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Abstract. In this paper, we investigate the use of hierarchical reinforcement
learning (HRL) to speed up the acquisition of cooperative multi-agent tasks. We
introduce a hierarchical multi-agent reinforcement learning (RL) framework, and
propose a hierarchical multi-agent RL algorithm called Cooperative HRL. In this
framework, agents are cooperative and homogeneous (use the same task decompo-
sition). Learning is decentralized, with each agent learning three interrelated skills:
how to perform each individual subtask, the order in which to carry them out,
and how to coordinate with other agents. We define cooperative subtasks to be those
subtasks in which coordination among agents significantly improves the performance
of the overall task. Those levels of the hierarchy which include cooperative subtasks
are called cooperation levels. A fundamental property of the proposed approach is
that it allows agents to learn coordination faster by sharing information at the level
of cooperative subtasks, rather than attempting to learn coordination at the level
of primitive actions. We study the empirical performance of the Cooperative HRL
algorithm using two testbeds: a simulated two-robot trash collection task, and a
larger four-agent automated guided vehicle (AGV) scheduling problem. We compare
the performance and speed of Cooperative HRL with other learning algorithms, as
well as several well-known industrial AGV heuristics.

We also address the issue of rational communication behavior among autonomous
agents in this paper. The goal is for agents to learn both action and communication
policies that together optimize the task given a communication cost. We extend the
multi-agent HRL framework to include communication decisions and propose a coop-
erative multi-agent HRL algorithm called COM-Cooperative HRL. In this algorithm,
we add a communication level to the hierarchical decomposition of the problem below
each cooperation level. Before an agent makes a decision at a cooperative subtask,
it decides if it is worthwhile to perform a communication action. A communication
action has a certain cost and provides the agent with the actions selected by the
other agents at a cooperation level. We demonstrate the efficiency of the COM-
Cooperative HRL algorithm as well as the relation between the communication cost
and the learned communication policy using a multi-agent taxi problem.

Keywords: hierarchical reinforcement learning, cooperative multi-agent systems,
coordination, communication.
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1. Introduction

A multi-agent system is a system in which several interacting, intelli-
gent agents pursue some set of goals or perform some set of tasks [43]. In
these systems, decisions of an agent usually depend on the behavior of
the other agents, which is often not predictable. It makes learning and
adaptation a necessary component of an agent. Multi-agent learning
studies algorithms for selecting actions for multiple agents coexisting in
the same environment. This is a complicated problem, because the be-
havior of the other agents can be changing as they also adapt to achieve
their own goals. It usually makes the environment non-stationary and
often non-Markovian as well [25]. Robosoccer, disaster rescue, and e-
commerce are examples of challenging multi-agent domains that need
robust learning algorithms for coordination among multiple agents or
for effectively responding to other agents.

Multi-agent learning has been recognized to be challenging for two
main reasons: 1) curse of dimensionality: the number of parameters to
be learned increases dramatically with the number of agents, and 2)
partial observability: states and actions of the other agents which are
required for an agent to make a decision are not fully observable and
inter-agent communication is usually costly. Prior work in multi-agent
learning has addressed these issues in many different ways, as we will
discuss in detail in Section 2.

In this paper, we investigate the use of hierarchical reinforcement
learning (HRL) to address the curse of dimensionality and partial ob-

servability in order to accelerate learning in cooperative1 multi-agent
systems. Our approach differs from the previous work in one key re-
spect, namely the use of task hierarchies to scale multi-agent rein-
forcement learning (RL). We originally proposed this approach in [24],
and subsequently extended it in [12]. Hierarchical methods constitute
a general framework for scaling RL to large domains by using the task
structure to restrict the space of policies [3]. Several alternative frame-
works for hierarchical RL (HRL) have been proposed, including options
[38], HAMs [28], and MAXQ [9]. The key idea underlying our approach
is that coordination skills are learned much more efficiently if the agents
have a hierarchical representation of the task structure. Algorithms for
learning task-level coordination have already been developed in non-
MDP approaches [37], however to the best of our knowledge, our work
has been the first attempt to use task-level coordination in an MDP
setting. The use of hierarchy speeds up learning in multi-agent domains
by making it possible to learn coordination skills at the level of sub-

1 We are primarily interested in cooperative multi-agent problems in this paper.
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tasks instead of primitive actions. We assume each agent is given an
initial hierarchical decomposition of the overall task. However, learning
is distributed since each agent has only a local view of the overall state
space. We define cooperative subtasks to be those subtasks in which
coordination among agents has significant effect on the performance of
the overall task. Agents cooperate with their teammates at cooperative

subtasks and are unaware of them at the other subtasks. Cooperative

subtasks are usually defined at the highest level(s) of a hierarchy. Coor-
dination at high-level provides significant advantage over flat methods
by preventing agents from getting confused by low-level details and
reducing the amount of communication needed for proper coordination
among agents.

These benefits can be potentially achieved using any type of HRL
algorithm. However, it is necessary to generalize the HRL frameworks
to make them more applicable to multi-agent learning. In this paper,
initially we assume that communication is free and propose a hierar-
chical multi-agent RL algorithm called Cooperative HRL. We apply
the Cooperative HRL algorithm to a simple two-robot trash collec-
tion task and a complex four-agent automated guided vehicle (AGV)
scheduling problem. We compare its performance and speed with selfish
multi-agent HRL, as well as single-agent HRL and standard Q-learning
algorithms. In the AGV scheduling problem, we also demonstrate that
the Cooperative HRL algorithm outperforms widely used industrial
heuristics, such as “first come first serve”, “highest queue first”, and
“nearest station first”. Later in the paper, we address the issue of
optimal communication, which is important when communication is
costly. We generalize the Cooperative HRL algorithm to include com-
munication decisions and propose a multi-agent HRL algorithm called
COM-Cooperative HRL. We study the empirical performance of this
algorithm as well as the relation between the communication cost and
the learned communication policy using a multi-agent taxi problem.

The rest of this paper is organized as follows. Section 2 provides a
brief overview of the related work in multi-agent learning. Section 3
describes a framework for hierarchical multi-agent RL which is used
to develop the algorithms of this paper. In Section 4, we introduce
a HRL algorithm, called Cooperative HRL for learning in cooperative
multi-agent domains. Section 5 presents experimental results of using
the Cooperative HRL algorithm in a simple two-robot trash collection
task, and a more complex four-agent AGV scheduling problem. In Sec-
tion 6, we illustrate how to incorporate communication decisions in the
Cooperative HRL algorithm. In this section, after a brief introduction
of the communication framework in Section 6.1, we illustrate COM-

Cooperative HRL, a multi-agent HRL algorithm with communication
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decisions in Section 6.2. Section 7 presents experimental results of using
the COM-Cooperative HRL algorithm in a multi-agent taxi problem.
Finally, Section 8 summarizes the paper and discusses some directions
for future work.

2. Related Work

The analysis of multi-agent systems has been a topic of interest in
both economic theory and artificial intelligence (AI). While multi-agent
systems have been widely studied in game theory, only in the last
one or two decades they have started to attract interest in AI, where
their integration with existing methods constitutes a promising area of
research. The game theoretic concepts of stochastic games and Nash
equilibria [10, 27] are the foundation for much of the recent research
in multi-agent learning. Learning algorithms use stochastic games as
a natural extension of Markov decision processes (MDPs) to multi-
ple agents. These algorithms can be summarized by broadly grouping
them into two categories: equilibria learners and best-response learners.
Equilibria learners such as Nash-Q [15], Minimax-Q [21], and Friend-
or-Foe-Q [22] seek to learn an equilibrium of the game by iteratively
computing intermediate equilibria. Under certain conditions, they guar-
antee convergence to their part of an equilibrium solution regardless
of the behavior of the other agents. On the other hand, best-response

learners seek to learn the best response to the other agents. Although
not an explicitly multi-agent algorithm, Q-learning [42] was one of the
first algorithms applied to multi-agent problems [8, 40]. WoLF-PHC
[6], joint-state/joint-action learners [5], and the gradient ascent learner
in [35] are other examples of a best-response learner. If an algorithm
in which best-response learners playing with each other converges, it
must be to a Nash equilibrium [6].

The RL framework has been well-studied in multi-agent domains.
Prior work in multi-agent RL has addressed the curse of dimensionality

in many different ways. One natural approach is to restrict the amount
of information that is available to each agent and hope to maximize the
global payoff by solving local optimization problems for each agent.
This idea has been addressed using value function based RL [34] as
well as policy gradient based RL [29]. Another approach is to exploit
the structure in a multi-agent problem using factored value functions.
Guestrin et al. [13] integrate these ideas in collaborative multi-agent
domains. They use value function approximation and approximate the
joint value function as a linear combination of local value functions,
each of which relates only to the parts of the system controlled by a
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small number of agents. Factored value functions allow the agents to
find a globally optimal joint action using a message passing scheme.
However, this approach does not address the communication cost in its
message passing strategy.

Graphical models have also been used to address the curse of dimen-
sionality in multi-agent systems. The goal is to transfer the represen-
tational and computational benefits that graphical models provide to
probabilistic inference in multi-agent systems and game theory [18, 19].
The previous work established algorithms for computing Nash equilib-
ria in one-stage games, including efficient algorithms for computing ap-
proximate [16] and exact [23] Nash equilibria in tree-structured games,
and convergent heuristics for computing Nash equilibria in general
graphs [26, 41].

The curse of dimensionality has also been addressed in multi-agent
robotics. Multi-robot learning methods usually reduce the complexity
of the problem by not modeling joint states or actions explicitly, such as
work by Balch [2] and Mataric [25], among others. In such systems, each
robot maintains its position in a formation depending on the locations
of the other robots, so there is some implicit communication or sensing
of states and actions of the other agents. There has also been work on
reducing the parameters needed for Q-learning in multi-agent domains,
by learning action values over a set of derived features [36]. These
derived features are domain specific, and have to be encoded by hand,
or constructed by a supervised learning algorithm.

In a cooperative multi-agent setting, it is usually necessary for each
agent to have information about the other agents in order to make
its own decision. Almost all the above methods ignore the impor-
tant fact that an agent may not have free access to these informa-
tion. In general, the world is partially observable for each agent in a
distributed multi-agent setting. Partially observable Markov decision
processes (POMDPs) have been used to model partial observability in
probabilistic AI. A POMDP is a generalization of an MDP in which an
agent must base its decisions on incomplete information about the state
of the environment. The POMDP framework can be extended to allow
for multiple distributed agents to base their decisions on their local ob-
servations. This model is called decentralized POMDP (DEC-POMDP)
and it has been shown that the decision problem for a DEC-POMDP
is NEXP-complete [4]. One way to address partial observability in
distributed multi-agent domains is to use communication to exchange
required information. However, since communication can be costly,
in addition to its normal actions, each agent needs to decide about
communication with other agents [44, 45]. Pynadath and Tambe [31]
extended DEC-POMDP by including communication decisions in the
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model, and proposed a framework called communicative multi-agent
team decision problem (COM-MTDP). Since DEC-POMDP can be re-
duced to COM-MTDP with no communication by copying all the other
model features, decision problem for a COM-MTDP is also NEXP-
complete [31]. The trade-off between the quality of solution, the cost
of communication, and the complexity of the model is currently a very
active area of research in multi-agent learning and planning.

3. Hierarchical Multi-Agent Reinforcement Learning

In this section, we introduce a hierarchical multi-agent RL framework in
which agents are capable of learning simultaneously at multiple levels of
hierarchy. This is the framework underlying the hierarchical multi-agent
RL algorithms presented in this paper. The main contribution of this
framework is that it enables agents to exploit the hierarchical structure
of the task in order to learn coordination strategies more efficiently. Our
hierarchical multi-agent RL framework can be viewed as extending the
existing single-agent HRL methods, including hierarchies of abstract
machines (HAMs) [28], options [38], and MAXQ [9], especially the
MAXQ value function decomposition [9], to the cooperative multi-agent
setting.

3.1. Motivating Example

We use a simple example to illustrate the overall approach. Consider
sending a team of agents to pick up trash from trash cans over an
extended area and accumulate it into one centralized trash bin, from
where it might be sent for recycling or disposed. This is a task which
can be parallelized among agents in the team. An office (rooms and
connecting corridors) type environment with two agents (A1 and A2)
is shown in Figure 1. Agents need to learn three skills here. First, how
to do each subtask, such as navigate to trash cans T1 or T2 or Dump,
and when to perform Pick or Put action. Second, the order to carry out
the subtasks, for example go to T1 and collect trash before heading to
Dump. Finally, how to coordinate with each other, i.e., agent A1 can
pick up trash from T1 whereas agent A2 can service T2.

The strength of the HRL methods (when extended to multi-agent
domains) is that they can serve as a substrate for efficiently learning all
these three types of skills. In these methods, the overall task is decom-
posed into a collection of primitive actions and temporally extended
(non-primitive) subtasks that are important for solving the problem.
The non-primitive subtasks in the trash collection task are Root (the
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A1, A2 : Agents
T1 : Location of the first trash can
T2 : Location of the second trash can
Dump : Location to deposit all trash

Collect Trash at T1 Collect Trash at T2

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Children of
the top−level
Cooperative
Subtask (Root)

Room3

Corridor

Dump

T2

T1

Room1

Room2

A2

A1

Cooperative SubtaskCooperation Level

U    =1

Figure 1. A multi-agent trash collection task and its associated task graph.

whole trash collection task), collect trash at T1 and T2, navigate to T1,
T2, and Dump. Each of these subtasks has a set of termination states,
and terminates when it reaches one of its termination states. Prim-
itive actions are always executable and terminate immediately after
execution. After defining subtasks, we must indicate for each subtask,
which other primitive or non-primitive subtasks it should employ to
reach its goal. For example, navigate to T1, T2, and Dump use three
primitive actions find wall, align with wall, and follow wall. Collect trash

at T1 uses two subtasks navigate to T1 and Dump, plus two primitive
actions Put and Pick, and so on. All of this information is summarized
by a directed acyclic graph called the task graph. The task graph for
the trash collection problem is shown in Figure 1. This hierarchical
model is able to support state abstraction (while the agent is moving
toward the Dump, the status of trash cans T1 and T2 is irrelevant and
cannot affect this navigation process. Therefore, the variables defining
the status of trash cans T1 and T2 can be removed from the state space
of the navigate to Dump subtask), and subtask sharing (if the system
could learn how to solve the navigate to Dump subtask once, then the
solution could be shared by both collect trash at T1 and T2 subtasks).

3.2. Multi-Agent Semi-Markov Decision Processes

Hierarchical RL studies how lower level policies over subtasks or prim-
itive actions can themselves be composed into higher level policies.
Policies over primitive actions are semi-Markov when composed at the
next level up, because they can take variable stochastic amount of
time. Thus, semi-Markov decision processes (SMDPs) have become the
preferred language for modeling temporally extended actions. Semi-
Markov decision processes [14, 30] extend the MDP model in several
aspects. Decisions are only made at discrete points in time. The state
of the system may change continually between decisions, unlike MDPs
where state changes are only due to the actions. Thus, the time be-
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tween transitions may be several time units and can depend on the
transition that is made. These transitions are at decision epochs only.
Basically, the SMDP represents snapshots of the system at decision
points, whereas the so-called natural process describes the evolution of
the system over all times.

In this section, we extend the SMDP model to multi-agent domains
when a team of agents controls the process, and introduce the multi-
agent SMDP (MSMDP) model. We assume agents are cooperative,
i.e., maximize the same utility over an extended period of time. The
individual actions of agents interact in that the effect of one agent’s
action may depend on the actions taken by the others. When a group
of agents perform temporally extended actions, these actions may not
terminate at the same time. Therefore, unlike the multi-agent extension
of MDP, the MMDP model [5], the multi-agent extension of SMDP
requires extending the notion of a decision making event.

Definition 1: A multi-agent SMDP (MSMDP) consists of six com-
ponents (Υ,S,A,P,R,T ) and is defined as follows:

The set Υ is a finite collection of n agents, with each agent j ∈ Υ
having a finite set Aj of individual actions. An element ~a = 〈a1, . . . , an〉
of the joint action space A =

∏n
j=1 Aj represents the concurrent exe-

cution of actions aj by each agent j, j = 1, . . . , n. The components
S, R, and P are defined as in an SMDP, the set of states of the
system being controlled, the reward function mapping S → IR, and the
state and action dependent multi-step transition probability function
P : S × IN × S × A →[0, 1] (where IN is the set of natural numbers).
The term P (s′, N |s,~a) denotes the probability that the joint action ~a

will cause the system to transition from state s to state s′ in N time
steps. Since the components of a joint action are temporally extended
actions, they may not terminate at the same time. Therefore, the multi-
step transition probability P depends on how we define decision epochs
and as a result, depends on the termination scheme T . 2

Three termination strategies τany, τall, and τcontinue for temporally
extended joint actions were introduced and analyzed in [32]. In τany

termination scheme, the next decision epoch is when the first action
within the joint action currently being executed terminates, where the
rest of the actions that did not terminate are interrupted. When an
agent completes an action (e.g., agent A1 finishes collect trash at T1
by putting trash in Dump), all other agents interrupt their actions, the
next decision epoch occurs, and a new joint action is selected (e.g.,
agent A1 chooses to collect trash at T2 and agent A2 decides to collect
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trash at T1). In τall termination scheme, the next decision epoch is the
earliest time at which all the actions within the joint action currently
being executed have terminated. When an agent completes an action, it
waits (takes the idle action) until all the other agents finish their current
actions. Then, the next decision epoch occurs and all the agents choose
the next joint action together. In both these termination strategies,
all the agents choose actions at every decision epoch. The τcontinue

termination scheme is similar to τany in the sense that the next decision
epoch is when the first action within the joint action currently being
executed terminates. However, the other agents whose activities have
not terminated are not interrupted and only those agents whose actions
have terminated select new actions. In this termination strategy, only
a subset of the agents choose action at each decision epoch. When an
agent completes an action, the next decision epoch occurs only for that
agent and it selects its next action given the actions being performed
by the other agents.

The three termination strategies described above are the most com-
mon, but not the only termination schemes in cooperative multi-agent
systems. A wide range of termination strategies can be defined based on
them. Of course, not all these strategies are appropriate for any given
multi-agent task. We categorize termination strategies as synchronous

and asynchronous. In synchronous schemes, such as τany and τall,
all the agents select action at every decision epoch and therefore we
need a centralized mechanism to synchronize the agents at decision
epochs. In asynchronous strategies, such as τcontinue, only a subset
of the agents choose action at each decision epoch. In this case, there
is no need for a centralized mechanism to synchronize the agents and
decision making can take place in a decentralized fashion. Since our
goal is to design decentralized multi-agent RL algorithms, we use the
τcontinue termination scheme for joint action selection in the hierarchical
multi-agent model and algorithms presented in this paper.

While SMDP theory provides the theoretical underpinnings of tem-
poral abstraction by modeling actions that take varying amounts of
time, the SMDP model provides little in the way of concrete repre-
sentational guidance, which is critical from a computational point of
view. In particular, the SMDP model does not specify how tasks can
be broken up into subtasks, how to decompose value function, etc. We
examine these issues in the next sections.

3.3. Hierarchical Task Decomposition

A task hierarchy such as the one illustrated in Section 3.1 can be
modeled by decomposing the overall task MDP M , into a finite set
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of subtasks {M0, . . . , Mm−1}, where M0 is the root task and solving it
solves the entire MDP M .

Definition 2: Each non-primitive subtask Mi consists of five com-
ponents (Si, Ii, Ti, Ai, Ri):

− Si is the state space for subtask Mi. It is described by those state
variables that are relevant to subtask Mi.

2 The range of a state
variable describing Si might be a subset of its range in S (the state
space of MDP M).

− Ii ⊂ Si is the initiation set for subtask Mi. Subtask Mi can be
initiated only in states belonging to Ii.

− Ti ⊂ Si is the set of terminal states for subtask Mi. Subtask
Mi terminates when it reaches a state in Ti. A policy for subtask
Mi can only be executed if the current state s belongs to (Si−Ti).

− Ai is the set of actions that can be performed to achieve subtask
Mi. These actions can be either primitive actions from A (the set
of primitive actions for MDP M), or they can be other subtasks.
Technically, Ai is a function of state, since it may differ from one
state to another. However, we will suppress this dependence in our
notation.

− Ri is the reward function of subtask Mi. 2

Each primitive action a is a primitive subtask in this decomposition,
such that a is always executable and it terminates immediately after
execution. From now on in this paper, we use subtask to refer to non-
primitive subtasks.

3.4. Policy Execution

If we have a policy for each subtask in the hierarchy, we can define a
hierarchical policy for the model.

Definition 3: A hierarchical policy π is a set of policies, one policy for
each subtask in the hierarchy: π = {π0, . . . , πm−1}.

A hierarchical policy is executed using a stack discipline, similar to
ordinary programming languages. Each subtask policy takes a state

2 State variables relevant to subtask Mi are those state variables that are
important in solving subtask Mi.
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and returns the name of a primitive action to execute or the name of
a subtask to invoke. When a subtask is invoked, its name is pushed
onto the Task-Stack and its policy is executed until it enters one of
its terminal states. When a subtask terminates, its name is popped
off the Task-Stack. If any subtask on the Task-Stack terminates, then
all subtasks below it are immediately aborted, and control returns to
the subtask that had invoked the terminated subtask. Hence, at any
time, the Root task is located at the bottom and the subtask which is
currently being executed is located at the top of the Task-Stack. Under
a hierarchical policy π, we define a multi-step transition probability
function P π

i : Si × IN×Si →[0, 1] for each subtask Mi in the hierarchy,
where P π

i (s′, N |s) denotes the probability that the hierarchical policy
π will cause the system to transition from state s to state s′ in N

primitive steps at subtask Mi.

3.5. Multi-Agent Setup

In our hierarchical multi-agent framework, we assume that there are n

agents in the environment, cooperating with each other to accomplish
a task. The designer of the system uses her/his domain knowledge to
recursively decompose the overall task into a collection of subtasks
that she/he believes are important for solving the problem.3 This in-
formation can be summarized by a directed acyclic graph called the
task graph. We assume that agents are homogeneous, i.e., all agents
are given the same task hierarchy.4 At each level of the hierarchy, the
designer of the system defines cooperative subtasks to be those in which
coordination among agents significantly increases the performance of
the overall task. The set of all cooperative subtasks at a certain level
of the hierarchy is called the cooperation set of that level. Each level
of the hierarchy with non-empty cooperation set is called a cooperation

level. The union of the children of the lth level cooperative subtasks is
represented by Ul. Since high-level coordination allows for increased
cooperation skills as agents do not get confused by low-level details,
we usually define cooperative subtasks at the highest level(s) of the
hierarchy. Agents actively coordinate while making decision at cooper-

ative subtasks and are ignorant about other agents at non-cooperative

3 Providing hierarchical decompositions manually is not a difficult process in
many problems. However, we are eventually interested in deriving hierarchical de-
compositions automatically, and it is currently an active line of research in RL (see
[3] for more details on automatic abstraction).

4 Studying the heterogeneous case where agents are given dissimilar decomposi-
tions of the overall task would be more challenging and beyond the scope of this
paper.
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subtasks. Thus, we configure cooperative subtasks to model joint action
values.

In the trash collection problem, we define Root as a cooperative

subtask. As a result, the top-level of the hierarchy is a cooperation level,
Root is the only member of the cooperation set at the top-level, and U1

consists of all subtasks located at the second level of the hierarchy,
U1 = {collect trash at T1 , collect trash at T2} (see Figure 1). As it is
clear in this problem, it is more effective that an agent learns high-level
coordination knowledge (what is the utility of agent A2 collecting trash
from trash can T1 if agent A1 is collecting trash from trash can T2),
rather than learning its response to low-level primitive actions of the
other agents (what agent A2 should do if agent A1 aligns with wall).
Therefore we define single-agent policies for non-cooperative subtasks

and joint policies for cooperative subtasks.

Definition 4: Under a hierarchical policy π, each non-cooperative

subtask Mi can be modeled by an SMDP consisting of components
(Si, Ai, P

π
i , Ri).

Definition 5: Under a hierarchical policy π, each cooperative subtask

Mi located at the lth level of the hierarchy can be modeled by an
MSMDP as follows:

Υ is the set of n agents in the team. We assume that agents have
only local state information and ignore the states of the other agents.
Therefore, the state space Si is defined as the single-agent state space Si

(not joint state space). This is certainly an approximation but greatly
simplifies the underlying multi-agent RL problem. This approximation
is based on the fact that an agent can get a rough idea of what state
the other agents might be in just by knowing the high-level actions
being performed by them. The action space is joint and is defined as
Ai = Ai × (Ul)

n−1, where Ul is the union of the action sets of all the
lth level cooperative subtasks. For the cooperative subtask Root in the
trash collection problem, the set of agents is Υ = {A1, A2}, and its
joint action space, Aroot, is specified as the cross product of its action
set, Aroot, and U1, Aroot = Aroot×U1. Finally, since we are interested in
decentralized control, we use the τcontinue termination strategy. There-
fore, when an agent completes a subtask, the next decision epoch occurs
only for that agent and it selects its next action given the information
about the other agents. 2

This cooperative multi-agent approach has the following pros and cons:
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Pros

− Using HRL scales learning to problems with large state spaces by
using the task structure to restrict the space of policies.

− Cooperation among agents is faster and more efficient as agents
learn joint action values only at cooperative subtasks usually lo-
cated at the high level(s) of abstraction and do not get confused
by low-level details.

− Since high-level tasks can take a long time to complete, communi-
cation is needed only fairly infrequently.

− The complexity of the problem is reduced by storing only the local
state information by each agent. It is due to the fact that each
agent can get a rough idea of the state of the other agents just by
knowing about their high-level actions.

Cons

− The learned policy would not be optimal if agents need to coor-
dinate at the subtasks that have not been defined as cooperative.
This issue will be addressed in one of the AGV experiments in
Section 5.2, by extending the joint action model to the lower levels
of the hierarchy. Although, this extension provides the cooperation
required at the lower levels, it increases the number of parame-
ters to be learned and as a result increases the complexity of the
learning problem.

− If communication is costly, this method might not find an appro-
priate policy for the problem. We address this issue in Section 6
by including communication decisions in the model. If communi-
cation is cheap, agents learn to cooperate with each other, and if
communication is expensive, agents prefer to make decision only
based on their local view of the overall problem.

− Storing only local state information by agents causes sub-optimality
in general. On the other hand, including the state of the other
agents increases the complexity of the learning problem and has
its own inefficiency. We do not explicitly address this problem in
the paper.
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3.6. Value Function Decomposition

A value function decomposition splits the value of a state or a state-
action pair into multiple additive components. Modularity in the hier-
archical structure of a task allows us to carry out this decomposition
along subtask boundaries. The value function decomposition used in
our hierarchical framework is similar to the MAXQ value function
decomposition [9]. The purpose of a value function decomposition is
to decompose the value function of the overall task (Root) under a
hierarchical policy π, V π(0, s), in terms of the value functions of all the
subtasks in the hierarchy. The value function of subtask Mi under a
hierarchical policy π, V π(i, s), is the expected sum of discounted reward
until subtask Mi terminates and can be written as:

V π(i, s) = E{rt + γrt+1 + γ2rt+2 + . . . + γLrt+L|st = s, π} (1)

Now let us suppose that the policy of subtask Mi, πi, chooses subtask
πi(s) in state s, this subtask executes for a number of steps N and
terminates in state s′ according to P π

i (s′, N |s, πi(s)). We can rewrite
Equation 1 as:

V π(i, s) = E

{

N−1
∑

k=0

γkrt+k +
L

∑

k=N

γkrt+k|st = s, π

}

(2)

The first summation on the right-hand side of Equation 2 is the dis-
counted sum of rewards for executing subtask πi(s) starting in state s

until it terminates. In other words, it is V π(πi(s), s), the value function
of subtask πi(s) in state s. The second summation on the right-hand
side of the equation is the value of state s′ for the current subtask Mi

under hierarchical policy π, V π(i, s′), discounted by γN , where s′ is the
current state when subtask πi(s) terminates and N is the number of
transition steps from state s to state s′. We can therefore write the
Equation 2 in the form of a Bellman equation:

V π(i, s) = V π(πi(s), s) +
∑

s′∈Si,N

P π
i (s′, N |s, πi(s))γ

NV π(i, s′) (3)

Equation 3 can be re-stated for the action-value function as follows:

Qπ(i, s, a) = V π(a, s) +
∑

s′∈Si,N

P π
i (s′, N |s, a)γNQπ(i, s′, πi(s

′)) (4)
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The right-most term in this equation is the expected discounted cumu-
lative reward of completing subtask Mi after executing subtask Ma in
state s. This term is called completion function and is defined as follows:

Definition 6: Completion function, Cπ(i, s, a), is the expected dis-
counted cumulative reward of completing subtask Mi after execution
of subtask Ma in state s. The reward is discounted back to the point
in time where Ma begins execution.

Cπ(i, s, a) =
∑

s′∈Si,N

P π
i (s′, N |s, a)γNQπ(i, s′, πi(s

′)) (5)

Now, we can express the action-value function Q as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (6)

and the value function V as:

V π(i, s) =

{

Qπ(i, s, πi(s)) if Mi is a non-primitive subtask
∑

s′∈Si
P (s′|s, i)R(s′|s, i) if Mi is a primitive action

(7)

Equations 5, 6, and 7 are referred to as decomposition equations for
a hierarchy under a fixed hierarchical policy π. These equations re-
cursively decompose the value function for the Root, V π(0, s), into a
set of value functions for the individual subtasks, M1, . . . , Mm−1, and
the individual completion functions Cπ(i, s, a) for i = 1, . . . , m − 1.
The fundamental quantities that must be stored to represent the value
function decomposition are the C values for non-primitive subtasks and
the V values for primitive actions. This decomposition is summarized
graphically in Figure 2.

Using this decomposition and the stored values, we can recursively
calculate all the Q values in a hierarchy. For example, Q(i, s, a) is
calculated as follows:

− From Equation 6, Q(i, s, a) = V (a, s)+C(i, s, a). C(i, s, a) is stored
by subtask Mi, so subtask Mi only needs to calculate V (a, s) by
asking subtask Ma.

− If Ma is a primitive action, it stores V (a, s) and returns it to
subtask Mi immediately. If Ma is a non-primitive subtask, then
using Equation 7, V (a, s) = Q(a, s, πa(s)), and using Equation 6,
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s ’

Execution of Subtask   i

s s
I T

s

Part 1
Part 2

C(i,s,a)
V(a,s)

V(i,s)

Execution of Subtask   a

Figure 2. This figure shows the decomposition for V (i, s), the value function of
subtask Mi for the shaded state s. Each circle is a state of the SMDP visited by
the agent. Subtask Mi is initiated at state sI and terminates at state sT . The value
function V (i, s) is broken into two parts: Part 1) the value function of subtask Ma

for state s, and Part 2) the completion function, the expected discounted cumulative
reward of completing subtask Mi after executing subtask Ma in state s.

Q(a, s, πa(s)) = V (πa(s), s)+C(a, s, πa(s)). In this case, C(a, s, πa(s))
is available at subtask Ma, and Ma asks subtask πa(s) for V (πa(s), s).

− This process continues until we reach a primitive action. Since,
primitive actions store their V values, all V values are calculated
upward in the hierarchy and eventually subtask Mi receives the
value of V (a, s) and calculates Q(i, s, a).

The value function decomposition described above relies on a key
principle: the reward function for the parent task is the value function of
the child task (see Equations 4 and 6). Now, we show how the single-
agent value function decomposition described above can be modified
to formulate the joint value function for cooperative subtasks. In our
hierarchical multi-agent model, we configure cooperative subtasks to
store the joint completion function values.

Definition 7: The joint completion function for agent j, Cj(i, s, a1, . . . ,

aj−1, aj+1, . . . , an, aj), is the expected discounted cumulative reward of
completing cooperative subtask Mi after executing subtask aj in state
s while other agents performing subtasks ak, ∀k ∈ {1, . . . , n}, k 6= j.
The reward is discounted back to the point in time where aj begins
execution.

In this definition, Mi is a cooperative subtask at level l of the hi-
erarchy and 〈a1, . . . , an〉 is a joint action in the action set of Mi. Each
individual action in this joint action belongs to Ul. More precisely, the
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decomposition equations used for calculating the value function V for
cooperative subtask Mi of agent j have the following form:

V j(i, s, a1, . . . , aj−1, aj+1, . . . , an ) = Qj(i, s, a1, . . . , aj−1, aj+1, . . . , an, π
j
i (s))

(8)

Qj(i, s, a1, . . . , aj−1, aj+1, . . . , an , aj) = V j(aj , s) +

Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

One important point to note in this equation is that if subtask aj is itself
a cooperative subtask at level l + 1 of the hierarchy, its value function
is defined as a joint value function V j(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn),
where ã1, . . . , ãj−1, ãj+1, . . . , ãn belong to Ul+1. In this case, V j(aj , s)
is replaced by V j(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn) in Equation 8.

We illustrate the above joint value function decomposition using the
trash collection task. The value function decomposition for agent A1
at Root has the following form:

Q
1(root, s, collect trash at T 2 , collect trash at T1) = V

1(collect trash at T1, s)

+C
1(root, s, collect trash at T2, collect trash at T1)

which represents the value of agent A1 performing collect trash at T1

in the context of the overall task (Root), when agent A2 is executing
collect trash at T2. Note that this value is decomposed into the value
of subtask collect trash at T1 (the V term), and the completion value
of the remainder of the Root task (the C term).

Given a hierarchical decomposition for any task, we need to find the
highest level subtasks at which decomposition Equation 8 provides a
sufficiently good approximation of the true value. For the problems used
in the experiments of this paper, coordination only at the highest level
of the hierarchy is a good compromise between achieving a desirable
performance and reducing the number of joint state-action values that
need to be learned. Hence, we define Root as a cooperative subtask and
thus the highest level of the hierarchy as a cooperation level in these
experiments. We extend coordination to the lower levels of the hierarchy
by defining cooperative subtasks at the levels below Root in one of the
experiments of Section 5.2.
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4. A Hierarchical Multi-Agent Reinforcement Learning
Algorithm

In this section, we use the hierarchical multi-agent RL framework de-
scribed in Section 3 and present a hierarchical multi-agent RL algo-
rithm, called Cooperative HRL. The pseudo code for this algorithm is
shown in Algorithm 1. In the Cooperative HRL algorithm, the V and
C values can be learned through a standard temporal-difference (TD)
learning method based on sample trajectories. One important point
to note is that since non-primitive subtasks are temporally extended
in time, the update rules for the C values used in this algorithm are
based on the SMDP model. In this algorithm, an agent starts from the
Root task and chooses a subtask until it reaches a primitive action Mi.
It executes primitive action Mi in state s, receives reward r, observes
resulting state s′, and updates the value function V of primitive subtask
Mi using:

Vt+1(i, s) = [1 − αt(i)]Vt(i, s) + αt(i)r

where αt(i) is the learning rate for primitive action Mi at time t. This
parameter should be gradually decreased to zero in time limit.

Whenever a subtask terminates, the C values are updated for all
states visited during the execution of that subtask. Assume an agent
is executing a non-primitive subtask Mi and is in state s, then while
subtask Mi does not terminate, it chooses subtask Ma according to the
current exploration policy (softmax or ε-greedy with respect to πi(s)).
If subtask Ma takes N primitive steps and terminates in state s′, the
corresponding C value is updated using:

Ct+1(i, s, a) = [1 − αt(i)]Ct(i, s, a) + αt(i)γ
N [Ct(i, s

′, a∗) + Vt(a
∗, s′)] (9)

where a∗ = arg maxa′∈Ai
[Ct(i, s

′, a′) + Vt(a
′, s′)].

The V values in Equation 9 are calculated using the following equation:

V (i, s) =

{

maxa∈Ai
Q(i, s, a) if Mi is a non-primitive subtask

∑

s′∈Si
P (s′|s, i)R(s′|s, i) if Mi is a primitive action

(10)

Similarly, when agent j completes execution of subtask aj ∈ Ai, the
joint completion function C of cooperative subtask Mi located at level l
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of the hierarchy is updated for all the states visited during the execution
of subtask aj using:

C
j
t+1(i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj) =

[1 − α
j
t (i)]C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) + (11)

α
j
t (i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V

j
t (a∗, s′)]

where a∗ = arg maxa′∈Ai
[Cj

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V
j
t (a′, s′)],

a1, . . . , aj−1, aj+1, . . . , an and â1, . . . , âj−1, âj+1, . . . , ân are actions in Ul

being performed by the other agents when agent j is in states s and
s′ respectively. Equation 11 indicates that in addition to the states
visited during the execution of a subtask in Ul (s and s′), an agent
must store the actions in Ul being performed by all the other agents
(a1, . . . , aj−1, aj+1, . . . , an in state s and â1, . . . , âj−1, âj+1, . . . , ân in state
s′). Sequence Seq is used for this purpose in Algorithm 1.

5. Experimental Results for the Cooperative HRL
Algorithm

In this section, we demonstrate the performance of the Cooperative

HRL algorithm proposed in Section 4 using a two-robot trash collec-
tion problem, and a more complex four-agent AGV scheduling task.
In these experiments, we first provide a brief overview of the domain,
then apply the Cooperative HRL algorithm to the problem, and finally
compare its performance with other algorithms, such as selfish multi-
agent HRL (where each agent acts independently and learns its own
optimal policy), single-agent HRL, and flat Q-Learning.

5.1. Two-Robot Trash Collection Task

In the single-agent trash collection task, one robot starts in the middle
of Room 1 and learns the task of picking up trash from T1 and T2 and
depositing it into the Dump. The goal state is reached when trash from
both T1 and T2 has been deposited in the Dump. The state space is the
orientation of the robot (N ,S,W ,E) and another component based on
its percept. We assume that a ring of 16 sonars would enable the robot
to find out whether it is in a corner, (with two walls perpendicular to
each other on two sides of the robot), near a wall (with wall only on
one side), near a door (wall on either side of an opening), in a corridor
(parallel walls on either side), or in an open area (the middle of the
room). Thus, each room is divided into 9 states, the corridor into 4
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Algorithm 1 The Cooperative HRL algorithm.
1: Function Cooperative-HRL(Agent j, Task Mi at the lth level of the

hierarchy, State s)

2: let Seq = {} be the sequence of (state-visited, actions in
⋃L

k=1
Uk being per-

formed by the other agents) while executing Mi /* L is the number of levels
in the hierarchy */

3: if Mi is a primitive action then
4: execute action Mi in state s, receive reward r(s′|s, i) and observe state

s′

5: V
j

t+1(i, s)←− [1− α
j
t(i)]V

j
t (i, s) + α

j
t(i)r(s

′|s, i)
6: push (state s, actions in {Ul|l is a cooperation level} being performed by the

other agents) onto the front of Seq
7: else /* Mi is a non-primitive subtask */
8: while Mi has not terminated do
9: if Mi is a cooperative subtask then

10: choose subtask aj according to the current exploration policy
π

j
i (s, a

1, . . . , aj−1, aj+1, . . . , an)
11: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence

of (state-visited, actions in
⋃L

k=1
Uk being performed by the other agents)

while executing subtask aj

12: observe result state s′ and â1, . . . , âj−1, âj+1, . . . , ân actions in Ul being
performed by the other agents

13: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′)+

V
j

t (a′, s′)]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from the beginning

do
16: N = N + 1
17: C

j
t+1(i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj)←−

[1− α
j
t(i)]C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

α
j
t(i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V

j
t (a∗, s′)]

18: end for
19: else /* Mi is not a cooperative subtask */
20: choose subtask aj according to the current exploration policy

π
j
i (s)

21: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence

of (state-visited, actions in
⋃L

k=1
Uk being performed by the other agents)

while executing subtask aj

22: observe result state s′

23: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, a′) + V
j

t (a′, s′)]
24: let N = 0
25: for each state s in ChildSeq from the beginning do
26: N = N + 1
27: C

j
t+1(i, s, a

j)←− [1− α
j
t(i)]C

j
t (i, s, aj) + α

j
t(i)γ

N [Cj
t (i, s′, a∗)+

V
j

t (a∗, s′)]

28: end for
29: end if
30: append ChildSeq onto the front of Seq
31: s = s′

32: end while
33: end if
34: return Seq

35: end Cooperative-HRL
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states, and we have ((9× 3) + 4)× 4 = 124 locations for a robot. Also,
the trash object from trash basket T1(T2) can be at T1(T2), carried
with a robot, or at Dump. Hence, the total number of states of the
environment is 124 × 3 × 3 = 1116 for the single-agent case. Going to
the two-agent case would mean that the trash can be at either T1 or T2
or Dump, or carried by one of the two robots. Therefore in the flat case,
the size of the state space would grow to 124×124×4×4 ≈ 240000. The
environment is fully observable given the above state decomposition.
The direction which the robot is facing, in combination with the percept
(which includes the room that agent is in) gives a unique value for each
situation. The primitive actions considered here are behaviors to find a
wall in one of the four directions, align with the wall on left or right side,
follow a wall, enter or exit door, align south or north in the corridor,
or move in the corridor. In this task, the experiment was repeated ten
times and the results averaged.

In the two-robot trash collection task, examination of the learned
policy in Figure 3 reveals that the robots have nicely learned all three
skills: how to achieve a subtask, what order to carry them out, and
how to coordinate with each other. The coordination strategy learned
by the robots here is robot A1 collects trash only from trash can T1
and robot A2 collects trash only from trash can T2. In addition, as
Figure 4 confirms, the number of steps needed to accomplish the trash
collection task is greatly reduced when the two agents coordinate to do
the task, compared to when a single agent attempts to carry out the
whole task.

5.2. AGV Scheduling Domain

Automated Guided Vehicles (AGVs) are used in flexible manufacturing
systems (FMS) for material handling [1]. They are typically used to
pick up parts from one location, and drop them off at another location
for further processing. Locations correspond to workstations or storage
locations. Loads which are released at the drop-off point of a work-
station wait at its pick-up point after the processing is over, so the
AGV is able to take it to the warehouse or some other locations. The
pick-up point is the machine or workstation’s output buffer. Any FMS
using AGVs faces the problem of optimally scheduling the paths of the
AGVs in the system [20]. For example, a move request occurs when a
part finishes at a workstation. If more than one vehicle is empty, the
vehicle which would service this request needs to be selected. Also, when
a vehicle becomes available and multiple move requests are queued, a
decision needs to be made as to which request should be serviced by
that vehicle. These schedules obey a set of constraints that reflect the
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Learned Policy for Agent 1

root

navigate to T1

go to location of T1 in room 1

pick trash from T1

navigate to Dump

exit room 1

enter room 3

go to location of Dump in room 3

put trash collected from T1 in Dump

end

Learned Policy for Agent 2

root

navigate to T2

go to location of T2 in room 2

pick trash from T2

navigate to Dump

exit room 2

enter room 3

go to location of Dump in room 3

put trash collected from T2 in Dump

end

Figure 3. This figure shows the policy learned by the Cooperative HRL algorithm
in the two-robot trash collection task.

temporal relations between activities and the capacity limitations of a
set of shared resources.

The uncertain and ever changing nature of manufacturing environ-
ments makes it difficult to plan moves ahead of time. Hence, AGV
scheduling requires dynamic dispatching rules, which are dependent
on the state of the system like the number of parts in each buffer,
the state of the AGV, and the process going on at workstations. The
system performance is generally measured in terms of the throughput,
the on-line inventory, the AGV travel time, and the flow time, but
the throughput is by far the most important factor. In this case, the
throughput is measured in terms of the number of finished assemblies
deposited at the unloading deck per unit time. Since this problem
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Figure 4. This figure shows that the Cooperative HRL algorithm learns the trash
collection task with fewer number of steps than the single-agent HRL algorithm.

is analytically intractable, various heuristics and their combinations
are generally used to schedule AGVs [17, 20]. However, the heuristics
perform poorly when the constraints on the movement of the AGVs
are reduced.

Previously, Tadepalli and Ok [39] studied a single-agent AGV schedul-
ing task using flat average-reward RL. However, the multi-agent AGV
task we study is more complex. Figure 5 shows the layout of the
AGV scheduling domain used in the experiments of this paper. M1
to M4 show workstations in this environment. Parts of type i have
to be carried to the drop-off station at workstation i, Di, and the
assembled parts brought back from the pick-up stations of worksta-
tions, Pi’s, to the warehouse. The AGV travel is unidirectional (as the
arrows show). This task is decomposed using the task graph in Figure
6. Each agent uses a copy of this task graph. We define Root as a
cooperative subtask and the highest level of the hierarchy as a cooper-

ation level. Therefore, all subtasks at the second level of the hierarchy
(DM1, . . . , DM4, DA1, . . . , DA4) belong to set U1. Coordination skills
among agents are learned by using joint action-values at the highest
level of the hierarchy as described in Section 4.

The state of the environment consists of the number of parts in
the pick-up and drop-off stations of each machine, and whether the
warehouse contains parts of each of the four types. In addition, each
agent keeps track of its own location and status as a part of its state
space. Thus, in the flat case, the state space consists of 100 locations, 8
buffers of size 3, 9 possible states of AGV (carrying part1, . . . , carrying
assembly1, . . . , empty), and 2 values for each part in the warehouse,
i.e., 100 × 48 × 9 × 24 ≈ 109 states. The state abstraction helps in
reducing the state space considerably. Only the relevant state variables
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Figure 5. A multi-agent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and the warehouse.

DM i : Deliver Material to Station i
DA i : Deliver Assembly from Station i
NavLoad : Navigation to Loading Deck
NavPut i : Navigation to Dropoff Station i
NavPick i : Navigation to Pickup Station i
NavUnload : Navigation to Unload Deck

Forward RightLeft

Root

DA2DA1. . . . . .DM1 DM2

Cooperative SubtaskCooperation Level

             top−level Cooperative
             Subtask (Root)

The shaded subtasks are defined as cooperative
subtasks and this level as cooperation level

in the last experiment of this section

. . . . . .Load Put Pick UnloadNavLoad NavUnloadNavPick iNavPut i

U   = Children of the1

Figure 6. Task graph for the AGV scheduling task.

are used while storing the completion functions in each node of the task
graph. For example, for the navigation subtasks, only the location state
variable is relevant, and this subtask can be learned with 100 values.
Hence, for the highest level subtasks DM1, . . . , DM4, the number of
relevant states would be 100 × 9 × 4 × 2 = 7, 200, and for the highest
level subtasks DA1, . . . , DA4, the number of relevant states would be
100 × 9 × 4 = 3, 600. This state abstraction gives us a compact way of
representing the C and V functions, and speeds up the algorithm.

We now present detailed experimental results on the AGV schedul-
ing task, comparing several learning agents, including single-agent HRL,
selfish multi-agent HRL, and Cooperative HRL, the cooperative multi-
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agent HRL algorithm proposed in Section 4. In the experiments of
this section, we assume that there are four agents (AGVs) in the envi-
ronment. The experimental results were generated with the following
model parameters. The inter-arrival time for parts at the warehouse is
uniformly distributed with a mean of 4 sec and variance of 1 sec. The
percentage of Part1, Part2, Part3, and Part4 in the part arrival process
are 20, 28, 22, and 30 respectively. The time required for assembling
the various parts is normally distributed with means 15, 24, 24, and 30
sec for Part1, Part2, Part3, and Part4 respectively, and variance 2 sec.
The execution time of primitive actions (right, left, forward, load, and
unload) is normally distributed with mean 1000 µ-sec and variance 50
µ-sec. The execution time for the idle action is also normally distributed
with mean 1 sec and variance 0.1 sec. Table I summarizes the values of
the model parameters used in the experiments of this section. In these
algorithms, learning rate α is set to 0.2, and exploration starts with 0.3,
remains unchanged until the performance reaches to a certain level, and
then is decreased by a factor of 1.01 every 60 seconds. We use discount
factors 0.9, 0.95, and 0.99 in these algorithms. Using discount factor
0.99 yielded better performance in all the algorithms. In this task, each
experiment was conducted five times and the results were averaged.

Table I. Model parameters for the multi-agent AGV scheduling task.

Parameter Distribution Mean (sec) Variance (sec)

Idle Action Normal 1 0.1

Primitive Actions Normal 0.001 0.00005

Assembly Time for Part1 Normal 15 2

Assembly Time for Part2 Normal 24 2

Assembly Time for Part3 Normal 24 2

Assembly Time for Part4 Normal 30 2

Inter-Arrival Time for Parts Uniform 4 1

Figure 7 shows the throughput of the system for the three algo-
rithms, single-agent HRL, selfish multi-agent HRL, and Cooperative

HRL. As seen in Figure 7, agents learn a little faster initially in the
selfish multi-agent method, but after some time the algorithm results
in sub-optimal performance. This is due to the fact that two or more
agents select the same action, but once the first agent completes the
task, the other agents might have to wait for a long time to complete
the task, due to the constraints on the number of parts that can be
stored at a particular place. The system throughput achieved using
the Cooperative HRL method is higher than the single-agent HRL and
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the selfish multi-agent HRL algorithms. This difference is even more
significant in Figure 8, when the primitive actions have longer execution
time, almost 1

10th of the average assembly time (the mean execution
time of primitive actions is 2 sec).
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Figure 7. This figure shows that the Cooperative HRL algorithm outperforms both
the selfish multi-agent HRL and the single-agent HRL algorithms when the AGV
travel time and load/unload time are very much less compared to the average
assembly time.
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Figure 8. This figure compares the Cooperative HRL algorithm with the selfish
multi-agent HRL algorithm, when the AGV travel time and load/unload time are

1

10th
of the average assembly time.

Figure 9 shows the results from an implementation of the single-
agent flat Q-Learning with the buffer capacity at each station set at 1.
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As can be seen from the plot, the flat algorithm converges extremely
slowly. The throughput at 70,000 sec has gone up to only 0.07, com-
pared with 2.6 for the hierarchical single-agent case. Figure 10 compares
the Cooperative HRL algorithm with several well-known AGV schedul-
ing rules, highest queue first, nearest station first, and first come first

serve, showing clearly the improved performance of the HRL method.
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Figure 9. A flat Q-Learner learns the AGV task extremely slowly showing the need
for using a hierarchical task structure.
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Figure 10. This plot shows that the Cooperative HRL algorithm outperforms three
well-known widely used industrial heuristics for AGV scheduling.

So far in our experiments in the AGV problem, we only defined Root

as a cooperative subtask. Now in our last experiment in this problem,
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in addition to Root, we define navigation subtasks at the third level of
the hierarchy as cooperative subtasks. Therefore, the third level of the
hierarchy is also a cooperation level and its cooperation set contains all
the navigation subtasks at that level (see Figure 6). We configure the
Root and the third level navigation subtasks to represent joint actions.
Figure 11 compares the performance of the system in these two cases.
When the navigation subtasks are configured to represent joint ac-
tions, learning is considerably slower (since the number of parameters
is increased significantly) and the overall performance is not better.
The lack of improvement is due in part to the fact that the AGV
travel is unidirectional, as shown in Figure 5, thus coordination at
the navigation level does not improve the performance of the system.
However, there exist problems that having joint actions at multiple
levels will be worthwhile, even if convergence is slower, due to better
overall performance.
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Figure 11. This plot compares the performance of the Cooperative HRL algorithm
with cooperation at the top level of the hierarchy vs. cooperation at the top and
third levels of the hierarchy.

6. Hierarchical Multi-Agent RL with Communication
Decisions

Communication can be viewed as a decision taken by agents to obtain
local information of their teammates, which may incur a certain cost.
The Cooperative HRL algorithm described in Section 4 works under
three important assumptions: free, reliable, and instantaneous commu-
nication, i.e., communication cost is zero; no message is lost in the
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environment; and each agent has enough time to receive information
about its teammates before taking its next action. Since communication
is free, as soon as an agent selects an action at a cooperative subtask, it
broadcasts it to the team. Using this simple rule, and the fact that
communication is reliable and instantaneous, whenever an agent is
about to choose an action at an lth level cooperative subtask, it knows
the subtasks in Ul being performed by all its teammates.

However, communication can be costly and unreliable in real-world
problems. When communication is not free, it is no longer optimal for
a team that agents always broadcast actions taken at their coopera-

tive subtasks to their teammates. Therefore, agents must learn to use
communication optimally by taking into account its long term return
and its immediate cost. In the remainder of this paper, we examine
the case where communication is not free, but still assume that it is
reliable and instantaneous. In this section, we first describe the commu-
nication framework and then illustrate how we extend the Cooperative

HRL algorithm to include communication decisions and propose a new
algorithm called COM-Cooperative HRL. The goal of this algorithm is
to learn a hierarchical policy (a set of policies, one policy for each of
the subtasks in the hierarchy including the communication subtasks)
to maximize the team utility given the communication cost. Finally, in
Section 7, we demonstrate the efficacy of the COM-Cooperative HRL

algorithm as well as the relation between the communication cost and
the learned communication policy using a multi-agent taxi problem.

6.1. Communication Among Agents

Communication usually consists of three steps: send, answer, and re-

ceive. At the send step, ts, agent j decides if communication is neces-
sary, performs a communication action, and sends a message to agent
i. At the answer step, ta ≥ ts, agent i receives the message from agent
j, updates its local information using the content of the message (if
necessary), and sends back the answer (if required). At the receive

step, tr ≥ ta, agent j receives the answer of its message, updates its
local information, and decides on which non-communicative action to
execute. Generally there are two types of messages in a communication
framework: request and inform. For simplicity, we suppose that relative
ordering of messages do not change, which means that for two commu-
nication actions c1 and c2, if ts(c1) < ts(c2) then ta(c1) ≤ ta(c2) and
tr(c1) ≤ tr(c2). The following three types of communication actions are
commonly used in a communication model:

− Tell(j, i): agent j sends an inform message to agent i.
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− Ask(j, i): agent j sends a request message to agent i, which is
answered by agent i with an inform message.

− Sync(j, i): agent j sends an inform message to agent i, which is
answered by agent i with an inform message.

In the Cooperative HRL algorithm described in Section 4, we assume
free, reliable, and instantaneous communication. Hence, the commu-
nication protocol of this algorithm is as follows: whenever an agent
chooses an action at a cooperative subtask, it executes a Tell communi-
cation action and sends its selected action as an inform message to all
other agents. As a result, when an agent is going to choose an action
at an lth level cooperative subtask, it knows actions being performed
by all other agents in Ul. Tell and inform are the only communication
action and type of message used in the communication protocol of the
Cooperative HRL algorithm.

6.2. A Hierarchical Multi-Agent RL Algorithm with

Communication Decisions

When communication is costly, it is no longer optimal for the team
that each agent broadcasts all its actions to its teammates. In this case,
each agent must learn to use communication optimally. To address the
communication cost in the COM-Cooperative HRL algorithm, we add a
communication level to the task graph of the problem below each coop-

eration level, as shown in Figure 12 for the trash collection task. In this
algorithm, when an agent is going to make a decision at an lth level co-

operative subtask, it first decides whether to communicate (takes Com-

municate action) with the other agents to acquire their actions in Ul,
or do not communicate (takes Not-Communicate action) and selects its
action without inquiring new information about its teammates. Agents
decide about communication by comparing the expected value of com-
munication Q(Parent(Com), s, Com) with the expected value of not
communicating with the other agents Q(Parent(NotCom), s, NotCom).
If agent j decides not to communicate, it chooses an action like a
selfish agent by using its action-value (not joint action-value) function
Qj(NotCom, s, a), where a ∈ Children(NotCom). Upon the com-
pletion of the selected action, the expected value of not communi-
cate Qj(Parent(NotCom), s, NotCom) is updated using the sum of
all rewards received during the execution of this action. When agent
j decides to communicate, it first takes the communication action
Ask(j, i), ∀i ∈ {1, . . . , n}, i 6= j, where n is the number of agents,
and sends a request message to all the other agents. Other agents reply
by taking the communication action Tell(i, j) and send their actions in
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Ul as an inform message to agent j. Then agent j uses its joint action-
value (not action-value) function Qj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a),

a ∈ Children(Com) to select its next action in Ul. Upon the termi-
nation of the selected action, the expected value of communication
Qj(Parent(Com), s, Com) is updated using the sum of all rewards re-
ceived during the execution of this action plus the communication
cost.

For example, in the trash collection task, when agent A1 dumps
trash and is going to move to one of the two trash cans, it should
first decide whether to communicate with agent A2 in order to inquire
about its action in U1 = {collect trash at T1, collect trash at T2} or
not. To make a communication decision, agent A1 compares Q1(Root,

s, NotCom) with Q1(Root, s, Com). If it chooses not to communicate,
it selects its action using Q1(NotCom, s, a), where a ∈ U1. If it decides
to communicate, after acquiring the action of agent A2 in U1, aA2, it
selects its own action using Q1(Com, s, aA2, a), where a and aA2 both
belong to U1.

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Communication Level

Cooperation Level Cooperative Subtask

             Cooperative Subtask (Root)

Communicate Not−Communicate

Collect Trash at T1 Collect Trash at T2 U   = Children of the top−level1

Figure 12. Task graph of the trash collection problem with communication actions.

In COM-Cooperative HRL, we assume that when an agent decides
to communicate, it communicates with all the other agents as described
above. We can make the model more complicated by making decision
about communication with each individual agent. In this case, the
number of communication actions would be C1

n−1 +C2
n−1 + . . .+Cn−1

n−1 ,
where Cq

p is the number of distinct combinations selecting q out of p

agents. For instance, in a three-agent case, communication actions for
agent 1 would be communicate with agent 2, communicate with agent

3, and communicate with both agents 2 and 3. It increases the number
of communication actions, and therefore the number of parameters
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to be learned. However, there are methods to reduce the number of
communication actions in real-world applications. For example, we can
cluster agents based on their role in the team and assume each cluster
as a single entity to communicate with. It reduces n from the number
of agents to the number of clusters.

In the COM-Cooperative HRL algorithm, Communicate subtasks are
configured to store joint completion function values and Not-Communicate

subtasks are configured to store completion function values. The joint
completion function for agent j, Cj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

is defined as the expected discounted cumulative reward of completing
the cooperative subtask Parent(Com) after executing subtask aj in
state s, while other agents performing subtasks ai, ∀i ∈ {1, . . . , n},
i 6= j. In the trash collection domain, if agent A1 communicates with
agent A2, its value function decomposition would be

Q1(Com, s, Collect Trash at T2, Collect Trash at T1) =

V 1(Collect Trash at T1, s) +

C1(Com, s, Collect Trash at T2, Collect Trash at T1)

which represents the value of agent A1 performing subtask collect trash

at T1, when agent A2 is executing subtask collect trash at T2. Note
that this value is decomposed into the value of subtask collect trash at

T1 and the value of completing subtask Parent(Com) (here Root is
the parent of subtask Com) after executing subtask collect trash at T1.
If agent A1 does not communicate with agent A2, its value function
decomposition would be

Q1(NotCom, s, Collect Trash at T1) = V 1(Collect Trash at T1, s)

+ C 1(NotCom, s, Collect Trash at T1)

which represents the value of agent A1 performing subtask collect trash

at T1, regardless of the action being executed by agent A2.
In the COM-Cooperative HRL algorithm, the V and C values are

learned through a standard temporal-difference learning method based
on sample trajectories similar to the one presented in Algorithm 1.
Completion function values for an action in Ul are updated when we
take an action under a Not-Communicate subtask, and joint completion
function values for an action in Ul are updated when it is selected
under a Communicate subtask. In the later case, the actions selected
in Ul by the other agents are known as a result of communication
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and are used to update the joint completion function values. If an
action in Ul is selected under a Not-Communicate subtask, upon its
termination, Q(Parent(NotCom), s, NotCom) is updated using the
sum of all rewards received during the execution of the action. If an
action in Ul is selected under a Communicate subtask, upon its termina-
tion, Q(Parent(Com), s, Com) is updated using the sum of all rewards
received during the execution of the action plus the communication
cost.

7. Experimental Results for the COM-Cooperative HRL
Algorithm

In this section, we demonstrate the performance of the COM-Cooperative

HRL algorithm proposed in Section 6.2 using a multi-agent taxi prob-
lem. We also investigate the relation between the communication policy
and the communication cost in this domain.

Consider a 5-by-5 grid world inhabited by two taxis T1 and T2
shown in Figure 13. There are four stations in this domain, marked as
B(lue), G(reen), R(ed), and Y(ellow). The task is continuing, passen-
gers appear according to a fixed passenger arrival rate5 at these four
stations and wish to be transported to one of the other stations chosen
randomly. Taxis must go to the location of a passenger, pick up the
passenger, go to her/his destination station, and drop the passenger
there. The goal here is to increase the throughput of the system, which
is measured in terms of the number of passengers dropped off at their
destinations per 5,000 time steps, and to reduce the average waiting
time per passenger. This problem can be decomposed into subtasks
and the resulting task graph is shown in Figure 13. Taxis need to learn
three skills here. First, how to do each subtask, such as navigate to B,
G, R, or Y , and when to perform Pickup or Putdown action. Second,
the order to carry out the subtasks, i.e., for example go to a station
and pickup a passenger before heading to the passenger’s destination.
Finally, how to communicate and coordinate with each other, i.e., if
taxi T1 is on its way to pick up a passenger at location B, taxi T2
should serve a passenger at one of the other stations.

The state variables in this task are locations of the taxis (25 values
each), status of the taxis (5 values each, taxi is empty or transporting a
passenger to one of the four stations), and status of the stations B, G,
R, and Y (4 values each, station is empty or has a passenger whose

5 Passenger arrival rate 10 indicates that on average, one passenger arrives at
stations every 10 time steps.
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destination is one of the other three stations). Thus, in the multi-
agent flat case, the size of the state space would grow to 4 × 106.
The size of the Q table is this number multiplied by the number of
primitive actions 10, which is 4 × 107. In the selfish multi-agent HRL
algorithm, using state abstraction and the fact that each agent stores
only its own state variables, the number of the C and V values to
be learned is reduced to 2 × 135, 895 = 271, 790, which is 135,895
values for each agent. In the Cooperative HRL algorithm, the num-
ber of the values to be learned would be 2 × 729, 815 = 1, 459, 630.
Finally in the COM-Cooperative HRL algorithm, this number would
be 2 × 934, 615 = 1, 869, 230. In the Cooperative HRL and COM-

Cooperative HRL algorithms, we define Root as a cooperative subtask

and the highest level of the hierarchy as a cooperation level as shown in
Figure 13. Thus, Root is the only member of the cooperation set at that
level, and U1 = ARoot = {GetB, GetG, GetR, GetY, Wait, Put}.
The joint action space for Root is specified as the cross product of the
Root action set and U1. Finally, the τcontinue termination scheme is used
for joint action selection in this problem. In these algorithms, learning
rate α is set to 0.1, and exploration starts with ε = 0.1 and then is de-
creased by a factor of 1

1+ε
every 5000 steps. We use discount factors 0.9,

0.95, and 0.99 in these algorithms. Using discount factor 0.99 yielded
better performance in all the algorithms. All the experiments in this
section were repeated five times and the results were averaged.

T1: Taxi 1
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R: Red Station
Y: Yellow Station
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Figure 13. A multi-agent taxi domain and its associated task graph.

Figures 14 and 15 show the throughput of the system and the aver-
age waiting time per passenger for four algorithms, single-agent HRL,
selfish multi-agent HRL, Cooperative HRL, and COM-Cooperative HRL
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when communication cost is zero.6 As seen in Figures 14 and 15, Co-

operative HRL and COM-Cooperative HRL with ComCost = 0 have
better throughput and average waiting time per passenger than selfish
multi-agent HRL and single-agent HRL.7 The COM-Cooperative HRL

algorithm learns slower than Cooperative HRL, due to more parameters
to be learned in this model. However, it eventually converges to the
same performance as the Cooperative HRL algorithm does.
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Figure 14. This figure shows that Cooperative HRL and COM-Cooperative HRL with
ComCost = 0 have better throughput than selfish multi-agent HRL and single-agent
HRL.

Figure 16 compares the average waiting time per passenger for multi-
agent selfish HRL and COM-Cooperative HRL with ComCost = 0 for
three different passenger arrival rates 5, 10, and 20. It demonstrates
that as the passenger arrival rate becomes smaller, the coordination
among taxis becomes more important. When taxis do not coordinate,
it is possible that both taxis go to the same station. In this case, the first
taxi picks up the passenger and the other one returns empty. This case
can be avoided by incorporating coordination in the system. However,
when the passenger arrival rate is high, there is a chance that a new
passenger arrives after the first taxi picks up the previous passenger
and before the second taxi reaches the station. This passenger will be
picked up by the second taxi. In this case, coordination would not be
as crucial as the case when the passenger arrival rate is low.

6 The COM-Cooperative HRL algorithm uses the task graph in Figure 13. The
Cooperative HRL algorithm uses the same task graph without the communication
level.

7 The setting of the ComCost value to zero is for comparison purposes. Different
values of the ComCost will be explored later in this section.
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Figure 15. This figure shows that the average waiting time per passenger in Co-
operative HRL and COM-Cooperative HRL with ComCost = 0 is less than selfish
multi-agent HRL and single-agent HRL.
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Figure 16. This figure compares the average waiting time per passenger for selfish
multi-agent HRL and COM-Cooperative HRL with ComCost = 0 for three different
passenger arrival rates 5, 10, and 20. It shows that coordination among taxis becomes
more crucial as the passenger arrival rate becomes smaller.
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Figure 17 demonstrates the relation between the learned commu-
nication policy and the communication cost. These two figures show
the throughput and the average waiting time per passenger for selfish
multi-agent HRL and COM-Cooperative HRL when communication
cost equals 0, 1, 5, and 10. In both figures, as the communication cost
increases, the performance of the COM-Cooperative HRL algorithm
becomes closer to the performance of the selfish multi-agent HRL algo-
rithm. It indicates that when communication is expensive, agents learn
not to communicate and to be selfish.
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Figure 17. This figure shows that as communication cost increases, the throughput
(top) and the average waiting time per passenger (bottom) of the COM-Cooperative
HRL algorithm become closer to those for the selfish multi-agent HRL algorithm. It
indicates that agents learn to be selfish when communication is expensive.
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8. Conclusions and Future Work

Multi-agent learning has been recognized to be challenging for two
main reasons: the curse of dimensionality and partial observability. In
a multi-agent system, each agent usually needs to know the states and
actions of the other agents in order to make its own decision. As a result,
the number of state-action values to be learned increases dramatically
with the number of agents (the curse of dimensionality). This problem
can be divided into two problems known as the joint action space
problem and the joint state space problem. Moreover, the states and
actions of the other agents are not often fully observable and inter-agent
communication is usually costly (partial observability). In this paper, we
studied the use of hierarchical reinforcement learning (HRL) to address
these problems, and to accelerate learning to communicate and act in
cooperative multi-agent systems. The key idea underlying our approach
is that coordination skills are learned much more efficiently if agents
have a hierarchical representation of the task structure. The use of hier-
archy speeds up learning in cooperative multi-agent domains by making
it possible to learn coordination skills at the level of subtasks instead of
primitive actions. Algorithms for learning task-level coordination have
already been developed in non-MDP approaches [37], however to the
best of our knowledge, this work is the first attempt to use task-level
coordination in an MDP setting. We proposed two new cooperative
multi-agent HRL algorithms, Cooperative HRL and COM-Cooperative

HRL using the above idea. In both algorithms, agents are homogeneous,
i.e., use the same task decomposition, learning is decentralized, and
each agent learns three interrelated skills: how to perform subtasks,
order in which to carry them out, and how to coordinate with other
agents.

In the Cooperative HRL algorithm, we assume communication is
free and therefore agents do not need to decide if communication with
their teammates is necessary. We demonstrated the efficiency of this
algorithm using two experimental testbeds: a simulated two-robot trash
collection task, and a much larger four-agent automated guided vehi-
cle (AGV) scheduling problem. We compared the performance of the
Cooperative HRL algorithm with other algorithms such as selfish multi-
agent HRL, single-agent HRL, and flat Q-learning in these problems.
In the AGV scheduling task, we also showed that the Cooperative HRL

algorithm outperforms widely used industrial heuristics, such as “first

come first serve”, “highest queue first”, and “nearest station first”.
In the COM-Cooperative HRL algorithm, we addressed the issue of

rational communicative behavior among autonomous agents. The goal
is to learn both action and communication policies that together opti-
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mize the task given the communication cost. This algorithm is an exten-
sion of Cooperative HRL by including communication decisions in the
model. We studied the empirical performance of the COM-Cooperative

HRL algorithm as well as the relation between communication cost and
the learned communication policy using a multi-agent taxi problem.

The hierarchical multi-agent models and algorithms presented in this
paper address the joint action space problem by allowing the agents to
learn joint action values only at cooperative subtasks usually located
at the high level(s) of hierarchy. They also address the communica-
tion problem by allowing coordination at the level of subtasks instead
of primitive actions. Since high-level subtasks can take a long time
to complete, communication is needed only fairly infrequently. Addi-
tionally, the COM-Cooperative HRL algorithm proposed in this paper
presents a method to optimize communication by including communi-
cation decisions in the hierarchical model. We did not directly address
the joint state space problem in this paper. Although the proposed
models do not prevent us from using joint state space for the subtasks
in a hierarchy, we avoided dealing with its complexity by storing only
local state information by each agent. However, using hierarchy can
alleviate the joint state space problem in cooperative multi-agent sys-
tems. First, only cooperative subtasks can be defined as joint state space
problems. It is an approximation, but it would be a good approximation
if agents rarely need to cooperate at non-cooperative subtasks. Second,
state abstraction in a hierarchy (which is an important and inseparable
feature of any hierarchical abstraction) can help to reduce the size of
the joint state space at a cooperative subtask. The joint state space
at a cooperative subtask contains only those state variables that are
relevant to the cooperative subtask and ignores the rest of the state
variables. Third, since each agent can get a rough idea of the state of the
other agents just by knowing about their high-level subtasks, it would
sometimes be even possible to achieve a reasonably good performance
by storing only local state information at cooperative subtasks, as shown
in the experiments of this paper.

There is a number of directions for future work which can be briefly
outlined. An immediate question that arises is to define the classes
of cooperative multi-agent problems in which the proposed algorithms
converge to a good approximation of the optimal policy. The experi-
ments of this paper show that the effectiveness of these algorithms is
most apparent in tasks where agents rarely interact at low levels (for
example in the trash collection task, two robots may rarely need to exit
through the same door at the same time). However, the algorithms
can be generalized and adapted to constrained environments where
agents are constantly running into one another (for example ten robots
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in a small room all trying to leave the room at the same time) by
extending cooperation to the lower levels of the hierarchy. This will
result in a much larger set of action values that need to be learned, and
consequently learning will be slower as shown in the AGV experiment
depicted in Figure 11. Moreover in this case, there are usually many
subtasks in which it would be crucial for the agents to know the states
of their teammates in order to make their own decisions. Therefore, we
may have to define these subtasks as joint state space problems, which
will result in even much larger set of state-action values that need to
be learned, and consequently much slower learning.

A number of extensions would be useful, from studying the scenario
where agents are heterogeneous, to recognizing the high-level subtasks
being performed by the other agents using a history of observations
(plan recognition and activity modeling) instead of direct communi-
cation. In the later case, we assume that each agent can observe its
teammates and uses its observations to extract their high-level sub-
tasks. Good examples for this approach are games such as soccer,
football, or basketball, in which players often extract the strategy be-
ing performed by their teammates using recent observations instead
of direct communication. Saria and Mahadevan presented a theoreti-
cal framework for online probabilistic plan recognition in cooperative
multi-agent systems [33]. Their model extends the abstract hidden
Markov model (AHMM) [7] to cooperative multi-agent domains. We
believe that the model presented by Saria and Mahadevan can be com-
bined with the learning algorithms proposed in this paper to reduce
communication by learning to recognize the high-level subtasks being
performed by the other agents. In the cooperative multi-agent models
proposed in this paper, agents cooperate only at cooperative subtasks,
which are predefined by the designer of the system. Another useful
extension is where agents are given the ability to discover cooperative

subtasks, or more general, the ability to decide (or learn to decide)
autonomously, when to cooperate and with whom to cooperate.

Another direction for future work is to study different termination
schemes for composing temporally extended actions. We used τcontinue

termination strategy in the algorithms proposed in this paper. However,
it would be beneficial to investigate τany and τall termination schemes
in our model. Many other manufacturing and robotics problems can
benefit from these algorithms. Combining the proposed algorithms with
function approximation and factored action models, which makes them
more appropriate for continuous state problems, is also an important
area of research. In this direction, we presented a family of HRL al-
gorithms suitable for problems with continuous state and/or action
spaces, using a mixture of policy gradient-based RL and value function-
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based RL methods [11]. We believe that the algorithms proposed in
this paper can be combined with the algorithms presented in [11] to
be used in multi-agent domains with continuous state and/or action.
The success of the proposed algorithms depends on providing agents
with a good initial hierarchical task decomposition. Therefore, deriving
abstractions automatically is an essential problem to study. Finally,
studying those communication features that have not been considered
in our model such as message delay and probability of loss is another
fundamental problem that needs to be addressed.
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