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Abstract—We consider the problem of binary classification with
the caveat that the learner can abstain from declaring a label
incurring a cost λ ∈ [0, 1/2] in the process. This is referred to as
the problem of binary classification with a fixed-cost of abstention.
For this problem, we propose an active learning strategy that
constructs a non-uniform partition of the input space and focuses
sampling in the regions near the decision boundaries. Our
proposed algorithm can work in all the commonly used active
learning query models, namely membership-query, pool-based and
stream-based. We obtain an upper bound on the excess risk of
our proposed algorithm under standard smoothness and margin
assumptions and demonstrate its minimax near-optimality by
deriving a matching (modulo poly-logarithmic factors) lower
bound. The achieved minimax rates are always faster than the
corresponding rates in the passive setting, and furthermore the
improvement increases with larger values of the smoothness and
margin parameters.
A full version of this paper is accessible at: https://arxiv.org/
abs/1906.00303

I. INTRODUCTION

Standard binary classification involves using a training set
Sn = {(Xi, Yi) : 1 ≤ i ≤ n} to learn a classifier f
which maps elements of an input space X to the set of binary
labels Y = {0, 1}. The performance of the learned classifier
is measured by its expected probability of error according to
some joint distribution PXY on X ×Y . In this paper, we study
a generalization of this problem where in addition to the labels
0 and 1, the learner has an option of abstaining from declaring
a label (i.e., saying “don’t know”). Every time the learner uses
this option, it incurs a fixed cost λ ∈ (0, 1/2]. We design an
active learning strategy for this problem and obtain upper and
lower bounds on the excess risk of the resulting classifier in a
non-parametric framework.
This problem models several practical scenarios in which it is
preferable to withhold a decision at the cost of some additional
experimentation, instead of making an incorrect decision and
incurring much higher costs. The fixed-cost formulation is
particularly suitable for applications in which a precise cost
can be assigned to additional experimentation due to using the
abstain option. A canonical application of this problem is in
automated medical diagnostic systems [1], where classifiers
which defer to a human expert on uncertain inputs are more
desirable than those that always make a decision. Other key
applications include dialog systems and detecting malicious
contents on the web.
Active learning is a learning paradigm in which the learner
constructs the training set (Sn) by sequentially requesting labels
at certain input points selected based on the observed data. This

is in contrast to the passive learning framework, in which Sn is
constructed in an i.i.d. manner. Existing results in the literature,
such as [2], [3], have demonstrated the benefits of active (over
passive) learning, in terms of improved sample complexity or
equivalently, lower excess risk, in standard binary classification.
However, in the case of classification with abstention, the design
of active learning algorithms and their comparison with their
passive counterparts have largely been unexplored. In this paper,
we aim to fill this gap in the literature.
Prior Work. The study of the problem of classification with
an abstain option was initiated by Chow in [4] and [5]. In [4],
the author showed that a threshold-type classifier (see § II) is
Bayes optimal for this problem, while in [5] he derived the
trade-off curve between the error-rate and abstention-rate. [6]
studied this problem in a non-parametric framework (similar to
this paper), and derived the convergence rates on the excess risk
of plug-in and empirical risk minimization based classifiers.
Another line of work in this area, involves the design of
appropriate convex surrogate loss functions and analyzing their
consistency. In particular, [7] proposed the Generalized Hinge
Loss and proved results on its calibration and excess risk,
while [8] obtained the necessary and sufficient conditions for
the infinite sample complexity of arbitrary convex surrogate
loss functions. Other related works include [9] and [10] that
analyzed the binary classification with abstain option with `1-
regularization. More recently, [11] studied abstaining classifiers
which are represented by a pair of functions (h, r). The sign of
the function h is used for predicting a label, while the sign of
r is used to decide whether to abstain or not. They proposed
new calibrated convex surrogate loss functions for this problem
and obtained generalization and consistency guarantees.
Contributions. Our main contributions are as follows:
1) We begin by proposing an active learning algorithm for the
fixed-cost setting with knowledge of the smoothness of the
regression function, and obtain bounds on its excess risk. The
proposed algorithm is general enough to work for the three
most commonly used active learning query models: membership
query, pool-based, and stream-based (Section III-A).
2) We then demonstrate the minimax near-optimality of
our proposed algorithm by deriving matching (modulo poly-
logarithmic terms) lower-bound on the excess risk. The
lower-bound proof relies on a new comparison inequality for
classification with abstention, and a novel construction of a
class of hard problems (Section III-B).
3) Finally, we use a simple class of learning problems and
empirically verify the benefits of active (over passive) learning



as predicted by our theoretical results (Section IV).

II. PRELIMINARIES

Let X = [0, 1]D denote the input space and Y = {0, 1}
denote the set of labels to be assigned to points in X . We
use d to denote the Euclidean metric on X , i.e., for all
x, x′ ∈ X , d(x, x′) :=

√∑D
i=1(xi − x′i)2. A binary classi-

fication problem is completely specified by PXY , i.e., the joint
distribution of the input-label random variables. Equivalently,
it can also be represented in terms of the marginal over
the input space, PX , and the regression function η(x) :=
PY |X (Y = 1 | X = x). A (randomized) abstaining classifier
is defined as a mapping g : X 7→ P (Y1), where Y1 = Y∪{∆},
the symbol ∆ represents the option of the classifier to abstain
from declaring a label, and P(Y1) represents the set of
probability distributions on Y1. Such a classifier g comprises
of three functions gi : X → [0, 1], for i ∈ Y1, satisfying∑
i∈Y1

gi(x) = 1, for each x ∈ X . A classifier g is called
deterministic if the functions gi take values in {0, 1}. Every
deterministic classifier g partitions X into three disjoint sets
(G0, G1, G∆).
In this paper, we focus on the problem of binary classification
with a fixed cost of abstention, in which every usage of
the abstain option results in a fixed cost λ ∈ [0, 1/2]. The
corresponding classification loss is defined as lλ(g, x, y) :=
1{g(x)6=∆}1{g(x)6=y} + λ1{g(x)=∆}, and the goal is to learn a
classifier g which minimizes the expected loss E [lλ(g,X, Y )].
The Bayes optimal classifier for this problem is defined as
g∗λ(x) = 1, 0, or ∆, depending on whether 1− η(x), η(x), or
λ is the smallest.
Active Learning Models: For this problem, we propose an
active classification algorithm for three commonly used active
learning models [12, § 2]: (i) membership query (MQ), (ii) pool-
based (PB), and (iii) stream-based (SB). MQ is the strongest
query model, in which the learner can request labels at any
point of the input space. We use a slightly weaker version of
MQ in this paper that only requires labels sampled from PX
restricted to certain partitions of X , which we introduce in
Definition 1. In the PB model, the learner is provided with a
pool of unlabelled samples and must request labels of a subset
of the pool. Finally, in the SB model, the learner receives a
stream of samples and must decide whether to request a label
or discard the sample.
A. Definitions

To construct our active classifier, we will require a hierarchical
sequence of partitions of the input space, called the tree of
partitions [13], [14].
Definition 1. A sequence of subsets {Xh}h≥0 of X is said
to form a tree of partitions of X , if they satisfy the following
properties: (i) |Xh| = 2h and we denote the elements of Xh
by xh,i, for 1 ≤ i ≤ 2h, (ii) for every xh,i ∈ Xh, we denote
by Xh,i, the cell associated with xh,i, which is defined as
Xh,i := {x ∈ X | d(x, xh,i) ≤ d(x, xh,j), ∀j 6= i}, where ties
are broken in an arbitrary but deterministic manner, (iii) we
have Xh,i = Xh+1,2i−i ∪ Xh+1,2i for all h, i pairs, and (iv)

there exist constants 0 < v2 ≤ 1 ≤ v1 and ρ ∈ (0, 1), such that
for all h and i, we have B(xh,i, v2ρ

h) ⊂ Xh,i ⊂ B(xh,i, v1ρ
h),

where B(x, a) := {x′ ∈ X | d(x, x′) < a} is the open ball
in X centered at x with radius a.
Remark 1. For the metric space (X , d) considered in our
paper, i.e., X = [0, 1]D and d being the Euclidean metric,
the cells Xh,i are D-dimensional rectangles. Thus, a suitable
choice of parameter values for our algorithms are ρ = 2−1/D,
v1 = 2

√
D, and v2 = 1/2.

Next, we define the dimensionality of the region of the input
space at which the regression function η(·) is close to some
threshold value γ.
Definition 2. For a function ζ : [0,∞) 7→ [0,∞) and
a threshold γ ∈ (0, 1/2), we define the near-γ dimension
associated with (X , d) and the regression function η(·) as

Dγ (ζ) := inf
{
a ≥ 0 | ∃C > 0 : M

(
Xγ
(
ζ(r)

)
, r
)
≤ Cr−a, ∀r > 0

}
,

(1)
where Xγ

(
ζ(r)

)
:=
{
x ∈ X : |η(x)− γ| ≤ ζ(r)

}
and M(S, r)

is the r packing number of S ⊆ (X , d).
The above definition is motivated by similar definitions used in
the bandit literature, such as the near-optimality dimension [13]
and the zooming dimension [15]. For the case of X = [0, 1]D

considered in this paper, the term Dγ(ζ) must be no greater
than D, i.e., Dγ(ζ) ≤ D. This is because Xγ

(
ζ(r)

)
⊂ X , for

all r > 0, and there exists a constant CD < ∞, such that
M(X , r) ≤ CDr−D, for all r > 0.
Remark 2. We will use an instance of near-γ dimension for
stating our results defined as D̃ = maxj=1,2{D̃j}, where
D̃j := Dγj (ζ1) with ζ1(r) = 12(L1v1

v2
)βrβ and γj = 1

2 +

(−1)j( 1
2 − λ).

III. MAIN RESULTS

A. Active Learning Algorithm

We now propose an active learning algorithm for classification
with a fixed-cost λ of abstention, and obtain theoretical bounds
on its excess risk under the following two standard assumptions:
(MA) The joint distribution PXY of the input-label pair satisfies
the margin assumption with parameters C0 > 0 and α0 ≥ 0, for
γ ∈ {1/2− λ, 1/2 + λ}, which means that for any 0 < t ≤ 1,
we have PX (|η(X)− γ| ≤ t) ≤ C0t

α0 .
(HÖ) The regression function η is Hölder continuous with
parameters L > 0 and 0 < β ≤ 1, i.e., for all x1, x2 ∈ (X , d),
we have |η(x1)− η(x2)| ≤ L× d(x1, x2)β .
The (HÖ) smoothness assumption is standard in nonparametric
estimation [16, Chapter 1], while the (MA) condition is a
natural generalization of the usual Tsybakov’s margin condition
(see e.g., [17]) for binary classification, and it has been widely
employed in this form in the classification with abstention
literature [6], [8], [18]
Outline of Algorithm 1: At any time t, the algorithm maintains
a set of active points Xt ⊂ ∪h≥0Xh, such that the cells
associated with the points in Xt partition the whole X ,
i.e., ∪xh,i∈XtXh,i = X . The set Xt is further divided into
classified active points, X (c)

t , unclassified active points, X (u)
t ,



Algorithm 1: Active learning with abstention.
Input: n, λ, L, β, v1, ρ, hmax = log n

1 Initialize t = 1, ne = 0, Xt = {x0,1}, X (u)
t = Xt,

X (c)
t = ∅, X (d)

t = ∅
2 while ne ≤ n do
3 for xh,i ∈ X (u)

t do
4 if [lt(xh,i), ut(xh,i)] ∩ {1/2− λ, 1/2 + λ} = ∅

then
5 X (c)

t ← X (c)
t ∪ {xh,i}

6 end
7 end
8 xht,it ∈ arg max

xh,i∈X (u)
t

I
(1)
t (xh,i) =

ut(xh,i)− lt(xh,i)
9 if

(
et
(
nht,it(t)

)
< L(v1ρ

ht)β
)

and (ht < hmax)
then

10 X (u)
t ← X (u)

t \ {xht,it} ∪ {xht+1,2it−1, xht+1,2it}
11 ut(xht+1,i′)← ut(xht,it), lt(xht+1,i′)←

lt(xht,it), for i′ ∈ {2it − 1, 2it}
12 else
13 call REQUEST_LABEL
14 end
15 t← t+ 1
16 end

Output: ĝ defined by Eq. (2)

and discarded points, X (d)
t . The classified points are those at

which the value of η has been estimated sufficiently well so
that we do not need to evaluate them further. The unclassified
points require further evaluation and perhaps refinement before
making a decision. The discarded points are those for which
we do not have sufficiently many unlabelled samples in their
cells (in the stream-based and pool-based settings). For every
active point, the algorithm computes high probability upper
and lower bounds on the maximum and minimum η values
in the cell associated with the point. The difference of these
upper and lower bounds can be considered as a surrogate for
the uncertainty in the η value in a cell. In every round, the
algorithm selects a candidate point from the unclassified set
that has the largest value of this uncertainty. Having chosen
the candidate point, the algorithm either refines the cell or asks
for a label at that point.
At a high level, Algorithm 1 involves repeating the following
two steps: 1) Maintaining a partition of the input space,
and for each set in the partition, constructing upper and
lower confidence bounds for the maximum and minimum
(respectively) η values in the cell, and 2) Based on these
confidence bounds, either refine the partition or request a label.
Finally, when the sampling budget is exhausted, 3) aggregate
the information gathered by the sampling strategy to define
an abstaining classifier. We now describe these three steps in
more details.

a) Confidence Interval Construction: At t ≥ 1, for any
cell Xh,i associated with xh,i ∈ Xt and nh,i(t) denot-
ing the number of queries in the cell Xh,i before time t,
we compute an upper-bound on the maximum η value in

Algorithm 2: REQUEST_LABEL

Input: Mode, xht,it , ne, X
(d)
t , X (u)

t

1 Flag ← False;
2 if Mode==‘Membership’ then
3 xt ∼ PX (· | Xht,it), yt ∼ Bernoulli(η(xt)),

Increment ← True ;

4 else if Mode==‘Pool’ then
5 if Zt ∩ Xht,it 6= ∅ then
6 choose x̃ht,it ∈ Zt ∩ Xht,it arbitrarily ;
7 yt ∼ Bernoulli (η (x̃ht,it)), Zt ← Zt \ {x̃ht,it},

Increment ← True;
8 else
9 X (d)

t ← X (d)
t ∪ {xht,it},

X (u)
t ← X (u)

t \ {xht,it};
10 end
11 else
12 counter ← 1 , discard ← True, Flag ← True ;
13 while

(
counter ≤ Nn

)
AND Flag do

14 Observe next element of the stream x ∼ PX ;
15 if x ∈ Xht,it then
16 yt ∼ Bernoulli(η(x)), discard ← False,

Increment ← True, ;
17 Break
18 end
19 counter ← counter +1;
20 end
21 if discard then
22 X (d)

t = X (d)
t ∪ {xht,it}, X

(u)
t = X (u)

t \ {xht,it};
23 end
24 if Increment then
25 ne ← ne + 1 ;
26 end
27 end

the cell as ut (xh,i) := min{ut−1 (xh,i) , ūt (xh,i)}, where
ūt (xh,i) = η̂t(xh,i) + et(nh,i(t)) + Vh. Here we have
η̂t (xh,i) = 1

nh,i(t)

∑t
s=1 1{xht,it∈Xh,i}yt, et (nh,i(t)) =√

2 log(2π2t3n/3)
nh,i(t)

(see [19, Lemma 3]), and Vh = L
(
v1ρ

h
)β

is an upper-bound on the maximum variation of the η value
in a cell at level h of the tree of partitions (Xh)h≥0. We can
define the lower-bound on the minimum η value in the cell in a
similar manner, lt (xh,i) := max{lt−1 (xh,i) , l̄t (xh,i)}, where
l̄t (xh,i) := η̂t (xh,i)−et (nh,i(t))−Vh. We set l0(xh,i) = −∞
and u0(xh,i) = +∞ for all xh,i.

b) Refine or Request Label: In order to select a candidate
point, Algorithm 1 selects an unclassified point with maximum
amount of uncertainty in its value. The uncertainty is measured
by the index I(1)

t (xh,i) = ut (xh,i)− lt (xh,i) (Line 8). Having
selected a candidate point xht,it at time t, the algorithm either
refines the cell (Lines 9-11) or requests a label depending on
the relative magnitudes of et (nht,it(t)) and Vht (Line 13).
The label request depends on the query model and consists



of the following steps: (i) In the membership query model
(MQ), the point xt for which we request the label is drawn
from the distribution PX restricted to the cell Xht,it . (ii) In
the pool-based model (PB), we request the label if there is an
unlabelled sample remaining in the cell Xht,it , otherwise, we
remove xht,it from X (u)

t and add it to X (d)
t . (iii) In the stream-

based model (SB), we discard the samples until a point in Xht,it
arrives. If Nn = 2n2 log(n) samples have been discarded, we
remove xht,it from X (u)

t and add it to X (d)
t . The pseudo-

code of the above three steps is provided in the subroutine
REQUEST_LABEL in Algorithm 2.
c) Classifier Definition.: Let tn denote the time at which the
n’th query is made and Algorithm 1 halts. We define the final
estimate of the regression function as η̂(x) = η̂tn

(
πtn(x)

)
,

where πtn(x) :=
{
xh,i ∈ Xtn | x ∈ Xh,i

}
, and the discarded

region of the input space as X̃ (d)
n := ∪

xh,i∈X (d)
tn

Xh,i. Finally,
the classifier returned by the algorithm is defined as

ĝ(x) =


1 if utn

(
πtn(x)

)
> 1− λ or x ∈ X̃ (d)

n ,

0 if ltn
(
πtn(x)

)
< λ and x 6∈ X̃ (d)

n ,

∆ otherwise.

(2)

Analysis: Before stating an upper-bound on the excess risk
of Algorithm 1, we show (Lemma 1) that it will suffice to
prove this bound for the MQ model. More specifically, we
show that under mild assumptions, the PX measure of X̃ (d)

n

in PB and SB models is no larger than 1/n with probability
at least (1− 1/n). This implies that in these two models, with
high probability, the misclassification risk of ĝ can be upper-
bounded by 1/n+ PXY

(
ĝ(X) 6= Y, ĝ(X) 6= ∆, X 6∈ X̃ (d)

n

)
,

where the analysis of the second term is identical for all three
active learning models.

Lemma 1. Assume that in the pool-based model, the pool size
Mn > max{2n3, 16n2 log(n)}, and in the stream-based model,
Nn = 2n2 log(n). Then, we have P

(
PX(X̃ (d)

n ) > 1/n
)
≤ 1/n.

Thus, given Lemma 1, we can proceed with the analysis under
the MQ model, with the knowledge that the same result holds
for the other two models with an additional 1/n term. We
now obtain an upper-bound on the excess risk of the classifier
constructed by Algorithm 1.

Theorem 1. Suppose that the assumptions (MA) and (HÖ)
hold, and let D̃ be the dimension term defined in Remark 2.
For a > D̃ and the corresponding Ca, assume n is large
enough to ensure ( n

logn ) ≥ ( 64Ca
L2v2β1 va2

)(
8Lvβ1
ρβ

)(2β+a)/β . Then,
for the classifier ĝ defined by (2), with probability at least
1 − 2/n, we have Rλ(ĝ) − Rλ(g∗λ) = Õ

(
n−β(α0+1)/(2β+a)

)
,

where the hidden constant depends on the parameters L, β,
v1, v2, ρ, C0, and a.

Remark 3. The term D̃ depends on both the smoothness
parameter β and the margin parameter α0, and is always
upper bounded by the ambient dimension D. If additionally,
PX satisfies the strong-density assumption, i.e., it admits a
density pX w.r.t. the Lebesgue measure such that pX ≥ c0 > 0

for all x ∈ X , we have D̃ ≤ max{0, D − α0β} (see [19,
App. H.1] for proof).

Remark 4 (Comparison with Passive Algorithms). Theorem 1
implies that the worst case excess risk under (MA) and (HÖ)
conditions achieved by Algorithm 1 is Õ

(
n−β(α0+1)/(2β+D)

)
.

In Theorem 2, we will show that this rate cannot be improved
by deriving matching (modulo poly-log factors) lower bound,
thus establishing the minimax near-optimality of Algorithm 1.
In the passive setting, under the same assumptions, the plug-in
approach of [6] using the estimator of [17] achieves an excess
risk bound of the order Õ

(
n−β(1+α0)/(D+2β+α0β)

)
. This rate

can be shown to be minimax near-optimal by combining
Lemma 2 with the lower-bound construction of [17]. Thus, due
to the additional α0β term, the minimax rate in the passive
setting is always slower than that in the active setting, and
furthermore, the gap in performance increases for smoother
regression function (large β) and larger margin parameter (α0).

B. Lower Bound

We now derive minimax lower-bounds on the expected excess
risk of the fixed-cost setting and the membership query model.
The proof follows the general outline for obtaining lower-
bounds described in works, such as [17], [20], reducing the
estimation problem to an appropriate multiple hypothesis testing
problem, and then applying Theorem 2.5 of [16]. The novel
elements of our result are the construction of an appropriate
class of hard regression functions and the comparison inequality
presented in Lemma 2. The details of the construction as well
the proofs are in [19, Appendix G].
Lemma 2. In the fixed-cost of abstention setting with the
cost λ < 1/2, let g represent any abstaining classifier and
g∗λ represent the Bayes optimal one. Then, we have Rλ (g)−
Rλ (g∗λ) ≥ cPX

(
(G∗λ\Gλ)∪(Gλ\G∗λ)

)(1+α0)/α0
, where c > 0

is a constant and α0 is the parameter of the assumption (MA).

Lemma 2 aids our lower-bound proof in several ways: 1) it
motivates our construction of hard problem instances in which
it is difficult to distinguish between the ‘abstain’ and ‘not-
abstain’ options, 2) it suggests a natural definition of pseudo-
metric (see Thm. [16, Theorem 2.5]), and 3) it allows us to
convert the lower-bound on the hypothesis testing problem to
that on the excess risk. We now state the main result of this
section.
Theorem 2. Let A be any active learning algorithm in
the fixed-cost λ < 1/2 abstention setting and ĝn be the
abstaining classifier learned by A with n label queries.
Let P (L, β, α0) represent the class of joint distributions
PXY satisfying the margin assumption (MA) with expo-
nent α0 > 0, whose regression function is (L, β) Hölder
continuous with L ≥ 3 and 0 < β ≤ 1. Then,
we have infA supPXY ∈P(L,β,α0)

(
E [Rλ (ĝn)−Rλ (g∗λ)]

)
=

Ω
(
n−β(1+α0)/(2β+D)

)
.

This result shows the minimax near-optimality of Algorithm 1,
as its excess risk upper-bound matches the lower-bound up
to poly-logarithmic factors in the worst case when D̃ = D.



b
n 100 500 1000 2000 3000

0.2 0.0421 0.4812 0.0475 0.0469 0.0472
0.5 0.0137 0.0170 0.0188 0.0214 0.0227
0.8 0.0010 0.0036 0.0073 0.0081 0.0081
1.0 -0.0260 0.0000 -0.0007 0.0077 0.0077

(a) With increasing b, the difference in performance between
active and passive algorithms reduces.

a
n 100 500 1000 1500 2000

1.0 0.0134 0.0060 0.0084 0.0103 0.0131
0.8 0.0145 0.0173 0.0171 0.0207 0.0216

(b) Decreasing the amplitude a results in decreasing α0, with
β fixed. Thus, the performance gap between active and passive
algorithms increases as a is lowered.
TABLE I: The tables show the difference in empirical risks of
the passive and active algorithms, i.e., (rp−ra). Bold indicates
statistically significant.
Due to space constraints, we defer the proof of this result to
Appendix ?? of [19].

IV. NUMERICAL ILLUSTRATION

(a) Plots of the regression function η used in the experiments for
a = 1.0 and b ∈ {0.2, 0.5, 1.0}. The dotted blue lines represent the
thresholds λ = 0.4 and 1− λ = 0.6.

(b) Histogram of the points sampled by Algorithm 1 for n = 4000,
a = 1.0, and b = 0.5.

Fig. 1

We now verify the advantages of active (over passive) learning
shown by our theoretical results on a class of toy problems.
In these problems, we fix X = [0, 1], PX as the uniform
distribution, and the cost of abstention at λ = 0.4, and set
η(x) = 0.5

(
1 + a

(∑3
k=0(−1)k(4x − k)b

))
, for a, b ∈ [0, 1].

The regression functions η are Hölder continuous with L = 4b

and β = b. Moreover, with the above choice of η and PX ,
the (MA) assumption holds with α0 = 1/b.
To provide a benchmark for comparison with Algorithm 1,
we consider a simple passive classifier which implements a
classification rule based on a piecewise constant estimator of
η using a uniform partition of X with a bandwidth bw = 0.1.
We ran the following two experiments with these algorithms:
1) Change b for a fixed a, and 2) Change a for a fixed b.
Expected Performance. When a is fixed and b is varied,
the parameters β and α0 both change such that α0β = 1.
In this case, given the exponents of n in the excess risk of
active (Theorem 1) and passive (Remark 4), we expect the
gap between the performance of active and passive algorithms
decreases with increasing b. When a is varied with b fixed, β
is unchanged and α0 decreases with a. Thus, again based on
the result of Theorem 1, we expect the gap increases with a.
Observed Performance. For every combination of parameters
a, b and n, we ran 50 repetitions of the active and passive
algorithms and computed the empirical risk with 10000 test
samples. We denote by ra and rp the average (over 50 runs)
empirical risk of the active and passive algorithms. We tabulate
the rp − ra values for the two experiments in Tables 1 and 2,
respectively. To test the statistical significance of the results,
we use z-score test with 95% confidence [21, § 4.2].
We see in Table 1 that the performance difference between
active and passive algorithms decreases with increasing b. In the
case of b = 1.0, the first statistically significant difference was
observed for n > 3000. Similarly in Table 2, we observe that
the performance gap decreases with decreasing a (or decreasing
α0) as predicted by theory.
The key reason for the benefit of active learning scheme over
passive, is that the active algorithm focuses sampling in the
difficult regions of the input space near the decision boundaries,
as shown in the histogram in Figure 1b. This effect becomes
more pronounced when PX puts small mass in these boundary
regions, such as when b is small or a is large.

V. CONCLUSION

In this paper, we proposed and analyzed an active learning
algorithm for the problem of binary classification with fixed-
cost of abstention under three most commonly used active
learning query models: membership-query, pool-based, and
stream-based. We obtained upper-bound on the excess risk of
our algorithm and demonstrated their minimax (near)-optimality
by deriving lower-bound. We then presented some numerical
results which verify the theoretical predictions.
In the full version of this manuscript [19], we also consider the
following extensions: (a) an adaptive version of Algorithm 1
which does not require the knowledge of the smoothness
parameters (L, β), and (b) We also consider another abstention
setting, the bounded-rate setting, in which the learner is allowed
to abstain for up to a fixed fraction δ ∈ (0, 1) of inputs without
incurring any cost.



REFERENCES

[1] P. Rubegni, G. Cevenini, M. Burroni, R. Perotti, G. Dell’Eva, P. Sbano,
C. Miracco, P. Luzi, P. Tosi, P. Barbini et al., “Automated diagnosis
of pigmented skin lesions,” International Journal of Cancer, vol. 101,
no. 6, pp. 576–580, 2002.

[2] S. Dasgupta, “Coarse sample complexity bounds for active learning,” in
Advances in neural information processing systems, 2006, pp. 235–242.

[3] R. M. Castro and R. D. Nowak, “Minimax bounds for active learning,”
IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 2339–2353,
2008.

[4] C.-K. Chow, “An optimum character recognition system using decision
functions,” IRE Transactions on Electronic Computers, no. 4, pp. 247–
254, 1957.

[5] C. Chow, “On optimum recognition error and reject tradeoff,” IEEE
Transactions on information theory, vol. 16, no. 1, pp. 41–46, 1970.

[6] R. Herbei and M. Wegkamp, “Classification with reject option,” Canadian
Journal of Statistics, vol. 34, no. 4, pp. 709–721, 2006.

[7] P. Bartlett, M. Jordan, and J. McAuliffe, “Convexity, classification, and
risk bounds,” Journal of the American Statistical Association, vol. 101,
no. 473, pp. 138–156, 2006.

[8] M. Yuan, M.and Wegkamp, “Classification methods with reject option
based on convex risk minimization,” Journal of Machine Learning
Research, vol. 11, pp. 111–130, 2010.

[9] M. Wegkamp, “Lasso type classifiers with a reject option,” Electronic
Journal of Statistics, vol. 1, pp. 155–168, 2007.

[10] M. Wegkamp and M. Yuan, “Support vector machines with a reject
option,” Bernoulli, vol. 17, no. 4, pp. 1368–1385, 2011.

[11] C. Cortes, G. DeSalvo, and M. Mohri, “Learning with rejection,” in
International Conference on Algorithmic Learning Theory, 2016, pp.
67–82.

[12] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[13] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits,”
Journal of Machine Learning Research, vol. 12, no. May, pp. 1655–1695,
2011.

[14] R. Munos et al., “From bandits to Monte-Carlo Tree Search: The
optimistic principle applied to optimization and planning,” Foundations
and Trends® in Machine Learning, vol. 7, no. 1, pp. 1–129, 2014.

[15] R. Kleinberg, A. Slivkins, and E. Upfal, “Bandits and experts in metric
spaces,” arXiv preprint arXiv:1312.1277, 2013.

[16] A. B. Tsybakov, Introduction to Nonparametric Estimation, 1st ed.
Springer Publishing Company, Incorporated, 2009.

[17] J.-Y. Audibert and A. Tsybakov, “Fast learning rates for plug-in classifiers,”
The Annals of statistics, vol. 35, no. 2, pp. 608–633, 2007.

[18] P. Bartlett and M. Wegkamp, “Classification with a reject option using a
hinge loss,” Journal of Machine Learning Research, vol. 9, pp. 1823–
1840, 2008.

[19] S. Shekhar, M. Ghavamzadeh, and T. Javidi, “Active Learning for Binary
Classification with Abstention,” arXiv preprint arXiv:1906.00303, 2019.

[20] S. Minsker, “Plug-in approach to active learning,” Journal of Machine
Learning Research, vol. 13, no. Jan, pp. 67–90, 2012.

[21] S. Raschka, “Model evaluation, model selection, and algorithm selection
in machine learning,” arXiv preprint arXiv:1811.12808, 2018.


