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Abstract
Mean rewards of actions are often correlated. The
form of these correlations may be complex and
unknown a priori, such as the preferences of users
for recommended products and their categories.
To maximize statistical efficiency, it is important
to leverage these correlations when learning. We
formulate a bandit variant of this problem where
the correlations of mean action rewards are rep-
resented by a hierarchical Bayesian model with
latent variables. Since the hierarchy can have mul-
tiple layers, we call it deep. We propose a hier-
archical Thompson sampling algorithm (HierTS)
for this problem and show how to implement it
efficiently for Gaussian hierarchies. The efficient
implementation is possible due to a novel exact
hierarchical representation of the posterior, which
itself is of independent interest. We use this exact
posterior to analyze the Bayes regret of HierTS.
Our regret bounds reflect the structure of the prob-
lem, that the regret decreases with more informa-
tive priors, and can be recast to highlight reduced
dependence on the number of actions. We con-
firm these theoretical findings empirically, in both
synthetic and real-world experiments.

1. Introduction
A contextual bandit (Li et al., 2010; Chu et al., 2011) is a
sequential decision-making problem where a learning agent
sequentially interacts with an environment over n rounds.
In each round, the agent observes a context, chooses one of
K possible actions, and then receives a reward for the taken
action. The agent aims to maximize its expected cumulative
reward over n rounds. It does not know the mean rewards
of the actions a priori and learns them by taking the actions.
This forces the agent to choose between exploring actions to
learn about them and exploiting the action with the highest
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estimated reward. As an example, in online shopping, the
context can be a user’s query, the actions are recommended
products, and the reward is the indicator of a purchase (Yue
& Guestrin, 2011; Kveton et al., 2015; Combes et al., 2015;
Zong et al., 2016; Li et al., 2016).

In many practical problems, the action space is large and
cannot be explored naively. However, the mean rewards
of actions are correlated due to some underlying structure.
As a result, exploration of one action can teach the agent
about other actions, depending on how correlated they are,
and this increases statistical efficiency of exploration. As
an example, in online shopping, many products are seman-
tically similar, and their relationships can be captured by
a graphical model: both a keyboard and monitor are com-
puter accessories; and both computer accessories and home
theatre systems are electronic devices. Another example is
classification with a bandit feedback, where the labels are
clustered. For instance, the car and truck are vehicles, while
the monkey and tiger are animals. We experiment with this
kind of problems in Section 6.2.

Unfortunately, the aforementioned structure is not easy to
represent in traditional bandit algorithms (Auer et al., 2002;
Chapelle & Li, 2012; Kawale et al., 2015; Sen et al., 2017).
As an example, Thompson sampling (TS) (Thompson, 1933;
Chapelle & Li, 2012; Agrawal & Goyal, 2012; Russo & Van
Roy, 2014) is a natural and elegant strategy for exploration
in bandit problems. However, in structured action spaces,
TS would need to model correlations between all actions
using their joint posterior. This could be computationally
costly in practice, as observing the reward of a single action
may require recomputing the joint posterior of all actions.
Therefore, it is not immediately obvious how to design an
efficient TS algorithm when the mean rewards of actions
are correlated.

In this work, we study a structured bandit problem where
the action space has a hierarchical structure. This structure
is represented using a hierarchical Bayesian model (Lindley
& Smith, 1972; Zhang & Yang, 2017), where each action is
a leaf node in a tree. Each node is associated with a node
parameter, which is drawn i.i.d. from a distribution parame-
terized by its parent’s parameter. This hierarchical structure
not only models many practical bandit tasks, such as online
shopping, but admits an efficient exploration because the
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joint posterior can be factorized and efficiently updated.

We make the following contributions. First, we formalize a
hierarchical Bayesian model T of our environment. Second,
we propose a Thompson sampling algorithm HierTS. The
main novelty in the design of HierTS is that the posterior
factors along T , which permits exact posterior sampling
and computationally-efficient updates. The posterior has a
closed form in multi-armed and contextual linear bandits
with Gaussian rewards. We derive Bayes regret bounds for
HierTS that capture the structure of T and the impact of
priors. The bounds show increased statistical efficiency due
to the hierarchy and can improve upon classical results in
non-constant factors. We validate these theoretical results
empirically and also apply HierTS to a real-world classifi-
cation problem with label hierarchy.

2. Setting
We use the following notation. Random variables are capi-
talized. For any positive integer n, we denote by [n] the set
{1, . . . , n}. We let 1{·} be the indicator function. The i-th
entry of vector v is vi. If the vector is already indexed, such
as vj , we write vj,i. We use Õ for the big O notation up to
logarithmic factors.

We consider a learning agent that interacts with a contextual
bandit over n rounds (Li et al., 2010; Chu et al., 2011). In
round t ∈ [n], the agent observes context Xt ∈ X ⊆ Rd,
takes an action At from an action set A of size K, and then
observes a stochastic reward Yt = r(Xt, At) + εt, where
r : Rd ×A → R is a reward function and εt is independent
σ2-sub-Gaussian noise.

Our problem is structured. In particular, the action set A
progressively breaks into finer clusters of actions with simi-
lar rewards. This decomposition is represented by a tree T
(Figure 1) over nodes V ⊂ N. Without loss of generality, the
root has index 1. Each leaf of T corresponds to an action
a ∈ A and we call it an action node. Each internal node
of T has at least two and at most b children, where b is the
branching factor. The height of the tree is h and the height
of node i ∈ V is hi ≤ h. The height of the leaves is 0 and
the height of the root is h. For any node i ∈ V , we denote
its parent by pa(i) and its children by ch(i). An ancestor of
node i is any node on a direct path from node i to the root,
and node i is a descendant of any node on that path. With
a slight abuse of notation, we use A ⊆ V to refer to both
the action set and leaves of T , and sometimes index action
nodes by a to stress their role.

The reward function is parameterized by model parameters
Θ = (θi)i∈V , where θi is the parameter of node i. The true
model parameters are Θ∗ = (θ∗,i)i∈V and we assume that
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Figure 1. Graphical model of our environment. The drawing de-
picts our notation: children ch(i) of node i, action nodes A, and
updated nodes ψt after action At is taken. The height of the tree is
h = 3 and that of node i is hi = 2.

they are generated as

θ∗,1 ∼ P0,1 , (1)
θ∗,i | θ∗,pa(i) ∼ P0,i(· | θ∗,pa(i)) , ∀i ∈ V \ {1} ,
Yt | Xt, θ∗,At

∼ P (· | Xt; θ∗,At
) , ∀t ∈ [n] .

Here P0,1 is the prior distribution of the root node, called
a hyper-prior; P0,i(· | θ∗,pa(i)) is the conditional prior dis-
tribution of node i, parameterized by the sampled value of
its parent θ∗,pa(i); and P (· | x; θ∗,a) is the reward distribu-
tion of action a in context x. We use r(x, a; Θ) to denote
the mean reward of action a in context x under model pa-
rameters Θ and define it as r(x, a; Θ) = EY∼P (·|x;θa)[Y ].
Thus r(x, a; Θ) depends only on one parameter in Θ. The
generative process in (1) relates any two node parameters
to each other, through the lowest common ancestor. This
induces complex correlations that can be used for efficient
exploration. We discuss motivating examples for this setting
in Section 1.

The goal is to minimize the n-round regret defined as

R(n; Θ∗) = E

[
n∑
t=1

r(Xt, At,∗; Θ∗)− r(Xt, At; Θ∗)

]
,

where At,∗ = arg max a∈A r(Xt, a; Θ∗) is the optimal ac-
tion in round t given context Xt. In this work, we assume
that the parameters Θ∗ are also random. We define the n-
round Bayes regret as BR(n) = E [R(n; Θ∗)], which takes
an additional expectation over Θ∗. While weaker than the
traditional frequentist regretR(n; Θ∗), the Bayes regret is
a practical performance measure, when the average perfor-
mance across multiple instances of model parameters is of
interest (Russo & Van Roy, 2014; Hong et al., 2020).
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Algorithm 1 HierTS: Hierarchical Thompson sampling.
Input: Tree T with height h, all priors P0,· in (1)
Initialize all posteriors P1,· ← P0,·
for t = 1, . . . , n do

Sample θt,1 ∼ Pt,1
for ` = h− 1, . . . , 0 do

for i ∈ V` do
Sample θt,i ∼ Pt,i(· | θt,pa(i))

end for
end for
Θt ← (θt,i)i∈V
Take action At ← arg max a∈A r(Xt, a; Θt)
Observe Yt ∼ P (· | Xt; θ∗,At

)
Compute new posteriors Pt+1,·

end for

3. Algorithm
Since our environment is a graphical model (Figure 1), we
explore using Thompson sampling (TS) (Thompson, 1933;
Chapelle & Li, 2012; Agrawal & Goyal, 2012; Russo & Van
Roy, 2014). The main challenge in our algorithm design are
latent variables. Specifically, the rewards of action nodes
are observed and permit direct learning of their parameters,
θ∗,a for a ∈ A. In contrast, parameters θ∗,i of the internal
nodes i ∈ V \ A are only indirectly observed through their
descendant action nodes, and thus are latent.

It is unclear if modeling of the latent variables is necessary.
To discuss alternatives, we need to introduce some notation.
Let Ht = (X`, A`, Y`)`∈[t−1] be the history of all interac-
tions of the agent until round t and Θ∗,A = (θ∗,a)a∈A be
the true model parameters of the action nodes. Because the
mean rewards of actions depend only on Θ∗,A, the most
natural solution to our problem is TS over a joint posterior
Θ∗,A | Ht. This has two challenges. First, the exact poste-
rior involves complex correlations, due to the dependencies
in θ∗,a induced by the generative process in (1). These cor-
relations remain when the latent variables are marginalized
out, and may not allow computationally-efficient sampling
from Θ∗,A | Ht. Second, the uncertainty of each θ∗,a | Ht

could be modeled individually. While computationally effi-
cient, this may not be sound and would not be statistically
efficient. We propose exact sampling from Θ∗,A | Ht that
is both computationally and statistically efficient.

3.1. Hierarchical Sampling

Our approach is based on hierarchical sampling (Andrieu
et al., 2003; Doucet et al., 2001), where the model param-
eters Θ are sampled similarly to the generative process in
(1). To explain it, we introduce the following notation. For
the root node, Pt,1(θ) = P (θ∗,1 = θ | Ht) denotes the pos-
terior distribution of its parameter in round t, which we also

call a hyper-posterior. For any other node i,

Pt,i(θ | θp) = P
(
θ∗,i = θ | θ∗,pa(i) = θp, Ht,i

)
(2)

is the posterior distribution of its parameter conditioned on
θ∗,pa(i) = θp in round t, where Ht,i is a subset of interac-
tions in Ht where A` is a descendant of node i. In (2), Ht

could be replaced by Ht,i because the posterior of θ∗,i is
independent of the other observations given the value of the
parent parameter θp. This structure is critical to the compu-
tational efficiency of our approach and is also used in the
regret analysis (Section 5).

Assuming that all posteriors Pt,i can be computed efficiently,
it is trivial to propose a hierarchical Thompson sampling
algorithm for our problem. We call it HierTS and present
its pseudo-code in Algorithm 1. In round t, HierTS works
as follows. First, we sample the root parameter θt,1. After
that, we iterate over all nodes and sample node parameters
whose parents are already sampled. Specifically, we define
V` = {i ∈ V : hi = `} as the subset of nodes at height `
and then sample θt,i for i ∈ V`, starting from the children
of the root at height ` = h− 1 all the way to the leaves at
height ` = 0. By design, Θt = (θt,i)i∈V is a valid posterior
sample, generated hierarchically. Finally, HierTS takes an
optimistic action with respect to Θt, observes Yt, and then
updates its posterior.

Note that HierTS samples parameters at all action nodes. It
is possible to leverage the tree structure to prune sub-trees
with actions that are unlikely to have high mean rewards.
For example, Sen et al. (2021) propose beam search over a
tree to only evaluate a subset of actions. Such computational
improvements can be easily incorporated into HierTS. We
view them as orthogonal to our main contribution, which is
a statistically-efficient exploration using the tree structure.

3.2. Efficient Posterior Computation

The main technical novelty in HierTS is that the posteriors
Pt,i can be maintained efficiently. We show it as follows.

Fix any node i, its value θ, and the value of its parent θp. By
Bayes rule, we have

Pt,i(θ | θp) ∝ Lt,i(θ)P0,i(θ | θp) , (3)

where Lt,i(θ) = P (Ht,i | θ∗,i = θ) is the likelihood of ob-
servations Ht,i whose ancestor is node i with value θ. Note
that Lt,i(θ) can be further decomposed as

Lt,i(θ) =
∏
j∈ch(i) L̃t,j(θ) , (4)

where L̃t,j(θ) = P
(
Ht,j | θ∗,pa(j) = θ

)
is the likelihood of

observations Ht,j whose ancestor is child node j and the
value of its parent is θ. This identity follows from two facts.
First, θ∗,j are conditionally independent of each other given
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Algorithm 2 Updated statistics in round t. The dot notation
means that the likelihoods are updated for all parameter
values, which is possible in Gaussian models (Section 4).

Initialize Lt+1,· ← Lt,·
i← At
Lt+1,i(·)← P (Yt | Xt; ·)Lt,i(·)
L̃t+1,i(·)←

∫
θ
Lt+1,i(θ)P0,i(θ | ·) dθ

repeat
i← pa(i)
Lt+1,i(·)←

∏
j∈ch(i) L̃t+1,j(·)

if i > 1 then
L̃t+1,i(·)←

∫
θ
Lt+1,i(θ)P0,i(θ | ·) dθ

end if
until i = 1

θ∗,i = θ. Second, Ht,j is independent of θ∗,i given θ∗,j . At
a high level, each L̃t,j(θ) can be viewed as the likelihood
of an aggregate observation at node j, from all leaves that
descend from node j, under the assumption that θ∗,i = θ
(Section 4.1).

Finally, each L̃t,j(θ) can be computed as

L̃t,j(θ) =

∫
θ′
Lt,j(θ′)P0,j(θ

′ | θ) dθ′ , (5)

where Lt,j(θ′) is the likelihood of observations Ht,j whose
ancestor is node j with value θ′. Note that Lt,j(θ′) can be
further rewritten as in (4), which gives rise to our recursive
computation of the posterior.

The pseudo-code for updating Lt,i and L̃t,i after round t is
shown in Algorithm 2. After this, (3) has to be recomputed
for all nodes i on the path from At to the root. In general,
(5) is hard to compute due to the integral over θ′. However,
in Gaussian graphical models (Section 4), this can be done
in a closed form. In practice, (5) can be approximated for
arbitrary distributions using approximate inference, either
variational or MCMC (Doucet et al., 2001).

4. Gaussian Hierarchy
In this section, we instantiate the environment in (1) as a
hierarchical Gaussian model (Koller & Friedman, 2009) and
derive its posterior. The model is defined as

θ∗,1 ∼ N (µ1,Σ0,1) , (6)
θ∗,i | θ∗,pa(i) ∼ N (θ∗,pa(i),Σ0,i) , ∀i ∈ V \ {1} ,
Yt | Xt, θ∗,At

∼ N (X>t θ∗,At
, σ2) , ∀t ∈ [n] ,

where θ∗,i ∈ Rd are the node parameters and Σ0,i are the
covariance matrices that control the closeness of θ∗,i and
θ∗,pa(i). The mean reward is defined as r(x, a; Θ) = x>θa.
The hierarchical structure is motivated by multi-label classi-
fication (Prabhu et al., 2018; Yu et al., 2020a), where Xt is

a feature vector, At is its predicted label, and Yt indicates
if the label is correct. We return to this application in Sec-
tion 6.2. When d = 1 and Xt = 1, we recover a K-armed
Gaussian bandit, where θ∗,a is the mean reward of action
a. We assume that the agent knows the hyper-prior mean
µ1, all covariances Σ0,i, and reward noise σ. This is only
used in the regret analysis, where we study exact posterior
sampling. In our experiments (Section 6.2), we learn these
quantities from data.

The special case of multi-armed bandits also shows compu-
tational gains over naive posterior sampling. Specifically,
due to the dependencies in (1), Θ∗,A | Ht is a multivariate
Gaussian with K dimensions. To sample from it, we can
compute the the root of the posterior covariance and mul-
tiply it by a K-dimensional standard normal vector, which
takes O(K3) time. In contrast, sampling in HierTS takes
O(|V|) time. When each internal node of T has at least 2
children, which is without loss of generality, |V| ≤ 2K and
our computational gain is O(K2). Now we present closed-
form posteriors for hierarchies of Gaussian and contextual
linear models.

4.1. Multi-Armed Bandit

We start with a K-armed Gaussian bandit. In this setting,
each node i ∈ V is associated with a single scalar parameter
θ∗,i ∈ R, and its initial uncertainty is described by condi-
tional prior variance Σ0,i = σ2

0,i ∈ R. The posteriors for
this model are derived in Appendix A.1 and stated below.

For any node i, the posterior of θ∗,i given θ∗,pa(i) = θp is
Pt,i(θ | θp) = N (θ; θ̂t,i, σ̂

2
t,i). If node i is an internal node,

σ̂−2
t,i = σ−2

0,i +
∑

j∈ch(i)

σ̃−2
t,j , (7)

θ̂t,i = σ̂2
t,i

(
σ−2

0,i θp +
∑

j∈ch(i)

σ̃−2
t,j θ̃t,j

)
.

At the root (i = 1), we set θp = µ1. The child parameters
θ̃t,j and σ̃t,j are computed recursively as follows. If node j
is an action node, then

σ̃2
t,j = σ2

0,j +
σ2

|St,j |
, (8)

θ̃t,j =
1

|St,j |
∑
`∈St,j

Y` ,

where St,j = {` < t : A` = j} are the rounds where action
j is taken before round t. If node j is an internal node,

σ̃2
t,j = σ2

0,j +M−1 , (9)

θ̃t,j = M−1
∑

k∈ch(j)

σ̃−2
t,k θ̃t,k ,
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where M =
∑
k∈ch(j) σ̃

−2
t,k . The new child parameters θ̃t,k

and σ̃t,k are computed recursively, using either (8) or (9).
Finally, if node i is action node, its posterior has a standard
form of

σ̂−2
t,i = σ−2

0,i + σ−2 |St,i| ,

θ̂t,i = σ̂2
t,i

(
σ−2

0,i θp + σ−2
∑
`∈St,i

Y`

)
.

The recursive update in (9) can be derived from the observa-
tion that L̃t,j(θ) ∝ exp

[
− 1

2 σ̃
−2
t,j (θ − θ̃t,j)2

]
holds for any

node j and the value of its parent θ. The closed-form of the
posterior Pt,i(θ | θp) is a direct combination of this result
and the derivations in Section 3.2. The update in (9) also
has an intuitive interpretation. Although we get Gaussian
observations at action nodes, as in (8), they propagate to
higher nodes in the tree through (9). These nodes then act
as noisy observations of their parents with mean θ̃t,j and
variance σ̃2

t,j . This allows us to overcome the problem of
latent variables in our model. The posterior in (7) is just a
function of higher-level observations in all children of node
i. To have closed forms of these quantities, we rely heavily
on the properties of Gaussian random variables.

4.2. Contextual Linear Bandit

We now consider the general case in (6). This model can
be viewed as a hierarchy of linear models (Yue & Guestrin,
2011; Abbasi-Yadkori et al., 2011) indexed by actions. The
posteriors for this model are derived in Appendix A.2 and
stated below.

For any node i, the posterior of θ∗,i given θ∗,pa(i) = θp is
Pt,i(θ | θp) = N (θ; θ̂t,i, Σ̂t,i). If node i is an internal node,

Σ̂−1
t,i = Σ−1

0,i +
∑

j∈ch(i)

Σ̃−1
t,j , (10)

θ̂t,i = Σ̂t,i

(
Σ−1

0,i θp +
∑

j∈ch(i)

Σ̃−1
t,j θ̃t,j

)
.

At the root (i = 1), we set θp = µ1. The child parameters
θ̃t,j and Σ̃t,j are computed recursively as follows. If node j
is an action node, then

Σ̃t,j = Σ0,j +G−1
t,j , (11)

θ̃t,j = σ−2G−1
t,j

∑
`∈St,j

X`Y` ,

where St,j = {` < t : A` = j} are the rounds where action
j is taken before round t and Gt,j = σ−2

∑
`∈St,j X

>
` X`

is the outer product of the corresponding feature vectors. If

node j is an internal node, then

Σ̃t,j = Σ0,j +M−1 , (12)

θ̃t,j = M−1
∑

k∈ch(j)

Σ̃−1
t,j θ̃t,k ,

where M =
∑
k∈ch(j) Σ̃−1

t,k . The new child parameters θ̃t,k
and Σ̃t,k are computed recursively, depending on whether k
is an action node or not. Finally, if node i is action node, its
posterior has a standard form of

Σ̂−1
t,i = Σ−1

0,i +Gt,i ,

θ̂t,i = Σ̂t,i

(
Σ−1

0,i θp + σ−2
∑
`∈St,i

X`Y`

)
.

The recursive update in (12) can be derived from the obser-
vation that L̃t,j(θ) ∝ exp

[
− 1

2 (θ − θ̃t,j)>Σ̃−1
t,j (θ − θ̃t,j)

]
for any node j and the value of its parent θ. The posterior
in Pt,i(θ | θp) is a direct combination of this result and the
derivations in Section 3.2. As in Section 4.1, our recursive
update can be viewed as propagation of observations from
action nodes to higher nodes in the tree.

5. Analysis
This section is primarily devoted to the Gaussian bandit in
Section 4.1. We present the key lemmas, the main result,
and discuss them. All proofs are deferred to Appendix B.
In Section 5.4, we state a regret bound for the contextual
bandit in Section 4.2. Its proof is deferred to Appendix C.

5.1. Key Steps in the Analysis

We start with the observation that the hierarchical posterior
sampling in Section 3.1 is just an efficient implementation
of joint posterior sampling over the action node parameters
ΘA. Since our model is a Gaussian graphical model, this
posterior is a multivariate Gaussian (Koller & Friedman,
2009). This is because any conditioning or marginalization
does not change the model class. This observation allows
us to prove the following lemma.

Lemma 1. For any δ > 0, the Bayes regret of HierTS is
bounded as

BR(n) ≤
√

2nG(n) log(1/δ) +
√

2/πσmaxKnδ ,

where G(n) = E
[∑n

t=1 σ̄
2
t,At

]
is a statistical complexity

term, σ̄2
t,At

= var [θt,At |Ht] is the marginal posterior vari-
ance of the mean reward of action At in round t, and σmax

is the maximum marginal prior width at an action node.

The second term in Lemma 1 is constant in n for δ = 1/n.
Therefore, we focus on the first Õ(

√
n) term. Also note that
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σ̄2
t,At

in G(n) is none of the conditional posterior variances
derived in Section 4.1. We show how to decompose it into
these variances next.

To relate the marginal posterior variance, which bounds the
expected regret, to conditional posterior variances, which
represent our model uncertainty, we adopt the following
update-centric notation. We denote the list of nodes from
the root to the action node At in round t by ψt. The length
of ψt is Lt. To illustrate the notation, ψt(1) = 1 is the root,
ψt(Lt) = At is the action node, and ψt(Lt − 1) = pa(At)
is its parent. Figure 1 visualizes ψt. Now we are ready to
relate the two quantities.

Lemma 2. In any round t, the marginal posterior variance
in action node At decomposes as

σ̄2
t,At

=

Lt∑
i=1

( Lt∏
j=i+1

σ̂4
t,ψt(j)

σ4
0,ψt(j)

)
σ̂2
t,ψt(i)

.

The last piece is a lower bound, which shows that each term
in Lemma 2 can be bounded by the posterior update of the
corresponding node i, representing our information gain.

Lemma 3. Fix any round t and i ∈ [Lt]. Then

σ̂−2
t+1,ψt(i)

− σ̂−2
t,ψt(i)

≥ σ−2ci−Lt

( Lt∏
j=i+1

σ̂4
t,ψt(j)

σ4
0,ψt(j)

)
,

where c = 1+σ2
0,max/σ

2 and σ2
0,max = maxi∈V σ

2
0,i is the

maximum prior variance. For σ ≥ σ0,max, we have c = 2.

The constant c in Lemma 3 is small when the reward noise
is higher than all prior widths in T . This property can be
always attained by initial forced exploration of all actions.

5.2. Regret Bound

Now we are ready to present our main result. Recall that h
is the height of T , hi is the height of node i, and that the
action nodes have height 0 (Section 2).

Theorem 4. For any δ > 0, the Bayes regret of HierTS is
bounded as

BR(n) ≤
√

2nG(n) log(1/δ) +
√

2/πσmaxKnδ ,

where G(n) =
∑
i∈V c

hiwi and c is a constant defined in
Lemma 3. For an action node i, hi = 0 and

wi =
σ2

0,i

log
(

1 +
σ2
0,i

σ2

) log

(
1 +

σ2
0,in

σ2

)
.

For an internal node i, hi > 0 and

wi =
σ2

0,i

log
(

1 +
σ2
0,i

σ2

) log

(
1 + σ2

0,i

∑
j∈ch(i)

σ−2
0,j

)
.

When δ = 1/n, the above bound is Õ(
√
n |V|), where n is

the horizon and |V| is the number of nodes, which is also
the number of learned parameters. The dependence on the
horizon n is standard. As wi = Õ(σ2

0,i), the contribution of
each node i to the regret is proportional to its prior width.
Thus the regret decreases when the model is more certain.
One notable dependence in G(n) is exponential scaling with
height chi . This is not problematic, as the number of nodes
with high hi is exponentially smaller than those with lower
hi (Section 5.3).

Theorem 4 also recovers a well-known Bayes regret bound
for K-armed bandits (Russo & Van Roy, 2014). The reason
is that a K-armed bandit can be viewed as a tree with height
h = 1, where the root parameter θ1 is the prior mean of the
actions. Because θ1 is certain, w1 = 0 and

∑
i∈V c

hiwi =∑K+1
i=2 wi = O(K).

5.3. Lower Regret Due to Hierarchy

Now we give examples of how the hierarchy can help with
reducing regret. To simplify the discussion, we ignore log-
arithmic factors in the definitions of wi in Theorem 4. We
assume that T is a balanced b-ary tree with height h; with
K = bh action nodes and bh−` nodes at height `. Our dis-
cussion is under the assumption that c = 2, as derived in
Lemma 3. More gains are possible when c < 2.

We compare the regret of HierTS to classical Thompson
sampling (TS), which maintains an independent posterior
of θ∗,a for each action a ∈ A. To have a fair comparison,
we set the marginal prior variances of all actions in TS as in
HierTS. Specifically, let ψa be the path in T from action
node a to the root. Then the marginal prior of action a is
N (µ1, σ̄

2
0,a), where σ̄2

0,a =
∑
i∈ψa

σ2
0,i and µ1 denotes the

hyper-prior mean in (6). The regret of this algorithm can be
bounded using Theorem 4, with the only difference that the
complexity term becomes GTS(n) ≈

∑
a∈A σ̄

2
0,a.

Problem 1. We start with a problem where all prior vari-
ances are identical, σ2

0,i = 1 for any i ∈ V . In this case, all
prior variances in TS are σ̄2

0,a = h + 1 and its complexity
term is GTS(n) = (h+ 1)bh. In HierTS, we aggregate the
nodes by height and get

G(n) =

h∑
`=0

bh−`c` = bh
h∑
`=0

(2/b)` ≤ 1

1− 2/b
bh .

Thus HierTS improves G(n) by Ω(h) when b > 2. Since
h = logb b

h = logbK, we get GTS(n)/G(n) ≈ logbK, and
HierTS reduces the Bayes regret by a multiplicative factor√

logbK. This argument can be adjusted for b = 2 to get a
comparable regret to TS.

Problem 2. Now we consider a problem where the condi-
tional prior variances in T double with height, σ2

0,i = 2hi ,
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where hi is the height of node i. This setting is motivated
in Section 1. We expect higher statistical gains because the
uncertainty of highly-uncertain nodes at higher levels of T
is reduced jointly by all actions. In this problem, all prior
variances in TS are σ̄2

0,a = 2h+1 and its complexity term is
GTS(n) = 2h+1bh. In comparison, HierTS yields

G(n) =

h∑
`=0

bh−`c`2` ≤
h∑
`=0

bh−`4` ≤ 1

1− 4/b
bh ,

where the last step is analogous to Problem 1. So HierTS

improves G(n) by Ω(2h+1) if b > 4. Since

2h+1 = 2 · 2logb b
h

= 2 · 2log2 b
h/ log2 b = 2K

1
log2 b ,

we get GTS(n)/G(n) ≈ K
1

log2 b , and HierTS reduces the

Bayes regret by a multiplicative factor
√
K

1
log2 b . For b = 5,

this factor would be close to K
1
4 . Therefore, the regret is

reduced by a polynomial factor in K.

5.4. Contextual Regret Bound

This section presents a contextual generalization of the re-
gret bound in Theorem 4. We make two assumptions in its
derivation. First, the length of the context vector is bounded,
and we assume that ‖Xt‖2 ≤ 1 without loss of generality.
Second, Σ0,i = σ2

0,iId. This latter assumption allows us to
utilize λ1(Σ0,i) = λd(Σ0,i) = σ2

0,i, which is required by
our matrix generalizations of Lemmas 2 and 3. Our regret
bound is stated below.

Theorem 5. For any δ > 0, the Bayes regret of HierTS is
bounded as

BR(n) ≤
√

2dnG(n) log(1/δ) +
√

2/πσmaxKnδ ,

where G(n) =
∑
i∈V c

hiwi and c is a constant defined in
Lemma 3. For an action node i, hi = 0 and

wi =
σ2

0,i

log
(

1 +
σ2
0,i

σ2

) log

(
1 +

σ2
0,in

σ2d

)
.

For an internal node i, hi > 0 and

wi =
σ2

0,i

log
(

1 +
σ2
0,i

σ2

) log

(
1 + σ2

0,i

∑
j∈ch(i)

σ−2
0,j

)
.

The constants are similar to Theorem 4. The main differ-
ence is the extra factor of

√
d, because each node is now

associated with a learned d-dimensional parameter.

The key insight in the proof is that the context in round t,
Xt, is known and fixed. Because all conditional posteriors
are Gaussian, posterior sampling in contextual HierTS can

be implemented using a tree with scalar nodes, where the
conditional posterior of node i is N (X>t θ̂t,i, X

>
t Σ̂t,iXt).

As a result, the non-contextual analysis in Theorem 4 can
be easily generalized. Lemma 1 changes in that the history
Ht includes context Xt. Moreover, the marginal posterior
variance of the mean reward of action At, σ̄2

t,At
, turns into

that in the direction of context Xt.

The main technical challenges in the proof are generaliz-
ing the variance decomposition in Lemma 3 to covariances
(Lemma 9), and extending the posterior update lower bound
in Lemma 3 to matrices (Lemma 9). The rest of the proof
follows the same outline as that of Theorem 4.

6. Experiments
We compare HierTS to three baselines that either neglect
or partially use the tree T . The first baseline is Thompson
sampling (TS), which treats each action independently and
is introduced in Section 5.3. The second baseline only uses
a 2-level hierarchy, namely the root and action nodes, and
we call it FlatTS. Its hyper-prior for the root P0,1 is the
same as in HierTS. For any action a ∈ A, the conditional
prior is P0,a(· | θ∗,1) = N (·; θ∗,1, σ̄2

0,a − σ2
0,1), where σ̄2

0,a

is the marginal prior variance in TS. This baseline mimics
existing algorithms for 2-level Gaussian hierarchies with a
common root (Kveton et al., 2021; Basu et al., 2021; Hong
et al., 2022), and is similar to structured bandits where the
actions share a latent parameter (Gupta et al., 2018).

The final baseline is the zooming algorithm of Kleinberg
et al. (2008; 2013), which we call Zooming. This is a UCB
algorithm where actions are embedded in a metric space,
and can be viewed as a standard approach to handling large
structured action spaces in bandits (Bubeck et al., 2008;
Kleinberg et al., 2013). At a high level, Zooming maintains
a set of “active” actions, which are sufficiently apart from
each other given the history, and only explores these. The
key step in implementing Zooming is constructing a metric
space where actions with similar mean rewards are close.
We design it as follows. We compute the graph Laplacian
of T , represented as an undirected graph, and extract its d
eigenvectors (vi)

d
i=1 with the smallest eigenvalues. Let vi,j

be the j-th entry of vi. Then, for any action node a ∈ A, its
embedding in the metric space is (v1,a, . . . , vd,a). This is
a standard approach to deriving a metric space in spectral
clustering (Yan et al., 2009).

6.1. Synthetic Experiments

Our first experiments are on a synthetic Gaussian bandit,
where we validate theoretical findings from Section 5.3. We
experiment with both problems in Section 5.3, which are
b-ary trees with height h and K = bh actions. In Problem
1, the prior variances are constant. In Problem 2, the prior
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Figure 2. Regret of HierTS on synthetic bandit problems with varying branching factor b.

variances double with height. In both problems, the mean
of the hyper-prior is µ1 = 0, and the reward of action a is
θ∗,a with variance σ2 = 1.

We start with Problem 2, where the tree height is h = 2 and
we vary the branching factor b. All algorithms are run for
n = 500 rounds and evaluated by the Bayes regret on 100
independent samples of Θ∗. Its mean estimate and standard
error are reported in Figure 2. For all values of b, HierTS
outperforms all baselines. Zooming is not competitive with
the other baselines when the branching factor b is low. The
poor performance of Zooming is because of its generality.
Specifically, since it can be applied to any smooth reward
function, its regret in d dimensions scales as Õ(n1− 1

2+d ).
In Figure 2, we only show the results for Zooming where
d = K. We experimented with d < K and observed linear
regret, because some action nodes with a common parent
had identical features.

In the next experiment, we consider both Problems 1 and
2. The branching factor is fixed at b = 2 and we vary the
tree height h. All algorithms are run for n = 500 rounds on
100 independent samples of Θ∗. The reduction in the Bayes
regret of HierTS and FlatTS is measured as the ratio of the
TS regret over the regret in question. In Figure 3a, we plot
the ratios for Problem 1. Section 5.3 suggests that the regret
decreases by Ω(

√
h). Our plot confirms this. In Figure 3b,

we plot the ratios for Problem 2. Section 5.3 suggests that
the regret decreases by Ω(2h/2). We confirm this trend.

6.2. Multi-Label Image Classification

The last experiment is on a multi-label image classification
problem with linear rewards. All compared algorithms are
implemented analogously to Section 6.1, except for vari-
ances being replaced with covariances. We use the CIFAR-
100 dataset (Krizhevsky, 2009), with 60 000 images of size
32× 32. There are 50 000 training and 10 000 test images.
Each image belongs to one of 100 classes (labels) and 20
super-classes, each consisting of 5 classes. Each image is
represented by a d = 10 dimensional feature vector, which
we obtain by downsampling a 100-dimensional feature vec-
tor. That feature vector is an embedding computed by an

EfficientNet-L2 network applied to the image (Tan & Le,
2019; Xie et al., 2020; Foret et al., 2021). The network is a
convolutional neural network pretrained on both ImageNet
(Russakovsky et al., 2015) and unlabeled JFT-300M (Sun
et al., 2017), and fine-tuned on the CIFAR-100 training set.

We randomly select 5 super-classes and their corresponding
K = 25 classes become actions. The test and training sets
are restricted to these classes. Our bandit problem is defined
as follows. For each action a, θ∗,a is the mean feature vector
of test images in class a. In round t, the context Xt is the
feature vector of a random image from the test set and the
reward of action At is Yt ∼ N (X>t θ∗,At

, 0.52). Therefore,
the mean reward is maximized whenever the true class is
chosen. Finally, we build a 3-level hierarchy T as follows.
The hyper-prior of the root is a multivariate Gaussian fitted
to all training images, P0,1 = N (µ1,Σ0,1). The nodes at
height 1 are the 5 super-classes and their conditional priors
are P0,i(· | θ∗,1) = N (·; θ∗,1,Σ0,i), where Σ0,i is fitted to
the training images of super-class i. Finally, the nodes at
height 0 correspond to actions and their conditional priors
are P0,a(· | θ∗,pa(a)) = N (·; θ∗,pa(a),Σ0,a), where Σ0,a is
fitted to the training images of class a.

We report the mean and standard error of the regret over 10
runs in Figure 4. We observe again that HierTS performs
better than all baselines. We do not consider Zooming due
to its poor performance earlier (Figure 2). Note that the true
model parameters of T , namely µ1 and Σ0,i, are unknown;
and we estimate them from training images. Therefore, this
experiment shows that even when we relax the assumption
that they are known, it is beneficial to estimate them, and
use the structure of T .

7. Related Work
Thompson sampling algorithms have been widely applied
to contextual bandits because of their computational effi-
ciency and strong empirical performance (Chu et al., 2011;
Chapelle & Li, 2012; Abbasi-Yadkori et al., 2011). Russo
& Van Roy (2014) proved first Bayes regret bounds for TS.
Our proposed algorithm HierTS extends TS to tree hierar-
chies. TS with a 2-level hierarchy over tasks was applied
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Figure 4. Regret of HierTS on a CIFAR-100
image classification problem.

and analyzed in both meta-learning and multi-task learning
(Kveton et al., 2021; Basu et al., 2021; Wan et al., 2021;
Hong et al., 2022). The main difference in our work is that
we move from 2-level hierarchies to an arbitrary depth, and
develop both algorithmic and theory foundations for this
setting. Our analysis extends the variance decompositions
proposed in Hong et al. (2022) to trees. Alternatively, infor-
mation theory could be used to derive Bayes regret bounds
(Russo & Van Roy, 2016; Lu & Van Roy, 2019; Basu et al.,
2021), but we are unaware of any for trees.

Our problem has a structured action space. One structure
studied by prior works is a shared latent parameter among
all actions (Tirinzoni et al., 2020; Lattimore & Munos, 2014;
Gupta et al., 2018). This can be viewed as an instance of
our setting with a 2-level hierarchy. In latent bandits, the
parameter is a discrete variable (Maillard & Mannor, 2014;
Hong et al., 2020). Recent works also applied approximate
TS to more complex structures (Gopalan et al., 2014; Yu
et al., 2020b). Such algorithms are general, but can only
be analyzed in limited settings under strong assumptions.
We consider a special tree structure, where we can derive
and analyze an exact algorithm. Another recent work that
applies trees to bandits is Majzoubi et al. (2020), who pro-
posed a general reduction-based algorithm for contextual
bandits with a continuous action space, where the policies
are represented by a tree.

The most related work is Sen et al. (2021), who also studied
contextual bandits with a tree hierarchy over actions. Both
of our works rely on a hierarchy of regressors, motivated
by multi-label classification (Prabhu et al., 2018; Yu et al.,
2020a). However, the works differ in several key aspects.
First, we study a stochastic variant of the problem, where
the tree nodes are associated with prior distributions rather
than fixed centers and radii, as in Sen et al. (2021). In fact,
Sen et al. (2021) did not model the statistical uncertainty at
all. Second, we propose a TS algorithm using novel recur-
sive derivations of the posterior. Sen et al. (2021) proposed
a greedy strategy and beam search to avoid evaluation of
all actions. In Section 3, we discuss how similar improve-
ments can be incorporated in HierTS. Finally, our Bayesian

analysis reveals structural properties that imply low regret.
The low regret in Sen et al. (2021) is attained by making an
assumption on the regression oracle, and can grow linearly
when the oracle is imperfect.

8. Conclusions
In many practical problems, the action space is large and a
good generalization over actions is not obvious. Motivated
by this, we study a contextual bandit problem with a deep
hierarchy over actions. To solve the problem, we propose
hierarchical Thompson sampling (HierTS), which can be
implemented exactly and efficiently in Gaussian models.
We prove Bayes regret bounds for HierTS that quantify its
increased statistical efficiency over vanilla TS and validate
this experimentally. We also apply HierTS to a challenging
classification problem with label hierarchy.

Our work is a major step towards bandit algorithms with
rich graphical models. Its limitations can be addressed by
future works. For instance, a frequentist regret analysis is
possible and would only differ in Lemma 1. The rest of
the proof, which captures the structure of our problem, is a
worst-case argument. Second, we believe that our method
can be generalized beyond Gaussian trees. As discussed
in Section 3.2, exact posterior sampling is challenging un-
der the constraint of computational efficiency; but many
tractable approximations exist. When exact sampling is pos-
sible, we believe that our proofs can be extended to general
exponential-family distributions. Another direction for fu-
ture work is an extension to directed acyclic graphs (DAGs).
The nodes in DAGs can be ordered, and therefore similar
recursions to Sections 4 and 5 can be established.
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A. Posterior Derivations
This section contains our posterior derivations. We adopt the convention that Λ = Σ−1, where Λ is the precision matrix for
covariance Σ.

A.1. Multi-Armed Bandit Posterior

The proof is by induction. We start with the inductive step.

Lemma 6. Fix an internal node j. Let pa(j) = i and C = ch(j). Let

P (Ht,j , θ∗,j = θ | θ∗,i = θi) ∝ exp

[
−1

2

(
σ−2

0 (θ − θi)2 +
∑
k∈C

σ−2
k (θ − θk)2

)]
, (13)

where θk, σk are the parameters of k ∈ C. Then

P (Ht,j | θ∗,i = θi) ∝ exp

[
−1

2
σ̃−2
j (θi − θ̃j)2

]
for σ̃2

j = σ2
0 + (

∑
k∈C σ

−2
k )−1 and θ̃j = (

∑
k∈C σ

−2
k )−1

∑
k∈C σ

−2
k θk.

Proof. Let s = σ−2
0 +

∑
k∈C σ

−2
k and v = σ−2

0 θi +
∑
k∈C σ

−2
k θk. We start with completing the square of θ,

logP (Ht,j , θ∗,j = θ | θ∗,i = θi) ∝ σ−2
0 (θ − θi)2 +

∑
k∈C

σ−2
k (θ − θk)2

∝ sθ2 − 2θ

(
σ−2

0 θi +
∑
k∈C

σ−2
k θk

)
+ σ−2

0 θ2
i

= s(θ2 − 2θs−1v + s−2v2) + σ−2
0 θ2

i − s−1v2

= s(θ − s−1v)2 + σ−2
0 θ2

i − s−1v2 .

In the second step, we omit constants in θ and θi. Since we got a quadratic form in θ, we know that∫
θ

P (Ht,j , θ∗,j = θ | θ∗,i = θi) dθ ∝ exp

[
−1

2
(σ−2

0 θ2
i − s−1v2)

]
.

Let ŝ = σ−2
0 − σ−4

0 s−1. Now we complete the square of θi,

σ−2
0 θ2

i − s−1v2 = σ−2
0 θ2

i − s−1

(
σ−2

0 θi +
∑
k∈C

σ−2
k θk

)2

= σ−2
0 θ2

i − σ−4
0 s−1

(
θi + σ2

0

∑
k∈C

σ−2
k θk

)2

∝ ŝ

(
θ2
i − 2θiŝ

−1σ−2
0 s−1

∑
k∈C

σ−2
k θk

)
∝ ŝ

(
θi − ŝ−1σ−2

0 s−1
∑
k∈C

σ−2
k θk

)2

.

In the last two steps, we omit constants in θi. Finally, note that

ŝ =
σ−2

0 (s− σ−2
0 )

s
= (σ2

0 + (s− σ−2
0 )−1)−1 ,

ŝ−1σ−2
0 s−1 =

s

σ−2
0 (s− σ−2

0 )
σ−2

0 s−1 = (s− σ−2
0 )−1 .

This completes the proof, for θ̃j = (s− σ−2
0 )−1

∑
k∈C σ

−2
k θk and σ̃2

j = σ2
0 + (s− σ−2

0 )−1.

At an action node j, (13) holds for σk = σ and θk = Yk, where Yk is an observation k of node j and σ is observation noise.
This is the base case of our proof by induction.
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A.2. Linear Bandit Posterior

The proof is by induction. We start with the inductive step.

Lemma 7. Fix an internal node j. Let pa(j) = i and C = ch(j). Let

P (Ht,j , θ∗,j = θ | θ∗,i = θi) ∝ exp

[
−1

2

(
(θ − θi)>Λ0(θ − θi) +

∑
k∈C

(θ − θk)>Λk(θ − θk)

)]
, (14)

where θk,Λk are the parameters of k ∈ C. Then

P (Ht,j | θ∗,i = θi) ∝ exp

[
−1

2
(θi − θ̃j)>Λ̃j(θi − θ̃j)

]
for Λ̃−1

j = Λ−1
0 + (

∑
k∈C Λk)−1 and θ̃j = (

∑
k∈C Λk)−1

∑
k∈C Λkµk.

Proof. Let S = Λ0 +
∑
k∈C Λk and V = Λ0θi +

∑
k∈C Λkθk. We start with completing the square of θ,

logP (Ht,j , θ∗,j = θ | θ∗,i = θi) ∝ (θ − θi)>Λ0(θ − θi) +
∑
k∈C

(θ − θk)>Λk(θ − θk)

∝ θ>Sθ − 2θ>

(
Λ0θi +

∑
k∈C

Λkθk

)
+ θ>i Λ0θi

= θ>S(θ − 2S−1V ) + θ>i Λ0θi

= (θ − S−1V )>S(θ − S−1V ) + θ>i Λ0θi − V >S−1V .

In the second step, we omit constants in θ and θi. Since we got a quadratic form in θ, we know that∫
θ

P (Ht,j , θ∗,j = θ | θ∗,i = θi) dθ ∝ exp

[
−1

2
(θ>i Λ0θi − V >S−1V )

]
.

Let Ŝ = Λ0 − Λ0S
−1Λ0. Now we complete the square of θi,

θ>i Λ0θi − V >S−1V = θ>i Λ0θi −

(
Λ0θi +

∑
k∈C

Λkθk

)>
S−1

(
Λ0θi +

∑
k∈C

Λkθk

)

∝ θ>i Ŝ

(
θi − 2Ŝ−1Λ0S

−1
∑
k∈C

Λkθk

)

∝

(
θi − Ŝ−1Λ0S

−1
∑
k∈C

Λkθk

)>
Ŝ

(
θi − Ŝ−1Λ0S

−1
∑
k∈C

Λkθk

)
.

In the last two steps, we omit constants in θi. Finally, by the Woodbury matrix identity, we have

Ŝ = Λ0 − Λ0S
−1Λ0 = (Λ−1

0 + (S − Λ0)−1)−1 ,

Ŝ−1Λ0S
−1 = (Λ0 − Λ0S

−1Λ0)−1Λ0S
−1 = (S − Λ0)−1 .

This completes the proof, for θ̃j = (S − Λ0)−1
∑
k∈C Λkµk and Λ̃j = (Λ−1

0 + (S − Λ0)−1)−1.

For any node j, note that (14) can be written as

P (Ht,j , θ∗,j = θ | θ∗,i = θi) ∝ exp

[
−1

2

(
(θ − θi)>Λ0(θ − θi) +

∑
k∈C

θ>Λkθ − 2
∑
k∈C

θ>Λkθk)

)]
,

when constants in θ and θi are omitted. Then, at an action node, Λk = σ−2X>k Xk and Λkθk = σ−2XkYk, where Yk is an
observation k of node j at feature vector Xk and σ is observation noise. This is the base case of our proof by induction.
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B. Regret Bound Proofs
This section contains proofs of our regret bound and supporting lemmas.

B.1. Proof of Lemma 1

Fix round t. Let P (Θ |Ht) = N (Θ; Θ̄t, Σ̄t) be the joint posterior distribution of all action node parameters Θ ∈ RK , with
mean Θ̄t ∈ RK and covariance Σ̄t ∈ RK×K . Let At ∈ {0, 1}K and A∗ ∈ {0, 1}K be indicator vectors of the taken action
in round t and the optimal action, respectively. Each action is associated with one leaf node.

Since Θ̄t is deterministic given Ht, and A∗ and At are i.i.d. given Ht, we have

E
[
A>∗ Θ∗ −A>t Θ∗

]
= E

[
E
[
A>∗ (Θ∗ − Θ̄t)

∣∣Ht

]]
+ E

[
E
[
A>t (Θ̄t −Θ∗)

∣∣Ht

]]
.

Moreover, Θ∗ − Θ̄t is a zero-mean random vector independent of At, and thus E
[
A>t (Θ̄t −Θ∗)

∣∣Ht

]
= 0. So we only

need to bound the first term above. Let

Et =
{
∀a ∈ A : |a>(Θ∗ − Θ̄t)| ≤

√
2 log(1/δ)‖a‖Σ̄t

}
be the event that all high-probability confidence intervals hold. Fix history Ht. Then by the Cauchy-Schwarz inequality,

E
[
A>∗ (Θ∗ − Θ̄t)

∣∣Ht

]
≤
√

2 log(1/δ)E
[
‖A∗‖Σ̄t

∣∣Ht

]
+ E

[
A>∗ (Θ∗ − Θ̄t)1

{
Ēt
} ∣∣Ht

]
.

Now note that for any action a, a>(Θ∗ − Θ̄t)/‖a‖Σ̄t
is a standard normal variable. It follows that

E
[
A>∗ (Θ∗ − Θ̄t)1

{
Ēt
} ∣∣Ht

]
≤ 2

∑
a∈A
‖a‖Σ̄t

1√
2π

∫ ∞
u=
√

2 log(1/δ)

u exp

[
−u

2

2

]
du ≤

√
2

π
σmaxKδ ,

where we use that Ēt implies ‖Σ̄−
1
2

t (Θ∗ − Θ̄t)‖∞ ≥
√

2 log(1/δ). Now we combine all inequalities and have

E
[
A>∗ (Θ∗ − Θ̄t)

∣∣Ht

]
≤
√

2 log(1/δ)E
[
‖At‖Σ̄t

∣∣Ht

]
+

√
2

π
σmaxKδ .

We also used that At and A∗ are i.i.d. given Ht.

Since the above bound holds for any history Ht, we combine everything and get

E

[
n∑
t=1

A>∗ Θ∗ −A>t Θ∗

]
≤
√

2 log(1/δ)E

[
n∑
t=1

‖At‖Σ̄t

]
+

√
2

π
σmaxKnδ

≤
√

2n log(1/δ)E

√√√√ n∑
t=1

‖At‖2Σ̄t

+

√
2

π
σmaxKnδ

≤
√

2n log(1/δ)

√√√√E

[
n∑
t=1

‖At‖2Σ̄t

]
+

√
2

π
σmaxKnδ .

The second step uses the Cauchy-Schwarz inequality and the third step uses the concavity of the square root.

Since a is an indicator vector, ‖At‖2Σ̄t
= σ̄2

t,At
is the marginal posterior variance of the mean reward of action At in round t.

Likewise, σmax is the maximum marginal prior width of the mean reward at an action node. This concludes the proof.

B.2. Proof of Lemma 2

Since round t is fixed, we write L instead of Lt and refer to node ψt(i) by i for any i ∈ [Lt].

Fix any node i. By the total variance decomposition, where we introduce a parent parameter θt,i−1,

var [θt,i |Ht] = E
[
σ̂2
t,i

∣∣Ht

]
+ var

[
θ̂t,i

∣∣∣Ht

]
.
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For Gaussian random variables, σ̂2
t,i is independent of θt,i−1, as shown in (7). Therefore,

E
[
σ̂2
t,i

∣∣Ht

]
= σ̂2

t,i .

For the second term, as shown in (7), θ̂t,i = σ̂2
t,i(σ

−2
0,i θt,i−1 + c), where c is a constant conditioned on Ht. Therefore,

var
[
θ̂t,i

∣∣∣Ht

]
=
σ̂4
t,i

σ4
0,i

var [θt,i−1 |Ht] .

Now we chain all identities for node i and get

var [θt,i |Ht] = σ̂2
t,i +

σ̂4
t,i

σ4
0,i

var [θt,i−1 |Ht] .

Finally, we apply the above identity recursively, from node L up to the root, and get our claim,

var [θt,L |Ht] = σ̂2
t,L +

σ̂4
t,L

σ4
0,L

var [θt,L−1 |Ht] = σ̂2
t,L +

σ̂4
t,L

σ4
0,L

σ̂2
t,L−1 +

σ̂4
t,L

σ4
0,L

σ̂4
t,L−1

σ4
0,L−1

var [θt,L−2 |Ht]

=

L∑
i=1

 L∏
j=i+1

σ̂4
t,j

σ4
0,j

 σ̂2
t,i .

This completes the proof.

B.3. Proof of Lemma 3

Since round t is fixed, we write L instead of Lt and refer to node ψt(i) by i for any i ∈ [Lt].

For an action node i, the claim holds trivially since σ̂−2
t+1,i − σ̂

−2
t,i = σ−2. The rest of the proof is for internal nodes. We

start with proving that

σ−2 ≥ σ̃−2
t+1,i − σ̃

−2
t,i ≥ σ

−2

 L∏
j=i

σ̂4
t,i

σ4
0,i

1

1 + σ−2σ2
0,i

 (15)

holds for any node i. The proof is by induction.

The basis of the induction is that the claim holds for action nodes. Let node i = L be an action node, with n observations by
round t. We apply (8) and get

σ̃−2
t+1,i − σ̃

−2
t,i = (σ2

0,i + σ2/(n+ 1))−1 − (σ2
0,i + σ2/n)−1 = σ−4

0,i [(σ
−2
0,i + σ−2n)−1 − (σ−2

0,i + σ−2(n+ 1))−1]

= σ−4
0,i (σ

−2
0,i + σ−2n)−2 σ−2

1 + σ−2(σ−2
0,i + σ−2n)−1

=
σ̂4
t,i

σ4
0,i

σ−2

1 + σ−2σ̂2
t,i

.

The second and third equalities are by the Woodbury and Sherman-Morrison formulas, respectively, applied to scalars. The
lower bound follows from σ̂2

t,i ≤ σ2
0,i. The upper bound uses that σ̂4

t,i/σ
4
0,i ≤ 1 and 1 + σ−2σ̂2

t,i ≥ 1.

In the inductive step, we assume that (15) holds for node i+ 1 and prove it for node i. Note that node i+ 1 is the only child
of node i where the posterior between rounds t and t+ 1 changes. Let s =

∑
j∈ch(i) σ̃

−2
t,j and ε = σ̃−2

t+1,i+1 − σ̃
−2
t,i+1. Now

we apply (9) and get

σ̃−2
t+1,i − σ̃

−2
t,i = (σ2

0,i + (s+ ε)−1)−1 − (σ2
0,i + s−1)−1 = σ−4

0,i [(σ
−2
0,i + s)−1 − (σ−2

0,i + s+ ε)−1]

= σ−4
0,i (σ

−2
0,i + s)−2 ε

1 + (σ−2
0,i + s)−1ε

=
σ̂4
t,i

σ4
0,i

ε

1 + σ̂2
t,iε

.

As in the proof for the action node, the second and third equalities are by the Woodbury and Sherman-Morrison formulas,
respectively, applied to scalars. The lower bound follows from σ̂2

t,i ≤ σ2
0,i and ε ≤ σ−2, where the latter is by the inductive

argument. The upper bound uses that σ̂4
t,i/σ

4
0,i ≤ 1, 1 + σ̂2

t,iε ≥ 1, and ε ≤ σ−2.
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To complete the proof, we have from (7) that

σ̂−2
t+1,i − σ̂

−2
t,i = σ̃−2

t+1,i+1 − σ̃
−2
t,i+1

holds for any internal node i. Finally, note that 1 + σ−2σ2
0,i ≤ 1 + σ−2σ2

0,max = c.

B.4. Proof of Theorem 4

First, we apply Lemma 1 and get that

BR(n) ≤
√

2nV(n) log(1/δ) +
√

2/πσmaxKnδ ,

where V(n) = E
[∑n

t=1 σ̄
2
t,At

]
and σ̄2

t,At
is the marginal posterior variance in node At in round t. We derive a worst-case

upper bound on V(n) next.

We start with a worst-case upper in any round t. Since round t is fixed, we write L instead of Lt and refer to node ψt(i) by i

for any i ∈ [Lt]. Let si =

L∏
j=i+1

σ̂2
t,j

σ2
0,j

. Then by Lemma 2,

σ̄2
t,At

= σ2
σ̄2
t,At

σ2
= σ2

L∑
i=1

s2
i

σ̂2
t,i

σ2
≤ σ2

L∑
i=1

ci log

(
1 + s2

i

σ̂2
t,i

σ2

)
,

where ci is an upper bound at node i defined as

s2
i σ̂

2
t,i

σ2 log
(

1 + s2
i

σ̂2
t,i

σ2

) ≤ σ̂2
t,i

σ2 log
(

1 +
σ̂2
t,i

σ2

) ≤ σ2
0,i

σ2 log
(

1 +
σ2
0,i

σ2

) = ci .

The first inequality holds because si ≤ 1, and ax/ log(1 + ax) ≤ x/ log(1 + x) for any a ∈ [0, 1] and x > 0. The second
inequality holds because x/ log(1 + x) is maximized when x is, which happens at σ̂t,i = σ0,i.

For any c ≥ 1 and node i ∈ [L],

log

(
1 + s2

i

σ̂2
t,i

σ2

)
= cL−ici−L log

(
1 + s2

i

σ̂2
t,i

σ2

)
≤ cL−i log

(
1 + ci−Ls2

i

σ̂2
t,i

σ2

)
,

where the inequality holds because a log(1 + x) ≤ log(1 + ax) for any a ∈ [0, 1] and x > 0. Moreover,

log

(
1 + ci−Ls2

i

σ̂2
t,i

σ2

)
= log

(
σ̂−2
t,i +

ci−Ls2
i

σ2

)
− log(σ̂−2

t,i ) ≤ log(σ̂−2
t+1,i)− log(σ̂−2

t,i ) ,

where the last step is by Lemma 3. Now we chain all inequalities, switch to the full notation, and get

σ̄2
t,At
≤ σ2

Lt∑
i=1

cLt−icψt(i)[log(σ̂−2
t+1,ψt(i)

)− log(σ̂−2
t,ψt(i)

)] .

Finally, we sum up the above upper bound over all rounds t. Let hi be the maximum length of any path from node i to its
descendant. Due to c ≥ 1 and telescoping in the above decomposition, we get

V(n) ≤ σ2
∑
i∈N

chici[log(σ̂−2
n+1,i)− log(σ−2

0,i )] = σ2
∑
i∈N

chici log(σ2
0,iσ̂
−2
n+1,i) .

For an action node i, σ̂−2
n+1,i ≤ σ

−2
0,i + σ−2n, and thus

log(σ2
0,iσ̂
−2
n+1,i) ≤ log

(
1 +

σ2
0,in

σ2

)
.
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For an internal node i, σ̂−2
n+1,i ≤ σ

−2
0,i +

∑
j∈ch(i) σ

−2
0,j , and thus

log(σ2
0,iσ̂
−2
n+1,i) ≤ log

1 + σ2
0,i

∑
j∈ch(i)

σ−2
0,j

 .

This completes the proof.

C. Contextual Regret Bound Proofs
This section contains proofs of our contextual regret bound and supporting lemmas.

C.1. Proof of Theorem 5

First, we apply Lemma 1 and get that

BR(n) ≤
√

2nV(n) log(1/δ) +
√

2/πσmaxKnδ ,

where V(n) = E
[∑n

t=1 σ̄
2
t,At

]
and σ̄2

t,At
= ‖Xt‖2Σ̄t,At

denotes the marginal posterior variance in node At in round t, in
the direction of context Xt. We derive a worst-case upper bound on V(n) next.

We start with a worst-case upper in any round t. Since round t is fixed, we write L instead of Lt and refer to node ψt(i) by i
for any i ∈ [Lt]. Let Si =

∏L
j=i+1 Σ−1

0,jΣ̂t,j . Then by Lemma 8,

σ̄2
t,At

= X>t Σ̄t,At
Xt = σ2

L∑
i=1

σ−2X>t S
>
i Σ̂t,iSiXt ≤ σ2

L∑
i=1

ci log(1 + σ−2X>t S
>
i Σ̂t,iSiXt) ,

where ci is an upper bound at node i defined as

X>t S
>
i Σ̂t,iSiXt

σ2 log(1 + σ−2X>t S
>
i Σ̂t,iSiXt)

≤ λ1(Σ̂t,i)

σ2 log(1 + σ−2λd(Σ̂t,i))
≤

σ2
0,i

σ2 log
(

1 +
σ2
0,i

σ2

) = ci .

The first inequality holds because λ1(Si) ≤ 1 and ‖Xt‖2 ≤ 1, where the former follows from the definitions of Σ̂t,j and
Σ0,j = σ2

0,jId. We also use the fact that ax/ log(1 + ax) ≤ x/ log(1 + x) holds for any a ∈ [0, 1] and x > 0. The second
inequality holds because λ1(Σ̂t,i) ≤ λ1(Σ0,i) = σ2

0,i. We also use that x/ log(1 + x) is maximized when x is.

For any c ≥ 1 and node i ∈ [L],

log(1 + σ−2X>t S
>
i Σ̂t,iSiXt) = cL−ici−L log(1 + σ−2X>t S

>
i Σ̂t,iSiXt)

≤ cL−i log(1 + σ−2ci−LX>t S
>
i Σ̂t,iSiXt) ,

where the inequality holds because a log(1 + x) ≤ log(1 + ax) for any a ∈ [0, 1] and x > 0. Moreover,

log(1 + σ−2ci−LX>t S
>
i Σ̂t,iSiXt) = log det(Id + σ−2ci−LΣ̂

1
2
t,iSiXtX

>
t S
>
i Σ̂

1
2
t,i)

= log det(Σ̂−1
t,i + σ−2ci−LSiXtX

>
t S
>
i )− log det(Σ̂−1

t,i )

≤ log det(Σ̂−1
t+1,i)− log(Σ̂−1

t,i ) ,

where the last step is by Lemma 9. Now we chain all inequalities, switch to the full notation, and get

σ̄2
t,At
≤ σ2

Lt∑
i=1

cLt−icψt(i)[log det(Σ̂−1
t+1,ψt(i)

)− log det(Σ̂−1
t,ψt(i)

)] .

Finally, we sum up the above upper bound over all rounds t. Let hi be the maximum length of any path from node i to its
descendant. Due to c ≥ 1 and telescoping in the above decomposition, we get

V(n) ≤ σ2
∑
i∈N

chici[log det(Σ̂−1
n+1,i)− log det(Σ−1

0,i )] = σ2
∑
i∈N

chici log det(Σ
1
2
0,iΣ̂

−1
n+1,iΣ

1
2
0,i) .
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For an action node i,

log det(Σ
1
2
0,iΣ̂

−1
n+1,iΣ

1
2
0,i) ≤ d log

(
1

d
tr(Σ

1
2
0,iΣ̂

−1
n+1,iΣ

1
2
0,i)

)
≤ d log

(
1 +

σ2
0,in

σ2d

)
.

For an internal node i,

log det(Σ
1
2
0,iΣ̂

−1
n+1,iΣ

1
2
0,i) ≤ d log

(
1

d
tr(Σ

1
2
0,iΣ̂

−1
n+1,iΣ

1
2
0,i)

)
≤ d log

1 + σ2
0,i

∑
j∈ch(i)

σ−2
0,j

 .

This completes the proof.

C.2. Supporting Lemmas

The first claim is a matrix generalization of Lemma 2.

Lemma 8. In any round t, the marginal posterior covariance in action node At decomposes as

Σ̄t,At =

Lt∑
i=1

S>i Σ̂t,ψt(i)Si ,

where Si =
∏Lt

j=i+1 Σ−1
0,ψt(j)

Σ̂t,ψt(j).

Proof. The proof is exactly the same as in Appendix B.2, except that the variances are replaced by covariances.

The second claim is a matrix generalization of Lemma 3.

Lemma 9. Fix any round t and i ∈ [Lt]. Then

Σ̂−1
t+1,ψt(i)

− Σ̂−1
t,ψt(i)

� σ−2ci−LtSiXtX
>
t S
>
i ,

where c = 1 + σ2
0,max/σ

2 and Si is defined in Lemma 8.

Proof. Since round t is fixed, we write L instead of Lt and refer to node ψt(i) by i for any i ∈ [Lt].

For an action node i, the claim holds trivially since Σ̂−1
t+1,i − Σ̂−1

t,i = σ−2XtX
>
t . The rest of the proof is for internal nodes.

We start with proving that for any node i, Σ̃−1
t+1,i − Σ̃−1

t,i = vv> is a rank-1 matrix for some v ∈ Rd, such that

vv> � σ−2ci−L−1Si−1XtX
>
t Si−1 , v>v ≤ σ−2 . (16)

The proof is by induction.

The basis of the induction is that the claim holds for action nodes. Let node i = L be an action node. We apply (11) and get

Σ̃−1
t+1,i − Σ̃−1

t,i = (Σ0,i + (Gt,i + σ−2XtX
>
t )−1)−1 − (Σ0,i +G−1

t,i )−1

= Σ−1
0,i [(Σ

−1
0,i +Gt,i)

−1 − (Σ−1
0,i +Gt,i + σ−2XtX

>
t )−1]Σ−1

0,i

= Σ−1
0,i (Σ

−1
0,i +Gt,i)

−1 σ−2XtX
>
t

1 + σ−2X>t (Σ−1
0,i +Gt,i)−1Xt

(Σ−1
0,i +Gt,i)

−1Σ−1
0,i

= Σ−1
0,i Σ̂t,i

σ−2XtX
>
t

1 + σ−2X>t Σ̂t,iXt

Σ̂t,iΣ
−1
0,i .

The second and third equalities are by the Woodbury and Sherman-Morrison formulas, respectively. The matrix is rank 1.
The lower bound follows from Σ0,i = σ2

0,iId and ‖Xt‖2 ≤ 1, which can be used to derive

1 + σ−2X>t Σ̂t,iXt ≤ 1 + σ−2λ1(Σ̂t,i) ≤ 1 + σ−2σ2
0,i ≤ c .
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The upper bound uses that ‖Σ−1
0,i Σ̂t,iXt‖2 ≤ 1 and 1 + x ≥ 1 for any x ≥ 0.

In the inductive step, we assume that (16) holds for node i+ 1 and prove it for node i. Note that node i+ 1 is the only child
of node i where the posterior between rounds t and t + 1 changes. Let M =

∑
j∈ch(i) Σ̃−1

t,j and ε = Σ̃−1
t+1,i+1 − Σ̃−1

t,i+1.
Now we apply (12) and get

Σ̃−1
t+1,i − Σ̃−1

t,i = (Σ0,i + (M + ε)−1)−1 − (Σ0,i +M−1)−1

= Σ−1
0,i [(Σ

−1
0,i +M)−1 − (Σ−1

0,i +M + ε)−1]Σ−1
0,i

= Σ−1
0,i (Σ

−1
0,i +M)−1 ε

1 + v>(Σ−1
0,i +M)−1v

(Σ−1
0,i +M)−1Σ−1

0,i

= Σ−1
0,i Σ̂t,i

vv>

1 + v>Σ̂t,iv
Σ̂t,iΣ

−1
0,i ,

where ε = vv>. The matrix is rank 1, because by the inductive argument ε is rank 1. As in the proof for the action node, the
second and third equalities are by the Woodbury and Sherman-Morrison formulas. The lower bound is derived using

1 + v>Σ̂t,iv ≤ 1 + ‖v‖22λ1(Σ̂t,i) ≤ 1 + σ−2σ2
0,i ≤ c .

This follows from Σ0,i = σ2
0,iId and v>v ≤ σ−2, where the latter is by the inductive argument. The upper bound uses that

‖Σ−1
0,i Σ̂t,iv‖2 ≤ σ−1 and 1 + x ≥ 1 for any x ≥ 0.

To complete the proof, we have from (10) that

Σ̂−1
t+1,i − Σ̂−1

t,i = Σ̃−1
t+1,i+1 − Σ̃−1

t,i+1

holds for any internal node i.


