essentially
the same. We only use the action-value function Q instead
of V (though nothing prevents us from using V). The main
change is the use of the Bellman optimality operator T ∗

instead of the Bellman operator Tπ. The definition of the
Bellman residual would consequently change to BR∗(Q) =
T ∗Q−Q. The PID accelerated VI for control is then

zk+1 =βzt + αBR∗(Qk),

Qk+1 =(1−Kp)Qk +KpT
∗Qk +KI [βzk + αBR∗(Qk)]

+Kd(Qk −Qk−1). (14)

Notice that in this case the dimension of z is the same as
Q, i.e., z : X × A → R. The control variants of PD and
PI VI algorithms are similar too. We briefly compare these
variations with a few other algorithms in Section 7, and
postpone the detailed comparison to Appendix G.

4. The Error Dynamics
We first present Proposition 1, which describes the dynamics
of error ek = Vk − V π in PID VI, similar to what we have
for the conventional VI in (2). Additional results, including
the dynamics of PI and PD VI, are reported in Appendix B.

3One may wonder why we did not define the integrator based
on the value errors ek = Vk − V π , and had zk+1 = βzt + αek
instead. The reason is that we cannot compute ek because V π is
not known before solving the problem. The Bellman residual plays
the role of a proxy for the value error.

We then briefly describe several ways the dynamics can be
modified, paving our way for the gain adaptation method
described in Section 5. The results of this section and the
aforementioned appendix are for policy evaluation with a
finite state space. We discuss the necessary changes needed
to deal with the control problem (using T ∗) in Appendix C.

Proposition 1 (Error Dynamics of PID VI). Let ek = Vk −
V π and the integrator’s state be zk. The dynamics of the
PID controller with gains Kp,KI ,Kd is ek+1

ek
zk+1

 = APID

 ek
ek−1

zk

 , (15)

withAPID ,

[
(I−Kp)+γKPPπ+αKI(γPπ−I)+Kd −Kd βKI

I 0 0
α(γPπ−I) 0 βI

]
.

This result can be presented in a simpler and more intu-
itive form, if we only consider scalar gains and assume that
Pπ is diagonalizable. We postpone reporting the result to
Appendix B. Just as an example, we can show that the eigen-
values of the PD VI are located at the roots of the polynomial∏d
i=1

[
µ2 − (1 + κd − κp(1− γλi))µ+ κd

]
(Corollary 5

in Appendix B).

The convergence behaviour of the PD, PI, and PID variants
of VI for PE is completely specified by the location of the
eigenvalues of the error dynamics matrices APD, API, and
APID. The dominant behaviour depends on their spectral
radius ρ(A), the eigenvalue with the largest modulus. The
dynamics is convergent when ρ < 1, and is accelerated com-
pared to the conventional VI, if ρ < γ. Whenever conver-
gent, the smaller the value of ρ is, the faster the rate would
be. When (κp, κI , κd) = (1, 0, 0) and (α, β) = (0, 0) (for
PID), we retrieve the original VI dynamics. The same is
true for the PD and PI variants, with obvious modifications.
So by falling back on the default parameters, these methods
can be at least as fast the conventional VI.

As the eigenvalues are continuous functions of the elements
of a matrix, changing the controller gains leads to a continu-
ous change of the spectral radius, hence the possibility of
acceleration. The spectral radius, however, is a complicated
function of a matrix, so a simple equation for an arbitrary
Pπ and controller gains does not exist. A natural question is
then: How should one choose the gains in order to achieve
the intended acceleration?

We suggest four possibilities: (i) consider them as hyper-
parameters to be adjusted through a model selection pro-
cedure; (ii) formulate the controller design problem as an
optimization problem; (iii) analytically find a set of gains
that accelerate a subset of MDPs, without the exact knowl-
edge of the MDP itself; and finally, (iv) adapt gains through-
out the accelerated VI procedure. We discuss (i), (ii), and
(iii) in more details in Appendix D. We only briefly note

PID Accelerated Value Iteration Algorithm

that (ii) may not be feasible for large MDPs, especially
if our ultimate goal is to extend these methods to the RL
setting. Option (iii) is possible if we make some extra as-
sumptions. One such assumption is the reversibility of the
Markov chain induced by the policy. With that assumption,
we can analytically find the gains for PD VI and show that if
we choose κ∗p = 2

1+
√

1−γ2
and κ∗d = (

√
1+γ−

√
1−γ√

1+γ+
√

1−γ)2, we

get the effective rate of

γPD =

√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ
.

This is smaller than γ for γ < 1, showing that the procedure
is accelerated (Proposition 6 in Appendix E). We note that
the class of reversible Markov chains is limited.

We focus on (iv), the gain adaptation approach, in the next
section, which seems to be the most promising because it is
not restricted to a subset of MDPs, can adapt to the problem
in hand, and is feasible for large MDPs. It also appears to
be extendable to the RL setting.
Remark 1. For the control case, the error dynamics has
the same form as in Proposition 1, but with a time-varying
APID matrix. In that case, the spectral radius does not de-
termine the stability. Instead, we can use the joint spectral
radius (Jungers, 2009). See Appendix C for more discus-
sions.

5. Gain Adaptation
We describe a method to adaptively tune the controller gains
(κp, κI , κd) throughout the iterations of an accelerated VI
procedure. Our approach is based on computing the gradi-
ent of an appropriately-defined loss function w.r.t. the gains,
and updating them based on the gradient. The idea has
conceptual similarities to the learning rate adaptation mech-
anisms, such as Incremental Delta-Bar-Delta (IDBD) (Sut-
ton, 1992; Almeida et al., 1999), stochastic meta-descent
(SMD) (Schraudolph, 1999; Mahmood et al., 2012), and
hyper-gradient descent (Baydin et al., 2018).

To define a gradient-based gain adaptation algorithm, we
need to specify a loss function. An example would be the
norm of the error ek = V π − Vk (or ek = Q∗ − Qk for
control) at the next iteration, i.e., at iteration k − 1, we
compute the gradient of ‖ek‖22 w.r.t. the controller gains.4

This approach, however, is not practical: the errors ek’s
cannot be computed, as we do not know V π or Q∗. Thus,
we use a surrogate loss function that is easy to compute.

We choose the Bellman errors ‖TπVk − Vk‖22 (PE) or
‖T ∗Qk −Qk‖22 (control) as the surrogate loss functions.

4More generally, we can unroll the accelerated algorithm for
T ≥ 1 iterations, and back-propagate the gradient of ‖ek+T−1‖22
w.r.t. the parameters. For simplicity of exposition, we do not
describe this in more detail here.

These quantities can be computed given the value function,
Vk orQk, and the Bellman operator, Tπ or T ∗. The Bellman
error is a reasonable surrogate because having a zero Bell-
man error implies having a zero error in approximating the
value function. We can also quantify the relation between
them more precisely. For example, if the error is measured
according to the supremum norm (and not the `2-norm as
here), we have ‖V − V π‖∞ ≤

‖TπV−V ‖∞
1−γ (Williams &

Baird, 1993). For the `2-norm, we have similar results, e.g.,
Theorem 5.3 of Munos (2007) for the Bellman optimality
error or Proposition 7 in Appendix F.1 for the Bellman error
in the PE case. Therefore, we define the following loss
functions for the PE and control cases:

JBE(k) =
1

2
‖TπVk − Vk‖22 =

1

2
‖BR(Vk)‖22 , (16)

J∗BE(k) =
1

2
‖T ∗Qk −Qk‖22 =

1

2
‖BR∗(Qk)‖22 . (17)

For the control case, we could also define the loss based
on BR∗(V) = T ∗V − V . The gradient of JBE(k) w.r.t. the
controller parameters is

∂JBE(k)

∂κ·
=

〈
BR(Vk) ,

∂BR(Vk)

∂κ·

〉
X
, (18)

where 〈V1 , V2 〉X =
∑
x∈X V1(x)V2(x) (or an appropri-

ately defined integral when X is a continuous state space).
The derivatives of J∗BE(k) is similar, with obvious changes.
To compute these derivatives, we require the derivative of
the Bellman Residual w.r.t. each of the controller gains. Ta-
ble 1 reports them for both PE and control cases. Note that
as the Bellman optimality operator is nonlinear, we need
some care in computing its derivative. The details of how
these derivatives are obtained as well as some intuition on
what they capture are in Appendices F.2 and F.3.

The gain adaptation procedure can be achieved by a
receding-horizon-like procedure: At each iteration k of the
accelerated VI algorithm, it computes the gradient of this
objective w.r.t. the controller gains, updates the controller
gains by moving in the opposite direction of the gradient,
performs one step of accelerated VI to obtain the value
function at iteration k + 1, and repeats the procedure again.

One can perform gradient descent based on (18). This, how-
ever, may not lead to a desirable result. The reason is that if
the dynamics of the accelerated VI is stable, both Bellman
residual and its gradient will go to zero exponentially fast.
Therefore, the gradient converge to zero too fast to allow
enough adaptation of controller gains. To address this issue,
we define the following normalized loss functions instead:

JBE(norm)(k) =
‖BR(Vk)‖22

2 ‖BR(Vk−1)‖22
, (19)

J∗BE(norm)(k) =
‖BR∗(Qk)‖22

2 ‖BR∗(Qk−1)‖22
. (20)

PID Accelerated Value Iteration Algorithm

Table 1. Partial derivatives of the Bellman residual w.r.t. the con-
troller’s parameters for PE and control cases. π(Qk) is the greedy
policy w.r.t. Qk, i.e., π(x;Q)← argmaxa∈AQ(x, a).

∂BR(Vk)

∂·
∂BR∗(Qk)

∂·
κp −(I− γPπ)BR(Vk−1) −(I− γPπ(Qk))BR∗(Qk−1)

κd −(I− γPπ)(Vk−1 − Vk−2) −(I− γPπ(Qk))(Qk−1 −Qk−2)

κI −(I− γPπ)zk −(I− γPπ(Qk))zk
α −κI (I− γPπ)BR(Vk−1) −κI (I− γPπ(Qk))BR∗(Qk−1)

β −κI (I− γPπ)zk−1 −κI (I− γPπ(Qk))zk−1

Algorithm 1 PID-Accelerated Value Iteration
1: Initialize V1 (e.g., equal to 0) and z1 = 0.
2: Initialize (κ

(1:2)
p , κ

(1:2)
I , κ

(1:2)
d) = (1, 0, 0).

3: for k = 1, . . . ,K do
4: Compute TπVk
5: Set BR(Vk) = TπVk − Vk.
6: Update z and V by

zk+1 = β(k)zt + α(k)BR(Vk),

Vk+1 = (1− κ(k)
p)Vk + κ(k)

p TπVk + κ
(k)
I zk+1 +

κ
(k)
d (Vk − Vk−1).

7: if k ≥ 3 then
8: Update the controller gains by (21)
9: end if

10: end for

In these variants, the denominator is considered fixed at the
k-th iteration, i.e., we do not compute its gradient. These
normalized variants have an interesting interpretation. The
ratio of two consecutive terms in a sequence is its rate of
convergence (in the limit). So by considering the ratio of the
squared Bellman errors, we are taking the gradient of the
squared convergence rate w.r.t. the controller gains. With
the normalized loss, the update rule for κ· ∈ {κp, κI , κd}
becomes

κ·(k + 1)← κ·(k)− η

〈
BR(Vk) , ∂BR(Vk)

∂κ·

〉
X

‖BR(Vk−1)‖22 + ε
, (21)

where η > 0 is the meta-learning rate, and ε > 0 is to avoid
numerical instability when the Bellman error is too small.
The new controller gains are used to compute Vk+1 (orQk+1

for the control case). This is summarized in Algorithm 1.

6. Experiments
We conduct two sets of experiments. In the first set, we
observe the effect of choosing controller gains on the er-
ror. In the second set, we study the behaviour of the gain
adaptation procedure. This section is only a summary of
the experiments we conducted, and more comprehensive
experiments can be found in Appendix I. The detailed de-
scription of the domains used in the experiments is available
in Appendix H.

0 100 200 300 400 500
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.2, 0, 0)
VI(PID) with (kp, kI, kd) = (1, -0.4, 0)
VI(PID) with (kp, kI, kd) = (1, 0, 0.15)

(a) Policy Evaluation (PE)

0 100 200 300 400 500
Iteration

10 6

10 4

10 2

100

102

||V
k

V
* |

|

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.2, 0, 0)
VI(PID) with (kp, kI, kd) = (1, 0.75, 0)
VI(PID) with (kp, kI, kd) = (1, 0, 0.4)
VI(PID) with (kp, kI, kd) = (1, 0.75, 0.4)
VI(PID) with (kp, kI, kd) = (1.0, 0.7, 0.2)

(b) Control

Figure 1. (Chain Walk) Sample error behaviour for a 50-state chain
walk problem for various accelerated variants of VI and the con-
ventional VI.

6.1. Experiments with Controller Gains

We use a chain walk problem with 50 states as a testbed,
similar to Lagoudakis & Parr (2003). We consider both
policy evaluation and control cases. For PE, we only show
the results for a policy that always chooses the first action,
i.e., π(x) = a1. We set γ = 0.99 in these experiments.

In the first experiment, we showcase a typical behaviour
of VI and accelerated VI with different controller gains.
In particular, we show log10 ‖Vk − V π‖∞ (PE) and
log10 ‖Vk − V ∗‖∞ (control) as a function of iteration k
in Figure 1 (the result would be qualitatively similar for
other norms). To compute the “true” V π or Q∗, needed for
the computation of the norms, we run the conventional VI
(no acceleration) for 10-times more iterations. This results
in the error of O(γ5000) ≈ 1.5× 10−22. This would be suf-
ficient if the effective discount factor γ′ of the accelerated
VI is larger than γ10, e.g., ≈ 0.904 with our choice of γ.
For the accelerated ones, the gains are shown in the legend
of the figure. For the PI variant, we always use β = 0.95
and α = 1− β = 0.05. With the right choice of parameters,
they significantly improve the convergence behaviour.

PID Accelerated Value Iteration Algorithm

Figure 1a shows some sample behaviours for the PE prob-
lem. The gains for these controllers are selected to showcase
a good performance in certain range, but they are not numer-
ically optimized. We observe that all accelerated variants
lead to faster convergence. The PI variant with κI = −0.4
is particularly noticeable as it leads to several orders of mag-
nitude decrease in error after 500 iterations (from around
10−3 to ≈ 10−7). The improvement due to PD is insignifi-
cant. It is interesting to observe that the P variant improves
the performance by having a larger than 1 gain of κp = 1.2.
Figure 1b repeats the same experiment for the control case.
Both PD and PI controllers significantly improve the perfor-
mance. We also observe that having both D and I terms can
improve upon the performance of either of them. We show
two PID variants, one with (κp, κI , κd) = (1, 0.75, 0.4)
and the other with (κp, κI , κd) = (1, 0.7, 0.2). Their per-
formances are comparable, suggesting that the performance
is not too sensitive to the choice of parameters.

Each curve in these figures is for a particular choice of
gains. What happens if we change the gains? To study
this, we fix all gains except one, and compute the norm of
the error log10 ‖Vk − V π‖2 (or similar for the control case)
as a function of the gain parameter at various iterations k.
For the P controller, we change κp around 1, while setting
κI = κd = 0 (recall that the conventional VI corresponds to
(κp, κI , κd) = (1, 0, 0)). For the PD controller, we change
κd in a range that includes both negative and positive values,
while setting κp = 1 and κI = 0. For the PI controller,
likewise, we change κI , while setting κp = 1 and κd =
0. These PI and PD controllers are special cases of more
general PI and PD controllers as we set their κp equal to 1.

Figures 2a (P), 2b (PI), 2c (PD) present the results for the
PE case. We observe the change of the error as a function of
each gain. The influence of κI is more significant compared
to κp and κd. In particular, the error curves for κd do not
show much change as a function of its parameter, which
suggests that the PD controller is not very suitable for this
problem. We also note that the overall shape of each curve
is similar at different iterations, but they are not exactly the
same. In earlier iterations, the effect of smaller eigenvalues
is relatively more significant than in the later iterations.
As k grows, the behaviour of the error would be mostly
determined by the dominant eigenvalue. We also remark
that the behaviour is not always smooth. The dynamics
might become unstable, and in that case, the error actually
grows exponentially as k increases. The range chosen for
this figure is such that we are on the cusp of becoming
unstable. For example, for the PD variant, the dynamics is
unstable for κd ≈ 0.28.

Figures 2d (P), 2e (PI), 2f (PD) present the result for the
control case. One noticeable difference compared to the PE
case is that κd has a significant effect on the error, and it can

lead to acceleration of VI. We also observe that the range
of values for κI that leads to acceleration is different than
the range for the PE case. Here, positive values of κI leads
to acceleration, while in the PE case, negative values did.
We remark in passing that we benefitted from these sweep
studies to choose reasonable, but not necessarily optimal,
values for Figure 1.

We report additional experiments in Appendix I.1. For
example, we show how the simultaneous change of two
gains affect the error behaviour (it can lead to even faster
acceleration), and how the change of one gain relocates the
eigenvalues.

Two takeaway messages of these empirical results are: 1)
we can accelerate VI, sometimes substantially, with the right
choice of controller gains, and 2) the gains that lead to most
acceleration is problem-dependent and varies between the
PE and control cases.

6.2. Experiments with Gain Adaptation

In the second set of experiments, we study the behaviour of
the gain adaptation procedure to see if it can lead to accel-
eration. We adapt κp, κI , and κd by (21), or similarly for
the control case. We do not adapt α and β, and use fixed
β = 0.95 and α = 1 − β = 0.05 in all reported results.
These results are for the discount factor γ = 0.99. We pro-
vide more comprehensive empirical studies in Appendix I.2.

Figure 3a compares the error of the accelerated PID VI
with gain adaptation with the conventional VI on the Chain
Walk problem (control case). Here we set the meta-learning
parameter to η = 0.05 and normalizing factor to ε = 10−20.
We observe a significant acceleration. Figure 3b shows how
the gains evolve as a function of the iteration number.

To study the behaviour of the gain adaptation procedure on
a variety of MDPs, we also use Garnet problems, which
are randomly generated MDPs (Bhatnagar et al., 2009). We
consider the Garnet problem with 50 states, 4 actions, a
branching factor of 3, and 5 non-zero rewards throughout
the state space (see Appendix H for a detailed description).
Figure 4 shows the average behaviour of the gain adapta-
tion for different values of the meta-learning rate η (the
normalizing constant is fixed to ε = 10−20). For the PE
case, we observe that all tested values of meta-learning rate
η leads to acceleration, though the acceleration would be
insignificant for very small values, e.g., η = 10−3. For the
control case, we observe that large values of meta-learning
rate (e.g., η = 0.1) lead to non-convergence, while values
smaller than that lead to significant acceleration. These
results show that gain adaptation is a viable approach for
achieving acceleration for an unknown MDP.

PID Accelerated Value Iteration Algorithm

0.8 0.9 1.0 1.1 1.2

kP

10 3

10 2

10 1

||V
k

V
||

125
250
375
499

(a) P Controller

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

kI

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

||V
k

V
||

125
250
375
499

(b) PI Controller

0.2 0.1 0.0 0.1 0.2

kD

10 3

10 2

10 1

||V
k

V
||

125
250
375
499

(c) PD Controller

0.8 0.9 1.0 1.1 1.2

kP

10 1

100

101

||V
k

V
* |

|

125
250
375
499

(d) P Controller

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25

kI

10 6

10 5

10 4

10 3

10 2

10 1

100

101

||V
k

V
* |

|

125
250
375
499

(e) PI Controller

0.2 0.1 0.0 0.1 0.2 0.3 0.4

kD

10 2

10 1

100

101

||V
k

V
* |

|

125
250
375
499

(f) PD Controller

Figure 2. (Chain Walk) (Top: Policy Evaluation; Bottom: Control) Error norm behaviour log10 ‖Vk(k·)− V π‖∞ (Policy Evaluation) and
log10 ‖Qk(k·)−Q∗‖∞ (Control) as one of the controller gains is changed. Each curve corresponds to a different iteration k. Crosses on
the curves are placed at every 3 computed points in order to decrease the clutter.

7. Related Work
There have been recent work on accelerating RL (Geist
& Scherrer, 2018; Shi et al., 2019; Vieillard et al., 2020b;
Goyal & Grand-Clement, 2020). As opposed to this work,
those approaches do not start by establishing connection be-
tween the planning methods commonly used to solve MDPs
and the methods often used in control theory/engineering.
Instead, some of them are inspired by methods in optimiza-
tion, and some by other numerical techniques. Here, we
only briefly mention some connections to these methods
and provide an in-depth comparison in Appendix G.1.

One class of these methods is based on borrowing ideas
from the optimization theory to modify basic algorithms
such as VI (Vieillard et al., 2020b; Goyal & Grand-Clement,
2020). The work by Goyal & Grand-Clement (2020) is
noticeable because some of their proposed methods happen
to coincide with some of ours (Appendix G.1.1). By making
an analogy between VI and the gradient descent (GD), they
propose Relaxed Value Iteration, which is the same as P
VI (7) and the Accelerated Jacobi method of Kushner &
Kleinman (1971). By making an analogy between VI and

the Polyak’s momentum method (or heavy ball) (Polyak,
1987, Section 3.2), they propose a method called Momentum
Value Iteration/Computation, which is essentially the PD
VI method in (11). They suggest a specific choice of κp
and κd based on the comparison of VI and the optimal
choice of parameters in the momentum GD. This choice is
suitable for reversible Markov chains, but it may diverge for
more general chains that we deal with in solving MDPs. In
fact, this is something that we observed in our experiments.
Moreover, they do not provide any solution for cases other
than reversible Markov chains, while we propose a gain
adaptation mechanism and empirically show that it is a
reasonable approach for VI acceleration in general MDPs.
There is no method analogous to the PI or PID variants of
VI in their work.

Geist & Scherrer (2018) and Shi et al. (2019) use acceler-
ation techniques from other areas of numerical methods,
such as Anderson acceleration (Anderson, 1965), to modify
Value or Policy Iteration procedures (Appendix G.1.2).

There are other, less similar, approaches to acceleration in
RL and DP (Appendix G.1.3). Prioritized sweeping and

PID Accelerated Value Iteration Algorithm

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||V
k

V
* |

|
VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 3. (Chain Walk - Control) Gain adaptation results for
(η, ε) = (0.05, 10−20).

its variants are an important class of methods that asyn-
chronously update the value of states (Moore & Atkeson,
1993; Peng & Williams, 1993; McMahan & Gordon, 2005;
Wingate & Seppi, 2005). By changing the order of state
updates, they might converge to the value function faster. It
is, however, orthogonal to what we suggest, and they can po-
tentially be combined. Speedy Q-Learning is an accelerated
variant of Q-Learning (Azar et al., 2011). It decomposes
the update rule of Q-Learning in a specific way and use a
more aggressive learning rate on one of its terms. Zap Q-
Learning is a second-order stochastic approximation method
that uses a matrix gain, instead of a scalar one, to minimize
the asymptotic variance of the value function estimate (De-
vraj & Meyn, 2017).

8. Conclusion
We viewed the value iteration (VI) procedure as a dynamical
system and used tools from control theory to acceleration
it. We specifically focused on simple, yet effective, PID
controllers to modify VI. We expressed the error dynam-
ics of the accelerated VI procedures for the policy evalua-
tion problem as a linear dynamical system. We empirically

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.005, 1e-20)
(,) = (0.01, 1e-20)
(,) = (0.02, 1e-20)
(,) = (0.05, 1e-20)
(,) = (0.1, 1e-20)

(a) Policy Evaluation

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.005, 1e-20)
(,) = (0.01, 1e-20)
(,) = (0.02, 1e-20)
(,) = (0.05, 1e-20)
(,) = (0.1, 1e-20)

(b) Control

Figure 4. (Garnet) Gain adaptation for a 50-state Garnet problem
with γ = 0.99 for the PE and control cases for different meta-
learning rates η. The normalizing factor is ε = 10−20. The mean
and standard errors are evaluated based on 100 runs.

showed that the modified VI can indeed lead to acceler-
ated behaviour. Moreover, we proposed a gain adaptation
procedure to automatically adjust the controller.

An important future research direction is extending the PID
VI to the RL setting, where only samples are available. The
sample-based extension seems feasible given that one can
form an unbiased estimate of all key quantities in the PID VI
updates using samples in the form of (Xt, Rt, Xt+1). For
example, Rt + γVk(Xt+1) + κd(Vk(Xt) − Vk−1(Xt)) is
an unbiased estimate of TπVk + κd(Vk − Vk−1) evaluated
at Xt. Another exciting direction is designing controllers
other than PID to accelerate fundamental DP algorithm.

Acknowledgements
We would like to thank the anonymous reviewers for their
feedback. AMF acknowledges the funding from the Canada
CIFAR AI Chairs program.

PID Accelerated Value Iteration Algorithm

References
Almeida, L. B., Langlois, T., Amaral, J. D., and Plakhov,

A. Parameter Adaptation in Stochastic Optimization,
pp. 111–134. Publications of the Newton Institute. Cam-
bridge University Press, 1999. 5, 34

Anderson, D. G. Iterative procedures for nonlinear integral
equations. Journal of the ACM, 12(4):547–560, 1965. 8,
29, 32

Andre, D., Friedman, N., and Parr, R. Generalized priori-
tized sweeping. Advances in Neural Information Process-
ing Systems (NeurIPS), 10:1001–1007, 1997. 33

Antos, A., Szepesvári, Cs., and Munos, R. Learning
near-optimal policies with Bellman-residual minimiza-
tion based fitted policy iteration and a single sample path.
Machine Learning, 71:89–129, 2008. 28

Aström, K. J. and Wittenmark, B. Adaptive Control.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1994. 3, 28, 34

Azar, M., Munos, R., Ghavamzadeh, M., and Kappen, H.
Speedy Q-learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2411–2419, 2011. 9,
33

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M., and
Wood, F. Online learning rate adaptation with hypergra-
dient descent. In International Conference on Learning
Representations (ICLR), 2018. 5, 34

Benosman, M., Romero, O., and Cherian, A. Optimizing
deep neural networks via discretization of finite-time con-
vergent flows. arXiv:2010.02990, October 2020. 34

Berinde, V. Iterative approximation of fixed points, volume
1912. Springer, 2007. 3, 30

Bertsekas, D. P. and Shreve, S. E. Stochastic Optimal Con-
trol: The Discrete-Time Case. Academic Press, 1978. 3,
13

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996. 1, 2, 13, 33

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee,
M. Natural actor–critic algorithms. Automatica, 45(11):
2471–2482, 2009. 7, 35, 39

Blondel, V. D. and Tsitsiklis, J. N. The boundedness of all
products of a pair of matrices is undecidable. Systems &
Control Letters, 41(2):135–140, 2000. 18

Boyan, J. A. Least-squares temporal difference learning.
In Proceedings of the Sixteenth International Conference
on Machine Learning (ICML), pp. 49–56. Morgan Kauf-
mann, 1999. 33

Burl, J. B. Linear Optimal Control: H2 and H∞ Methods.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998. 3

Chen, J. and Jiang, N. Information-theoretic considera-
tions in batch reinforcement learning. In Proceedings of
the 36th International Conference on Machine Learning
(ICML), 2019. 1

Dai, P., Mausam, Weld, D. S., and Goldsmith, J. Topo-
logical value iteration algorithms. Journal of Artificial
Intelligence Research (JAIR), 42:181–209, 2011. 33

Devraj, A. M. Reinforcement Learning Design with Optimal
Learning Rate. PhD thesis, University of Florida, 2019.
34

Devraj, A. M. and Meyn, S. P. Zap Q-learning. In Advances
in Neural Information Processing Systems (NeurIPS), pp.
2235–2244, 2017. 9, 29, 33

Devraj, A. M., Bušić, A., and Meyn, S. P. Optimal matrix
momentum stochastic approximation and applications to
Q-learning. arXiv:1809.06277v2, February 2019. 33, 34

Dorf, R. C. and Bishop, R. H. Modern control systems.
Prentice Hall, 2008. ISBN 9780132270281. 3

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research (JMLR), 6:503–556, 2005. 1

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, Cs., and
Mannor, S. Regularized fitted Q-iteration for planning
in continuous-space Markovian Decision Problems. In
Proceedings of American Control Conference (ACC), pp.
725–730, June 2009. 1

Farahmand, A.-m., Munos, R., and Szepesvári, Cs. Error
propagation for approximate policy and value iteration. In
Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel,
R. S., and Culotta, A. (eds.), Advances in Neural Infor-
mation Processing Systems (NeurIPS - 23), pp. 568–576.
2010. 22

Geist, M. and Scherrer, B. Anderson acceleration for rein-
forcement learning. In European workshop on Reinforce-
ment Learning (EWRL), 2018. 8, 29, 32

Geist, M., Scherrer, B., and Pietquin, O. A theory of reg-
ularized Markov decision processes. In International
Conference on Machine Learning (ICML), 2019. 32

Geramifard, A., Bowling, M., and Sutton, R. S. Incremen-
tal least-squares temporal difference learning. In Pro-
ceedings of the 21st American Association for Artificial
Intelligence (AAAI), pp. 356–361, 2006. 33

PID Accelerated Value Iteration Algorithm

Golub, G. H. and Van Loan, C. F. Matrix Computations.
The John Hopkins University Press, 4th edition, 2013. 22

Goyal, V. and Grand-Clement, J. A first-order approach to
accelerated value iteration. arXiv:1905.09963v6, March
2020. 8, 18, 20, 29, 30, 31, 34

Hu, B. and Lessard, L. Control interpretations for first-order
optimization methods. In American Control Conference
(ACC), pp. 3114–3119, May 2017. 34

Jungers, R. M. The Joint Spectral Radius: Theory and
Applications. Springer-Verlag Berlin Heidelberg, 2009.
5, 17, 18

Khalil, H. K. Nonlinear Systems (3rd Edition). Prentice
Hall, 2001. 3, 17

Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V. Non-
linear and adaptive control design. Wiley New York,
1995. 3

Kushner, H. J. and Kleinman, A. J. Accelerated procedures
for the solution of discrete Markov control problems.
IEEE Transactions on Automatic Control, 16(2):147–152,
April 1971. 8, 29

Lagoudakis, M. G. and Parr, R. Least-squares policy itera-
tion. Journal of Machine Learning Research (JMLR), 4:
1107–1149, 2003. 6, 28, 33, 35

Lazaric, A., Ghavamzadeh, M., and Munos, R. Finite-
sample analysis of least-squares policy iteration. Journal
of Machine Learning Research (JMLR), 13:3041–3074,
October 2012. 33

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 26(1):57–95,
2016. 34

MacKay, D. J. C. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, 2003. 20,
30

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M.
Tuning-free step-size adaptation. In IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2121–2124, 2012. 5, 34

Maingé, P.-E. Convergence theorems for inertial KM-type
algorithms. Journal of Computational and Applied Math-
ematics, 219(1):223–236, 2008. 30

Mareels, I. M., Anderson, B. D., Bitmead, R. R., Bodson,
M., and Sastry, S. S. Revisiting the MIT rule for adaptive
contro rule for adaptive control. In Adaptive Systems in
Control and Signal Processing 1986, IFAC Workshop
Series, pp. 161–166. Pergamon, Oxford, 1987. 34

McMahan, H. B. and Gordon, G. J. Fast exact planning in
Markov decision processes. In International Conference
on Automated Planning and Scheduling (ICAPS), 2005.
9, 33

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, February 2015. 1

Moore, A. W. and Atkeson, C. G. Prioritized sweeping:
Reinforcement learning with less data and less time. Ma-
chine learning, 13(1):103–130, 1993. 9, 33

Muehlebach, M. and Jordan, M. A dynamical systems per-
spective on Nesterov acceleration. In International Con-
ference on Machine Learning (ICML), pp. 4656–4662,
2019. 34

Munos, R. Performance bounds in Lp norm for approximate
value iteration. SIAM Journal on Control and Optimiza-
tion, pp. 541–561, 2007. 5, 22, 23

Munos, R. and Szepesvári, Cs. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research
(JMLR), 9:815–857, 2008. 1

Ogata, K. Modern Control Engineering. Prentice hall Upper
Saddle River, NJ, fifth edition, 2010. 3

Osburn, P. V., Whitaker, H. S., and Kezer, A. New develop-
ments in the design of model reference adaptive control
systems. In Annual Meeting of Institute of Aeronautical
Sciences (Paper No. 61-39), February 1961. 34

Overton, M. L. and Womersley, R. S. On minimizing the
spectral radius of a nonsymmetric matrix function: Opti-
mality conditions and duality theory. SIAM Journal on
Matrix Analysis and Applications, 9(4):473–498, 1988.
18

Pan, Y., White, A., and White, M. Accelerated gradient
temporal difference learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2017. 33

Peng, J. and Williams, R. J. Efficient learning and planning
within the Dyna framework. Adaptive Behavior, 1(4):
437–454, 1993. 9, 33

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964. 30

Polyak, B. T. Introduction to optimization. Optimization
Software, Inc., 1987. 8, 30

PID Accelerated Value Iteration Algorithm

Romoff, J., Henderson, P., Kanaa, D., Bengio, E., Touati,
A., Bacon, P.-L., and Pineau, J. TDprop: Does Jacobi
preconditioning help temporal difference learning? In
Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), pp.
1082–1090, 2021. 33

Rota, G.-C. and Strang, W. G. A note on the joint spec-
tral radius. In Proceedings of the Netherlands Academy,
volume 22, pp. 379–381, 1960. 17

Schraudolph. Local gain adaptation in stochastic gradient
descent. In International Conference on Artificial Neural
Networks (ICANN), 1999. 5, 34

Shi, W., Song, S., Wu, H., Hsu, Y.-C., Wu, C., and Huang, G.
Regularized Anderson acceleration for off-policy deep re-
inforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 10231–10241. 2019.
8, 29, 32

Skogestad, S. and Postlethwaite, I. Multivariable Feedback
Control: Analysis and Design. Wiley New York, 2nd
edition, 2005. 3

Sutton, R. S. Adapting bias by gradient descent: An in-
cremental version of delta-bar-delta. In Proceedings of
the Tenth National Conference on Artificial Intelligence,
1992. 5, 34

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2019. 1, 2,
13

Szepesvári, Cs. Algorithms for Reinforcement Learning.
Morgan Claypool Publishers, 2010. 2, 13

Tosatto, S., Pirotta, M., D’Eramo, C., and Restelli, M.
Boosted fitted Q-iteration. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
2017. 1

Tsitsiklis, J. N. and Blondel, V. D. The Lyapunov exponent
and joint spectral radius of pairs of matrices are hard—
when not impossible—to compute and to approximate.
Mathematics of Control, Signals and Systems, 10(1):31–
40, 1997. 18

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos,
R., and Geist, M. Leverage the average: an analysis of
regularization in RL. In Advances in Neural Information
Processing Systems (NeurIPS), December 2020a. 32

Vieillard, N., Scherrer, B., Pietquin, O., and Geist, M. On
momentum in reinforcement learning. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2020b. 8, 29, 31, 32

Williams, R. J. and Baird, L. C. Tight performance bounds
on greedy policies based on imperfect value functions.
Technical report, Northeastern University, 1993. 5, 21

Wingate, D. and Seppi, K. D. Prioritization methods for
accelerating MDP solvers. Journal of Machine Learning
Research (JMLR), 6(29):851–881, 2005. 9, 33

Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
short-horizon bias in stochastic meta-optimization. In
International Conference on Learning Representations
(ICLR), 2018. 28

Yao, H. and Liu, Z.-Q. Preconditioned temporal differ-
ence learning. In International Conference on Machine
Learning (ICML), 2008. 33

Zhou, K. and Doyle, J. C. Essentials of robust control.
Prentice hall Upper Saddle River, NJ, 1998. 3

PID Accelerated Value Iteration Algorithm

A. Markov Decision Processes
We consider a discounted Markov Decision Process (MDP) (X ,A,R,P, γ) (Szepesvári, 2010; Bertsekas & Shreve, 1978;
Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 2019). Our notation would be most similar to Szepesvári (2010). Here X
is the state space, A is the action space, R : X × A → M(R) is the reward distribution, P : X × A → M(X) is the
transition probability kernel, and 0 ≤ γ < 1 is the discount factor.

For a set Ω, the space of bounded functions is denoted by B(Ω), and the space of probability distributions is denoted by
M(Ω). Here we do not go into the measurability issues, so we omit the detail of the necessary σ-algebra. The policy
π : X →M(A) (stochastic policy) or π : X → A (deterministic) is a Markov stationary policy. Given a policy, we can
define Pπ as the transition probability kernel of following π, and it would be

Pπ(·|x) =

∫
P(·|x, a)π(da|x).

We can define Pπ(m) : X → M(X) for m ≥ 0 recursively. For m = 0, we use the convention that it is equal to I, the
identity operator (or matrix). For m ≥ 1, we have

Pπ(m)(·|x) =

∫
Pπ(dy|x)Pπ(m−1)(·|y).

We may also define Pπ(m) : X × A → M(X), as the transition probability kernel of choosing action a at state x,
following P(·|x, a) for one step, and afterwards, following policy π for the remaining m− 1 steps. Formally, for m = 1,
Pπ(1) = Pπ = P . For m ≥ 2, we have

Pπ(m)(·|x, a) =

∫
P(dy|x, a)Pπ(m−1)(·|y).

We can define Rπ : X → M(R) in a similar fashion. The functions r : X × A → R and rπ : X → R are the expected
value of the reward distribution.

We use V π and Qπ to denote the state-value and action-value functions for a policy π. We use V ∗ and Q∗ to denote the
optimal value and action-value functions.

The Bellman operator Tπ : B(X)→ B(X) for policy π and the Bellman optimality operator T ∗ : B(X ×A)→ B(X ×A)
are defined as

(TπV)(x) , rπ(x) + γ

∫
Pπ(dy|x)V (y),

(T ∗Q)(x, a) , r(x, a) + γ

∫
P(dy|x, a) max

a′∈A
Q(y, a′).

For countable state and action spaces, the integrals are replaced by summations. The Bellman operators Tπ : B(X ×A)→
B(X × A) (applying on an action-value function) and T ∗ : B(X) → B(X) (applying on the state-value function) are
defined similarly. We do not use them in the paper, so we do not explicitly define here.

We denote π(·;Q) as the greedy policy w.r.t. Q, i.e., at each state x, we have

π(x;Q)← argmax
a∈A

Q(x, a). (22)

B. Error Dynamics: Proofs and Simplified Results
We prove Proposition 2, which describes the error dynamics of the PD, PI, and PID VI. Proposition 1 from Section 4 is
its special case for the PID VI case. After the proof, we provide some simplified, and perhaps more intuitive, results for
the error dynamics and the location of the modified eigenvalues. Corollary 3 shows the dynamics for a diagonalizable Pπ.
Proposition 4 presents the location of the roots of the PID variant as a solution to cubic equations. The roots depends on the
eigenvalues of Pπ and the controller gains. Corollary 5 is a similar result specialized for the PD and PI controllers. In those
two cases, the eigenvalues are the solution of quadratic equations, and have relatively simple solutions.

PID Accelerated Value Iteration Algorithm

Proposition 2 (Error Dynamics of PD, PI, and PID Value Iteration). Let ek = Vk − V π. Define ēk = [ek, ek−1]>. The
error dynamics of the PD controller with a matrix gain Kd and a scalar κp (11) is

ēk+1 =

[
(1− κp)I + γκpPπ +Kd −Kd

I 0

]
ēk

∆
= APD ēk. (23)

The dynamics of the error ek and the integrator’s state z of the PI controller with a matrix gain KI and the scalar gain
kp = 1 is [

ek+1

zk+1

]
=

[
γPπ + αKI(γPπ − I) βKI

α(γPπ − I) βI

] [
ek
zk

]
∆
= API

[
ek
zk

]
. (24)

Finally, the dynamics of the PID controller with gains Kp,Kd,KI is ek+1

ek
zk+1

 =

 (I−Kp) + γKPPπ + αKI(γPπ − I) +Kd −Kd βKI

I 0 0
α(γPπ − I) 0 βI

 ek
ek−1

zk

 , APID

 ek
ek−1

zk

 . (25)

Proof of Proposition 2. For the PD controller, we subtract V π from both sides of (11), benefit from V π = TπV π, and
simplify, to get

ek+1 = Vk+1 − V π = (1− κp)Vk + κpT
πVk − V π +Kd (Vk − V π − Vk−1 + V π)

= (1− κp)(Vk − V π) + κp(T
πVk − TπV π) +Kd(ek − ek−1)

= (1− κp)ek + κpγPπek +Kd(ek − ek−1).

Reorganizing this in the matrix form gives the desired result.

The error dynamics for the PI variant is obtained similarly. By subtracting V π from both sides of the dynamics of Vk
in (12), we get

ek+1 = Vk+1 − V π = TπVk − V π +KI [βzk + α(TπVk − V π + V π − Vk)]

= TπVk − TπV π +KI [βzk + α(TπVk − TπV π − Vk + V π)]

= γPπek +KI [βzk + α(γPπ − I)ek] .

The term BR(Vk) in the dynamics of zk can be written as (γPπ − I)ek as shown in (8). Reorganizing these two equations
in the matrix form gives the desired result.

Finally, the error dynamics of the PID variant is

ek+1 = Vk+1 − V π =(1−Kp)(Vk − V π) +Kp(T
πVk − V π) +

KI [βzk + α(TπVk − V π + V π − Vk)] +

Kd ((Vk − V π)− (Vk−1 − V π))

=(1−Kp)ek +KpγPπek +KI [βzk + α(γPπ − I)ek] +Kd(ek − ek−1).

Here we used similar substitutions. Considering the dynamics of zk, as in the PI case, this leads to the desired result.

Proposition 2 can be presented in a simpler and more intuitive form, if we only consider scalar gains and assume that Pπ is
diagonalizable, i.e., Pπ = SΛS−1 with Λ = diag(λ1, λ2, . . . , λd). The following corollary shows the result.
Corollary 3. Assume that Pπ is diagonalizable in complex field, that is, Pπ = SΛS−1 with S ∈ Cd×d and Λ =
diag(λ1, λ2, . . . , λd) with λi ∈ C, for i = 1, . . . , d. Let ek = Vk − V π. Define εk = S−1ek and ε̄k = [εk, εk−1]>.
Consider scalar gains Kp = κpI, Kd = κdI, and KI = κII. The error dynamics of the PD controller is

ε̄k+1 =

[
(1− κp + κd)I + γκpΛ −κdI

I 0

]
ε̄k. (26)

PID Accelerated Value Iteration Algorithm

For the PI variant, define ζk = S−1zk. The error dynamics of the error and ζ of the PI variant with κp = 1 is[
εk+1

ζk+1

]
=

[
γΛ + ακI(γΛ− I) βκII

α(γΛ− I) βI

] [
εk
ζk

]
. (27)

For the PID variant, the error dynamics is εk+1

εk
ζk+1

 =

 (1− κp − ακI + κd)I + γ(κp + ακI)Λ −κdI βκII
I 0 0

α(γΛ− I) 0 βI

 εk
εk−1

ζk

 . (28)

Proof. We obtain the result by some simple algebraic manipulations. First consider the dynamics of the PD control (23),
and particularly the equation described by its first row. Multiplying both sides of ek+1 = γPπek + κd(ek − ek−1) from left
by S−1, and substituting Pπ with SΛS−1, we get

S−1ek+1︸ ︷︷ ︸
=εk+1

= (1− κp)S−1ek + γκpS
−1(SΛS−1)ek + κdS

−1(ek − ek−1)

= [(1− κp)I + γκpΛ]εk + κd(εk − εk−1).

For the PI variant (24), we multiply both sides by S−1. The dynamics of εk is

εk+1 = S−1ek+1 = γS−1(SΛS−1)ek + S−1κI
[
βzt + α(γS−1ΛS−1 − SS−1)ek

]
= γΛεk + κI [βζt + α(γΛ− I)εk] .

The dynamics of ζk can be related to the dynamics of zk by multiplying S−1 to both sides of zk+1 = βzk + α(γPπ − I)ek
and noticing that e = Sε, as

ζk+1 = S−1zk+1 = βS−1zk + αS−1
(
γ(SΛS−1)− SS−1

)
Sεk

= βζk + α (γΛ− I) εk.

The dynamics of εk of the PID variant is obtained by following similar derivations as

εk+1 = S−1ek+1 =
[
(1− κp)S−1 + γκpS

−1(SΛS−1) + ακIS
−1(γSΛS−1 − SS−1)

]
Sεk

− κdS−1Sεk−1 + βκIS
−1Sζk

= [(1− κp)I + γκpΛ + ακI(γΛ− I) + κdI] εk − κdεk−1 + βκIζk.

The behaviour of the error dynamics of these modified procedures depends on the location of the eigenvalues. The dominant
behaviour depends on the eigenvalue with the largest magnitude. We can benefit from the assumption of diagonalizability of
Pπ to obtain relatively simple formula for eigenvalues.

Proposition 4. Assume that Pπ is diagonalizable in complex field, i.e., Pπ = SΛS−1 with S ∈ Cd×d and Λ =
diag(λ1, λ2, . . . , λd) with λi ∈ C, for i = 1, . . . , d. The eigenvalues of the error dynamics (28) of the PID variant
are located at the roots of the following polynomial:

f(µ) =

d∏
i=1

[
µ3 − ((1 + κd + β)− (κp + ακI)(1− γλi))µ2 + (β(1 + κd) + κd − βκp(1− γλi))µ− κdβ

]
. (29)

Proof. Let us consider the dynamics matrix in (28). We permute the ordering of variables to (εk+1, ζk+1, εk) in order to
make the calculations easier. The modified matrix is

F =

 (1− κp − ακI + κd)I + γ(κp + ακI)Λ βκII −κdI
α(γΛ− I) βI 0

I 0 0

 .

PID Accelerated Value Iteration Algorithm

The eigenvalues are the roots of the characteristic polynomial

det(µI3d×3d − F).

Recall that if D is invertible, then

det

[
A B
C D

]
= det(D) det(A−BD−1C). (30)

Using this equality twice, we get that for µ 6= {0, β},

det(µI3d×3d − F) = det

 µI− F11 −βκII κdI
−α(γΛ− I) (µ− β)I 0
−I 0 µI

= det(µI) det

(
µI− F11 + κd

µ I −βκII
α(I− γΛ) (µ− β)I

)
= det(µI) det((µ− β)I)) det

(
µI− F11 +

κd
µ
I− (−βκII)(α(I− γΛ))

µ− β

)
= det

(
µ3I− µ2[βI + F11] + µ[βF11 + κdI + αβκI(I− γΛ)]− κdβI

)
= det

(
µ3I− µ2 [(1 + κd + β)I− (κp + ακI)(I− γΛ)] +

µ [β ((1 + κd)I− βκp(I− γΛ)) + κdI]− κdβI
)
.

As all the involved matrices are diagonal, the characteristic polynomial is the multiplication of the diagonal terms, i.e.,

d∏
i=1

[
µ3 − µ2 ((1 + κd + β)− (κp + ακI)(1− γλi)) + µ (β(1 + κd) + κd − βκp(1− γλi))− κdβ

]
.

Corollary 5. Consider the same setup as in Proposition 4. The eigenvalues of the error dynamics (26) of the PD variant
are located at the roots of the following characteristic polynomial:

f(µ) =

d∏
i=1

[
µ2 − (1 + κd − κp(1− γλi))µ+ κd

]
, (31)

which would be
(1+κd−κp(1−γλi))±

√
(1+κd−κp(1−γλi))2−4κd
2 , for i = 1, . . . , d.

The eigenvalues of the error dynamics (27) of the PI variant are located at the roots of the following characteristic
polynomial:

f(µ) =

d∏
i=1

[
µ2 − ((1 + β)− (1 + ακI)(1− γλi))µ+ βγλi

]
,

which would be s±
√
s2−4βγλi

2 , for i = 1, . . . , d, with s = (1 + β)− (1 + ακI)(1− γλi).

Proof. We can prove the claims by following a similar calculations as in the proof Proposition 4. Or instead, we may set
κI = 0, α = β = 0, and κp = 1 in (29) to obtain the characteristic polynomial of the PD variant, and set κd = 0 and
κp = 1 in (29) to obtain the characteristic polynomial of the PI variant. This approach, however, requires some caution. The
PID variant has 3d variables, and hence eigenvalues, but the PD and PI variants have 2d variables and eigenvalues. We need
to remove the extra zero eigenvalues resulting from having an extra dynamics (I for PD, D for PI).

PID Accelerated Value Iteration Algorithm

C. Error Dynamics for Control
The analysis of error dynamics described in Section 4 and Appendix B was for the PE problem where the policy π is fixed.
It resulted in linear time-invariant (LTI) dynamical systems. For an LTI system, the locations of eigenvalues of the matrices
APD, API, and APID determine the behaviour of the dynamics. The spectral radius of those matrices determines the dominant
behaviour. If ρ(A) < 1, the dynamics is asymptotically stable.

For the control problem, where we use T ∗ instead of Tπ , the dynamical system is not a linear time-invariant system anymore,
but is a linear time-variant one instead. To see this, notice that at the k-th iteration, the function T ∗Qk appearing in the
dynamics of the PID variant (14) for the control case is the same as TπkQk, with πk(x) = π(x;Qk) = argmaxa∈AQk(x, a)
being the greedy policy w.r.t. Qk, see (22). This is also the same for the PI or PD variants for the control case. Therefore,
denoting BRπ(Q) = TπQ−Q for a π, the dynamics of PID variant (14) can also be written as

zk+1 = βzk + αBRπk(Qk),

Qk+1 = (1−Kp)Qk +KpT
πkQk +KI [βzk + αBRπk(Qk)] +Kd(Qk −Qk−1). (32)

The PD and PI variants for the control case are similar too.

With this observation, the dynamics for the control case is described essentially the same as what we have in Proposition 1
in Section 4, and Proposition 2 and Corollary 3 in Appendix B. The difference would be that the dynamics matrix A would
be a function of πk, e.g., the dynamics of the PID variant is ek+1

ek
zk+1

 = APID(πk)

 ek
ek−1

zk

 . (33)

This is a linear time-variant dynamical system. For such a system, the location of eigenvalues is not enough to establish the
stability of the dynamics. It is possible that all eigenvalues are within the stability region of a linear time-invariant system
(within unit circle for discrete-time dynamics, and negative half-plane for continuous-time dynamics), yet the dynamics be
unstable, e.g., see Example 4.22 of Khalil (2001) for a continuous-time linear time-variant dynamical system and Chapter 1
of Jungers (2009) for a discrete-time linear time-variant dynamical system.

One way to study the stability of this system is by considering it as a switched linear dynamical system and its connection
to the concept of joint spectral radius introduced by Rota & Strang (1960); see also Jungers (2009) for a comprehensive
reference. A switched linear dynamical system is

yk+1 = Akyk, Ak ∈ Σ,

y0 ∈ Rd, (34)

where Σ is a set of d × d matrices. The state of this dynamical system at time k is yk = Ak−1 · · ·A0y0. The temporal
evolution of (yk)k≥0 depends on what particular Ais are selected at each time step i. The (asymptotic) stability of this
dynamical system is defined as whether for any bounded y0 and any sequence of matrices (Ak)k, yk goes to zero as k →∞.
The joint spectral radius, which we shall define soon, characterizes the maximum growth of this system for any possible
choice of Ai ∈ Σ, and can be used as a criteria for its stability.

Let us first focus on when Σ only has one element (i.e, Σ = {A}), which means that we have a linear time-invariant system.
We have yk = Aky0. The norm of yk is ‖yk‖ ≤

∥∥Ak∥∥ ‖y0‖, where
∥∥Ak∥∥ is the vector-induced matrix norm. Recall that

the spectral radius of a matrix A is

ρ(A) = lim
k→∞

∥∥Ak∥∥1/k
.

Therefore, limk→∞ ‖yk‖ ≤ limk→∞
∥∥Ak∥∥ ‖y0‖ = limk→∞ ρ(A)k ‖y0‖. If ρ(A) < 1, ‖yk‖ goes to zero as k grows,

which means that yk → 0, i.e., the dynamics is stable.

The joint spectral radius generalizes this concept to when Σ possibly has more than one member. We define

ρ̂k(Σ) , sup
{
‖A1 . . . Ak‖1/k : A1, . . . Ak ∈ Σ

}
.

PID Accelerated Value Iteration Algorithm

One can see that for a switched linear dynamics, we have ‖yk‖ ≤ ρ̂k(Σ)k ‖y0‖. The joint spectral radius of a bounded set
of matrices Σ is defined as

ρ(Σ) = lim
k→∞

ρ̂k(Σ).

The joint spectral radius characterizes the stability of the switched dynamical system. Corollary 1.1 of Jungers (2009) states
that for any bounded set of matrices Σ, the switched dynamical system (34) is stable if and only of ρ(Σ) < 1.

The dynamics of the accelerated variants of VI for the control case, e.g., the PID one (33), can be seen as a switched linear
dynamical system with Σ being Σ = {APID(π) : π ∈ Π }, where Π is the space of all possible policies (either deterministic
or stochastic). If one can establish that ρ(Σ) < 1 for a particular set of controller gains, the stability of the accelerated
variant of VI for the control case is shown. We remark that that there might be some structure in how (πk)k are generated
throughout the iterations of an accelerated VI procedure. In other words, we do not necessarily face all π ∈ Π. Because of
this, formulating the error dynamics of accelerated VI for the control case as a switching linear dynamical system might be
conservative. Goyal & Grand-Clement (2020) also use the joint spectral radius as a way to characterize the stability of their
Accelerated Value Iteration (which is different from any of our methods). This is not surprising as the joint spectral radius is
a standard tool in the stability analysis of linear time-variant systems.

Even though it is assuring that we can mathematically characterize what is needed to guarantee the stability, we do not
pursue the path of computation of the joint spectral radius and optimizing it for controller design any further. We have two
reasons for it. The first is that the computation of the joint spectral radius is difficult (see Section 2.2 of Jungers (2009)
for a summary of results). Tsitsiklis & Blondel (1997) show that approximating ρ(Σ) within an ε-accuracy is an NP-Hard
problem. Furthermore, the problem of whether ρ(Σ) ≤ 1 or not is undecidable (Blondel & Tsitsiklis, 2000). The notion
of stability used in this section, however, is based on ρ(Σ) < 1. It is not known whether this problem is undecidable or
not (Blondel & Tsitsiklis, 2000; Jungers, 2009). Despite these theoretical computational difficulties, there are methods that
perform reasonably well in practice, see Section 2.3 of Jungers (2009). The second reason is the same as what we shall
shortly discuss as the challenges of formulating the controller design problem as an optimization problem in Appendix D,
i.e., the unknown transition matrix P , which makes it unsuitable for an extension to the RL setting, and impracticality of the
optimization problem for large state and action spaces.

D. On Selecting Controller Gains
The results of Section 4 show that one can change the error dynamics of the new variants of VI by changing the controller
gains. With proper choice of the gains, one can hope to accelerate the convergence of the value function to the true value
function. Given that changing the dynamics is possible, an important question is how one should choose the gains in order
to achieve the intended acceleration? We briefly present four possibilities in this section.

The first approach is to treat controller gains as hyper-parameters, similar to other hyper-parameters in RL and ML, such
as the learning rate of a learning algorithm or the eligibility trace parameter for TD(λ) type of online algorithms, and use
some form of model selection to choose the best hyper-parameters. We perform several empirical studies in Section 6.1 and
Appendix I.1 to study the effect of changing the gains on the convergence rate. Those results show that we often can find a
fixed set of controller gains that leads to significant acceleration.

The second approach is to formulate the controller design problem as an optimization problem. As the dominant behaviour
of the convergence is determined by the spectral radius of the error dynamics matrices APD, API, or APID (Proposition 2), we
can define the controller design problem as finding gains such that the spectral radius is as small as possible, that is,

κ← argmin
κ

ρ(A(κ)),

with κ parametrizing the controller gains. This approach, however, faces two challenges: The first challenge is that the
spectral radius minimization problem is difficult (non-convex problem and possibly non-Lipschitz Overton & Womersley
1988). The second challenge, which is perhaps practically more important, is related to our eventual goal of extending
these methods to the RL setting, even though that is not the focus of this work per se. The challenge is that the spectral
optimization-based approach does not scale well to the RL setting because (a) the transition matrix Pπ is unknown and (b)
oftentimes we are interested in problems with very large state and action spaces, which makes the optimization problem
impractical, as one has to deal with matrices with the same order of dimension as the number of states.

PID Accelerated Value Iteration Algorithm

The third approach is to analytically find a set of gains that accelerates a subset of MDPs, without the exact knowledge of the
MDP itself. We show in Appendix E how to choose the PD gains for reversible Markov chains. Reversible Markov chains
have the property that their eigenvalues are all real, which makes the calculations easier. Proposition 6 in that appendix
shows that if we choose κ∗p = 2

1+
√

1−γ2
and κ∗d = (

√
1+γ−

√
1−γ√

1+γ+
√

1−γ)2, the largest eigenvalue, hence the convergence rate,

becomes

γPD =

√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ
,

which is smaller than γ for γ < 1. We conjecture that it is not possible to find a single controller that significantly, or even at
all, accelerates PID variants of VI for all MDPs. We also do not believe that the set of reversible Markov chains are relevant
to most MDPs that we face in practice. For example, even the chain walk or the Garnet problems we considered earlier
(Section 5) do not induce a reversible Markov chain.

The fourth approach is to design a gain adaptation mechanism that adaptively changes the gains throughout the accelerated
VI procedure without the need of solving an expensive spectral minimization problem. This procedure, which might be
interpreted as meta-learning of controller gains, is described in Section 5. This procedure seems to be more amenable to an
RL setting, as we shall explain.

E. Acceleration of the PD Variant for Reversible Markov Chains
The third approach discussed in Appendix D was to analytically find a set of gains that accelerates a subset of MDPs, without
the exact knowledge of the MDP itself. This can be formulated as solving

argmin
κ

sup
Pπ∈M

ρ(A(κ;Pπ)),

where A(κ;Pπ) is the error dynamics matrix for a particular transition kernel Pπ and M is the set of MDPs we are
interested in. This robust formulation ensures that no matter what MDP in the setM we face, the selected gain leads to a
good performance (assuming that the resulting spectral radius is smaller than γ).

Computing the spectral radius for an arbitrary matrix is difficult, and does not have an analytical closed-form solution, so
presumably optimizing over a set of MDPs, as specified by supPπ∈M, might even be more difficult. It turns out, however,
that in some cases we can solve such a problem. By focusing on the subset of reversible Markov chains, the calculations
become much easier, and we can prescribe a set of gains that leads to acceleration. We do not, however, believe that it is
possible to find a single controller that accelerates VI uniformly for all MDPs. The following proposition shows such a
result.
Proposition 6. Assume that Pπ is diagonalizable in complex field. Furthermore, assume that the Markov chain induced by
Pπ is reversible, i.e., all eigenvalues of Pπ are real-valued. With the choice of

κ∗p =
2

1 +
√

1− γ2
, κ∗d =

(√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ

)2

,

the modules of all eigenvalues of the error dynamics of the PD variant is

γPD =

√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ
.

Proof. The roots of the error dynamics of the PD variant are specified by the quadratic equation (31) of Corollary 5. They
are

(1 + κd − κp(1− γλi))±
√

(1 + κd − κp(1− γλi))2 − 4κd
2

,

for i = 1, . . . , d. By the reversibility assumption, all λi are real-valued numbers between −1 and +1.

Under the condition that the discriminant ∆ = ∆(κp, κd, λ) = (1+κd−κp(1−γλi))2−4κd of this equation is non-positive,
the roots become complex conjugates with the magnitude of

|µ1,2| =
1

2

∣∣∣(1 + κd − κp(1− γλi)± j
√
−∆

∣∣∣
=

1

2

√
(1 + κd − κp(1− γλi)2 + (

√
−∆)2 =

1

2

√
4κd =

√
κd. (35)

PID Accelerated Value Iteration Algorithm

We notice that this is independent of λi.

To ensure that ∆(λ, κp, κd) ≤ 0 for any λ ∈ [−1,+1], we first find its roots as a function of κp, and then choose a κp and a
κd such that ∆ remains non-positive for any λ in that interval. The discriminant ∆ can be written as the following quadratic
equation in κp:

(1− γλ)2κ2
p − 2(1− γλ)(1 + κd)κp + (1− κd)2,

whose roots, after some algebraic manipulations, are

(1 + κd)± 2
√
κd

1− γλ
.

If κp is between these two roots, the discriminant is non-positive. The locations of the roots, however, are a function of λ,
and change. So we need to find a κp such that for any λ ∈ [−1,+1], it is still within the roots. Let us assume that κd ≥ 0.
The minimum of the larger root is

min
λ∈[−1,+1]

(1 + κd) + 2
√
κd

1− γλ
=

(1 + κd) + 2
√
κd

1 + γ

and the maximum of the smaller root is

max
λ∈[−1,+1]

(1 + κd)− 2
√
κd

1− γλ
=

(1 + κd)− 2
√
κd

1− γ

We choose κd such that these two match, that is,

(1 + κd) + 2
√
κd

1 + γ
=

(1 + κd)− 2
√
κd

1− γ
=⇒

(
1 +
√
κd

1−√κd

)2

=
1 + γ

1− γ
= c.

Solving for κd, we get that

κ∗d =

(√
c− 1√
c+ 1

)2

=

(√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ

)2

,

which is also non-negative as required by assumption.

The value κp that is between the two roots, with this choice of κ∗d, is

κ∗p =
1 + κ∗d + 2

√
κ∗d

1 + γ
=

2

1 +
√

1− γ2
.

And the modulus of the eigenvalues (35) would be

|µ1,2| =
√
κ∗d =

√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ
.

Some observations and remarks are in order. The first is that γPD is always less than or equal to γ. This means that with
this choice of κ∗p and κ∗d, we can always accelerate any reversible Markov chain. As we shall discuss in Appendix G.1, the
PD VI with this particular choice for controller gains coincides with the Momentum Value Iteration/Computation methods
of Goyal & Grand-Clement (2020), which has the same rate as for the reversible Markov chain (for the PE case).

We would like to mention that the reversibility assumption may not be very reasonable for the MDPs in general, e.g., the
chain walk problem or the Garnet problems both violate it. This is in contrast with Markov chains appearing in some
MCMC methods such as Metropolis-Hasting, in which the proposal distribution is designed so that the detailed balance
equation holds, and hence the reversibility of the Markov chain is ensured (MacKay, 2003, Chapter 29). And even though a
violation of an assumption does not mean that the algorithm would not work in practice, we empirically observe that the PD
VI with these controller gains might actually diverge in problems such as the chain walk problem or the Garnet problems
(Appendix G.1).

PID Accelerated Value Iteration Algorithm

F. Detail of Gain Adaptation
We provide further detail about the gain adaptation procedure introduced in Section 5. First, we start with explaining
the general idea behind the procedure in more detail. We then justify the use of the Bellman errors as surrogates in
Appendix F.1. Appendix F.2 provides the derivations of the gain adaptation procedure for the PE case. Moreover, it provides
some interpretation of what each derivative term is trying to achieve, in a simplified setting. The derivation of the control
case, which requires some extra care because of the nonlinearity of the Bellman optimality operator, is in Appendix F.3.
Appendix F.4 provides some justifications for the use of normalization in (19) and (20). Finally, we remark on some issues,
including the choice of the time horizon in the definition of the loss function and its stability, in Appendix F.5.

To define the gain adaptation algorithm, let us start defining an impractical loss function, and then find a practical surrogate
for it. Suppose that at the beginning of the k-th iteration of the accelerated VI procedure, we decide to perform the procedure
for T more iterations. We define the loss function as

J(κp, κI , κd; k, T) =
1

2

T−1∑
t=0

at ‖ek+t‖22 , (36)

with ei = V π − Vi (or ei = Q∗ − Qi for control) and at’s defining the importance of each future step. For example, if
a0 = · · · = aT−2 = 0 and aT−1 = 1, we only care about the error after T iterations. As another example, choosing at = 1

T ,
for all t = 0, . . . , T − 1, gives the same weight to all iterations. Since the error ei’s cannot be computed, as we do not
know V π or Q∗ before solving the problem itself, this is not a practical loss function. Instead, we use the Bellman error
‖TπVi − Vi‖22 (PE) or ‖T ∗Qi −Qi‖22 (control) as surrogates. These quantities can be computed given the value function
Vi or Qi and the Bellman operator Tπ or T ∗. In the next section, we justify the use of Bellman error as a surrogate. To
simplify the exposition, we consider the case of T = 1.

F.1. Justification for the Use of Bellman Error as Surrogate

As the errors ei = V π − Vi (PE) or ei = Q∗ −Qi (control) could not be computed because V π or Q∗ are not available
during the VI process, we used the Bellman error as a surrogate. The justification was that the Bellman error provides an
upper bound on the value function error. For example, if the error is measured according to the supremum norm (and not the
`2-norm as here), we have

‖V − V π‖∞ ≤
‖TπV − V ‖∞

1− γ
. (37)

This result is standard, e.g., Proposition 3.1 of Williams & Baird (1993). A similar result holds for other Lp-norms too. Let
us state and prove both of them. For this result, we do not assume the finiteness of the state space. We shall comment on
how it is translated to the finite state space.

Given a probability distribution ρ ∈M(X) and 1 ≤ p <∞, we define the Lp(ρ)-norm of a function V : X → R as

‖V ‖p,ρ ,
p

√∫
dρ(x)|V (x)|p.

For a finite state space X = {x1, · · · , xd}, we get the standard `p-norm ‖V ‖p = p

√∑d
i=1 |V (xi)|p by choosing ρ to be the

uniform distribution over the state space, i.e., ρ(x) = 1
d for all x ∈ X (up to a multiplicative constant of p

√
d). This choice,

with p = 2, corresponds to the norm we used in the definition of the loss of the gain adaptation (36) and its surrogates (16)
and (17).

Given a transition probability kernel Pπ , we can define the γ-discounted future-state distribution ρπγ as follows. Denote the
future-state distribution of following policy π from state x for k steps by Pπ(·|x; k), i.e., Pπ(·|x; k) , (Pπ)k(·|x), with the
understanding that (Pπ)0(·|x) = I is the identity map. For an initial probability distribution ρ ∈M(X), the distribution

ρ(Pπ)k(·) =

∫
ρ(dx)Pπ(·|x; k),

PID Accelerated Value Iteration Algorithm

is the distribution of selecting the initial state according to ρ and following Pπ for k steps. The γ-discounted future-state
distribution ρπγ is defined as

ρπγ (·) = ργ(·;Pπ) , (1− γ)
∑
k≥0

γk
∫

dρ(x)Pπ(·|x; k). (38)

Given two probability distributions µ, ν ∈M(X) with µ being an absolutely continuous w.r.t. ν, we denote the supremum
of their Radon-Nikodym derivative as follows: ∥∥∥∥dµ

dν

∥∥∥∥ = sup
x∈X

dµ

dν
(x).

We use this to define the concentrability coefficient ‖dρπγ
dµ ‖∞, which appears in the next result. This coefficient compares the

concentration of γ-discounted future-state distribution to a base distribution µ, and computes their maximum ratio (Munos,
2007; Farahmand et al., 2010).

The following result upper bounds the value function approximation by the Bellman error, for the policy evaluation problem.

Proposition 7. The value function error is upper bounded by the Bellman error as follows:

‖V π − V ‖∞ ≤
‖TπV − V ‖∞

1− γ
.

Moreover, for two distributions ρ, µ ∈M(X), and 1 ≤ p <∞, we also have

‖V π − V ‖p,ρ ≤
1

1− γ

∥∥∥∥dρπγ
dµ

∥∥∥∥ 1
p

∞
‖TπV − V ‖p,µ .

Proof. We relate the error in value function approximation V π −V to its Bellman residual as follows: We consider V π −V ,
and add and subtract TπV π and TπV to get

V π − V = V π − TπV π + TπV π − TπV + TπV − V = γPπ(V π − V) + TπV − V.

where we used V π − TπV π = 0. By re-arranging, we get

(I− γPπ)(V π − V) = TπV − V.

As the supremum norm of Pπ is equal to 1, (I− γPπ) is invertible (see e.g., Lemma 2.3.3 of Golub & Van Loan 2013),
and we have

V π − V = (I− γPπ)−1(TπV − V) =
∑
k≥0

γkPπk(TπV − V). (39)

Taking the supremum norm of both sides leads to

‖V π − V ‖∞ ≤
∑
k≥0

γk ‖Pπ‖k∞ ‖T
πV − V ‖∞ =

‖TπV − V ‖∞
1− γ

,

where we used ‖Pπ‖∞ = 1.

To obtain the second part, we first take the absolute values of both sides of (39), raise it to the power of p, and integrate w.r.t.

PID Accelerated Value Iteration Algorithm

the probability measure ρ, and then apply the Jensen’s inequality twice to get

‖V π − V ‖pp,ρ = ρ |V π − V |p =

∫
dρ(x) |V π(x)− V (x)|p

= ρ

∣∣∣∣∣∣
∑
k≥0

γkPπk(TπV − V)

∣∣∣∣∣∣
p

(a)
= ρ

∣∣∣∣∣∣ 1

1− γ
∑
k≥0

(1− γ)γkPπk(TπV − V)

∣∣∣∣∣∣
p

≤ 1

(1− γ)p

∑
k≥0

(1− γ)γkρ
∣∣∣Pπk(TπV − V)

∣∣∣p
≤ 1

(1− γ)p

∑
k≥0

(1− γ)γkρPπk |TπV − V |p

=
1

(1− γ)p

∫
dρπγ (x) |TπV (x)− V (x)|p

=
1

(1− γ)p

∫
dρπγ
dµ

(x)dµ(x) |TπV (x)− V (x)|p

(b)
≤ 1

(1− γ)p

∥∥∥∥dρπγ
dµ

∥∥∥∥
∞
‖TπV − V ‖pp,µ .

Note that at step (a), by proper normalization, we constructed terms in the form of (1− γ)γk within the summation. These
terms are positive and sum to 1. This allows us to treat them as probabilities, and therefore, apply the Jensen’s inequality. At
step (b), we used a change of measure argument.

This result implies that the Bellman error ‖TπVk − Vk‖ of a value function Vk provides an upper bound on the error of
‖V π − Vk‖, hence justifying the use of the Bellman error as a proxy. This result is for the PE case. For the control case, we
have similar results, e.g., Theorem 5.3 of Munos (2007) provides a somewhat similar result. The difference, however, is
that the result of Munos (2007) is not about relating the value error to the Bellman error, but is about the performance of a
greedy policy of a value function to its Bellman error.

Let us focus on the Lp-norm case. This is the norm (with p = 2) that we used in the gain adaptation procedure in Section 5.
We notice that the result allows the flexibility of choosing norms with two different probability distributions: the norm on
the error of the value function compared to the true value function is w.r.t. the distribution ρ, whereas the norm with which
we compute the Bellman error is w.r.t. the distribution µ. When the initial state distribution ρ is the stationary distribution
ρπ of the policy π (i.e., ρπPπ = ρπ), the discounted future-state distribution is the same as the stationary distribution, i.e.,
ρπγ = ρπ . If µ is also selected to be ρπ , we get the simplified result of

‖V π − V ‖p,ρπ ≤
1

1− γ
‖TπV − V ‖p,ρπ .

For the finite state case with ρ(x) = µ(x) = 1
d for all x ∈ X , one can provide a (conservative) upper bound on the R-N

derivative ‖dρπγ
dµ ‖∞. The numerator is maximized when all next-states concentrate on a single state, say, x1. In that case

ρπγ (x1) = (1−γ)[1
d + d

d (γ+γ2 + . . .)] = 1
d (1−γ) +γ and ρπγ (xi) = (1−γ) 1

d (for i = 2, . . . , d). Given the denominator
µ(x) = 1

d , the supremum of the R-N derivative is (1− γ)[1 + d γ
1−γ] ≤ 1 + dγ ≈ dγ, where the approximation is for large

enough d. This gives the upper bound of

‖V π − V ‖2 ≤
√

1 + γd

1− γ
‖TπV − V ‖2 .

We note that this is quite an unfavourable situation, which is constructed based on an extreme concentration of the next-states.
In any case, this shows that one may use the Bellman error as an upper bound surrogate of the error of value function, which
is the one we should be interested in.

PID Accelerated Value Iteration Algorithm

F.2. Derivation of Gain Adaptation for Policy Evaluation and Some Interpretations

By choosing the Bellman error as the surrogate loss, and only considering one-step ahead rollout (T = 1), we define the
following loss functions for the PE and control cases:

JBE(k) =
1

2
‖TπVk − Vk‖22 =

1

2
‖BR(Vk)‖22 , (40)

J∗BE(k) =
1

2
‖T ∗Qk −Qk‖22 =

1

2
‖BR∗(Qk)‖22 . (41)

These are the same as (16) and (17), which we quote here for ease of reference. We could also define the loss for the control
case based on BR∗(V) = T ∗V − V .

The gain adaptation process can be performed by taking the gradient of JBE(k) (40) w.r.t. the controller parameters at the
k-th iteration. The result is already reported in Section 5. Here we derive the result for the PE case, and provide some
insights and interpretations. The result for the control case is derived in Appendix F.3.

We consider that Vk is generated using the PID variant (13) with scalar gains. To emphasize the dependence of controller
parameters, which change in a gain adaptation framework, on the iteration number, we may use a superscript (k). The PID
variant of VI is then

zk+1 = β(k)zk + α(k)BR(Vk),

Vk+1 = (1− κ(k)
p)Vk + κ(k)

p TπVk + κ
(k)
I

[
β(k)zk + α(k)BR(Vk)

]
+ κ

(k)
d (Vk − Vk−1).

The Bellman residual BR(Vk), as a function of Vk−1, zk−1, and controller parameters, is

BR(Vk) = TπVk − Vk
= rπ + (γPπ − I) [(1− κp)Vk−1 + κpT

πVk−1 + κI [βzk−1 + αBR(Vk−1)] + κd(Vk−1 − Vk−2)] . (42)

We have

∂JBE(k)

∂κ·
=

〈
BR(Vk) ,

∂BR(Vk)

∂κ·

〉
X
, (43)

where
〈V1 , V2 〉X =

∑
x∈X

V1(x)V2(x)

for a discrete state space, or

〈V1 , V2 〉X =

∫
V1(x)V2(x)dµ(x)

with a choice of µ ∈ M(X) for more general state space (which of course, could be a discrete one, if we choose µ as
a probability mass function). Taking the partial derivatives of (42) w.r.t. the parameters of the controller, we obtain the
followings (see Table 1 in Section 5):

∂BR(Vk)

∂κp
= −(I− γPπ)BR(Vk−1) = (I− γPπ)2ek−1,

∂BR(Vk)

∂κd
= −(I− γPπ)(Vk−1 − Vk−2) = −(I− γPπ)(ek−1 − ek−2),

∂BR(Vk)

∂κI
= −(I− γPπ)

[
β(k−1)zk−1 + α(k−1)BR(Vk−1)

]
= −(I− γPπ)zk,

∂BR(Vk)

∂α
= −κI(I− γPπ)BR(Vk−1) = κI(I− γPπ)(I− γPπ)ek−1,

∂BR(Vk)

∂β
= −κI(I− γPπ)zk−1. (44)

PID Accelerated Value Iteration Algorithm

Several remarks are in order. For most cases, we have provided two equivalent formulae. One set of formulae depend on
quantities that can be computed based on the information available throughout the iterations of PID VI, e.g., Vk, Vk−1, zk−1,
and the Bellman residual BR(Vk−1). The second set of formulae are based on the error e·, and are obtained because of the
relation between the Bellman residual and the error ek−1 (8). As ek−1 = Vk−1 − V π is not known, those formulae are not
for the computation purpose, but to provide another interpretation of what each derivative computes, as we discuss next.

To gain an intuition of each derivative term, we use the error-based formulae in (44) and make a simplifying assumption that
Pπ = I. This is a very simplified dynamics, in which each state transits back to itself. In this case, the Bellman residual is
BR(Vk) = −(1− γ)ek, see (8), and is proportional to the error in the value function approximation. For the gain of the
proportional term, we have

∂JBE(k)

∂κp
∝ 〈 ek , ek−1 〉 .

This shows that whenever the errors of two consecutive iterations are aligned (e.g., both are positive), the increase in κp
leads to an increase in the Bellman error; we have to decrease the proportional gain to reduce the Bellman error. And vice
versa for when they are not aligned.

For the gain of the derivative term, we have

∂JBE(k)

∂κd
∝ −〈 ek , ek−1 − ek−2 〉 .

This shows that whenever the linear trend of errors, as quantified by ek−1 − ek−2, is aligned with the current error ek, the
increase in κd leads to a decrease in the Bellman error.

To obtain an intuition for the derivative w.r.t. the gain of the integral term, first note that under the simplifying assumption of
Pπ = I, the dynamics of zk would be (assuming fixed α and β)

zk+1 = βzt − α(1− γ)ek = βzt + α(1− γ)(−ek),

which is essentially an exponentially moving average (or low-pass filter) on the negative of the error terms (−ek). Then,

∂JBE(k)

∂κI
∝ −〈 ek , zk 〉

can be interpreted as computing the alignment of the current error with the exponentially moving average of the negative
of the past error terms. If ek is aligned with the moving average of the past error terms (and not their negative values), an
increase of κI leads to an increase of the Bellman error.

F.3. Derivation of Gain Adaptation for Control

Let us now turn to the problem of gain adaptation for the control scenario where the PID variant of the accelerated VI is

zk+1 = β(k)zk + α(k)BR∗(Qk),

Qk+1 = (1− κ(k)
p)Qk + κ(k)

p T ∗Qk + κ
(k)
I

[
β(k)zk + α(k)BR∗(Qk)

]
+ κ

(k)
d (Qk −Qk−1). (45)

To compute the derivation of the gradient of (41), we are facing the challenge that the Bellman optimality operator is
nonlinear, so changing the order of the derivative and the Bellman operator requires some extra care not needed in the PE
case. The problem, however, is not too much of a challenge when we notice that the (nonlinear) Bellman optimality operator
applied to an action-value function Q corresponds to the (linear) Bellman operator of the greedy policy π(·;Q) (22) of Q
applied to Q. We have

T ∗Q = Tπ(Q)Q.

Note that when Tπ(Q) is applied to an action-value function Q, its effect is

(Tπ(Q)Q)(x, a) = r(x, a) + γ

∫
P(dy|x, a)Q(y, π(y;Q)).

PID Accelerated Value Iteration Algorithm

Therefore, this and (45) show that

BR∗(Qk) = T ∗Qk −Qk
= r + γPπ(Qk)Qk −Qk

= r +
(
γPπ(Qk) − I

)[
(1− κp)Qk−1 + κpT

∗Qk−1 +

κI

(
β(k−1)zk−1 + α(k−1)BR∗(Qk−1)

)
+

κd (Qk−1 −Qk−2)

]
. (46)

Before taking the derivative of this Bellman residual for the optimality operator, which is similar to the PE case, let us also
provide two alternative formulations of BR∗(Q) that are expressed in terms of the value error, similar to (8) for the PE case.
We have

BR∗(Q) = T ∗Q−Q = (T ∗Q−Q∗)− (Q−Q∗) =
(
Tπ(Q)Q− Tπ

∗
Q∗
)
− (Q−Q∗) . (47)

The first term Tπ(Q)Q− Tπ∗Q∗ can be written as

Tπ(Q)Q− Tπ
∗
Q∗ = γ

(
Pπ(Q)Q− Pπ

∗
Q∗
)

= γ
(
Pπ(Q)Q− Pπ(Q)Q∗ + Pπ(Q)Q∗ − Pπ

∗
Q∗
)

= γ
(
Pπ(Q)(Q−Q∗) + ∆Pπ(Q)Q∗

)
,

with ∆Pπ(Q) , Pπ(Q) −Pπ∗ being the difference between the transition kernel corresponding to the greedy policy π(Q)
and the optimal policy π∗.

We also may decompose the first term differently:

Tπ(Q)Q− Tπ
∗
Q∗ = γ

(
Pπ(Q)Q− Pπ

∗
Q∗
)

= γ
(
Pπ(Q)Q− Pπ

∗
Q+ Pπ

∗
Q− Pπ

∗
Q∗
)

= γ
(
Pπ
∗
(Q−Q∗) + ∆Pπ(Q)Q

)
.

Together with (47), we get the following two forms for BR∗(Q):

BR∗(Q) =
(
γPπ(Q) − I

)
e+ γ∆Pπ(Q)Q∗

=
(
γPπ

∗
− I
)
e+ γ∆Pπ(Q)Q. (48)

Comparing with (8), we see that the Bellman residual with the optimality operator has an extra term. When the greedy
policy of Q is the optimal policy π∗, the extra terms are zero.

PID Accelerated Value Iteration Algorithm

Taking the partial derivatives of (46) w.r.t. the parameters of the controller, and using (48) (only the first relation), we get that

∂BR∗(Qk)

∂κp
= −(I− γPπ(Qk))BR∗(Qk−1) = (I− γPπ(Qk))

[(
I− γPπ(Qk−1)

)
ek−1 − γ∆Pπ(Qk−1)Q∗

]
,

∂BR∗(Qk)

∂κd
= −(I− γPπ(Qk))(Qk−1 −Qk−2) = −(I− γPπ(Qk))(ek−1 − ek−2),

∂BR∗(Qk)

∂κI
= −(I− γPπ(Qk))

[
β(k−1)zk−1 + α(k−1)BR∗(Qk−1)

]
= −(I− γPπ(Qk))zk,

∂BR∗(Qk)

∂α
= −κI(I− γPπ(Qk))BR∗(Qk−1) = κI(I− γPπ(Qk))

[(
I− γPπ(Qk−1)

)
ek−1 − γ∆Pπ(Qk−1)Q∗

]
,

∂BR∗(Qk)

∂β
= −κI(I− γPπ(Qk))zk−1.

We provide two sets of formulae, one based on the quantities that are easy to compute, and one based on those depending on
the error ek. The first set is reported in Table 1. The update rule would be the same as (21) with obvious modifications.

F.4. Justification for Normalized Gradient Descent

Performing gradient descent based on (43) might lead to a very slow convergence. To see this, after applying the Cauchy-
Schwarz inequality to (43), we get that ∣∣∣∣∂JBE(k)

∂κ·

∣∣∣∣ ≤ ‖BR(Vk)‖2

∥∥∥∥∂BR(Vk)

∂κ·

∥∥∥∥
2

. (49)

From (44), we have ∥∥∥∥∂BR(Vk)

∂κp

∥∥∥∥
2

≤ ‖I− γPπ‖2 ‖BR(Vk−1)‖2∥∥∥∥∂BR(Vk)

∂κd

∥∥∥∥
2

= ‖(I− γPπ)(ek−1 − ek−2)‖2

=
∥∥(I− γPπ)(I− γPπ)−1 (BR(Vk−1)− BR(Vk−2))

∥∥
2

= ‖BR(Vk−1)− BR(Vk−2)‖2
≤ ‖BR(Vk−1)‖2 + ‖BR(Vk−2)‖2∥∥∥∥∂BR(Vk)

∂κI

∥∥∥∥
2

≤ ‖I− γPπ‖2 ‖zk‖2 ,∥∥∥∥∂BR(Vk)

∂α

∥∥∥∥
2

= |κI | ‖I− γPπ‖2 ‖BR(Vk−1)‖2∥∥∥∥∂BR(Vk)

∂β

∥∥∥∥
2

= |κI | ‖I− γPπ‖2 ‖zk−1‖2 .

These together with (49) show that the magnitude of the derivatives w.r.t. κp, κd, and α is approximately proportional to the
Bellman error squared (more precisely, it is of O(‖BR(Vk)‖2 ‖BR(Vk−1)‖2) for κp, etc.). For the derivatives w.r.t. κI and
β, which have dependence on ‖zk‖2, we have a similar, though not precisely the same, behaviour. This is because zk is a
low-pass filter on the Bellman residuals.

If we assume that the PID VI procedure is stable and ek converges to zero with a rate of γ′k (with |γ′| < 1), this implies that
the BR(Vk) is also converging with the same rate. The consequence is that the derivative of these terms converge to zero
with a rate of γ′2k. Therefore, if the learning rate η is fixed, this implies that most of the variation in the controller gains
occur in earlier iterations, as the change from iteration k0 onward is proportional to

ηγ′2k0

1− γ′2
,

which can be quite small.

PID Accelerated Value Iteration Algorithm

F.5. Other Remarks

We collect some remarks regarding the gain adaptation procedure in this section.

We started the description of the gain adaptation procedure in this appendix by defining a multi-step loss function∑T−1
t=0 at ‖ek+t‖22 (36), and then focused on the case of T = 1 for simplicity of derivations and exposition. As the

error e cannot be computed during the process, we used the Bellman error as a surrogate. One may consider a more general
T ≥ 1 case too, in which case the surrogate loss functions would be

JBE(κp, κI , κd; k, T) =
1

2

T−1∑
t=0

at ‖TπVk+t − Vk+t‖22 ,

J∗BE(κp, κI , κd; k, T) =
1

2

T−1∑
t=0

at ‖T ∗Qk+t −Qk+t‖22 .

One would use these loss functions in a receding horizon manner by unrolling the PID VI procedure and finding the current
best optimal value of the controller gains, or perhaps just move in the direction of its gradient. More concretely, at iteration
k, we perform the PID VI for T steps with the current parameters of the controller to obtain Vk,k+1, . . . , Vk,k+T . Here k in
Vk,k′ refers to the main iteration of PID VI, and k′ refers to the index of the intermediate value functions generated based
on the Vk for the purpose of gain adaptation. Using these intermediate value functions, we compute the Bellman errors
‖TπVk,k+t − Vk,k+t‖ for t = 0, . . . , T − 1. The gradient of these Bellman errors w.r.t. the controller parameters can be
obtained similar to how we derived for the simpler T = 1 case. We use the gradient to update the controller parameters. We
then keep Vk+1 = Vk,k+1 as the starting point of another T steps of the PID VI with the updated controller parameters, and
repeat the process.

A potential benefit of this procedure is that it is less myopic compared to what we presented in Section 5. Instead of
optimizing for the reduction of the Bellman error at the next step, this procedure incorporates the long-term effect of the
parameter change. Nevertheless, we do not currently know whether choosing a large T leads to much better results or not.
An evidence that this myopia might have a significant negative effect is studied in the context of optimization of DNN
by Wu et al. (2018). In one of their results, they considered optimizing a noisy quadratic function using a momentum variant
of SGD. When the quadratic function is ill-conditioned and the observations are noisy, a myopic solution leads to a selection
of a small learning rate compared to a non-myopic one. This consequently prevents the optimizer to find a good minimizer
fast enough. This is not an issue when the observations are not noisy, or the quadratic function is not ill-conditioned. They
also have similar empirical results for training of a DNN. It is not clear whether that result translates to this context or not.
In any case, studying the effect of T in the gain adaptation procedure is an interesting topic, which deserves further study.
As this is the first work on this line, we do not pursue studying T > 1 case in this paper.

The downside of this procedure, however, is that it becomes computationally expensive as T increases. At some point,
the extra computation for the adaptation procedure may not worth the benefit of having a PID VI procedure with a faster
convergence rate. Another disadvantage of this procedure is that it requires the knowledge of the model. Even though this is
assumed throughout this paper, it becomes a barrier when we want to adopt this gain adaptation procedure to the RL context,
in which the model is not known a priori. For T = 1, we can still compute the Bellman error using data (e.g., using the
empirical Bellman error), albeit possibly in a biased fashion (Lagoudakis & Parr, 2003; Antos et al., 2008), and perform
the gain adaptation procedure. This is more complicated for T > 1. Extension of the gain adaptation to the RL setting,
especially considering the case of T > 1, is an interesting research direction.

We remark that even though performing gradient descent on hyper-parameters is a reasonable idea and makes the problem
of hyper-parameter selection much easier, it does not completely eliminate it as we still require to choose the meta-learning
rate η. Although the choice of one parameter is often much simpler, and perhaps even less sensitive to changes (as our
experiments suggested), it still requires some attention. Choosing a large meta-learning rate might lead to instability, as has
already been observed decades ago in the context of the so-called MIT rule for adaptive control (Aström & Wittenmark,
1994). This should not be considered as a criticism specific to our method. This is a criticism for most gradient-based
approaches for adaptation of hyper-parameters of a learning procedure, including most methods mentioned earlier in
the beginning of Section 5. Designing controller gain (or learning rate) adaptation method with stability guarantee is an
interesting topic for future research.

PID Accelerated Value Iteration Algorithm

G. Related Work (Detailed)
This paper has brought ideas from control theory to design methods for accelerated computation of the value function.
In this section, we discuss some relevant bodies of research, which we only briefly mentioned before. Appendix G.1
reviews some algorithms that are designed to accelerate RL methods. We focus on those that modify basic building blocks,
such as value iteration or policy iteration. We particularly discuss some recently proposed methods such as the work
of Goyal & Grand-Clement (2020) (Appendix G.1.1) and Momentum Value Iteration and Anderson Accelerated-based
algorithms (Appendix G.1.2) in some detail, as some of them are either similar to some of the proposed methods or have
high-level structural similarities. We briefly review a few other RL methods that can be interpreted as acceleration methods
(Appendix G.1.3), even though they have quite different flavour than ours.

There are some work in the continuous optimization literature that find the connection between concepts in control theory
and optimization methods. Even though VI is not a conventional optimization method, we would like to acknowledge this
connection (Appendix G.2). We also mention some papers for learning rate adaptation (Appendix G.3).

G.1. Acceleration in RL

There have been some recent work for accelerating RL algorithms (Geist & Scherrer, 2018; Shi et al., 2019; Vieillard et al.,
2020b; Goyal & Grand-Clement, 2020; Devraj & Meyn, 2017). Similar to this work, they all modify basic RL/Planning
algorithms with the goal of accelerating them. They often bring a commonly used acceleration technique in other areas
of numerical analysis, such as Anderson acceleration (Anderson, 1965) in the fixed-point approximation literature or
momentum gradient descent in the optimization literature, in order to design new RL/Planning algorithms. In contrast to this
work, none of them are motivated by tools in the control theory. Let us describe them more closely.

G.1.1. COMPARISON WITH GOYAL & GRAND-CLEMENT (2020)

Goyal & Grand-Clement (2020) design accelerated VI methods based on insights from the first-order convex optimization.
They observe the similarity between gradient and the Bellman residual BR(V) = TπV − V : the gradient is zero at the
stationary point of an optimization problem; the Bellman residual is zero at the correct value function. They also show a
deeper connection: the Bellman residual has properties similar to a (1− γ)-strongly convex and (1 + γ)-Lipschitz function.
In particular, they show that

(1− γ) ‖V1 − V2‖∞ ≤ ‖(I− T)(V1)− (I− T)(V2)‖∞ ≤ (1 + γ) ‖V1 − V2‖∞ .

These two inequalities are analogous to the following inequalities for µ-strong convex, L-Lipschitz continuous function
f : Rd → R:

µ ‖x1 − x2‖2 ≤ ‖∇f(x1)−∇f(x2)‖2 ≤ L ‖x1 − x2‖2 .

These connections suggest that one may use various optimization methods to design new VI-like algorithms. In particular,
they use accelerated optimization methods. Based on the analogy to the gradient descent (i.e., xk+1 = xk − αk∇f(xk)),
we get

Vk+1 = Vk + αkBR(Vk).

They call this method Relaxed Value Iteration. This is the same as the P-variant of VI (9), which we obtained by interpreting
the VI procedure as a specific choice of controller. This is also the same algorithm as the Accelerated Jacobi procedure, as
introduced by Kushner & Kleinman (1971).

Based on the connection with the Nesterov’s Accelerated Gradient Descent, they suggest the following procedure:

Uk = Vk + βk(Vk − Vk−1),

Vk+1 = Uk + αk(TUk − Uk), (50)

where T is either T ∗ (control) or Tπ (PE). Based on the similarity with (1 − γ)-strongly convex and (1 + γ)-Lipschitz

function, they prescribe a fixed αk = 1
1+γ and βk =

1−
√

1−γ2

γ . They call this method Accelerated Value Iteration (A-VI)
(for Control) or Accelerated Value Computation (A-VC) (for PE). This method is not the same as any of the PID variants of
the VI introduced in our work.

PID Accelerated Value Iteration Algorithm

This approach had been introduced before in the fixed-point approximation literature (Berinde, 2007). Maingé (2008)
proposes the inertia Krasnoselskii-Mann (KM) procedure for the computation of a fixed point of a sequence of operators.
The A-VI/VC of Goyal & Grand-Clement (2020) are essentially the same as the inertia KM method when the operator is
the Bellman operator. Inertia KM method is defined as follows (with notation similar to ours): Consider a Hilbert space
H and a sequence of self-mapping operators (Lk) on that space. For an operator L, denote the set of fixed points by
Fix(L) = {V : LV = V }. The inertia Krasnoselskii-Mann (KM) procedure is

Uk = Vk + θk(Vk − Vk−1),

Vk+1 = [(1− wk)I + wkLk]Uk, (51)

with (V0, V1) ∈ H × H, (θk) ⊂ [0, 1], and (θk) ⊂ (0, 2). The common fixed-point set is denoted by Fix = ∩kFix(Tk).
Maingé (2008) then shows that under certain conditions, Vk converges to a V̄ ∈ Fix for a large class of operators, e.g.,
set of non-expansive operators, which satisfy ‖TV1 − TV2‖ ≤ ‖V1 − V2‖ with the norm being the Hilbert space norm.
Comparing (50) and (51) shows that A-VI/VC is a special case of inertia KM.

Momentum Value Iteration/Computation (M-VI/VC) is another method suggested by Goyal & Grand-Clement (2020).5

This method is inspired by the Polyak’s momentum method (or heavy ball) in optimization (e.g., Polyak, 1964 and Polyak,
1987, Section 3.2). It is

Vk+1 = Vk − αkBR(Vk) + βk(Vk − Vk−1)

= (1− αk)Vk + αkTVk + βk(Vk − Vk−1), (52)

where T is either Tπ (PE) or T ∗ (Control). Based on the analogy to convex optimization, they prescribe choosing
α = 2/(1 +

√
1− γ2) and β = (1−

√
1− γ2)/(1 +

√
1− γ2).

Interestingly, the Momentum VI/VC is the same as the PD variant of VI (11), proposed in this work, with a specific choice
of controller parameters κp = α and κd = β. This is interesting because these methods are derived from two different
perspectives: using the PD controller to modify VI vs. bringing a convex optimization method to modify VI.

They study the convergence rate of A-VC and M-VC (PE) for reversible Markov chains with their specific choice of step

sizes. The convergence rates they obtain are
√

1−γ−
√

1+γ√
1−γ+

√
1+γ

for M-VC, and 1 −
√

1−γ
1+γ for A-VC. Both of these are faster

than γ of the conventional VI. One can show that the rate of M-VC is faster than A-VC’s too.

We note that under the same reversibility assumption, we derive the parameters for the PD VI variant that leads to the same
choice of parameters and the same rate (Proposition 6 in Appendix E).

Even though having a parameter set that guarantees to accelerate the computation of the value function for reversible Markov
chains is nice, we point out that the reversibility assumption is restrictive in the MDP/RL context. Recall that a reversible
Markov chain satisfies the detailed balance equation (3) and has a transition matrix with real-valued eigenvalues. The
detailed balance is a reasonable assumption when we deal with the Markov chain induced by an MCMC method; in fact, we
design the proposal distribution in MCMC to satisfy the detailed balance equation (MacKay, 2003, Chapter 29). But it is not
a reasonable assumption in the MDP/RL context. For example, a problem as simple as the chain walk is not reversible,
neither is the Garnet problem. They both have complex-valued eigenvalues. Although this does not mean that A-VC
and M-VC would diverge for more general problems, as reversibility is only a sufficient condition, we have empirically
observed that M-VC (which is the same as PD VI with parameters selected for the reversible Markov chain according to
Proposition 6) does diverge, as we shall explain soon. It seems that optimizing the parameters under such assumption may
lead to “aggressive” parameter choice that leads to divergence, even though there might exist parameters that lead to a stable
condition. In our description of PID VI, we did not initially prescribe how the controller parameters should be selected
because we either have to make restrictive assumption on the Markov chain (e.g., reversibility), or the controller parameters
should be selected very conservatively. In Appendix E we show how a result under restrictive assumption would look like.
But we believe that the right way to approach the problem of choosing controller gains is not to select them a priori, but to
choose them problem-dependently, for example by following a gain adaptation procedure, as described in Section 5.

We would like to mention that M-VC/VI diverges for the chain walk problem for large enough discount factor. For the
PE problem (M-VC), it diverges for any γ ≥ 0.86. For the control problem (M-VI), it diverges for any γ ≥ 0.93. We

5Note that the Momentum VI was not mentioned in the original submission in May 2019. It is first mentioned in v5 (December 2019)
as a remark, and further analyzed in v6 (March 2020).

PID Accelerated Value Iteration Algorithm

0 200 400 600 800 1000

Iteration

10 6

10 2

102

106

1010

1014

1018

1022

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.6681, 0.0000, 0.6681)

(a) Branching factor = 20

0 200 400 600 800 1000

Iteration

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.6681, 0.0000, 0.6681)

(b) Branching factor = 30

0 200 400 600 800 1000

Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.6681, 0.0000, 0.6681)

(c) Branching factor = 40

Figure 5. (Garnet - Policy Evaluation) Behaviour of M-VC for a 50-state Garnet problem with γ = 0.98.

0 200 400 600 800 1000

Iteration

100

107

1014

1021

1028

1035

1042

1049

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.7527, 0.0000, 0.7527)

(a) Branching factor = 20

0 200 400 600 800 1000

Iteration

10 2

101

104

107

1010

1013

1016

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.7527, 0.0000, 0.7527)

(b) Branching factor = 30

0 200 400 600 800 1000

Iteration

10 3

10 1

101

103

105

||V
k

V
||

VI (conventional)
VI(PID) with (kp, kI, kd) = (1.7527, 0.0000, 0.7527)

(c) Branching factor = 40

Figure 6. (Garnet - Policy Evaluation) Behaviour of M-VC for a 50-state Garnet problem with γ = 0.99.

also tried it on our variant of the Garnet problem. When the branching factor is 3 and the number of non-zero rewards is
5, as in our experiments, for the PE problem M-VC often diverges for any discount factor γ ≥ 0.85 (since the MDP is
random, the behaviour of M-VC is different for each MDP instance). Through some initial experiments, not reported here,
we empirically observed that for these relatively sparsely connected MDPs, the complex eigenvalues have large imaginary
components. When we increase the branching factor, however, the eigenvalues get closer to the real line, and the problem
becomes more “similar“ to a reversible Markov chain. As an example, we show the behaviour of M-VC for three branching
factors of 20, 30, and 40 for γ = 0.98 in Figure 5 and for γ = 0.99 in Figure 6 (we used the same fixed seed to generate
them). We observe that for γ = 0.98, M-VC leads to acceleration for the branching factors of 30 and 40. It is unstable for
γ = 0.99.

G.1.2. COMPARISON WITH MOMENTUM VALUE ITERATION AND ANDERSON ACCELERATED ALGORITHMS

Vieillard et al. (2020b) introduce Momentum Value Iteration (MoVI). Again, it is motivated by making an analogy to the
optimization literature, as opposed to the control theory literature, as was done in this work. They make an informal analogy
between the action-value function and the gradient: the same way that the gradient is the direction that a function changes
the most, the greedy policy πk(·|x) = argmaxπ(·|x)∈∆|A|

〈π(·|x) , Q(x, ·) 〉, where ∆|A| is |A|-dimensional simplex, is
the direction the policy is most linearly aligned with an action-value function. This interpretation is different from the
connection between the Bellmen Residual and the gradient in the work of Goyal & Grand-Clement (2020). Based on this
connection, they argue that the same way that the momentum can be used to stabilize the gradient descent, one may use
the momentum over action-value function too. Instead of computing the greedy policy w.r.t. the most recent action-value
function, MoVI computes the greedy policy w.r.t. the moving average of the previous action-value functions. The moving
average is essentially the result of passing the past action-value functions through an integrator. To be more concrete, MoVI

PID Accelerated Value Iteration Algorithm

is defined by

πk+1(x) = argmax
a

zk(x, ·), ∀x ∈ X

Qk+1 = Tπk+1Qk + εk+1,

zk+1 = (1− βk+1)zk + βk+1Qk+1.

The function z : X ×A → R is the smoothed version of the previous action-value functions. The policy πk+1 is the greedy
policy w.r.t. the smoothed version of Qk, instead of Qk itself. And the Bellman operator is w.r.t. this policy, instead of the
greedy policy w.r.t. Qk. Here, the function εk+1 denotes the error in performing this iteration. In the case that we can do it
exactly, it would be zero.

PI VI (12) and MoVI both use an integrator to construct a smoothed estimate of certain quantities. The quantity is the
Bellman Residual for PI VI and is the action-value function for MoVI. The main feature of MoVI is the use of a greedy
policy w.r.t. this smoothed action-value function instead of the current action-value function. MoVI does not directly use the
smoothed value function to obtain a new value function, but uses it to perform the policy improvement step w.r.t. a smoothed
version of the action-value function. In comparison, PI VI directly uses the integrated value function in the construction of
the new value function.

The main motivation of MoVI is that by smoothing the action-value functions, the effect of errors εk at each iteration might
be reduced. In the case of having no error (i.e., εk = 0 for all k), we get from Corollary 1 of Vieillard et al. (2020b) that

‖Qπk+1 −Q∗‖1,µ ≤
C(µ)2Qmax

(1− γ)(k + 1)
,

where C(µ) is a concentrability coefficient. It is noticeable that we have O(1
k) behaviour, which is much slower than the

exponential O(γk) behaviour of the conventional VI or the PID variants of VI (upon proper choice of controller gains).
Therefore, MoVI does not accelerate the VI process itself, but potentially reduces the effect of errors at each iteration of VI.

More recently, Vieillard et al. (2020a) propose and analyze the class of Dual Averaging Modified Policy Iteration (DA-MPI)
algorithms, in the context of regularized MDPs (Geist et al., 2019). MoVI would be a limiting case of DA-MPI. As in the
case of MoVI, the use of smoothing in DA-MPI is for the computation of the greedy policy (or its KL regularized variant),
and is not directly used in the computation of the value function as in PI VI. It is imaginable that one might combine ideas
of DA-MPI or MoVI with PID VI.

A different approach to acceleration is through Anderson acceleration (AA) (Anderson, 1965). AA is an acceleration method
for solving fixed-point equations and was originally developed for solving integral equations. It has recently been used in
the context of MDPs and RL. Geist & Scherrer (2018) propose the Anderson acceleration variant of VI. Their method finds
the linear combination of previous value functions that minimizes the sum of weighted Bellman residuals and uses the best
combination to construct a new value function. More concretely, for a given m ≥ 0, it first computes the vector w

wk+1 = argmin
w∈Rm

∥∥∥∥∥
m∑
i=0

wiBR(Vk−i)

∥∥∥∥∥
s.t.

m∑
i=0

wi = 1,

and then set the new value function as

Qk+1 =

m∑
i=0

wiTVk−i.

Shi et al. (2019) propose to use Anderson acceleration for policy iteration. Their method finds the best linear combination of
previous action-value functions and uses the linearly combined action-value function for policy improvement.

G.1.3. OTHER RL ACCELERATION METHODS

There are several other approaches to acceleration in RL and DP, which we briefly mention here. These methods are less
similar to the ideas mentioned in this paper.

PID Accelerated Value Iteration Algorithm

Some techniques for acceleration are based on changing the order or frequency of state updates in an asynchronous VI
scheme (Bertsekas & Tsitsiklis, 1996, Section 2.2.2). This is in contrast with this work, in which all states are synchronously
updated and acceleration is potentially achieved by changing the dynamics at the iteration level. The main idea is that not all
states are required to be updated at the same time, and some of them might be prioritized based on the impact of their update
on the value function at other states. This idea is explored in variants of prioritized sweeping algorithms and other similar
methods, which have been used in both RL and DP settings (Moore & Atkeson, 1993; Peng & Williams, 1993; Andre et al.,
1997; McMahan & Gordon, 2005; Wingate & Seppi, 2005; Dai et al., 2011). The prioritized sweeping-like algorithms, and
more generally asynchronous updates, are orthogonal to what we proposed here. It is plausible that one can achieve even
further acceleration by combining both ideas and have methods such as prioritized sweeping PID VI. This is an interesting
research direction, which is beyond the scope of this work.

Another method is Speedy Q-Learning (SQL), which is an accelerated variant of Q-Learning (Azar et al., 2011). It
decomposes the update rule of Q-Learning in a particular way and uses a more aggressive learning rate, compared to
Q-Learning, on one of its terms. SQL is an online algorithm, so is not directly comparable with the proposed methods.
Looking at its underlying DP operator, however, is instructive. At iteration k of the algorithm, its operator is Lk :
B(X ×A)× B(X ×A)→ B(X ×A)

Lk[Qk, Qk−1] = T ∗Qk + (k − 1) [T ∗Qk − T ∗Qk−1] .

This has some high-level similarities to PD VI. The first term is the same as in the conventional VI (or the Proportional term
in PD). The second term computes the difference between the effect of the Bellman optimality operators applied to Qk and
Qk−1. This is similar to the Derivative term of PD VI. But there are two differences. The first is that instead of Qk −Qk−1

of PD VI, it uses T ∗Qk − T ∗Qk−1.6 The second difference is that its corresponding D gain is κ(k)
d = (k − 1) and grows as

a function of the iteration, as opposed to the constant gain κd in our formulation (if we do not perform the gain adaptation).

We may consider acceleration in the context of sample-efficient RL methods such as LSTD and LSPI (Boyan, 1999;
Lagoudakis & Parr, 2003; Lazaric et al., 2012). LSTD is a sample-efficient algorithm, but is computationally more expensive
compared to methods such as TD (or VI in the DP setting). The original fixed-point formulation of the LSTD and LSPI
requires solving a linear system of equations, which is especially expensive if performed online. There are methods to
improve the computational complexity of LSTD. These methods might be considered as acceleration methods, though with
a slightly different interpretation of acceleration as our previous usage. Geramifard et al. (2006) introduce an incremental
version of LSTD that benefits from the sparsity of features to improve its computational efficiency.

There are some other second-order methods that can improve the convergence of the TD method, which can be considered
as a first-order method. Pan et al. (2017) use quasi-second-order gradient descent on the mean squared projected Bellman
error, whose minimizer is the same as the solution obtained by the LSTD algorithm. Yao & Liu (2008) propose a class of
preconditioned TD methods. Romoff et al. (2021) study a diagonal preconditioner in order to improve the convergence
behaviour of TD-like update.

Devraj & Meyn (2017) propose a second-order stochastic approximation method, called Zap Q-Learning, with a matrix gain
that minimizes the asymptotic variance of the value function estimate. Zap Q-Learning, an application of the Zap Stochastic
Approximation (SA) algorithm to the RL problem, is accelerated in the sense that its asymptotic variance is superior to
Q-Learning’s, but it is computationally more expensive as it requires matrix inversion at every time step. We describe it and
its extensions (Devraj et al., 2019) in some more detail as they have some connections with the P and PD variants of VI. Zap
Q-Learning can be seen as a stochastic Newton-Raphson method. By ignoring the sample-based aspect of Zap Q-Learning,
which admittedly is central to its appeal, and writing down its deterministic dynamics for PE with an exact value function
representation (no function approximation), we have

Vk+1 = Vk + α(I− γPπ)−1BR(Vk).

Comparing with Vk+1 = Vk +KpBR(Vk) of (9) (with a matrix gain Kp instead of κp), we see that the deterministic version
of Zap Q-Learning corresponds to P VI with a matrix gain Kp = α(I− γPπ)−1. The Zap Q-Learning algorithm estimates
BR(Vk) using the TD error and constructs an estimate of (I− γPπ) online.

6We could also define the PD VI differently and have Qk+1 = T ∗Qk + κd (T
∗Qk − T ∗Qk−1) or Qk+1 = T ∗Qk +

κd (BR∗(Qk)− BR∗(Qk−1)) instead of Qk+1 = T ∗Qk + κd (Qk −Qk−1) in (10), though we did not study these variations in
this work.

PID Accelerated Value Iteration Algorithm

The matrix inversion required in Zap Q-Learning makes it a computationally expensive algorithm. Devraj et al. (2019) and
Devraj (2019, Chapter 4) propose Polyak Stochastic Approximation (PolSA) and Nesterov’s Stochastic Approximation
(NeSA) as computationally cheaper SA algorithms. It can be shown that the idealized version of PolSA and Zap SA couples,
i.e., their estimated parameters converge to each other with a fast rate (Proposition 4.2 of Devraj 2019).

PolSA is an extension of Polyak’s heavy-ball momentum for stochastic approximation. The deterministic variant of PolSA
(see Eq. (4-17) of Devraj 2019), used for computing the value function V π with an exact representation of the value function
(no function approximation), would be

Vk+1 = (1− η)Vk + ηTπVk + [(1− η)I + ηγPπ] (Vk − Vk−1).

This is PD VI (11) with κp = η and Kd = (1− η)I + ηγPπ . When η = 1, this simplifies to κp = 1 and Kd = γPπ:

Vk+1 = Vk + BR(Vk) + γPπ(Vk − Vk−1).

PolSA-based approach to estimate the value function uses the TD error to estimate BR(Vk) and constructs an estimate of
Pπ for the last term.

Proposition 2 describes the dynamics with a matrix gain, though the simplified Corollary 3, as well as experiments, are for
the scalar κd. It is also notable that even though Momentum VC of Goyal & Grand-Clement (2020) (52) is inspired from the
heavy-ball method of Polyak, the resulting algorithm is different from the deterministic version of PolSA and has a scalar
κd, instead of a matrix gain Kd that is a function of Pπ . We emphasize that Zap Q-Learning and PolSA are designed as SA
algorithms with a concern to have a small asymptotic variance of the estimated parameters, and their starting point was
not the acceleration of computation of the value function in the known model setting, as is in this paper. Comparing their
deterministic counterparts and PID VI, however, might shed some light on how we can design RL algorithms based on PID
VI.

G.2. Control Theoretic Interpretation of Optimization Techniques

Our work made a connection between VI and a simple dynamical system, and suggested using simple controllers to modify
the dynamics. We would like to note that the connection between control theory/dynamical system viewpoint and the
gradient-based optimization literature has been recognized. Although VI is not an optimization algorithm in the same sense,
revealing the connection between similar fields might be instructive. As a few recent examples, Hu & Lessard (2017) show
that optimizers such as heavy-ball and Nesterov’s accelerated method can be interpreted as Lag controller or Lag + PID
controller. Lessard et al. (2016) use a method from robust control (Integral Quadratic Constraints (IQC)) to provide upper
bounds on the convergence rate of several optimization methods. Muehlebach & Jordan (2019) show that the Nesterov’s
acceleration can be interpreted as the semi-implicit Euler discretization of a continuous-time mass-spring-damper system
with a curvature-dependent damping. Benosman et al. (2020) derive optimization algorithms based on discretization of
continuous-time rescaled and signed gradient flow, and analyze their convergence using results from hybrid dynamical
control theory.

G.3. Learning Rate Adaptation

Recall that the basic idea of the gain adaptation was to compute the gradient of an appropriately-defined loss function w.r.t.
the controller gains, and to update them based on the gradient throughout the iterations of the accelerated VI algorithm.
Tuning the learning rate by computing the gradient of loss w.r.t. the learning rate is not a new idea, and has been suggested
several times in the machine learning community, see e.g., the Incremental Delta-Bar-Delta (IDBD) (Sutton, 1992; Almeida
et al., 1999), stochastic meta-descent (SMD) (Schraudolph, 1999; Mahmood et al., 2012), and hyper-gradient descent (Baydin
et al., 2018). Interestingly, the idea of tuning the hyper-parameters of an algorithm using a gradient descent-like procedure
has been explored much earlier in late 1950s and early 1960s in the adaptive control literature, and is known as the MIT
rule (Osburn et al., 1961).7

7We could not find and read the paper by Osburn et al. (1961) in our search, so we are relying on secondary sources for this reference,
e.g., Mareels et al. (1987) and Chapter 5 (Model-Reference Adaptive Systems) of Aström & Wittenmark (1994).

PID Accelerated Value Iteration Algorithm

H. Detail of Experiments
H.1. Chain Walk Problem

The chain walk problem with X = {0, . . . , N − 1} and A = {Right,Left} is similar to the problem used by Lagoudakis &
Parr (2003). It is a circular chain, where the state 0 and N − 1 are connected. Upon taking action Right at state x ∈ X , the
agent goes to its right state (x+ 1) mod N with probability 0.7, stays in the same state x with probability 0.2, and goes to
its left state (x − 1) mod N with probability of 0.1. The Left action is similar, with a reversed probability. The reward
function is state-dependent and is

r(x) =

−1 x = 10

+1 x = N − 10

0 otherwise

(assuming that N > 10). For our experiments, the number of states are N = 50, so the non-zero rewards are at states 10
and 40.

H.2. Random MDP (Garnet)

We define a variation of the class of Garnet problems here. The Garnet problems are a class of randomly generated finite
MDPs (Bhatnagar et al., 2009). The name is an acronym for Generic Average Reward Non-stationary Environment Testbed.
Even though our formulation is neither for the average reward nor non-stationary problems, we refer to the resulting MDP
as Garnet anyway.

Our Garnet problem is described by parameters (|X |, |A|, bP , br). Here |X | is the number of states and |A| is the number of
actions. The parameter bP describes the branching factor for each state-action pairs. That is, for each pair (x, a) ∈ X ×A,
the transition vector P(·|x, a) has bP non-zero values. The probability of going to the next-state is determined as follows:
The possible bP next-states are chosen from X randomly without replacement. We then uniformly randomly choose bP − 1
values in (0, 1); these points act as cuts of the unit interval, which leads to bP partitions. The size of each partition is the
probability for the selected bP next-states. The rest of |X | − bP next-states have the probability of zero. We repeat this
process for all state-action pairs. The reward function r : X → R is only state dependent. We randomly pick br states
without replacement. For each selected state x, we set r(x) as a random number drawn from a uniform distribution between
(0, 1).

I. Experiments (Extended)
This section follows a similar structure to Section 6 and complements its results with more comprehensive empirical results
and discussions.

I.1. Experiments with Controller Gains

The error dynamics of the new variants of the VI algorithm depends on the eigenvalues of matricesAPD, API, andAPID. If the
eigenvalues are strictly within the unit circle, the dynamical system is asymptotically exponentially stable, and the procedure
is convergent. The convergence rate depends on how close the eigenvalues are to zero. To accelerate the convergence of the
modified VI algorithm, we have to choose the controller gains such that the eigenvalues move closer to 0. In this section, we
use some simple experiments to illustrate how these eigenvalues move around as the controller gains are changed, and we
observe their effect on the error behaviour of the modified variants of VI. These experiments complement the results of
Proposition 4 and Corollary 5 (Appendix B), which indicate the dependence of the location of the eigenvalues of the PD,
PI, and PID variants as a function of the gains and the eigenvalues λi of Pπ. We would like to note that even though the
modulus of the dominant eigenvalue determines the asymptotic behaviour of the dynamical system, the transient behaviour
depends on the whole eigenstructure of the matrix.

We use a chain walk problem with 50 states in this section. The details of the dynamics are described in Appendix H. We
consider both policy evaluation (using Tπ) and control (using T ∗) cases. In all experiments, we set γ = 0.99, unless stated
otherwise.

In the first experiment in Section 6, we showed a typical behaviour of VI and accelerated VI with different controller gains
by reporting log10 ‖Vk − V π‖∞ (PE) and log10 ‖Vk − V ∗‖∞ (control) as a function of iteration k (Figure 1). The norm of

PID Accelerated Value Iteration Algorithm

0 100 200 300 400 500
Iteration

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
V k

(x
)

V
(x

)

VI (Conventional)
0
10
20
30
40

0 100 200 300 400 500
Iteration

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

V k
(x

)
V

(x
)

VI(PID) with (kp, kI, kd) = (1.2, 0, 0)
0
10
20
30
40

0 100 200 300 400 500
Iteration

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

V k
(x

)
V

(x
)

VI(PID) with (kp, kI, kd) = (1, -0.4, 0)
0
10
20
30
40

0 100 200 300 400 500
Iteration

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

V k
(x

)
V

(x
)

VI(PID) with (kp, kI, kd) = (1, 0, 0.15)
0
10
20
30
40

Figure 7. (Chain Walk - Policy Evaluation) Error behaviour of the value function for a 50-state chain walk problem for various accelerated
variants of VI and the conventional one.

error provides an overall indicator of the error behaviour. We also take a closer look at the error of each state to get a better
sense on how the value function evolves as a function of iteration.

Figure 7 and Figure 8 depict how the error ek(x) = Vk(x) − V π(x) (or ek(x) = Vk(x) − V ∗(x) for the control case)
converge to zero for a select number of states (since we have 50 states in this problem, we only show a few regularly space
states in order to avoid excessive clutter) for the same gains as in Figure 1.

Figure 7 presents the result for the PE problem. We observe the oscillatory behaviour of the errors ek(x) = Vk(x)− V π(x)
for all methods, including the conventional VI. Even though the standard norm contraction argument shows that the norm
of the error should monotonically decrease and behave as ‖ek‖∞ ≤ γk ‖e0‖∞, it does not give much insight about the
fine behaviour of the error at each state.8 We see that it is possible, as in this problem, that the error at each state have
both increasing and decreasing periods, while the norm over the whole state space is decreasing. The decrease in norm
is apparent in the envelop of these curves. Comparing the conventional VI and the accelerated variants, we observe the
modified behaviour, most noticeably in the PI case, in which the errors dampens quickly and the oscillatory behaviour is
reduced too.

Figure 8 presents the result for the control case. No oscillatory behaviour is observed here anymore, and the error is
monotonically reducing for most cases. The accelerated variants reduce the dampening time. For the (κp, κI , κd) =
(1, 0.75, 0.4) case, we observe some temporarily increase in error of some states.

8Recall that we have ‖ek‖∞ = ‖Vk − V π‖∞ = ‖TπVk−1 − TπV π‖∞ ≤ γ ‖Vk−1 − V π‖∞ = γ ‖ek−1‖∞ by the contraction of
the Bellman operator. This shows that ‖ek‖∞ ≤ γ

k ‖e0‖∞.

PID Accelerated Value Iteration Algorithm

0 100 200 300 400 500
Iteration

40

30

20

10

0

V k
(x

)
V

* (
x)

VI (Conventional)
0
10
20
30
40

0 100 200 300 400 500
Iteration

40

30

20

10

0

V k
(x

)
V

* (
x)

VI(PID) with (kp, kI, kd) = (1.2, 0, 0)
0
10
20
30
40

0 100 200 300 400 500
Iteration

40

30

20

10

0

V k
(x

)
V

* (
x)

VI(PID) with (kp, kI, kd) = (1, 0.75, 0)
0
10
20
30
40

0 100 200 300 400 500
Iteration

40

30

20

10

0

V k
(x

)
V

* (
x)

VI(PID) with (kp, kI, kd) = (1, 0, 0.4)
0
10
20
30
40

0 100 200 300 400 500
Iteration

40

30

20

10

0

V k
(x

)
V

* (
x)

VI(PID) with (kp, kI, kd) = (1, 0.75, 0.4)
0
10
20
30
40

0 100 200 300 400 500
Iteration

40

30

20

10

0
V k

(x
)

V
* (

x)
VI(PID) with (kp, kI, kd) = (1.0, 0.7, 0.2)

0
10
20
30
40

Figure 8. (Chain Walk - Control) Error behaviour of the value function for a 50-state chain walk problem for various accelerated variants
of VI and the conventional one.

In Section 6, we also studied the effect of changing each of the controller gains on the performance for both PE and Control
(Figure 2). Here we complement those results by (1) looking at how the eigenvalues changes as we change gains, and (2)
studying the change of two gains at the same time (visualizing the effect of changing three gains at the same time is difficult).

Figure 9 shows the root locus diagram, the location of the eigenvalues of the error dynamics matrices as the gain changes.
This is only shown for PE as the eigenvalues of a dynamics matrix as a descriptor of the dynamics is most meaningful for
linear time-invariant system. For the control case, the dynamical system is linear, but time-varying. See Appendix C for
more discussion. We observe that as the controller gains change, the location of the eigenvalues change too. The behaviour
is quite complicated in the case of PD controller. We observe that the change in the locations of some eigenvalues are more
significant than others, while for some others the change is barely noticeable. This is especially the case with eigenvalues
close to +1. This, however, does not mean that the dynamics is not changing. Reducing the dominant eigenvalue from 1 to,
say, 0.98 has a significant effect on the dynamics, as it changes the asymptotic behaviour from O(γk) to O((0.98γ)k).

The previous experiments studied variation of one parameter only. Different gains of a PID controller, however, can have
complementary effect on the dynamics. Together they might lead to better performance, an example of which is the PID
controller (κp, κI , κd) = (1, 0.75, 0.4) in Figure 1, which behaves better than the PD or PI controllers described with
(κp, κI , κd) = (1, 0.75, 0) or (κp, κI , κd) = (1, 0, 0.4). To investigate this complementary effect, we now study changing
two gains at the same time, while keeping the third constant. We sweep over (κp, κd) pairs (corresponding to PD controllers),
(κp, κI) pairs (corresponding to PI controllers), and (κI , κd) (corresponding PID controllers). We use the default values of
κp = 1, κd = κI = 0 for the constant gain. So we are effectively sweeping over a subset of PID controllers. Note that the
integrator in PID also has two parameters β and α. We do not change them here, and leave them as before, i.e., β = 0.95
and α = 0.05.

PID Accelerated Value Iteration Algorithm

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Im

ag
in

ar
y

(a) P Controller

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

in
ar

y

(b) PI Controller

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

in
ar

y

(c) PD Controller

Figure 9. (Chain Walk) (Policy Evaluation) The eigenvalue location (root locus) of the error dynamics matrix as one of the controller
gains are changed for a 50-state chain walk problem. The ranges are κp ∈ [0.8, 1.2], κI ∈ [−0.5, 0.3], and κd ∈ [−0.2, 0.25], and their
starts are indicated by × and their ends by ◦. The small purple dots indicate [1

4
, 1
2
, 3
4
] in the range.

We use V PID
k (κp, κI , κd) to indicate the approximated value of such a method with a particular choices of gains at the k-th

iteration. Here we use V PID, even though when κd or κI are equal to zero, the corresponding controllers are in fact PI or PD,
respectively. For the control case, we use V PID

k = maxaQ
PID
k (·, a) and the comparison is with the optimal value function

V ∗.

Instead of reporting the log error log10 ‖Vk(κp, κI , κd)− V π‖∞ as a function of controller gains, which is somewhat
difficult to inspect visually, we report the log of error relative to the conventional VI, i.e.,

log10

∥∥V PID
k (κp, κI , κd)− V π

∥∥
∞

‖V conv
k − V π‖∞

.

Figures 10 reports the result at the final iteration for the PE case. The log relative error is 0 when the performance of
V PID
k (κp, κI , κd) is the same as the conventional VI (and is indicated by white pixels in the figure), is negative (hues of

blue) when it outperforms, and positive (hues of red) when it underperforms. Some choices of gains might lead to unstable
behaviour, and hence large relative error. In these figures, we cap the value at +1, which means that if the error is 10-times
worse than the conventional VI, we use the same colour (red) to indicate it. Figures 11, 12, and 13 report the result for
each pairs of sweeping dimensions at k = [1

4 ,
1
2 ,

3
4 , 1]×K iterations, where K is the total number of iterations (so the last

iteration is the same as the figures in Figures 10). In all figures, we see a parameter region that accelerates VI. As expected,
these regions are different for different combinations of controller gains.

Figure 10a focuses on the PD controller. When κp = 1, and κd varies, the colours are close to white, showing that the
performance is not better than the conventional VI. Interestingly, there is a region with much better performance when
κp ≈ 1.2. The best relative error is around 10−0.6 ≈ 0.25. We observe a high performing ridge in Figures 10b, surrounded
by a large region of improved performance. Figure 10c show less sensitivity to changes in κd. The best performance of PI
and PID controllers are better than the PD one, which is aligned with our previous observation.

Figures 11, 12, and 13 show that log relative error at different iterations. The general shape of the regions are the same, with
some slight variations between iterations.

Figure 14 shows the effective planning horizon. The effective planning horizon is defined as 1
1−γeff

, where γeff is the effective
discount factor for a particular value of controller gains. The effective discount factor is computed as a fit of γKeff to the error
after K iteration, i.e.,

γeff = exp

 ln
(
‖VK−1−V π‖∞
‖V0−V π‖∞

)
K

 ,

or similar for the control case.

The same results for the control case appear in Figure 15 (the last iteration), and Figures 16, 17, 18 (for several iterations),
and Figure 19 for the effective planning horizon. The general shape of regions are different compared to the PE case. Also

PID Accelerated Value Iteration Algorithm

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
kD

0.6

0.8

1.0

1.2

1.4

k P

Iteration: 499

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) PD Controllers (κp × κd)

0.8 0.6 0.4 0.2 0.0 0.2
kI

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

k P

Iteration: 499

4

3

2

1

0

1

(b) PI Controllers (κp × κI)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
kD

0.2

0.1

0.0

0.1

0.2

0.3

0.4

k I

Iteration: 499

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(c) PID Controllers (κI × κd)

Figure 10. (Chain Walk - Policy Evaluation) Log relative error as two of the controller gains are changed for a 50-state chain walk
problem.

we observe sudden changes in the colour, which corresponds to sudden changes in performance. This is similar to the large
drop in error in the PI case (Figure 2e). We do not currently have a good explanation for it.

The takeaway message of these experiments on simultaneous change of two gains is that we may achieve even faster
acceleration compared to when we only change one of the controller gains. In many cases, the region that leads to a faster
convergence is not small, indicating that the dynamics is not overly sensitive to the right choice of controller gains. As
discussed in Appendix D, there are several ways to choose these gains. One is to consider them as hyper-parameters of the
algorithm and tune them from an outer loop. Another is to select them through the gain adaptation procedure of Section 5.
This is what we empirically evaluate in some detail in the next section.

I.2. Experiments with Gain Adaptation

In this section, we report some empirical results on using the gain adaptation method of Section 5. The results of this section
are more comprehensive compared to Section 6.2. We study two problems. The first is the same 50-state chain walk problem
as in Appendix I.1. We would like to see if the gain adaptation procedure can lead to acceleration or not. The second is
the Garnet problem, a class of random MDPs (Bhatnagar et al., 2009) (see detail in Appendix H.2). We adapt κp, κI , and
κd by (21), or similar for the control case. We do not adapt α and β, and use fixed β = 0.95 and α = 1− β = 0.05 in all
reported results.

I.2.1. GAIN ADAPTATION FOR RANDOM WALK

Let us start with the discount factor γ = 0.99. We compare the conventional VI and an accelerated PID VI with adaptive
gains. For the adaptive gain, we start from (κp, κI , κd) = (1, 0, 0), which makes it the conventional VI procedure at the
beginning. The behaviour of the adaptive algorithm depends on the meta-learning rate η and the normalizing factor ε. For
this experiment, we manually tried several values, but did not systematically optimize it. We choose (η, ε) = (0.05, 10−20)
for both the PE and control cases, even though their best values are not necessarily the same. We note that if η is too large,
the procedure might become unstable. In the next section, we provide a systematic study of the effect of these meta-learning
parameters on the performance.

Figure 20 reports the results. Figure 20a compares the error behaviour of conventional VI and the adaptive procedure. We see
that the adaptive accelerated VI decreases error significantly faster than the conventional VI. Figure 20b shows how the gains
evolve throughout iterations. We observe that κp becomes larger than 1, κI becomes negative, and κd becomes positive.
Figure 21 reports the result for the control case. The performance improves significantly compared to the conventional VI.
This figure is the same as Figure 3 in Section 6.2, which we repeat here for easier access.

We now repeat the same experiments with a larger discount factor of γ = 0.999. We use the same values of (η, ε) =
(0.05, 10−20). The results are reported in Figure 22 (PE) and Figure 23 (Control). The results show a significant speedup as
a result of gain adaptation.

PID Accelerated Value Iteration Algorithm

0.0 0.5
kD

0.6

0.8

1.0

1.2

1.4
k P

Iteration: 125

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5
kD

0.6

0.8

1.0

1.2

1.4

k P

Iteration: 250

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5
kD

0.6

0.8

1.0

1.2

1.4

k P

Iteration: 375

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5
kD

0.6

0.8

1.0

1.2

1.4

k P

Iteration: 499

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11. (Chain Walk - Policy Evaluation - κd × κp) Log relative error as two of the controller gains are changed for a 50-state chain
walk problem at several iterations.

I.2.2. GAIN ADAPTATION FOR RANDOM MDPS

The use of a gain adaptation procedure is most useful when we are facing an unknown problem for which we do not know a
good choice of controller gains. The results on the random walk problem were encouraging as they showed that the gain
adaptation procedure could lead to acceleration for that particular problem. To show the real benefit of gain adaptation,
however, it is better to evaluate it on a wide range of MDPs. We use the Garnet problem, which is a randomly generated
MDP, as the testbed. For the result of this section, we consider a Garnet problem with 50 states, a branching factor of 3, and
5 non-zero rewards throughout the state space. For the PE problem, we effectively have 1 action per state, and for the control
problem we have 4 actions per state. The branching factor is per state-action pair, i.e., each state-action pair is connected
to 3 other states in this setup. We consider the discount factor of γ = 0.99 in these experiments. We report the mean and
standard error of performance over 20 runs.

Figures 24 and 25 compare the performance of the gain adaptation procedure for the PE problem. Each subfigure is for
a fixed meta-learning rate η and varying normalizing coefficient ε. We also present the performance of the conventional
VI. We present the mean and the standard error (shaded area around each curve) for each combination. As the Y-axis is
logarithmic, the standard error is asymmetric. We also remark that an apparently wide standard error in a very small range
of values can actually be much smaller than an apparently narrower one in larger range.

We observe that most combinations of η and ε lead to acceleration compared to the conventional VI. For each η, there is
a wide range of ε (several orders of magnitude) that leads to good performance. We also notice that whenever ε is large
(0.1 or 0.01), the acceleration is less significant compared to when ε is a small value. This can be understood by noticing
that when ε is much larger than ‖BR(Vk−1)‖22 in (21), the normalized gradient would be too small to significantly change

PID Accelerated Value Iteration Algorithm

0.5 0.0
kI

0.4

0.6

0.8

1.0

1.2
k P

Iteration: 125

1.5

1.0

0.5

0.0

0.5

1.0

0.5 0.0
kI

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 250

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

0.5 0.0
kI

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 375

3

2

1

0

1

0.5 0.0
kI

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 499

4

3

2

1

0

1

Figure 12. (Chain Walk - Policy Evaluation - κI × κp) Log relative error as two of the controller gains are changed for a 50-state chain
walk problem at several iterations.

the controller gains. We also observe that smaller εs usually lead to better performance, though the relation is not always
monotonic. For example, ε = 10−20 or 10−16 are often one of the better performing ones for each η, but not always the best.

In these figures, we have a curve called “best”. This refers to the average performance of the best
choice of ε for each individual MDP. That is, for each random MDP, we select the best ε among the set
{10−20, 10−16, 10−12, 10−10, 10−8, 10−6, 10−4, 10−2, 10−1}. This shows the performance if we could do a model se-
lection over the hyper-parameter ε of the gain adaptation procedure. The selection criteria is based on the average over the
iterations of the logarithm of the error, i.e.,

argmin
θ

1

K

K∑
k=1

log10

(
‖Vk(θ)− V π‖∞ + 10−20

)
,

where θ is the hyper-parameter of the gain adaptation procedure (ε in this case). We add a small number 10−20 in order to
avoid numerical errors. For the control case, which we shall discuss soon, the optimal value function V ∗ replaces V π . Note
that this way of doing model selection is not practical, as it requires the knowledge of the true value function. But it shows
that if we found the right hyper-parameter for each problem, what we could expect.

Figure 26 and 27 show the same experiment, but for the control case. The general observations are similar to the PE case,
with a noticeable difference that when the meta-learning rate is large (e.g., 0.2 or 0.5), the gain adaptation procedure has a
poor performance and does not lead to a procedure with decreasing error.

Next we report the result of similar experiment, but with the role of η and ε exchanged, i.e., we keep the normalizing

PID Accelerated Value Iteration Algorithm

0.2 0.0 0.2
kD

0.2

0.0

0.2

0.4
k I

Iteration: 125

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.0 0.2
kD

0.2

0.0

0.2

0.4

k I

Iteration: 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.2 0.0 0.2
kD

0.2

0.0

0.2

0.4

k I

Iteration: 375

1.5

1.0

0.5

0.0

0.5

1.0

0.2 0.0 0.2
kD

0.2

0.0

0.2

0.4

k I

Iteration: 499

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Figure 13. (Chain Walk - Policy Evaluation - kD × κI) Log relative error as two of the controller gains are changed for a 50-state chain
walk problem at several iterations.

constant ε fixed, and change the meta-learning rate η. Figure 28 depicts the result for the PE case, and Figure 29 depicts
them for the control case. For the PE case, we observe that all tested values of meta-learning rate η leads to acceleration,
though the acceleration would be insignificant for very small meta-learning rates, e.g., η = 10−3. For the control case, we
also observe significant acceleration, except for the large value of the meta-learning rate η = 0.1.

These results show that the gain adaptation procedure, with appropriately chosen parameters (η, ε), can lead to acceleration,
and often a significant one. Although the gain adaptation procedure itself is not parameter-free, we observed that it is
relatively insensitive to the choice of parameters. Our experiments suggest that a very small ε and small enough η usually
work fine.

PID Accelerated Value Iteration Algorithm

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
kD

0.6

0.8

1.0

1.2

1.4

k P

Effective Planning Horizon

60

70

80

90

100

110

(a) PD Controllers (κp × κd)

0.8 0.6 0.4 0.2 0.0 0.2
kI

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

k P

Effective Planning Horizon

30

40

50

60

70

80

90

100

110

(b) PI Controllers (κp × κI)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
kD

0.2

0.1

0.0

0.1

0.2

0.3

0.4

k I

Effective Planning Horizon

50

60

70

80

90

100

110

(c) PID Controllers (κI × κd)

Figure 14. (Chain Walk - Policy Evaluation) Effective planning horizon as two of the controller gains are changed for a 50-state chain
walk problem at several iterations.

0.2 0.0 0.2 0.4 0.6 0.8
kD

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

k P

Iteration: 499

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(a) PD Controllers (κp × κd)

1 0 1 2 3 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 499

7

6

5

4

3

2

1

0

1

(b) PI Controllers (κp × κI)

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
kD

1

0

1

2

3

4

k I

Iteration: 499

8

6

4

2

0

(c) PID Controllers (κI × κd)

Figure 15. (Chain Walk - Control) Log relative error as two of the controller gains are changed for a 50-state chain walk problem.

PID Accelerated Value Iteration Algorithm

0.0 0.5
kD

0.25

0.50

0.75

1.00

1.25

1.50

k P

Iteration: 125

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.5
kD

0.25

0.50

0.75

1.00

1.25

1.50

k P

Iteration: 250

1.0

0.5

0.0

0.5

1.0

0.0 0.5
kD

0.25

0.50

0.75

1.00

1.25

1.50

k P

Iteration: 375

1.5

1.0

0.5

0.0

0.5

1.0

0.0 0.5
kD

0.25

0.50

0.75

1.00

1.25

1.50

k P

Iteration: 499

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Figure 16. (Chain Walk - Control - κd × κp) Log relative error as two of the controller gains are changed for a 50-state chain walk
problem at several iterations.

PID Accelerated Value Iteration Algorithm

0 2 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 125

3

2

1

0

1

0 2 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 250

5

4

3

2

1

0

1

0 2 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 375

7

6

5

4

3

2

1

0

1

0 2 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Iteration: 499

7

6

5

4

3

2

1

0

1

Figure 17. (Chain Walk - Control - κI ×κp) Log relative error as two of the controller gains are changed for a 50-state chain walk problem
at several iterations.

PID Accelerated Value Iteration Algorithm

0.0 0.5
kD

1

0

1

2

3

4
k I

Iteration: 125

4

3

2

1

0

1

0.0 0.5
kD

1

0

1

2

3

4

k I

Iteration: 250

5

4

3

2

1

0

1

0.0 0.5
kD

1

0

1

2

3

4

k I

Iteration: 375

6

5

4

3

2

1

0

1

0.0 0.5
kD

1

0

1

2

3

4

k I

Iteration: 499

8

6

4

2

0

Figure 18. (Chain Walk - Control - kD × κI) Log relative error as two of the controller gains are changed for a 50-state chain walk
problem at several iterations.

0.2 0.0 0.2 0.4 0.6 0.8
kD

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

k P

Effective Planning Horizon

60

80

100

120

140

(a) PD Controllers (κp × κd)

1 0 1 2 3 4
kI

0.2

0.4

0.6

0.8

1.0

1.2

k P

Effective Planning Horizon

40

60

80

100

120

140

(b) PI Controllers (κp × κI)

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
kD

1

0

1

2

3

4

k I

Effective Planning Horizon

20

40

60

80

100

120

140

(c) PID Controllers (κI × κd)

Figure 19. (Chain Walk - Control) Effective planning horizon as two of the controller gains are changed for a 50-state chain walk problem
at several iterations.

PID Accelerated Value Iteration Algorithm

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.5

0.0

0.5

1.0

1.5

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 20. (Chain Walk - Policy Evaluation) Gain adaptation for a 50-state chain walk problem with γ = 0.99. Here we use (η, ε) =
(0.05, 10−20).

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||V
k

V
* |

|

VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 21. (Chain Walk - Control) Gain adaptation for a 50-state chain walk problem with γ = 0.99. Here we use (η, ε) = (0.05, 10−20).

PID Accelerated Value Iteration Algorithm

0 2000 4000 6000 8000 10000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 2000 4000 6000 8000 10000
Iteration

1.0

0.5

0.0

0.5

1.0

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 22. (Chain Walk - Policy Evaluation) Gain adaptation for a 50-state chain walk problem with γ = 0.999. Here we use
(η, ε) = (0.05, 10−20).

0 2000 4000 6000 8000 10000
Iteration

10 9

10 7

10 5

10 3

10 1

101

103

||V
k

V
* |

|

VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 2000 4000 6000 8000 10000
Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 23. (Chain Walk - Control) Gain adaptation for a 50-state chain walk problem with γ = 0.999. Here we use (η, ε) = (0.05, 10−20).

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.001, 1e-16)
(,) = (0.001, 1e-12)
(,) = (0.001, 1e-10)
(,) = (0.001, 1e-08)
(,) = (0.001, 1e-06)
(,) = (0.001, 0.0001)
(,) = (0.001, 0.01)
(,) = (0.001, 0.1)
Best

(a) Error behaviour for η = 0.001

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.005, 1e-20)
(,) = (0.005, 1e-16)
(,) = (0.005, 1e-12)
(,) = (0.005, 1e-10)
(,) = (0.005, 1e-08)
(,) = (0.005, 1e-06)
(,) = (0.005, 0.0001)
(,) = (0.005, 0.01)
(,) = (0.005, 0.1)
Best

(b) Error behaviour for η = 0.005

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.01, 1e-20)
(,) = (0.01, 1e-16)
(,) = (0.01, 1e-12)
(,) = (0.01, 1e-10)
(,) = (0.01, 1e-08)
(,) = (0.01, 1e-06)
(,) = (0.01, 0.0001)
(,) = (0.01, 0.01)
(,) = (0.01, 0.1)
Best

(c) Error behaviour for η = 0.01

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.02, 1e-20)
(,) = (0.02, 1e-16)
(,) = (0.02, 1e-12)
(,) = (0.02, 1e-10)
(,) = (0.02, 1e-08)
(,) = (0.02, 1e-06)
(,) = (0.02, 0.0001)
(,) = (0.02, 0.01)
(,) = (0.02, 0.1)
Best

(d) Error behaviour for η = 0.02

Figure 24. (Garnet - Policy Evaluation) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different meta-learning rates
(η ∈ {0.001, 0.005, 0.01, 0.02}) over a range of normalizing factors ε. The mean and standard errors are evaluated based on 20 runs.

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.05, 1e-20)
(,) = (0.05, 1e-16)
(,) = (0.05, 1e-12)
(,) = (0.05, 1e-10)
(,) = (0.05, 1e-08)
(,) = (0.05, 1e-06)
(,) = (0.05, 0.0001)
(,) = (0.05, 0.01)
(,) = (0.05, 0.1)
Best

(a) Error behaviour for η = 0.05

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.1, 1e-20)
(,) = (0.1, 1e-16)
(,) = (0.1, 1e-12)
(,) = (0.1, 1e-10)
(,) = (0.1, 1e-08)
(,) = (0.1, 1e-06)
(,) = (0.1, 0.0001)
(,) = (0.1, 0.01)
(,) = (0.1, 0.1)
Best

(b) Error behaviour for η = 0.1

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.2, 1e-20)
(,) = (0.2, 1e-16)
(,) = (0.2, 1e-12)
(,) = (0.2, 1e-10)
(,) = (0.2, 1e-08)
(,) = (0.2, 1e-06)
(,) = (0.2, 0.0001)
(,) = (0.2, 0.01)
(,) = (0.2, 0.1)
Best

(c) Error behaviour for η = 0.2

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.5, 1e-20)
(,) = (0.5, 1e-16)
(,) = (0.5, 1e-12)
(,) = (0.5, 1e-10)
(,) = (0.5, 1e-08)
(,) = (0.5, 1e-06)
(,) = (0.5, 0.0001)
(,) = (0.5, 0.01)
(,) = (0.5, 0.1)
Best

(d) Error behaviour for η = 0.5

Figure 25. (Garnet - Policy Evaluation) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different meta-learning rates
(η ∈ {0.05, 0.1, 0.2, 0.5}) over a range of normalizing factors ε. The mean and standard errors are evaluated based on 20 runs.

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.001, 1e-16)
(,) = (0.001, 1e-12)
(,) = (0.001, 1e-10)
(,) = (0.001, 1e-08)
(,) = (0.001, 1e-06)
(,) = (0.001, 0.0001)
(,) = (0.001, 0.01)
(,) = (0.001, 0.1)
Best

(a) Error behaviour for η = 0.001

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.005, 1e-20)
(,) = (0.005, 1e-16)
(,) = (0.005, 1e-12)
(,) = (0.005, 1e-10)
(,) = (0.005, 1e-08)
(,) = (0.005, 1e-06)
(,) = (0.005, 0.0001)
(,) = (0.005, 0.01)
(,) = (0.005, 0.1)
Best

(b) Error behaviour for η = 0.005

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.01, 1e-20)
(,) = (0.01, 1e-16)
(,) = (0.01, 1e-12)
(,) = (0.01, 1e-10)
(,) = (0.01, 1e-08)
(,) = (0.01, 1e-06)
(,) = (0.01, 0.0001)
(,) = (0.01, 0.01)
(,) = (0.01, 0.1)
Best

(c) Error behaviour for η = 0.01

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.02, 1e-20)
(,) = (0.02, 1e-16)
(,) = (0.02, 1e-12)
(,) = (0.02, 1e-10)
(,) = (0.02, 1e-08)
(,) = (0.02, 1e-06)
(,) = (0.02, 0.0001)
(,) = (0.02, 0.01)
(,) = (0.02, 0.1)
Best

(d) Error behaviour for η = 0.02

Figure 26. (Garnet - Control) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different meta-learning rates (η ∈
{0.001, 0.005, 0.01, 0.02}) over a range of normalizing factors ε. The mean and standard errors are evaluated based on 20 runs.

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.05, 1e-20)
(,) = (0.05, 1e-16)
(,) = (0.05, 1e-12)
(,) = (0.05, 1e-10)
(,) = (0.05, 1e-08)
(,) = (0.05, 1e-06)
(,) = (0.05, 0.0001)
(,) = (0.05, 0.01)
(,) = (0.05, 0.1)
Best

(a) Error behaviour for η = 0.05

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.1, 1e-20)
(,) = (0.1, 1e-16)
(,) = (0.1, 1e-12)
(,) = (0.1, 1e-10)
(,) = (0.1, 1e-08)
(,) = (0.1, 1e-06)
(,) = (0.1, 0.0001)
(,) = (0.1, 0.01)
(,) = (0.1, 0.1)
Best

(b) Error behaviour for η = 0.1

0 500 1000 1500 2000 2500 3000
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.2, 1e-20)
(,) = (0.2, 1e-16)
(,) = (0.2, 1e-12)
(,) = (0.2, 1e-10)
(,) = (0.2, 1e-08)
(,) = (0.2, 1e-06)
(,) = (0.2, 0.0001)
(,) = (0.2, 0.01)
(,) = (0.2, 0.1)
Best

(c) Error behaviour for η = 0.2

0 500 1000 1500 2000 2500 3000
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.5, 1e-20)
(,) = (0.5, 1e-16)
(,) = (0.5, 1e-12)
(,) = (0.5, 1e-10)
(,) = (0.5, 1e-08)
(,) = (0.5, 1e-06)
(,) = (0.5, 0.0001)
(,) = (0.5, 0.01)
(,) = (0.5, 0.1)
Best

(d) Error behaviour for η = 0.5

Figure 27. (Garnet - Control) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different meta-learning rates (η ∈
{0.05, 0.1, 0.2, 0.5}) over a range of normalizing factors ε. The mean and standard errors are evaluated based on 20 runs.

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.005, 1e-20)
(,) = (0.01, 1e-20)
(,) = (0.02, 1e-20)
(,) = (0.05, 1e-20)
(,) = (0.1, 1e-20)
(,) = (0.2, 1e-20)
(,) = (0.5, 1e-20)
Best

(a) Error behaviour for ε = 10−20

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-16)
(,) = (0.005, 1e-16)
(,) = (0.01, 1e-16)
(,) = (0.02, 1e-16)
(,) = (0.05, 1e-16)
(,) = (0.1, 1e-16)
(,) = (0.2, 1e-16)
(,) = (0.5, 1e-16)
Best

(b) Error behaviour for ε = 10−16

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-10)
(,) = (0.005, 1e-10)
(,) = (0.01, 1e-10)
(,) = (0.02, 1e-10)
(,) = (0.05, 1e-10)
(,) = (0.1, 1e-10)
(,) = (0.2, 1e-10)
(,) = (0.5, 1e-10)
Best

(c) Error behaviour for ε = 10−10

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
||

/||
V

||

Conventional VI
(,) = (0.001, 1e-08)
(,) = (0.005, 1e-08)
(,) = (0.01, 1e-08)
(,) = (0.02, 1e-08)
(,) = (0.05, 1e-08)
(,) = (0.1, 1e-08)
(,) = (0.2, 1e-08)
(,) = (0.5, 1e-08)
Best

(d) Error behaviour for ε = 10−8

Figure 28. (Garnet - Policy Evaluation) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different normalizing factors
(ε ∈ {10−20, 10−16, 10−10, 10−8}) over a range of meta-learning rate η. The mean and standard errors are evaluated based on 20 runs.

PID Accelerated Value Iteration Algorithm

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-20)
(,) = (0.005, 1e-20)
(,) = (0.01, 1e-20)
(,) = (0.02, 1e-20)
(,) = (0.05, 1e-20)
(,) = (0.1, 1e-20)
(,) = (0.2, 1e-20)
(,) = (0.5, 1e-20)
Best

(a) Error behaviour for ε = 10−20

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-16)
(,) = (0.005, 1e-16)
(,) = (0.01, 1e-16)
(,) = (0.02, 1e-16)
(,) = (0.05, 1e-16)
(,) = (0.1, 1e-16)
(,) = (0.2, 1e-16)
(,) = (0.5, 1e-16)
Best

(b) Error behaviour for ε = 10−16

0 500 1000 1500 2000 2500 3000
Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-10)
(,) = (0.005, 1e-10)
(,) = (0.01, 1e-10)
(,) = (0.02, 1e-10)
(,) = (0.05, 1e-10)
(,) = (0.1, 1e-10)
(,) = (0.2, 1e-10)
(,) = (0.5, 1e-10)
Best

(c) Error behaviour for ε = 10−10

0 500 1000 1500 2000 2500 3000
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||V
k

V
* |

|
/||

V
* |

|

Conventional VI
(,) = (0.001, 1e-08)
(,) = (0.005, 1e-08)
(,) = (0.01, 1e-08)
(,) = (0.02, 1e-08)
(,) = (0.05, 1e-08)
(,) = (0.1, 1e-08)
(,) = (0.2, 1e-08)
(,) = (0.5, 1e-08)
Best

(d) Error behaviour for ε = 10−8

Figure 29. (Garnet - Control) Gain adaptation for a 50-state Garnet problem with γ = 0.99 for different normalizing factors (ε ∈
{10−20, 10−16, 10−10, 10−8}) over a range of meta-learning rate η. The mean and standard errors are evaluated based on 20 runs.

