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Abstract
Many practical problems involve solving similar
tasks. In recommender systems, the tasks can be
users with similar preferences; in search engines,
the tasks can be items with similar affinities. To
learn statistically efficiently, the tasks can be or-
ganized in a hierarchy, where the task affinity is
captured using an unknown latent parameter. We
study the problem of off-policy learning for simi-
lar tasks from logged bandit feedback. To solve
the problem, we propose a hierarchical off-policy
optimization algorithm HierOPO. The key idea is
to estimate the task parameters using the hierar-
chy and then act pessimistically with respect to
them. To analyze the algorithm, we develop novel
Bayesian error bounds. Our bounds are the first
in off-policy learning that improve with a more
informative prior and capture statistical gains due
to hierarchical models. Therefore, they are of a
general interest. HierOPO also performs well in
practice. Our experiments demonstrate the bene-
fits of using the hierarchy over solving each task
independently.

1. Introduction
Many interactive systems, such as search and recommender
systems, can be modeled as a contextual bandit (Li et al.,
2010; Chu et al., 2011), where a policy observes a context,
takes one of possible actions, and then receives a stochas-
tic reward for that action. In many applications, it is pro-
hibitively expensive to learn policies online by contextual
bandit algorithms, because exploration has a major impact
on user experience. However, offline data collected by a
previously deployed policy are often available. Offline, or
off-policy, optimization using such logged data is a practical
way of learning policies without costly online interactions
(Dudik et al., 2014; Swaminathan & Joachims, 2015).
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Because we cannot explore beyond the logged dataset, it
is important to use the logged data in the most statistically
efficient way. One way of achieving this is by modeling the
structure of the solved problem. As an example, in bandit
algorithms, we could achieve higher statistical efficiency by
using information about the reward distribution (Garivier &
Cappe, 2011), a prior distribution over model parameters
(Thompson, 1933; Agrawal & Goyal, 2012; Chapelle & Li,
2012; Russo et al., 2018), or features (Dani et al., 2008;
Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013). In
this work, we consider a natural structure where multiple
similar tasks are related through a hierarchical Bayesian
model (Gelman et al., 2013; Kveton et al., 2021; Hong et al.,
2022b). Each task is parameterized by a task parameter
sampled i.i.d. from a distribution parameterized by a hyper-
parameter. The unknown hyper-parameter relates the tasks.
Specifically, data from any task helps in improving its es-
timate, which in turn improves estimates of all other task
parameters.

Although the tasks are similar, they are sufficiently different
to require different polices, and we address this multi-task
off-policy learning problem in this work. To solve the prob-
lem, we propose an algorithm called hierarchical off-policy
optimization (HierOPO). Since off-policy algorithms must
reason about counterfactual rewards of actions that may not
have been taken frequently in the logged dataset, a common
approach is to learn pessimistic, or lower confidence bound
(LCB), estimates of the mean rewards and act according to
them (Buckman et al., 2021; Jin et al., 2021). HierOPO is
an instance of this approach where high-probability LCBs
are estimated using a hierarchical model.

Our work makes four major contributions. First, we formal-
ize the problem of multi-task off-policy optimization as a
multi-task bandit in a hierarchical model. Second, we pro-
pose an efficient algorithm for solving the problem, which
we call HierOPO. The key idea in HierOPO is to compute
lower confidence bounds on the mean rewards of actions
and act according to them. The LCBs can be computed in
a closed form in linear Gaussian models (Lindley & Smith,
1972). Third, we analyze the quality of our policies using
Bayesian error bounds. Our bounds capture the effect of a
more informative prior and statistical gains due to hierar-
chical models. These are the first such bounds in off-policy
learning and should be of a wide interest. Finally, we evalu-
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ate HierOPO on both synthetic and real-world problems.

2. Setting
We start with introducing our notation. Random variables
are capitalized, except for Greek letters like θ. For any pos-
itive integer n, we define [n] = {1, . . . , n}. The indicator
function is 1{·}. The i-th entry of vector v is denoted by
vi. If the vector is already indexed, such as vj , we write
vj,i. We denote the maximum and minimum eigenvalues of
matrix M ∈ Rd×d by λ1(M) and λd(M), respectively.

In the classic contextual bandit (Li et al., 2010), the agent
observes a context x ∈ X , where X is a context set; takes
an action a ∈ A, where A is an action set; and observes a
stochastic reward Y ∼ P (· | x, a; θ), where P (· | x, a; θ) is
the reward distribution parameterized by a model parameter
θ ∈ Θ. We denote the mean reward of action a in context
x under parameter θ by r(x, a; θ) = EY∼P (·|x,a;θ) [Y ] and
assume that the rewards are σ2-sub-Gaussian.

2.1. Multi-Task Bandit

In this paper, we simultaneously solve m similar contex-
tual bandit instances, which we call tasks. Therefore, our
problem is a multi-task contextual bandit (Azar et al., 2013;
Deshmukh et al., 2017; Cella et al., 2020; Kveton et al.,
2021; Moradipari et al., 2022). The set of all tasks is de-
noted by S and we index the tasks by s ∈ S. The reward
distribution in task s is parameterized by a task parameter
θs,∗ ∈ Θ, which is sampled i.i.d. from a task prior distribu-
tion θs,∗ ∼ P (· | µ∗). The task prior is parameterized by
an unknown hyper-parameter µ∗, which is sampled from a
hyper-prior Q. The hyper-prior represents the agent’s prior
knowledge about µ∗. In a recommender system, the task
could be a user, the task parameter could be their prefer-
ences, and the hyper-parameter could be the preferences of
an average user. We use this example in our experiments in
Section 7. A similar setup was studied in the online setting
by Hong et al. (2022b).

Unlike prior works in multi-task bandits, we focus on the
offline setting where we learn task-specific policies from
logged data. One distinguishing characteristic of our setting
is that each task has its own parameter θs,∗, and thus may
require a different policy. As a result, we learn a separate
policy πs : X → A for each task s. To simplify notation,
we focus on deterministic policies. Our results can be ex-
tended to stochastic policies by accounting for an additional
expectation over actions. We denote the set of stationary
deterministic policies by Π = {π : X → A}.

We learn the policies from a logged dataset of size n. The
dataset is given by D = {(St, Xt, At, Yt)}t∈[n], where St

is a task, Xt ∼ Px is a context, At ∼ π0(Xt) is an action,
and Yt ∼ P (· | Xt, At; θSt,∗) is a reward in interaction t.

XtYt

At

θs,∗µ∗Q

t : St = s

s ∈ S

Figure 1. A graphical model of a multi-task contextual bandit.

Here Px is a context distribution and π0 ∈ Π is a logging
policy. To simplify notation, we assume that π0 is the same
for all tasks. It can be stochastic. A graphical model of our
setting, which shows dependencies among all variables in
our problem, is in Figure 1. We do not assume that π0 is
known, although this assumption is common (Dudik et al.,
2014; Swaminathan & Joachims, 2015).

2.2. Objective

The value of policy πs ∈ Π in task s ∈ S with parameter
θs,∗ is defined as

V (πs; θs,∗) = E [r(X,πs(X); θs,∗)] ,

where the randomness is only over context X ∼ Px. The
optimal policy πs,∗ is defined as

πs,∗ = argmax
π∈Π

V (π; θs,∗) .

Let π̂s ∈ Π be some estimated optimal policy from logged
dataset D. A standard approach in off-policy optimization
is to derive an (ε, δ) bound

V (π̂s; θs,∗) ≥ V (πs,∗; θs,∗)− ε , (1)

which holds with probability at least 1 − δ for a specified
maximum error ε (Strehl et al., 2010; Li et al., 2018). The
bound says that the policy π̂s is at most ε worse than the
optimum πs,∗ with a high probability. The error ε depends
on δ, D, π̂s, and problem hardness. Such bounds can be
derived using concentration inequalities for sub-Gaussian
rewards (Boucheron et al., 2013), under the assumptions
that the parameter θs,∗ is fixed and bounded. We call this
setting frequentist.

In our work, we study a Bayesian setting, where the prior
distribution of θs,∗ and dataset D allow the agent to derive
the posterior distribution of θs,∗, P̂s(θ) = P (θs,∗ = θ | D).
To model that θs,∗ is random, and that the prior and dataset
D provide additional information about θs,∗, it is natural to
guarantee (1) in expectation over the posterior of θs,∗. We
formalize this as an (ε, δ) bound

P (V (π̂s; θs,∗) ≥ V (πs,∗; θs,∗)− ε | D) ≥ 1− δ , (2)
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where ε is a specified maximum error that depends on δ, D,
π̂s, and problem hardness. The main difference from (1) is
that θs,∗, and thus also πs,∗, are random.

The Bayesian view allows us to derive (ε, δ) error bounds
with two new properties. First, the error ε decreases with a
more informative prior on θs,∗ (Section 4). In frequentist
bounds, the prior plays the role of a regularizer, unrelated
to the estimated model parameter, and thus cannot capture
this effect. Second, we show that the hierarchical model
in Figure 1 can improve statistical efficiency in multi-task
bandits (Section 5). Our bounds and analyses are motivated
by Bayes regret bounds in bandits (Russo & Van Roy, 2014;
Lu & Van Roy, 2019; Kveton et al., 2021; Atsidakou et al.,
2022; Hong et al., 2022b;a), which have similar properties
and improve upon their frequentist counterparts similarly
(Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013).

3. Algorithm
Prior works in off-policy bandit and reinforcement learning
often design pessimistic lower confidence bounds and then
act according to them (Jin et al., 2021). We adopt the same
design principle. Our LCBs satisfy Ls(x, a) ≤ r(x, a; θs,∗)
with a high probability for task parameter θs,∗ | D, jointly
over all tasks s, contexts x, and actions a. Specifically, we
define them as Ls(x, a) = r̂s(x, a)− cs(x, a), where

r̂s(x, a) = E [r(x, a; θs,∗) | D] ,

cs(x, a) = α
√

var [r(x, a; θs,∗) | D] ,
(3)

are the estimated mean reward and its confidence interval
width, respectively; and α > 0 is a tunable parameter.

Linear models are an important class of contextual bandit
models (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Li
et al., 2010) and we also consider them here. Specifically,
we assume that r(x, a; θs,∗) = ϕ(x, a)⊤θs,∗ for each task
s, where θs,∗ is the task parameter and ϕ : X × A → Rd

is some feature extractor. Under this assumption, we can
write (3) using the posterior mean and covariance of θs,∗ as

r̂s(x, a) = ϕ(x, a)⊤E [θs,∗ | D] ,

cs(x, a) = α
√
ϕ(x, a)⊤cov [θs,∗ | D]ϕ(x, a) .

(4)

The above decomposition is desirable because it separates
the posterior of the task parameter from context.

The rest of this section is organized as follows. We derive
the mean reward estimate and its confidence interval width
for a general model in Section 3.1. We instantiate these in a
linear Gaussian model in Section 3.2 and then discuss the
resulting algorithm in Section 3.3. Alternative algorithm
designs are discussed in Section 3.4.

3.1. Hierarchical Pessimism

In any task s, the mean E [θs,∗ | D] in (4) can be estimated
hierarchically as follows. Let Ds be the subset of dataset
D corresponding to task s, where St = s. Recall that µ∗ is
the hyper-parameter in Figure 1. Then, by the law of total
expectation,

E [θs,∗ | D] = E [E [θs,∗ |µ∗,D] | D] (5)
= E [E [θs,∗ |µ∗,Ds] | D] .

The second equality holds since conditioning on µ∗ makes
θs,∗ independent ofD\Ds. Our decomposition is motivated
by the observation that estimating each E [θs,∗ |µ∗,Ds] is
an easier problem than estimating E [θs,∗ | D], since all ob-
servations in Ds are from a single task s. The information
sharing between the tasks is still captured by µ∗, which is
learned from the entire logged dataset D.

Similarly, the covariance cov [θs,∗ | D] in (4) can be decom-
posed using the law of total covariance,

cov [θs,∗ | D] (6)
= E [cov [θs,∗ |µ∗,D] | D] + cov [E [θs,∗ |µ∗,D] | D]
= E [cov [θs,∗ |µ∗,Ds] | D] + cov [E [θs,∗ |µ∗,Ds] | D] .

Again, the second equality holds since conditioning on µ∗
makes θs,∗ independent of D \ Ds. Note that (6) comprises
two interpretable terms. The first captures the uncertainty
of θs,∗ conditioned on µ∗, whereas the second captures the
uncertainty in µ∗. This decomposes two sources of uncer-
tainty in our problem, and is a powerful tool for structured
uncertainty estimation (Hong et al., 2022a).

Now we plug (5) and (6) into (4), and get

r̂s(x, a) = ϕ(x, a)⊤E [E [θs,∗ |µ∗,Ds] | D] ,

cs(x, a) = α

√
ϕ(x, a)⊤Σ̂sϕ(x, a) ,

where Σ̂s =

E [cov [θs,∗ |µ∗,Ds] | D] + cov [E [θs,∗ |µ∗,Ds] | D] .

With this in mind, we propose a general algorithm for hi-
erarchical off-policy optimization, which we call HierOPO.
Its pseudo-code is showed in Algorithm 1.

3.2. Hierarchical Gaussian Pessimism

The computation of (5) and (6) requires integrating out the
hyper-parameter µ∗ and task parameter θs,∗. This is gener-
ally impossible in a closed form, although many powerful
approximations exist (Doucet et al., 2001). In this section,
we leverage the conjugacy of a Gaussian hyper-prior, task
priors, and reward distributions to obtain closed-form esti-
mates of all model parameters. In this case, HierOPO can
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Algorithm 1 HierOPO: Hierarchical off-policy optimiza-
tion.

1: Input: Dataset D
2: for s ∈ S, x ∈ X do
3: for a ∈ A do
4: Compute r̂s(x, a) and cs(x, a) (Section 3.1)
5: Ls(x, a)← r̂s(x, a)− cs(x, a)

6: π̂s(x)← argmax a∈A Ls(x, a)

7: Output: π̂ ← (π̂s)s∈S

be implemented exactly and efficiently. We also analyze it
under these assumptions (Section 5).

In particular, we consider a linear Gaussian model with the
hyper-prior Q = N (µq,Σq) and the task prior P (· | µ∗) =
N (·;µ∗,Σ0). The mean vector µq ∈ Rd, as well as both
the covariance matrices Σq,Σ0 ∈ Rd×d, are assumed to be
known. The reward distribution of action a in context x
is N (ϕ(x, a)⊤θs,∗, σ

2), where ϕ is a feature extractor and
σ > 0 is a known reward noise. It follows that the mean
reward is linear in features.

To derive (5) and (6), we start with understanding posterior
distributions of θs,∗ and µ∗. Specifically, conditioning in
Gaussian graphical models preserves Gaussianity, and thus
θs,∗ | µ∗,Ds ∼ N (µ̃s, Σ̃s) for some µ̃s and Σ̃s. Using the
structure of our model (Figure 1), we further note that this
is a standard linear model posterior with a Gaussian prior
N (µ∗,Σ0), where

µ̃s = E [θs,∗ |µ∗,Ds] = Σ̃s(Σ
−1
0 µ∗ +Bs) ,

Σ̃s = cov [θs,∗ |µ∗,Ds] = (Σ−1
0 +Gs)

−1 ,
(7)

and the statistics

Bs = σ−2
n∑

t=1

1{St = s}ϕ(Xt, At)Yt ,

Gs = σ−2
n∑

t=1

1{St = s}ϕ(Xt, At)ϕ(Xt, At)
⊤ ,

(8)

are computed using the subset Ds of the logged dataset D.

The posterior of the hyper-parameter µ∗ | D, known as the
hyper-posterior, also has a closed-form N (µ̄, Σ̄) (Section
4.2 of Hong et al. 2022b), where

µ̄ = E [µ∗ | D]

= Σ̄
(
Σ−1

q µq +
∑
s∈S

(Σ0 +G−1
s )−1G−1

s Bs

)
,

Σ̄ = cov [µ∗ | D] =
(
Σ−1

q +
∑
s∈S

(Σ0 +G−1
s )−1

)−1

.

(9)

One way of interpreting (9) is as a multivariate Gaussian
posterior where each task is a single observation. The ob-
servation of task s is the least-squares estimate of θs,∗ from

task s, given by G−1
s Bs, with covariance Σ0 + G−1

s . The
tasks with more observations affect the estimate µ̄ more,
since their G−1

s approaches a zero matrix, and as a result
Σ0 +G−1

s → Σ0. This uncertainty is intrinsic, since even
θs,∗ is a noisy observation of µ∗.

To complete our derivations, we only need to substitute (7)
and (9) into (5) and (6). The posterior mean of θs,∗ is

E [E [θs,∗ |µ∗,Ds] | D] = E
[
Σ̃s(Σ

−1
0 µ∗ +Bs)

∣∣∣D]
= Σ̃s(Σ

−1
0 E [µ∗ | D] +Bs)

= Σ̃s(Σ
−1
0 µ̄+Bs) ,

where we simply combine (7) and (9). Similarly, the poste-
rior covariance of θs,∗ requires computing

E [cov [θs,∗ |µ∗,Ds] | D] = E
[
Σ̃s

∣∣∣D] = Σ̃s ,

cov [E [θs,∗ |µ∗,Ds] | D] = cov
[
Σ̃s(Σ

−1
0 µ∗ +Bs)

∣∣∣D]
= cov

[
Σ̃sΣ

−1
0 µ∗

∣∣∣D]
= Σ̃sΣ

−1
0 Σ̄Σ−1

0 Σ̃s .

Finally, the estimated mean reward and its confidence inter-
val width are given by

r̂s(x, a) = ϕ(x, a)⊤Σ̃s(Σ
−1
0 µ̄+Bs) ,

cs(x, a) = α

√
ϕ(x, a)⊤Σ̂sϕ(x, a) ,

(10)

where Σ̂s = Σ̃s + Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s. The posterior covari-
ance Σ̂s is tractable and has the following desirable proper-
ties. First, the hyper-parameter uncertainty only affects the
second term through Σ̄. Moreover, since Σ̃s appears in both
terms, Σ̂s decreases with more observations from task s.

3.3. Gaussian HierOPO

Now we plug the estimated mean reward and its confidence
interval width in (10) into HierOPO. The resulting method
is a form of hierarchical regression of the hyper-parameter
and task parameters. The task parameter θs,∗ is estimated
using Σ̃s(Σ

−1
0 µ̄+Bs) in (10) and the hyper-parameter µ∗

is estimated using µ̄ in (9). Since HierOPO is a variant of
hierarchical regression, it is fairly general and we expect it
to perform well beyond our assumptions in the algorithm
design, such as when the reward noise is sub-Gaussian.

To simplify the presentation of HierOPO, we assume that
X and A are finite. However, since HierOPO is based on a
hierarchical regression of the task parameter in (10) and the
hyper-parameter in (9), this assumption is not necessary. In
fact, the mean reward estimate and its confidence interval at
any feature vector ϕ(x, a) can be computed as described in
(10). Our error bounds in Section 5 are also independent of
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the number of contexts or actions. Finally, when the action
space cannot be enumerated, it may be hard to compute the
most pessimistic action π̂s(x) = argmaxa∈A Ls(x, a) in
context x. In this case, our algorithm and analysis can be
extended to any maximization oracle with a fixed approxi-
mation ratio.

The computations in (10) rely on matrix inversions, whose
computational cost is O(d3) for d features. Note that this
is only needed for the exact implementation. Approximate
inference, which trades off the computational cost for ac-
curacy (Doucet et al., 2001), is possible. Any approach for
Gaussian graphical models would apply in our setting.

3.4. Alternative Designs

A natural question to ask is how the hierarchy helps with
improving pessimistic reward estimates. To answer it, we
compare HierOPO to two baselines, based on pessimistic
least-squares estimators (Li et al., 2022) that do not model
our structure. The first one is unrealistic because it assumes
that µ∗ is known. We call it OracleOPO. Here the posterior
mean reward and its confidence interval width are

r̂s(x, a) = ϕ(x, a)⊤Σ̃s(Σ
−1
0 µ∗ +Bs) ,

cs(x, a) = α

√
ϕ(x, a)⊤Σ̃sϕ(x, a) .

(11)

This is an improvement of (10) in two aspects. First, the
estimate µ̄ of µ∗ is replaced with the actual µ∗. Second, the
confidence interval width is provably narrower because

Σ̃s ⪯ Σ̃s + Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s .

The second method does not model the hyper-parameter µ∗.
Instead, its uncertainty is incorporated into that of modeled
θs,∗. This is achieved by replacing Σ0 in (11) with Σq +Σ0,
and µ∗ with µq . We call the method FlatOPO. Its posterior
mean reward and confidence interval width are

r̂s(x, a) = ϕ(x, a)⊤Σ̇s((Σq +Σ0)
−1µq +Bs) ,

cs(x, a) = α

√
ϕ(x, a)⊤Σ̇sϕ(x, a) ,

where

Σ̇s = ((Σq +Σ0)
−1 +Gs)

−1 .

In comparison to (10), this method is worse in two aspects.
First, the prior mean µq of µ∗ is used instead of its estimate
µ̄. Second, as the number of tasks m increases, we expect
λ1(Σ̄)→ 0 and then

Σ̇s ⪰ Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s + Σ̃s .

Therefore, our approach should be more statistically effi-
cient, which we prove formally in Section 5.

Finally, note that optimistic methods, such as posterior sam-
pling (Thompson, 1933; Russo et al., 2018) and BayesUCB

(Kaufmann et al., 2012), cannot be used in our setting. In
fact, optimism is harmful because it leads to taking highly
uncertain actions whose uncertainty is not reduced, since
there are no additional observations from the environment.
In this case, pessimism and robustness are desired, and these
are our main design principles.

4. Single-Task Analysis
To illustrate Bayesian error bounds, we start with a classic
contextual bandit parameterized by θ∗ ∈ Rd. The mean
reward of action a ∈ A in context x ∈ X under parameter
θ ∈ Rd is r(x, a; θ) = ϕ(x, a)⊤θ. We assume that θ∗ ∼
N (θ0,Σ0) and the reward noise is N (0, σ2). This model is
identical to a single task in Section 3.2.

The logged dataset is D = {(Xt, At, Yt)}nt=1, the LCB is
L(x, a) = r̂(x, a) − c(x, a), and the pessimistic policy is
π̂(x) = argmax a∈A L(x, a). Following the same reason-
ing as in the derivation of (7), the estimated mean reward
and its confidence interval width are

r̂(x, a) = ϕ(x, a)⊤Σ̂(Σ−1
0 θ0 +B) ,

c(x, a) = α

√
ϕ(x, a)⊤Σ̂ϕ(x, a) ,

where

B = σ−2
n∑

t=1

ϕ(Xt, At)Yt ,

Σ̂ = (Σ−1
0 +G)−1 ,

G = σ−2
n∑

t=1

ϕ(Xt, At)ϕ(Xt, At)
⊤ .

(12)

As in Section 2, the value of policy π ∈ Π under model
parameter θ∗ is V (π; θ∗) = E [r(X,π(X); θ∗)]. The opti-
mal policy is π∗ = argmax π∈Π V (π; θ∗). The quality of
policy π̂ is measured by an (ε, δ) bound

P (V (π̂; θ∗) ≥ V (π∗; θ∗)− ε | D) ≥ 1− δ . (13)

A better policy has a lower ε > 0 at a fixed δ > 0. Now we
are ready to proceed with the analysis.

4.1. Bayesian Error Bound

We start with assumptions. First, we assume that the length
of feature vectors is bounded.

Assumption 1. For any context x ∈ X and action a ∈ A,
the feature vector satisfies ∥ϕ(x, a)∥2 ≤ 1.

This assumption is standard and without loss of generality.
Second, we assume that the dataset D is “well-explored”
(Swaminathan et al., 2017; Jin et al., 2021).
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Assumption 2. Take G in (12) and let

G∗ = E
[
ϕ(X,π∗(X))ϕ(X,π∗(X))⊤

∣∣ θ∗] .
Then there exists γ > 0 such that G ⪰ γσ−2nG∗ holds for
any θ∗.

Assumption 2 relates the logging policy π0, which induces
G, to the optimal policy π∗, which induces σ−2nG∗. It can
be loosely interpreted as follows. As n increases,

G→ σ−2nE
[
ϕ(X,π0(X))ϕ(X,π0(X))⊤

∣∣ θ∗] ,
and γ becomes the maximum ratio between probabilities
of taking actions by π∗ and π0 in any direction. Therefore,
the assumption measures the degree of overlap between π∗
and π0. It also relates a finite-sample G to the expected G∗.
Therefore, we do not need to reason about a finite-sample
behavior of G in our analysis.

Note that Assumption 2 holds for γ = 0. Unfortunately, this
setting would negate the desired scaling with sample size n
in our error bounds and is impractical. The higher the value
of γ, the more π∗ and π0 are similar. When π0 is uniform,
we obtain γ = Ω(1/d) for large n. Now we state our main
claim for the single-task setting.
Theorem 1. Fix dataset D and choose any γ > 0 such
that Assumption 2 holds. Let π̂(x) = argmax a∈A L(x, a).
Then for any δ ∈ (0, e−1], the error in (13) is

ε =
√

5d log(1/δ)︸ ︷︷ ︸
α

√
4d

λd(Σ
−1
0 ) + γσ−2n

.

Proof. The claim is proved in Appendix A in three steps.
First, we establish that c(x, a) is a high-probability confi-
dence interval width for α =

√
5d log(1/δ). Second, we

show that the suboptimality of policy π̂ can be bounded by
E [c(X,π∗(X))] for any parameter θ∗. Third, we combine
c(x, a) with Assumption 2, and relate the logging policy π0

that induces c(x, a) with the optimal policy π∗.

4.2. Frequentist Error Bound

To understand the benefit of a Bayesian analysis, we com-
pare Theorem 1 to a frequentist bound. The main difference
in the frequentist bound is that θ∗ is fixed. Thus a natural
counterpart of (13) is

V (π̂; θ∗) ≥ V (π∗; θ∗)− ε ,

which holds with probability at least 1− δ for an unknown
but fixed θ∗. Under the assumptions that ∥θ∗∥2 ≤ κ, and
that (Yt)

n
t=1 are independent σ2-sub-Gaussian rewards, we

get a similar bound to Theorem 1, which is stated in Theo-
rem 5 (Appendix B). The main difference is that

α = 2
√
2d(log(1/δ) + b) + κλ

− 1
2

d (Σ0) , (14)

where Σ0 should be viewed as a regularization parameter
instead of the prior covariance. Before we discuss α, we
discuss two key differences in how the bounds are stated.
First, the frequentist bound holds for any model parameter
θ∗ such that ∥θ∗∥2 ≤ κ. Therefore, it is arguably stronger
than the Bayesian bound in Theorem 5. This is analogous
to differences in Bayesian and frequentist cumulative regret
bounds (Russo & Van Roy, 2014). Second, because both
bounds depend on γ in Assumption 2, which depends on
θ∗, we make an assumption that π0 is uniform. In this case,
γ = Ω(1/d) for any θ∗. Therefore, γ has no impact on the
next discussion and we may treat it as a constant.

Under the above assumptions, the only major difference in
the bounds is the term κλ

− 1
2

d (Σ0) in (14). This term can
have a major effect. For instance, suppose that Σ0 = Id/n
in (12). From a Bayesian viewpoint, this corresponds to a
very informative prior with width

√
1/n, and the Bayesian

bound in Theorem 1 is Õ(dn− 1
2 ). From a frequentist point

of view, this amounts to O(n) regularization, and the fre-
quentist bound becomes Õ(dn− 1

2 + d
1
2 ). As n → ∞, we

get that the Bayesian bound can be arbitrarily better.

5. Multi-Task Analysis
Now we study our multi-task setting, where the estimated
mean reward and its confidence interval width are defined
in (10). Similarly to Section 4, our analysis is Bayesian. We
derive an error bound for a single task and discuss how to
extend it to other bounds, such as for all tasks, later.

5.1. Bayesian Error Bound

To derive the bound in (2), we make similar assumptions to
Section 4. First, we assume that the length of feature vectors
is bounded (Assumption 1). Second, we assume that the
dataset D is “well-explored” for all tasks.

Assumption 3. Take Gs in (8) and let ns be the number of
interactions with task s. Let

Gs,∗ = E
[
ϕ(X,πs,∗(X))ϕ(X,πs,∗(X))⊤

∣∣ θs,∗] .
Then there exists γ > 0 such that Gs ⪰ γσ−2nsGs,∗ holds
for any θs,∗ in any task s ∈ S.

This is essentially Assumption 2 applied to all tasks. For a
uniform logging policy, γ = Ω(1/d) when ns is large for
all tasks s ∈ S. So the assumption is not very strong. Our
main technical result is presented below.

Theorem 2. Fix dataset D and choose any γ > 0 such that
Assumption 3 holds. Take policy π̂ computed by HierOPO
and let α =

√
5d log(1/δ). Then for any δ ∈ (0, e−1], the

6
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error in (2) is

ε = α

√
4d

λd(Σ
−1
0 ) + γσ−2ns︸ ︷︷ ︸

Task term

+

α

√√√√ 4d

λd(Σ
−1
q ) +

∑
z∈S

1
λ1(Σ0)+γ−1σ2λ1(G

−1
z,∗)n

−1
z︸ ︷︷ ︸

Hyper-parameter term

.

Moreover, suppose that ϕ(x, a) has at most one non-zero
entry for any x ∈ X and a ∈ A, and that both Σq and Σ0

are diagonal. Then λ1(G
−1
z,∗) ≥ 1.

Proof. The claim is proved in Appendix C, following the
same three steps as in the proof of Theorem 1. The main
difference is in the definitions of c(x, a) and policies, and
that Assumption 3 is used instead of Assumption 2. This
shows the generality of our proof technique and indicates
that it may apply to other graphical models.

5.2. Discussion

Our error bound is Bayesian and proved for a distribution of
the task parameter θs,∗ | D. The bound has two terms. The
former captures the error in estimating the task parameter
θs,∗ if the hyper-parameter µ∗ was known. It is similar to
Theorem 1 and hence we call it the task term. The latter
term captures the error in estimating µ∗ and hence we call
it the hyper-parameter term. We discuss each term next.

The task term depends on all quantities of interest in an
expected manner. It is O(d

√
log(1/δ)/ns), where d is the

number of features, ns is the number of observations, and
δ is the probability that the bound fails. This dependence
is standard in confidence intervals for linear models with
an infinite number of contexts (Abbasi-Yadkori et al., 2011;
Agrawal & Goyal, 2013; Abeille & Lazaric, 2017). Since
λd(Σ

−1
0 ) can be viewed as the minimum number of prior

pseudo-observations in any direction in Rd, the task term
decreases with a more informative prior. Finally, the task
term decreases when the observation noise σ decreases, and
the similarity of the logging and optimal policies γ increases
(Assumption 3).

The hyper-parameter term mimics scaling of the task term
at the hyper-parameter level. In particular, the minimum
number of prior pseudo-observations in any direction in Rd

becomes λd(Σ
−1
q ) and each task becomes an observation,

which is reflected by the sum over all tasks z. The hyper-
parameter term decreases as the number of observations
nz in any task z increases, the maximum width of the task
prior

√
λ1(Σ0) decreases, reward noise σ decreases, and

the similarity of logging and optimal policies γ increases.

To show that our bound captures the problem structure, we
compare it to two baselines in Section 3.4: OracleOPO and
FlatOPO. OracleOPO knows µ∗ and has more information
than HierOPO. Its error can be bounded by Theorem 1 and
is always lower than that of HierOPO, because the bound
corresponds to the first term in Theorem 2. On the other
hand, FlatOPO solves each task independently. Its error
can be bounded using Theorem 1 where the task covariance
Σ0 is replaced by Σq + Σ0, to account for the additional
uncertainty due to unknown µ∗. The resulting error bound
becomes

α

√
4d

λd((Σq +Σ0)−1) + γσ−2ns

and is always higher than the task term in Theorem 2. As
the number of tasks increases, the hyper-parameter term in
Theorem 2 goes to zero, and the error bound of HierOPO
would be provably lower.

Finally, we would like to comment on the second claim in
Theorem 2, which results in a tighter bound. This claim is
proved under additional assumptions that are satisfied by a
multi-armed bandit, for instance.

5.3. Extensions

The error bound in Theorem 2 is derived for a fixed task
s ∈ S. This decision was taken deliberately because other
bounds can be easily derived from it. For instance, to get
a bound for all tasks, we only need a union bound over all
θs,∗ | D. As a result, Theorem 2 holds for all s ∈ S with
probability at least 1−mδ.

The bound in Theorem 2 also holds for a new task sampled
from the task prior. This is because the hyper-parameter
estimation in (9), which affects the hyper-parameter term in
Theorem 2, separates all tasks from the evaluated one.

6. Related Work
Off-policy optimization. In off-policy optimization, data
collected by a deployed policy are used to learn improved
policies offline (Li et al., 2010), without a direct interac-
tion with the environment. Off-policy estimation and opti-
mization can be model-free or model-based. Many model-
free methods are based on inverse propensity scores (IPS)
(Horvitz & Thompson, 1952; Ionides, 2008; Strehl et al.,
2010; Swaminathan & Joachims, 2015). These methods
have a low bias and high variance, unless corrected. Model-
based methods estimate a reward model for context-action
pairs, which is then used to find an optimal policy (Bottou
et al., 2013; Dudik et al., 2014). These approaches tend to
have a high bias and low variance. Doubly-robust estimation
(Robins et al., 1994; Dudik et al., 2014) is used frequently
to combine model-based and model-free methods. We take

7
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Figure 2. Evaluation of off-policy algorithms on the synthetic multi-task bandit problem. In the left and middle plots, we vary the dataset
size n for small σq = 0.5 and large σq = 1.0, respectively. In the right plot, we vary the number of tasks m.

a model-based approach in this work.

Offline reinforcement learning. Pessimism has been stud-
ied extensively in offline reinforcement learning (Buckman
et al., 2021; Jin et al., 2021). Specifically, Jin et al. (2021)
showed that pessimistic value iteration is minimax optimal
in linear Markov decision processes (MDPs). Multi-task
offline reinforcement learning was also studied by Lazaric
& Ghavamzadeh (2010). This paper applied expectation-
maximization to solve the problem but did not prove any
error bounds. In comparison, we consider a simpler setting
of contextual bandits and prove error bounds that show im-
provements due to using the multi-task structure. These are
the first error bounds of its kind.

Online learning. Off-policy methods learn from data col-
lected by another policy. In contrast, online methods learn
from data that they collect, and need to balance exploration
and exploitation to attain low regret in the long term. Two
popular exploration techniques are upper confidence bounds
(UCBs) (Auer et al., 2002) and posterior sampling (Thomp-
son, 1933), and both have been studied extensively in linear
models (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Chu
et al., 2011; Agrawal & Goyal, 2013). Bandit algorithms for
hierarchical models have also been studied extensively (Bas-
tani et al., 2019; Kveton et al., 2021; Basu et al., 2021; Sim-
chowitz et al., 2021; Wan et al., 2021; Hong et al., 2022b;
Peleg et al., 2022; Wan et al., 2022). Perhaps surprisingly,
all of these are based on posterior sampling. Our marginal
posterior derivations in (10) can used to derive UCBs for
this setting. Specifically, Us(x, a) = r̂s(x, a) + cs(x, a) is
an upper confidence bound on the mean reward of action a
in context x and task s.

7. Experiments
In this section, we empirically compare HierOPO to base-
lines OracleOPO and FlatOPO (Section 3.4). All methods
are implemented as described in Section 3. We set α = 0.1,
which led to good performance in our initial experiments.
The goal of our experiments is to show that hierarchy can
greatly improve the statistical efficiency of off-policy algo-
rithms. We include an additional experiment in Appendix D,

where HierOPO is applied to a challenging image classifica-
tion task with deep neural networks.

7.1. Synthetic Problem

Our first experiment is with a synthetic multi-task bandit,
with d = 5 features and K = 10 actions. For each action
a ∈ A and interaction t ∈ [n], we sample a feature vector
uniformly at random from [−0.5, 0.5]d. The hierarchy is
defined as follows. The hyper-prior is N (0d,Σq), where
Σq = σ2

qId is its covariance. The task covariance is Σ0 =
σ2
0Id. We experiment with σq ∈ {0.5, 1} and σ0 = 0.5. We

expect the hierarchy to be more beneficial when σq > σ0,
since the uncertainty of the hyper-parameter is higher and it
is more valuable to learn it. The reward distribution of task
s is N (ϕ(x, a)⊤θs,∗, σ

2) with noise σ = 0.5.

Our results are averaged over multiple runs. At the begin-
ning of each run, the hyper-parameter µ∗ is sampled from
the hyper-prior N (0d,Σq). After that, each task parameter
is sampled i.i.d. as θs,∗ ∼ N (µ∗,Σ0). The logged dataset
D is generated as follows. In each interaction t ∈ [n], we
randomly select a task, take a random action, and record its
stochastic reward. The learned policies π̂s are evaluated on
the same problem that generatedD. The evaluation criterion
is the suboptimality of learned policies averaged over the
tasks, which we define as

1

m

∑
s∈S

V (πs,∗; θs,∗)− V (π̂s; θs,∗) .

The policy values and the optimal policy are estimated on
another logged dataset of size 10 000. In our experiments,
we vary either the logged dataset size n or the number of
tasks m, while keeping the other fixed. The default settings
are m = 10 tasks and logged dataset size n = 500.

In Figure 2, we show the mean and standard error of the
suboptimality of each algorithm averaged over 30 random
runs. As expected, HierOPO outperforms FlatOPO and is
close to OracleOPO. The improvement is higher when the
hyper-parameter uncertainty σq is higher. The difference
between HierOPO and FlatOPO is the most noticeable in
the limited data regime, where n is small or m is large. In
both cases, the number of observations per task is small.
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Figure 3. Evaluation of off-policy algorithms on a multi-user rec-
ommendation problem in Section 7.2.

7.2. Multi-User Recommendation

Now we consider a multi-user recommendation problem.
The problem is simulated using the MovieLens 1M dataset
(Lam & Herlocker, 2016), with 1 million ratings for 3 883
movies from 6 040 users. As a first step, we complete the
sparse rating matrix M using alternating least squares (Dav-
enport & Romberg, 2016) with rank d = 10. This rank is
sufficiently high to have a low prediction error, but also low
enough to prevent overfitting. The learned factorization is
M = UV ⊤. The i-th row of U , denoted by Ui, represents
user i. The j-th row of V , denoted by Vj , represents movie
j. The reward for recommending movie j to user i is sam-
pled from N (V ⊤

j Ui, σ
2). The reward noise σ = 0.759 is

estimated from data. The feature vectors in each interaction
are latent factors Vj of 30 randomly chosen movies.

To simulate similar users, we cluster user latent factors. In
particular, we apply a Gaussian mixture model (GMM) with
k = 7 clusters to rows of U . We choose the smallest value
of k that yields well-separated clusters (Bishop, 2006). The
hyper-prior parameters µq and Σq are set to the mean and
covariance of all cluster centers, respectively. The cluster
with most users represents tasks. We set µ∗ and Σ0 to its
center and covariance estimated by the GMM, respectively.
Thus all users in the cluster are related through µ∗ and Σ0.
We want to stress that the GMM is only used to estimate
the hyper-parameters of the hierarchical model. The task
parameters are user latent factors Ui. This is to ensure that
our setup is as realistic as possible.

The number of tasks is m = 100 and they are chosen ran-
domly in each run. The dataset D is logged as follows. In
each interaction t ∈ [n], we randomly select a task, take a
random action, and record its stochastic reward. The evalua-
tion criteria are the same as in Section 7.1.

In Figure 3, we report the mean and standard error of the
suboptimality of all algorithms averaged over 10 random
runs. For all dataset sizes n, HierOPO performs very well:
its suboptimality is close to that of OracleOPO and signifi-
cantly lower than that of FlatOPO. This clearly shows the
benefit of hierarchies for efficient off-policy learning. Also

note that the hierarchy in this experiment is estimated from
data. Therefore, it is misspecified; yet hugely beneficial.

8. Conclusions
In this work, we propose hierarchical off-policy optimiza-
tion (HierOPO), a general off-policy algorithm for solving
similar contextual bandit tasks related through a hierarchy.
Our algorithm leverages the hierarchical structure to learn
tighter, and hence more sample efficient, lower confidence
bounds on the mean rewards of actions and acts according
to them. We derive Bayesian error bounds for our policies,
which become tighter with a more informative prior and
demonstrate the benefit of hierarchies. Finally, we empiri-
cally validate the effectiveness of hierarchies on synthetic
and real-world problems.

Our work is the first to propose a practical and analyzable
algorithm for off-policy learning with hierarchical Bayesian
models. As a result, there are many potential directions for
future work. First, some applications require more complex
graphical models than a two-level hierarchy with a single
hyper-parameter (Hong et al., 2022a; Aouali et al., 2023).
We believe that our methodology directly extends to these.
Second, we believe that HierOPO and its analysis can be ex-
tended to reinforcement learning (Lazaric & Ghavamzadeh,
2010). Third, HierOPO is a model-based approach to off-
policy learning (Section 6). Since model-based approaches
tend to be biased, due to using a potentially misspecified
model, it is important to develop model-free methods for
multi-task off-policy learning.

Finally, our theory shows benefits of a Bayesian analysis
over a frequentist one (Section 4), and also benefits of hi-
erarchies (Section 5). We are not aware of matching lower
bounds for our setting and these are not common in offline
learning, unlike in bandits (Lattimore & Szepesvari, 2019).
This leaves open the possibility that our bounds are loose.
We believe that this is highly unlikely, since the bounds are
derived using exact Gaussian posteriors.
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A. Proof of Theorem 1
The proof is under the assumption that the logged dataset D is fixed and the model parameter θ∗ is random. Specifically,
since we conduct a Bayesian analysis, we condition on all available observations and have θ∗ | D ∼ N (θ̂, Σ̂). We start with
the concentration of the model parameter. To simplify notation, we define r(x, a) = r(x, a; θ∗).

Lemma 3. Let

E = {∀x ∈ X , a ∈ A : |r(x, a)− r̂(x, a)| ≤ c(x, a)}

be the event that all high-probability confidence intervals hold. Then P (E | D) ≥ 1− δ.

Proof. We start with the Cauchy–Schwarz inequality,

r(x, a)− r̂(x, a) = ϕ(x, a)(θ∗ − θ̂) = ϕ(x, a)Σ̂
1
2 Σ̂− 1

2 (θ∗ − θ̂) ≤ ∥ϕ(x, a)∥Σ̂∥θ∗ − θ̂∥Σ̂−1 .

To prove our claim, we show that ∥θ∗ − θ̂∥Σ̂−1 ≤
√

5d log(1/δ) holds conditioned on D with probability at least 1 − δ.
The proof uses that θ∗ − θ̂ | D ∼ N (0d, Σ̂). Because of that, Σ̂− 1

2 (θ∗ − θ̂) | D is a d-dimensional vector of independent
standard normal variables. Thus (θ∗ − θ̂)⊤Σ̂−1(θ∗ − θ̂) | D is a chi-squared random variable with d degrees of freedom.
Then, by Lemma 1 of Laurent & Massart (2000),

P
(
∥θ∗ − θ̂∥Σ̂−1 ≥ α

∣∣∣D) = P
(
(θ∗ − θ̂)⊤Σ̂−1(θ∗ − θ̂) ≥ 5d log(1/δ)

∣∣∣D)
≤ P

(
(θ∗ − θ̂)⊤Σ̂−1(θ∗ − θ̂) ≥ 2

√
d log(1/δ) + 2 log(1/δ) + d

∣∣∣D)
= P

(
(θ∗ − θ̂)⊤Σ̂−1(θ∗ − θ̂)− d ≥ 2

√
d log(1/δ) + 2 log(1/δ)

∣∣∣D) ≤ δ .

The first inequality holds under the assumption that δ < (0, e−1], which implies log(1/δ) ≥ 1 and log(1/δ) ≥
√
log(1/δ).

This completes our proof.

We use Lemma 3 to bound the suboptimality of π̂ in any context by the confidence interval width induced by π∗.

Lemma 4. Let π̂(x) = argmax a∈A L(x, a). Then on event E (Lemma 3),

r(x, π∗(x))− r(x, π̂(x)) ≤ 2c(x, π∗(x))

holds jointly for all contexts x ∈ X .

Proof. For any context x ∈ X , we can decompose r(x, π∗(x))− r(x, π̂(x)) as

r(x, π∗(x))− r(x, π̂(x)) = r(x, π∗(x))− L(x, π̂(x)) + L(x, π̂(x))− r(x, π̂(x))

≤ [r(x, π∗(x))− L(x, π∗(x))] + [L(x, π̂(x))− r(x, π̂(x))] .

Now we bound each term separately. On event E, we have r(x, π∗(x))− r̂(x, π∗(x)) ≤ c(x, π∗(x)) and thus

r(x, π∗(x))− L(x, π∗(x)) = r(x, π∗(x))− r̂(x, π∗(x)) + c(x, π∗(x)) ≤ 2c(x, π∗(x)) .

Again, on event E, we have r̂(x, π̂(x))− r(x, π̂(x)) ≤ c(x, π̂(x)) and thus

L(x, π̂(x))− r(x, π̂(x)) = r̂(x, π̂(x))− r(x, π̂(x))− c(x, π̂(x)) ≤ 0 .

Finally, we combine the above two inequalities and get

r(x, π∗(x))− r(x, π̂(x)) ≤ 2c(x, π∗(x)) .

This completes the proof.
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In the rest of the analysis, we fix θ∗ and the only randomness is due to X ∼ Px. On event E in Lemma 3, we have

V (π∗; θ∗)− V (π̂; θ∗) = E [r(X,π∗(X))− r(X, π̂(X))] ≤ 2E [c(X,π∗(X))] (15)

= 2
√

5d log(1/δ) E
[√

ϕ(X,π∗(X))⊤Σ̂ϕ(X,π∗(X))

]
≤ 2
√

5d log(1/δ)

√
E
[
ϕ(X,π∗(X))⊤Σ̂ϕ(X,π∗(X))

]
.

The first inequality is by Lemma 4. The second inequality follows from the concavity of the square root.

The last step is an upper bound on the expected confidence interval width. Let Γ = Σ−1
0 + γσ−2nG∗. By Assumption 2,

Σ̂−1 ⪰ Γ and thus Σ̂ ⪯ Γ−1. So, for any policy π∗, we have

E
[
ϕ(X,π∗(X))⊤Σ̂ϕ(X,π∗(X))

]
≤ E

[
ϕ(X,π∗(X))⊤Γ−1ϕ(X,π∗(X))

]
= E

[
tr(Γ− 1

2ϕ(X,π∗(X))ϕ(X,π∗(X))⊤Γ− 1
2 )
]

= tr(Γ− 1
2G∗Γ

− 1
2 )

= tr(G∗Γ
−1) = tr((Σ−1

0 G−1
∗ + γσ−2nId)

−1)

≤ d

λd(Σ
−1
0 G−1

∗ + γσ−2nId)
.

The first inequality follows from Assumption 2. The first equality holds because v⊤v = tr(vv⊤) for any v ∈ Rd. The next
three equalities use that the expectation of the trace is the trace of the expectation, the cyclic property of the trace, and the
definition of matrix inverse. The last inequality follows from tr(A−1) ≤ dλ1(A

−1) = dλ−1
d (A), which holds for any PSD

matrix A ∈ Rd×d.

Now we apply basic eigenvalue identities and inequalities, and get

λd(Σ
−1
0 G−1

∗ + γσ−2nId) = λd(Σ
−1
0 G−1

∗ ) + γσ−2n = λd((G∗Σ0)
−1) + γσ−2n =

1

λ1(G∗Σ0)
+ γσ−2n

≥ 1

λ1(G∗)λ1(Σ0)
+ γσ−2n ≥ 1

λ1(Σ0)
+ γσ−2n = λd(Σ

−1
0 ) + γσ−2n .

The last inequality uses λ1(G∗) ≤ 1, which follows from Assumption 1.

To finalize the proof, we chain all inequalities starting from (15) and get that

V (π∗; θ∗)− V (π̂; θ∗) ≤
√

5d log(1/δ)

√
4d

λd(Σ
−1
0 ) + γσ−2n

holds on event E, which occurs with probability at least 1− δ for θ∗ | D ∼ N (θ̂, Σ̂). This completes the proof.

B. Frequentist Single-Task Analysis
In this section, we derive a frequentist counterpart to the bound in Theorem 1.

Theorem 5. Fix dataset D and let that the rewards be drawn independently as Yt − ϕ(Xt, At)
⊤θ∗ ∼ SubG(σ2) for some

σ > 0. Let π̂(x) = argmax a∈A L(x, a). Then for any θ∗ ∈ Θ such that ∥θ∗∥2 ≤ κ holds, any γ such that Assumption 2
holds, and any δ ∈ (0, 1),

V (π∗; θ∗)− V (π̂; θ∗) ≤
(√

2 log(2 |Φ| /δ) + κλ
− 1

2

d (Σ0)
)√ 4d

λd(Σ
−1
0 ) + γσ−2n

holds with probability at least 1− δ, where Φ ⊆ Rd is the set of all feature vectors.

13



Multi-Task Off-Policy Learning from Bandit Feedback

The above result compares to the Bayesian error bound in Theorem 1 as follows. Under the assumption that Φ is an ε-grid
over [0, 1]d, we get log(2 |Φ| /δ) = O(d log(1/εδ)) and the main difference in the bounds is κλ− 1

2

d (Σ0) in Theorem 5.

To prove Theorem 1, we start with the concentration of the model parameter and define r(x, a) = r(x, a; θ∗), similarly to
Appendix A. We also use ϕt = ϕ(Xt, At).

Lemma 6. Let

E = {∀x ∈ X , a ∈ A : |r(x, a)− r̂(x, a)| ≤ c(x, a)}

be the event that all high-probability confidence intervals hold, where

c(x, a) =

√
2 log(2 |Φ| /δ) + κλ

− 1
2

d (Σ0)∥ϕ(x, a)∥Σ̂ .

Then P (E) ≥ 1− δ.

Proof. We start with the observation that the regularized least-squares estimate of θ∗ can be expressed as

θ̂ = σ−2(Σ−1
0 +G)−1

n∑
t=1

ϕtYt

= σ−2(Σ−1
0 +G)−1

n∑
t=1

ϕt(Yt − ϕ⊤
t θ∗) + (Σ−1

0 +G)−1(Σ−1
0 +G)θ∗ − (Σ−1

0 +G)−1Σ−1
0 θ∗

= σ−2(Σ−1
0 +G)−1

n∑
t=1

ϕt(Yt − ϕ⊤
t θ∗) + θ∗ − (Σ−1

0 +G)−1Σ−1
0 θ∗ .

Therefore, for any ϕ ∈ Φ,

ϕ⊤(θ̂ − θ∗) = σ−2
n∑

t=1

ϕ⊤(Σ−1
0 +G)−1ϕt(Yt − ϕ⊤

t θ∗)− ϕ⊤(Σ−1
0 +G)−1Σ−1

0 θ∗ . (16)

Now note that σ−2
∑n

t=1 ϕ
⊤(Σ−1

0 +G)−1ϕt(Yt−ϕ⊤
t θ∗) is a weighted sum of independent sub-Gaussian random variables

Yt − ϕ⊤
t θ∗ ∼ SubG(σ2). By definition, its variance proxy is bounded from above as

σ−2
n∑

t=1

ϕ⊤(Σ−1
0 +G)−1ϕtϕ

⊤
t (Σ

−1
0 +G)−1ϕ = ϕ⊤(Σ−1

0 +G)−1G(Σ−1
0 +G)−1ϕ

≤ ϕ⊤(Σ−1
0 +G)−1ϕ = ∥ϕ∥2

Σ̂
,

where the last inequality follows from G ⪯ Σ−1
0 +G. By the concentration of sub-Gaussian random variables, we have

P

(∣∣∣∣σ−2
n∑

t=1

ϕ⊤(Σ−1
0 +G)−1ϕt(Yt − ϕ⊤

t θ∗)

∣∣∣∣ ≥√2 log(2/δ)∥ϕ∥Σ̂

)
≤ δ .

To bound the second term in (16), we apply the Cauchy–Schwarz inequality and get

ϕ⊤Σ̂Σ−1
0 θ∗ ≤ ∥Σ−1

0 θ∗∥Σ̂∥ϕ∥Σ̂ =

√
θ⊤∗ Σ

−1
0 Σ̂Σ−1

0 θ∗∥ϕ∥Σ̂ ≤
√
θ⊤∗ Σ

−1
0 θ∗∥ϕ∥Σ̂ ≤ κλ

− 1
2

d (Σ0)∥ϕ∥Σ̂ .

The second and third inequalities follow from Σ̂ ⪯ Σ0 and θ⊤∗ Σ
−1
0 θ∗ ≤ κ2λ−1

d (Σ0), respectively. In the next step, we chain
all inequalities starting from (16) and get that

P
(∣∣ϕ⊤(θ̂ − θ∗)

∣∣ ≥ (√2 log(2/δ) + κλ
− 1

2

d (Σ0)
)
∥ϕ∥Σ̂

)
≤ δ

holds for any ϕ ∈ Φ with probability at least 1− δ. To finalize the proof, we apply a union bound over all ϕ.

The rest of the proof proceeds exactly as in Appendix A, since that proof is for any model parameter θ∗ on event E. This
completes the proof of Theorem 5.
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C. Proof of Theorem 2
The proof is under the assumption that the logged dataset D is fixed and the task parameter θs,∗ is random. In particular,
since we conduct a Bayesian analysis, we condition on all available observations and have θs,∗ | D ∼ N (θ̂s, Σ̂s), where
θ̂s = Σ̃s(Σ

−1
0 µ̄+Bs) and Σ̂s are derived in Section 3.2. We start with the concentration of the task parameter. To simplify

notation, let rs(x, a) = r(x, a; θs,∗).
Lemma 7. Let

E = {∀x ∈ X , a ∈ A : |rs(x, a)− r̂s(x, a)| ≤ cs(x, a)}

be the event that all high-probability confidence intervals in task s ∈ S hold. Then P (E | D) ≥ 1− δ.

Proof. The proof is analogous to Lemma 3, since only the mean and covariance of θs,∗ | D changed, and this is reflected in
the definitions of r̂s(x, a) and cs(x, a).

On event E in Lemma 7, similarly to Lemma 4, we have that

rs(x, πs,∗(x))− rs(x, π̂s(x)) ≤ 2cs(x, πs,∗(x))

holds for all contexts x ∈ X with probability at least 1− δ. Since the above bound holds for any context, we can use use it
to bound the suboptimality of π̂s by the expected confidence interval width induced by πs,∗.

In the rest of the analysis, we fix θs,∗ and the only randomness is due to X ∼ Px. On event E in Lemma 7, we have

V (πs,∗; θs,∗)− V (π̂s; θs,∗) = E [rs(X,πs,∗(X))− rs(X, π̂s(X))] ≤ 2E [cs(X,πs,∗(X))] (17)

= 2
√
5d log(1/δ) E

[√
ϕ(X,πs,∗(X))⊤Σ̂sϕ(X,πs,∗(X))

]
≤ 2
√
5d log(1/δ)

√
E
[
ϕ(X,πs,∗(X))⊤(Σ̃sΣ

−1
0 Σ̄Σ−1

0 Σ̃s + Σ̃s)ϕ(X,πs,∗(X))
]
.

These steps are the same as in (15). The latter term, which represents the conditional task uncertainty, is bounded exactly as
in Theorem 1,

E
[
ϕ(X,πs,∗(X))⊤Σ̃sϕ(X,πs,∗(X))

]
≤ d

λd(Σ
−1
0 ) + γσ−2ns

.

For the former term, which represents the hyper-parameter uncertainty, we have

E
[
ϕ(X,πs,∗(X))⊤Σ̃sΣ

−1
0 Σ̄Σ−1

0 Σ̃sϕ(X,πs,∗(X))
]
= tr(Gs,∗Σ̃sΣ

−1
0 Σ̄Σ−1

0 Σ̃s)

≤ dλ1(Gs,∗Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s) .

To bound the maximum eigenvalue, we further proceed as

λ1(Gs,∗Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s) ≤ λ1(Gs,∗)λ1(Σ̃sΣ
−1
0 )λ1(Σ̄)λ1(Σ

−1
0 Σ̃s)

≤ λ1(Σ̄) =
1

λd(Σ
−1
q +

∑
z∈S(Σ0 +G−1

z )−1)
.

The second inequality uses λ1(Gs,∗) ≤ 1, which follows from Assumption 1, and λ1(Σ̃sΣ
−1
0 ) ≤ 1. Finally, we apply basic

eigenvalue identities and inequalities, and get

λd

(
Σ−1

q +
∑
z∈S

(Σ0 +G−1
z )−1

)
≥ λd(Σ

−1
q ) +

∑
z∈S

λd((Σ0 +G−1
z )−1)

= λd(Σ
−1
q ) +

∑
z∈S

λ−1
1 (Σ0 +G−1

z )

≥ λd(Σ
−1
q ) +

∑
z∈S

1

λ1(Σ0) + λ1(G
−1
z )

≥ λd(Σ
−1
q ) +

∑
z∈S

1

λ1(Σ0) + γ−1σ2λ1(G
−1
z,∗)n

−1
z

,
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where we use Assumption 3 in the last inequality.

To finalize the proof, we chain all inequalities starting from (17) and get that

V (πs,∗; θs,∗)− V (π̂s; θs,∗) ≤
√
5d log(1/δ)

√
4d

λd(Σ
−1
q ) +

∑
z∈S(λ1(Σ0) + γ−1σ2λ1(G

−1
z,∗)n

−1
z )

holds on event E, which occurs with probability at least 1− δ for θs,∗ | D. This completes the proof of the first claim in
Theorem 2.

Note that the bound depends on λ1(G
−1
z,∗), which can be large when λd(Gz,∗) is small. We can eliminate this dependence

under the additional assumption in Theorem 2. Under that assumption, all matrices are diagonal and thus commute, and

λ1(Gs,∗Σ̃sΣ
−1
0 Σ̄Σ−1

0 Σ̃s) = λ1(Gs,∗Σ̄Σ̃sΣ
−1
0 Σ−1

0 Σ̃s) ≤ λ1(Gs,∗Σ̄) = λ−1
d (Σ̄−1G−1

s,∗)

=
1

λd(Σ
−1
q G−1

s,∗ +
∑

z∈S(Gs,∗Σ0 +Gs,∗G
−1
z )−1)

.

Finally, we bound the minimum eigenvalue from below using basic eigenvalue identities and inequalities,

λd

(
Σ−1

q G−1
s,∗ +

∑
z∈S

(Gs,∗Σ0 +Gs,∗G
−1
z )−1

)
≥ λd(Σ

−1
q )λ−1

1 (Gs,∗) +
∑
z∈S

λ−1
1 (Gs,∗Σ0 +Gs,∗G

−1
z )

≥ λd(Σ
−1
q ) +

∑
z∈S

1

λ1(Gs,∗)λ1(Σ0) + λ1(Gs,∗G
−1
z )

≥ λd(Σ
−1
q ) +

∑
z∈S

1

λ1(Σ0) + γ−1σ2n−1
z

.

In the last two inequalities, we use that λ1(Gs,∗) ≤ 1. In the last inequality, we also use that Assumption 3 holds for any
task parameter, including θz,∗ = θs,∗. Thus Gz ⪰ γσ−2nzGs,∗ and G−1

z ⪯ γ−1σ2n−1
z G−1

s,∗. This completes the proof of
the second claim in Theorem 2.
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Figure 4. Evaluation of off-policy algorithms on the image classification using Omniglot using three randomly selected alphabets.

Figure 5. Visualization of the three alphabets used for evaluation. The first four images are randomly selected characters from the alphabet.
The fifth is a visualization of the estimation of hyper-parameter µ∗ using HierOPO, by interpolating the estimated hyper-parameter among
characters in the alphabet. Note that the hyper-parameter captures common structures among different characters in the alphabet.

D. Additional Experiment on Image Classification
In this section, we consider an additional experiment based on online image classification using a real-world dataset
commonly used in meta-learning. We consider using Omniglot (Lake et al., 2015), which is a dataset of 1623 handwritten
characters from 50 different alphabets and contains 20 examples per character. We train a 4-layer CNN to classify the
characters from 30 of the alphabets, and use to extract d = 64 features using characters from 30 alphabets.

The remaining 20 alphabets are used to evaluate the algorithms as in Section 7. We create a multi-task contextual bandit
using the test dataset as follows. First, an alphabet is sampled uniformly at random from a subset of alphabets, which we
reserve for evaluation. Then for each task, a character is uniformly chosen from the alphabet as the positive class. By
leveraging that all tasks correspond to characters from the same alphabet, we ensure that tasks have some hierarchical
relationship. In each round of a particular task, K = 10 images from the dataset are chosen, one of which is guaranteed to
be of the chosen character. The context is a concatenation of the extracted d-dimensional feature vectors from the CNN
trained on the training alphabets for the corresponding chosen images. The reward for selecting an image of the positive
class is sampled from Ber(0.9); otherwise, the reward is sampled from Ber(0.1).

We estimate the hierarchical model in Section 3.2 using the CNN trained on the training set. We estimate the hyper-prior
parameters µq and Σq using the mean and covariance, respectively, of the features of all the images in the test set. Then for
each alphabet, we set µ∗ and Σ0 to be the mean and covariance of the features of images in the alphabet. Recall that µ∗,Σ0

are unknown to all baselines except OracleOPO.

In Figure 4, we report results for three randomly selected alphabets from the test set over 10 random runs, where each run
consists of choosing m = 100 characters, generating a dataset of size 4n, and running each algorithm on the dataset. Note
that here, HierOPO and OracleOPO both outperform FlatOPO initially, but ultimately begin to converge in performance
when the dataset size n is large (particularly in the third alphabet). This is because HierOPO, OracleOPO assume a Gaussian
hierarchical structure over characters in an alphabet, which is likely violated. However, as shown in Figure 5, our algorithm
HierOPO is still able to learn commonalities between characters in an alphabet, such as shape and curvature, which leads to
improved performance when n is small.
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