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Abstract

In this paper, we describe proximal gradient tempo-
ral difference learning, which provides a principled
way for designing and analyzing true stochastic
gradient temporal difference learning algorithms.
We show how gradient TD (GTD) reinforcement
learning methods can be formally derived, not
with respect to their original objective functions
as previously attempted, but rather with respect to
primal-dual saddle-point objective functions. We
also conduct a saddle-point error analysis to obtain
finite-sample bounds on their performance. Previ-
ous analyses of this class of algorithms use stochas-
tic approximation techniques to prove asymptotic
convergence, and no finite-sample analysis had
been attempted. An accelerated algorithm is also
proposed, namely GTD2-MP, which use proximal
“mirror maps” to yield acceleration. The results of
our theoretical analysis imply that the GTD family
of algorithms are comparable and may indeed be
preferred over existing least squares TD methods
for off-policy learning, due to their linear complex-
ity. We provide experimental results showing the
improved performance of our accelerated gradient
TD methods.

1 Introduction
Designing a true stochastic gradient unconditionally stable
temporal difference (TD) method with finite-sample conver-
gence analysis has been a longstanding goal of reinforce-
ment learning (RL) [Bertsekas and Tsitsiklis, 1996; Sutton
and Barto, 1998]. It was discovered more than two decades
ago that the original TD method was unstable in many off-
policy scenarios where the target behavior being learned and
the exploratory behavior producing samples differ by Baird
and others [Baird, 1995]. Sutton et al. [2008, 2009] proposed
the family of gradient-based temporal difference (GTD) algo-
rithms to address the limitations of the standard TD algorthm.
A key property of this class of GTD algorithms is that they
are asymptotically off-policy convergent, which was shown
using the framework of stochastic approximation [Borkar,
2008]. Many RL algorithms, especially those that are based

on stochastic approximation, such as TD(λ), do not have con-
vergence guarantees in the off-policy setting. Unfortunately,
this class of GTD algorithms are not true stochastic gradi-
ent methods with respect to their original objective functions,
as pointed out in Szepesvári [2010]. The reason is not sur-
prising: the gradient of the objective functions used involve
products of terms, which cannot be sampled directly, and was
decomposed by an ad-hoc splitting of terms. In this paper, we
show a principled way of designing true stochastic gradient
TD algorithms by using a primal-dual saddle point objective
function, derived from the original objective functions, cou-
pled with the principled use of operator splitting [Bauschke
and Combettes, 2011].

2 Preliminaries
Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dynamic
and stochastic environment, where the agent’s goal is to opti-
mize some measure of its long-term performance. This inter-
action is conventionally modeled as a Markov decision pro-
cess (MDP). A MDP is defined as the tuple (S,A, P ass′ , R, γ),
where S and A are the sets of states and actions, the transi-
tion kernel P ass′ specifying the probability of transition from
state s ∈ S to state s′ ∈ S by taking action a ∈ A,
R(s, a) : S × A → R is the reward function bounded by
Rmax., and 0 ≤ γ < 1 is a discount factor. A stationary pol-
icy π : S ×A → [0, 1] is a probabilistic mapping from states
to actions. The main objective of a RL algorithm is to find
an optimal policy. In order to achieve this goal, a key step in
many algorithms is to calculate the value function of a given
policy π, i.e., V π : S → R, a process known as policy eval-
uation. It is known that V π is the unique fixed-point of the
Bellman operator Tπ , i.e.,

V π = TπV π = Rπ + γPπV π, (1)

where Rπ and Pπ are the reward function and transition ker-
nel of the Markov chain induced by policy π. In Eq. 1, we
may imagine V π as a |S|-dimensional vector and write ev-
erything in vector/matrix form. In the following, to simplify
the notation, we often drop the dependence of Tπ , V π , Rπ ,
and Pπ to π.

We denote by πb, the behavior policy that generates the
data, and by π, the target policy that we would like to evalu-



ate. They are the same in the on-policy setting and different
in the off-policy scenario. For each state-action pair (si, ai),
such that πb(ai|si) > 0, we define the importance-weighting
factor ρi = π(ai|si)/πb(ai|si) with ρmax ≥ 0 being its max-
imum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V π with parameters θ ∈ Rd
and L-bounded basis functions {ϕi}di=1, i.e., ϕi : S →
R and maxi ||ϕi||∞ ≤ L. We denote by φ(·) =(
ϕ1(·), . . . , ϕd(·)

)>
the feature vector and by F the lin-

ear function space spanned by the basis functions {ϕi}di=1,
i.e., F =

{
fθ | θ ∈ Rd and fθ(·) = φ(·)>θ

}
. We

may write the approximation of V in F in the vector form
as v̂ = Φθ, where Φ is the |S| × d feature matrix. When
only n training samples of the form D =

{(
si, ai, ri =

r(si, ai), s
′
i

)}n
i=1

, si ∼ ξ, ai ∼ πb(·|si), s′i ∼ P (·|si, ai),
are available (ξ is a distribution over the state space S), we
may write the empirical Bellman operator T̂ for a function in
F as

T̂ (Φ̂θ) = R̂+ γΦ̂′θ, (2)

where Φ̂ (resp. Φ̂′) is the empirical feature matrix of size n×
d, whose i-th row is the feature vector φ(si)

> (resp. φ(s′i)
>),

and R̂ ∈ Rn is the reward vector, whose i-th element is ri.
We denote by δi(θ) = ri+γφ

′>
i θ−φ>i θ, the TD error for the

i-th sample (si, ri, s
′
i) and define ∆φi = φi − γφ′i. Finally,

we define the matrices A and C, and the vector b as

A := E
[
ρiφi(∆φi)

>], b := E [ρiφiri] , C := E[φiφ
>
i ], (3)

where the expectations are w.r.t. ξ and Pπb . We also de-
note by Ξ, the diagonal matrix whose elements are ξ(s), and
ξmax := maxsξ(s). For each sample i in the training set D,
we can calculate an unbiased estimate of A, b, and C as fol-
lows:

Âi := ρiφi∆φ
>
i , b̂i := ρiriφi, Ĉi := φiφ

>
i . (4)

2.1 GRADIENT-BASED TD ALGORITHMS
The class of gradient-based TD (GTD) algorithms were pro-
posed by Sutton et al. [2008, 2009]. These algorithms tar-
get two objective functions: the norm of the expected TD
update (NEU) and the mean-square projected Bellman error
(MSPBE), defined as (see e.g., Maei 2011)1

NEU(θ) = ||Φ>Ξ(T v̂ − v̂)||2 , (5)

MSPBE(θ) = ||v̂ −ΠT v̂||2ξ = ||Φ>Ξ(T v̂ − v̂)||2C−1 , (6)

where C = E[φiφ
>
i ] = Φ>ΞΦ is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and Π =
Φ(Φ>ΞΦ)−1Φ>Ξ is the orthogonal projection operator into
the function space F , i.e., for any bounded function g, Πg =
arg minf∈F ||g − f ||ξ. From (5) and (6), it is clear that NEU
and MSPBE are square unweighted and weighted byC−1, `2-
norms of the quantity Φ>Ξ(T v̂ − v̂), respectively, and thus,
the two objective functions can be unified as

J(θ) = ||Φ>Ξ(T v̂ − v̂)||2M−1 = ||E[ρiδi(θ)φi]||2M−1 , (7)

1It is important to note that T in (5) and (6) is Tπ , the Bellman
operator of the target policy π.

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].

Lemma 1. Let D =
{(
si, ai, ri, s

′
i

)}n
i=1

, si ∼ ξ, ai ∼
πb(·|si), s′i ∼ P (·|si, ai) be a training set generated by the
behavior policy πb and T be the Bellman operator of the tar-
get policy π. Then, we have

Φ>Ξ(T v̂ − v̂) = E
[
ρiδi(θ)φi

]
= b−Aθ.

Motivated by minimizing the NEU and MSPBE objective
functions using the stochastic gradient methods, the GTD and
GTD2 algorithms were proposed with the following update
rules:

GTD: yt+1 = yt + αt
(
ρtδt(θt)φt − yt

)
, (8)

θt+1 = θt + αtρt∆φt(y
>
t φt),

GTD2: yt+1 = yt + αt
(
ρtδt(θt)− φ>t yt

)
φt, (9)

θt+1 = θt + αtρt∆φt(y
>
t φt).

However, it has been shown that the above update rules do
not update the value function parameter θ in the gradient di-
rection of NEU and MSPBE, and thus, NEU and MSPBE
are not the true objective functions of the GTD and GTD2
algorithms [Szepesvári, 2010]. Consider the NEU objective
function in (5). Taking its gradient w.r.t. θ, we obtain

−1

2
∇NEU(θ) = −

(
∇E

[
ρiδi(θ)φ

>
i

])
E
[
ρiδi(θ)φi

]
= −

(
E
[
ρi∇δi(θ)φ>i

])
E
[
ρiδi(θ)φi

]
= E

[
ρi∆φiφ

>
i

]
E
[
ρiδi(θ)φi

]
. (10)

If the gradient can be written as a single expectation, then it
is straightforward to use a stochastic gradient method. How-
ever, we have a product of two expectations in (10), and un-
fortunately, due to the correlation between them, the sam-
ple product (with a single sample) won’t be an unbiased es-
timate of the gradient. To tackle this, the GTD algorithm
uses an auxiliary variable yt to estimate E

[
ρiδi(θ)φi

]
, and

thus, the overall algorithm is no longer a true stochastic gra-
dient method w.r.t. NEU. It can be easily shown that the same
problem exists for GTD2 w.r.t. the MSPBE objective func-
tion. This prevents us from using the standard convergence
analysis techniques of stochastic gradient descent methods to
obtain a finite-sample performance bound for the GTD and
GTD2 algorithms.

It should be also noted that in the original publications of
GTD/GTD2 algorithms [Sutton et al., 2008, 2009], the au-
thors discussed handling the off-policy scenario using both
importance and rejected sampling. In rejected sampling that
was mainly used in Sutton et al. [2008, 2009], a sample
(si, ai, ri, s

′
i) is rejected and the parameter θ does not update

for this sample, if π(ai|si) = 0. This sampling strategy is not
efficient since a lot of samples will be discarded if πb and π
are very different.



2.2 Related Work
The line of research reported here began with the devel-
opment of a broad framework called proximal reinforce-
ment learning [Mahadevan et al., 2014], which explores first-
order reinforcement learning algorithms using mirror maps
[Bubeck, 2014; Juditsky et al., 2008] to construct primal-
dual spaces. This framework led to a dual space formula-
tion of first-order sparse TD learning [Mahadevan and Liu,
2012]. A saddle point formulation for off-policy TD learn-
ing was initially explored in Liu et al. [2012] and later in
Valcarcel Macua et al. [2015], where the objective function
is the norm of the approximation residual of a linear inverse
problem [Ávila Pires and Szepesvári, 2012]. A sparse off-
policy GTD2 algorithm with regularized dual averaging is in-
troduced by Qin and Li [2014]. These studies provide dif-
ferent approaches to formulating the problem, first as a vari-
ational inequality problem [Juditsky et al., 2008; Mahadevan
et al., 2014] or as a linear inverse problem [Liu et al., 2012],
or as a quadratic objective function (MSPBE) using two-time-
scale solvers [Qin and Li, 2014]. In this paper, we are going
to explore the true nature of the GTD algorithms as stochas-
tic gradient algorithm w.r.t the convex-concave saddle-point
formulations of NEU and MSPBE.

3 Algorithm Analysis
3.1 Saddle-Point Formulation of GTD Algorithms
In this section, we show how the GTD and GTD2 algo-
rithms can be formulated as true stochastic gradient (SG) al-
gorithms by writing their respective objective functions, NEU
and MSPBE, in the form of a convex-concave saddle-point.
As discussed earlier, this new formulation of GTD and GTD2
as true SG methods allows us to use the convergence analy-
sis techniques for SG methods to derive finite-sample perfor-
mance bounds for these RL algorithms. Moreover, it allows
us to use more efficient algorithms that have been recently
developed to solve SG problems, such as stochastic Mirror-
Prox (SMP) [Juditsky et al., 2008], to derive more efficient
versions of GTD and GTD2.

In this paper, we consider the saddle-point problem formu-
lation as follows,

min
θ

max
y

(
L(θ, y) = 〈b−Aθ, y〉 − 1

2
||y||2M

)
, (11)

where A and b were defined by Eq. 3, and M is a positive
definite matrix.

We first show in Proposition 1 that if (θ∗, y∗) is the saddle-
point of problem (11), then θ∗ will be the optimum of NEU
and MSPBE defined in Eq. 7. We then prove in Proposition 2
that GTD and GTD2 in fact find this saddle-point.
Proposition 1. For any fixed θ, we have 1

2J(θ) =
maxy L(θ, y), where J(θ) is defined by Eq. 7.

Proof. Since L(θ, y) is an unconstrained quadratic program
w.r.t. y, the optimal y∗(θ) = arg maxy L(θ, y) can be analyt-
ically computed as

y∗(θ) = M−1(b−Aθ). (12)
The result follows by substituting y∗ into (11) and using the
definition of J(θ) in Eq. 7 and Lemma 1.

Proposition 2. GTD and GTD2 are true stochastic gradient
algorithms w.r.t. the objective function L(θ, y) of the saddle-
point problem (11) with M = I and M = C = Φ>ΞΦ (the
covariance matrix), respectively.

Proof. It is easy to see that the gradient updates of the saddle-
point problem (11) (ascending in y and descending in θ) may
be written as

yt+1 = yt + αt (b−Aθt −Myt) , (13)

θt+1 = θt + αtA
>yt.

We denote M̂ := 1 (resp. M̂ := Ĉ) for GTD (resp. GTD2).
We may obtain the update rules of GTD and GTD2 by replac-
ingA, b, andC in (13) with their unbiased estimates Â, b̂, and
Ĉ from Eq. 4, which completes the proof.

3.2 Accelerated Algorithm
As discussed at the beginning of Section 3.1, this saddle-point
formulation not only gives us the opportunity to use the tech-
niques for the analysis of SG methods to derive finite-sample
performance bounds for the GTD algorithms, but also it al-
lows us to use the powerful algorithms that have been re-
cently developed to solve the SG problems and derive more
efficient versions of GTD and GTD2. Stochastic Mirror-
Prox (SMP) [Juditsky et al., 2008] is an “almost dimension-
free” non-Euclidean extra-gradient method that deals with
both smooth and non-smooth stochastic optimization prob-
lems (see Juditsky and Nemirovski 2011 and Bubeck 2014
for more details). Using SMP, we propose a new version of
GTD/GTD2, called GTD-MP/GTD2-MP, with the following
update formula:2

ymt = yt + αt(b̂t − Âtθt − M̂tyt), θmt = θt + αtÂ
>
t yt,

yt+1 = yt + αt(b̂t − Âtθmt − M̂ty
m
t ), θt+1 = θt + αtÂ

>
t y

m
t .

After T iterations, these algorithms return θ̄T :=
∑T

t=1 αtθt∑T
t=1 αt

and ȳT :=
∑T

t=1 αtyt∑T
t=1 αt

. The details of the algorithm is shown in
Algorithm 1, and the experimental comparison study between
GTD2 and GTD2-MP is reported in Section 4.

3.3 Finite-Sample Analysis
In this section, we are going to discuss the convergence rate
of the accelerated algorithms using off-the-shelf accelerated
solvers for saddle-point problems. Due to space limitations,
many details are relegated to a longer paper [Liu et al., 2015],
where both error bounds and performance bounds are pro-
vided, which shows that the value function approximation
bound of the GTD algorithms family is O

(
d

n1/4

)
. For sim-

plicity, we will discuss the error bound of 1
2 ||Aθ−b||

2
M−1 , and

the corresponding error bound of 1
2 ||Aθ−b||

2
ξ and ‖V − v̄n||ξ

can be likewise derived, We show the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

(
τ + ||A||2 + σ√

n

)
(15)

2For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as extra-
gradient (EG) GTD methods. Mahadevan et al. [2014] gives a more
detailed discussion of a broad range of mirror maps in RL.



Algorithm 1 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

δt = rt − θ>t ∆φt

ymt = yt + αt(ρtδt − φ>
t yt)φt

θmt = θt + αtρt∆φt(φ
>
t yt)

δmt = rt − (θmt )>∆φt

yt+1 = yt + αt(ρtδ
m
t − φ>

t y
m
t )φt

θt+1 = θt + αtρt∆φt(φ
>
t y

m
t )

3: end for
4: OUTPUT

θ̄n :=

∑n
t=1 αtθt∑n
t=1 αt

, ȳn :=

∑n
t=1 αtyt∑n
t=1 αt

(14)

We also discuss the interesting question: what is the “opti-
mal” GTD algorithm? To answer this question, we review the
convex-concave formulation of GTD2. According to convex
programming complexity theory [Juditsky et al., 2008], the
un-improvable convergence rate of stochastic saddle-point
problem (11) is

(Optimal) : O

(
τ

n2
+
||A||2
n

+
σ√
n

)
(16)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-MP
algorithm. SMP is able to improve the convergence rate of
our gradient TD method to:

(GTD2−MP) : O

(
τ + ||A||2

n
+

σ√
n

)
, (17)

Another example of an optimal solver is the stochastic accel-
erated primal-dual (SAPD) method [Chen et al., 2013] which
can reach the optimal convergence rate in (16). Due to space
limitations, we are unable to present a more complete descrip-
tion, and refer interested readers to Juditsky et al. [2008];
Chen et al. [2013] for more details.

4 Empirical Evaluation
In this section, we compare the previous GTD2 method with
our proposed GTD2-MP method using various domains. It
should be mentioned that since the major focus of this pa-
per is on policy evaluation, the comparative study focuses on
value function approximation and thus comparisons on con-
trol learning performance is not reported in this paper.

The Baird example [Baird, 1995] is a well-known example
to test the performance of off-policy convergent algorithms.
Constant stepsize α = 0.005 for GTD2 and α = 0.004 for
GTD2-MP, which are chosen via comparison studies as in
[Dann et al., 2014]. Figure 1 shows the MSPBE curve of
GTD2, GTD2-MP of 8000 steps averaged over 200 runs. We
can see that GTD2-MP has a significant improvement over
the GTD2 algorithm wherein both the MSPBE and the vari-
ance are substantially reduced.

Figure 1: Off-Policy Convergence Comparison

Figure 2: Energy Management Example

4.1 Energy Management Domain
In this experiment we compare the performance of the pro-
posed algorithms using an energy management domain. The
decision maker must decide how much energy to purchase or
sell subject to stochastic prices. This problem is relevant in
the context of utilities as well as in settings such as hybrid
vehicles. The prices are generated from a Markov chain pro-
cess. The amount of available storage is limited and it also
degrades with use. The degradation process is based on the
physical properties of lithium-ion batteries and discourages
fully charging or discharging the battery. The energy arbi-
trage problem is closely related to the broad class of inventory
management problems, with the storage level corresponding
to the inventory. However, there are no known results de-
scribing the structure of optimal threshold policies in energy
storage.

Note that since for this off-policy evaluation problem, the
formulated Aθ = b does not have a solution, and thus the
optimal MSPBE(θ∗) (resp. MSBE(θ∗) ) do not reduce to 0.
The result is averaged over 200 runs, and α = 0.001 for both
GTD2 and GTD2-MP is chosen via comparison studies for
each algorithm. As can be seen from FIgure 2, in the initial
transit state, GTD2-MP performs much better than GTD2 at
the transient state. Based on the above empirical results and
many other experiments we have conducted, we conclude that
GTD2-MP usually performs much better than the “vanilla”
GTD2 algorithm.

5 Summary
The proximal gradient TD framework yields a principled ap-
proach to designing off-policy convergent gradient TD algo-
rithms. We proposed and analyzed a new family of gradient
TD algorithms with a nearly optimal convergence rate.
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C. Szepesvári. Algorithms for reinforcement learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 4(1):1–
103, 2010.

S. Valcarcel Macua, J. Chen, S. Zazo, and A. H Sayed. Distributed
policy evaluation under multiple behavior strategies. IEEE Trans-
actions on Automatic Control, 60(5):1260–1274, 2015.


