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Abstract
We study contextual bandits in the presence of a stage-wise constraint when the constraint must be
satisfied both with high probability and in expectation. We start with the linear case where both
the reward function and the stage-wise constraint (cost function) are linear. In each of the high
probability and in expectation settings, we propose an upper-confidence bound algorithm for the
problem and prove a T -round regret bound for it. We also prove a lower-bound for this constrained
problem, show how our algorithms and analyses can be extended to multiple constraints, and
provide simulations to validate our theoretical results. In the high probability setting, we describe
the minimum requirements for the action set for our algorithm to be tractable. In the setting that
the constraint is in expectation, we specialize our results to multi-armed bandits and propose a
computationally efficient algorithm for this setting with regret analysis. Finally, we extend our
results to the case where the reward and cost functions are both non-linear. We propose an algorithm
for this case and prove a regret bound for it that characterize the function class complexity by the
eluder dimension.
Keywords: multi-armed bandits, contextual bandits, constraints, safety, eluder dimension

1 Introduction

A multi-armed bandit (MAB) (Lai and Robbins, 1985; Auer et al., 2002; Lattimore and Szepesvári,
2019) is an online learning problem in which the agent acts by pulling arms. After an arm is pulled,
the agent receives its stochastic reward sampled from the distribution of the arm. The goal of the
agent is to maximize its expected cumulative reward without knowledge of the arms’ distributions.
To achieve this goal, the agent has to balance its exploration and exploitation: to decide when to
explore and learn about the arms, and when to exploit and pull the arm with the highest estimated
reward thus far. A stochastic linear bandit (Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010;
Abbasi-Yadkori et al., 2011) is a generalization of MAB to the setting where each of (possibly)
infinitely many arms is associated with a feature vector. The mean reward of an arm is the dot
product of its feature vector and an unknown parameter vector, which is shared by all the arms.
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This formulation contains time-varying action (arm) sets and feature vectors, and thus, includes
the linear contextual bandit setting. These models capture many practical applications spanning
clinical trials (Villar et al., 2015), recommendation systems (Li et al., 2010; Balakrishnan et al.,
2018), wireless networks (Maghsudi and Hossain, 2016), sensors (Washburn, 2008), and strategy
games (Ontanón, 2013). The most popular exploration strategies in stochastic bandits are optimism
in the face of uncertainty (OFU) or upper confidence bound (UCB) (Auer et al., 2002) and Thompson
sampling (TS) (Thompson, 1933; Agrawal and Goyal, 2013a; Abeille and Lazaric, 2017; Russo et al.,
2018) that are relatively well-understood in both multi-armed and linear bandits (Abbasi-Yadkori
et al., 2011; Agrawal and Goyal, 2013b).

In many practical problems, the agent requires to satisfy certain operational constraints while
maximizing its cumulative reward. Depending on the form of the constraints, several constrained
stochastic bandit settings have been formulated and analyzed. One such setting is what is known
as knapsack bandits. In this setting, pulling each arm, in addition to producing a reward signal,
results in a random consumption of a global budget, and the goal is to maximize the cumulative
reward before the budget is fully consumed (e.g., Badanidiyuru et al. 2013, 2014; Agrawal and
Devanur 2014; Wu et al. 2015; Agrawal and Devanur 2016). Another such setting is referred to as
conservative bandits. In this setting, there is a baseline arm or policy, and the agent, in addition to
maximizing its cumulative reward, should ensure that at each round, its cumulative reward remains
above a predefined fraction of the cumulative reward of the baseline (Wu et al., 2016; Kazerouni
et al., 2017; Garcelon et al., 2020). In these two settings, the constraint is history-dependent, i.e., it
applies to a cumulative quantity, such as budget consumption or reward, over the entire run of the
algorithm. Thus, the set of feasible actions at each round is a function of the history of the algorithm.

Another constrained bandit setting is where each arm is associated with two (unknown) distri-
butions, generating reward and cost signals. The goal is to maximize the cumulative reward, while
making sure that with high probability, the expected cost of the arm pulled at each round is below a
certain threshold. Here the constraint is stage-wise, and unlike the last two settings, is independent
of the history. This setting has many applications, for example, a recommendation system should
not suggest an item to a customer that despite high probability of click (high reward) reduces their
watch-time or their chance of coming back to the website (bounded cost), or a drug that may help
with a certain symptom (high reward) should not have too many side-effects (bounded cost). Another
example is a company whose goal is to optimize its app’s strategy for sending notification to its
customers. Here the reward signal is often related to the customer’s engagement with the app, and
the cost signal depends on the probability that the customer gets tired of the notifications and opt
out. Thus, the goal is to derive a strategy that while maximizes customer’s engagement with the app,
keeps the churn below a certain threshold. It is important to note that the reward and cost in this
setting can be viewed as different objectives according to which a recommendation or a medical
diagnosis system or an app’s notification strategy are evaluated.

Amani et al. (2019) and Moradipari et al. (2019) studied this setting for linear bandits and
derived and analyzed explore-exploit (Amani et al., 2019) and Thompson sampling (Moradipari
et al., 2019) algorithms for it. We start the paper by studying the same setting for contextual linear
bandits. After defining the setting in Section 2, we propose a UCB-style algorithm for it, called
Linear Constraint Linear UCB (LC-LUCB), in Section 4.1. We prove a T -round regret bound for
LC-LUCB in Sections 4.2, which clearly identifies the main components that control the hardness
of this problem. We also prove a lower-bound for this setting in Section 4.3, show how this setting
can be extended to multiple constraints (multiple cost distributions for each arm) in Section 4.4, and
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report experimental results as a proof of concept for LC-LUCB in Section 4.5. We provide a detailed
comparison between our results and those in Amani et al. (2019) and Moradipari et al. (2019) in
Section 3.

We then switch to a slightly different setting in Section 5 in which we relax the high probability
constraint and replace it with a constraint in expectation. High probability constraints are often quite
restrictive and result in overly conservative strategies. This is why in many applications we may
want to relax them to obtain strategies with higher expected cumulative reward. We describe this
relaxed setting in Section 5.1 and propose an algorithm for it, called Optimistic-Pessimistic Linear
Bandit (OPLB) (Section 5.1.1), with regret analysis (Section 5.1.2). We then specialize our results to
multi-armed bandits (Section 5.2) and report experimental results as a proof of concept for OPLB
(Section 5.4). Finally in Section 5.3, we extend our results to the case where the reward and cost
functions are non-linear. We propose an algorithm, called Optimistic Pessimistic Nonlinear Bandit
(OPNLB), and prove a regret bound for it. We use a characterization of function class complexity
based on the eluder dimension (Russo and Van Roy, 2013) in our regret bound. This part of the paper
is an extension of our earlier work (Pacchiano et al., 2021). Here we improve the regret bounds
reported in Pacchiano et al. (2021) for both contextual linear and multi-armed bandit settings to
better show their dependence on the components that contribute to the hardness of the problem. We
also show how our results can be extended to non-linear reward and cost(s).

2 Problem Formulation

Notation. We adopt the following notation throughout the paper. We denote by ⟨x, y⟩ = x⊤y
and ⟨x, y⟩A = x⊤Ay, for a positive definite matrix A ∈ Rd×d, the inner-product and weighted
inner-product of vectors x, y ∈ Rd. Similarly, we denote by ∥x∥ =

√
x⊤x and ∥x∥A =

√
x⊤Ax,

the ℓ2 and weighted ℓ2 norms of vector x ∈ Rd. For any square matrix A, we denote by A†, its
Moore-Penrose pseudo-inverse. We represent the set of distributions with support over a compact
set S by ∆S . We use upper-case letters for random variables (e.g., X), and their corresponding
lower-case letters for a particular instantiation of that random variable (e.g., X = x). The set
{1, . . . , T} is denoted by [T ]. Finally, we use Õ for the big-O notation up to logarithmic factors.

We study the following constrained contextual linear bandit setting in this paper. In each round
t ∈ [T ], the agent (also referred to as learner) is given a decision set At ⊂ Rd from which it has
to choose an action xt. Upon taking an action Xt ∈ At, the agent observes a pair (Rt, Ct), where
Rt = ⟨Xt, θ∗⟩ + ξrt and Ct = ⟨Xt, µ∗⟩ + ξct are the reward and cost signals, respectively. In the
reward and cost definitions, θ∗ ∈ Rd and µ∗ ∈ Rd are the unknown reward and cost parameters, and
ξrt and ξct are reward and cost noise, satisfying conditions that will be specified in Assumption 1. The
agent aims to maximize its expected T -round reward, i.e.,

∑T
t=1⟨Xt, θ∗⟩, while is required to satisfy

a stage-wise linear constraint, i.e., ⟨Xt, µ∗⟩ ≤ τ, ∀t ∈ [T ], with high probability. The constraint
threshold τ ≥ 0 is a positive constant that is known to the agent.

Because of the constraint, in each round t, the agent should pull an arm from the set of feasible
actions in that round, i.e., Af

t = {x ∈ At : ⟨x, µ∗⟩ ≤ τ}. Of course this set is unknown, because the
agent does not know the cost parameter µ∗. Maximizing the expected T -round reward is equivalent
to minimizing the expected T -round (constrained) (pseudo)-regret, i.e.,

RC(T ) =

T∑
t=1

⟨x∗t , θ∗⟩ − ⟨Xt, θ∗⟩ =
T∑
t=1

⟨x∗t −Xt, θ∗⟩, (1)
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where x∗t is the optimal feasible action in round t, i.e., x∗t ∈ argmax
x∈Af

t
⟨x, θ∗⟩, and Xt is the

action taken by the agent in round t, which belongs to the set of feasible actions in that round,
i.e., Xt ∈ Af

t , with high probability.
We make the following assumptions for our setting. The first four assumptions are standard in

linear bandits and the fifth one is necessary for constraint satisfaction.

Assumption 1 (sub-Gaussian noise) For all t ∈ [T ], the reward and cost noise random variables
ξrt and ξct are conditionally R-sub-Gaussian, i.e., for all α ∈ R,

E[ξrt | Ht−1] = 0, E[exp(αξrt ) | Ht−1] ≤ exp(α2R2/2),

E[ξct | Ht−1] = 0, E[exp(αξct ) | Ht−1] ≤ exp(α2R2/2),

where Ht is the filtration that includes all the events (R1:t, C1:t, ξ
r
1:t, ξ

c
1:t) until the end of round t.

Assumption 2 (bounded parameters) There is a known constant S > 0, such that ∥θ∗∥ ≤ S and
∥µ∗∥ ≤ S.1

Assumption 3 (bounded actions) The ℓ2-norm of all actions are bounded by L > 0, i.e.,

max
t∈[T ]

max
x∈At

∥x∥ ≤ L.

Assumption 4 (bounded rewards and costs) For all t ∈ [T ] and x ∈ At, the mean rewards and
costs are bounded, i.e., ⟨x, θ∗⟩ ∈ [0, 1] and ⟨x, µ∗⟩ ∈ [0, 1].

Assumption 5 (safe action) There is a known safe action x0 ∈ At, ∀t ∈ [T ], with known cost c0,
i.e., ⟨x0, µ∗⟩ = c0 < τ , and known reward r0.

Knowing a safe action x0 is absolutely necessary for solving the constrained contextual linear
bandit problem studied in this paper, because it requires the constraint to be satisfied from the very
first round. However, the assumption of knowing its expected reward r0 and cost c0 can be relaxed.
We can think of the safe action as a baseline policy, the current strategy (e.g., resource allocation) of
a company that is safe (i.e., its cost c0 < τ ) and has a reasonable performance (i.e., its reward r0 is
not low). In this case, it makes sense to assume that the reward r0 and cost c0 of this action (policy)
are both known. We will discuss how our proposed algorithms will change if r0 and c0 are unknown
in Sections 4.1 and 5.1.1, and Appendix F.1.

We will show later that the difficulty of solving the above constrained bandit problem is directly
related to the quality of the safe action x0, more specifically to its safety gap and sub-optimality.

Definition 6 (safety gap & sub-optimality) The safety gap and sub-optimality of a safe action x0
quantify how close its cost c0 and reward r0 are to the constraint threshold τ and the maximum
achievable reward 1, and are defined as (τ − c0) and (1− r0), respectively.

Notation. We conclude this section with introducing another set of notations that will be used in
describing our algorithms and their analyses. We define the normalized safe action as e0 := x0/∥x0∥
and the span of the safe action as Vo := span(x0) = {ηx0 : η ∈ R}. We denote by V⊥

o , the
orthogonal complement of Vo, i.e., V⊥

o = {x ∈ Rd : ⟨x, y⟩ = 0, ∀y ∈ Vo}.2 We define the
projection of a vector x ∈ Rd into the subspace Vo, as xo := ⟨x, e0⟩e0, and into the subspace V⊥

o , as
xo,⊥ := x− xo.

1. The choice of the same upper-bound S for both θ∗ and µ∗ is just for simplicity and convenience.
2. In the case of x0 = 0 ∈ Rd, we define Vo as the empty subspace and V⊥

o as the entire Rd.
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3 Related Work

As described in Section 1, the high probability constraint satisfaction setting that we study in Section 4
is similar to the one in Moradipari et al. (2019) and Amani et al. (2019). Moradipari et al. (2019)
propose a Thompson sampling (TS) algorithm for this setting and prove an Õ(d3/2

√
T/τ) regret

bound for it. Our algorithm is UCB-style and our regret bound is Õ((1 + 1−r0
τ−c0

)d
√
T ), which not

only has a better dependence on d, but also clearly identifies the ratio between the sub-optimality
(1− r0) of the safe action x0 and its safety gap (τ − c0) as the measure of hardness for the problem.
The Õ(

√
d) advantage to their bound is similar to the best regret results for UCB vs. TS. Moreover,

they restrict themselves to linear bandits, i.e., At = A, ∀t ∈ [T ], and define their action set to be any
convex compact subset of Rd that contains the origin. Therefore, they restrict their “known” safe
action to be the origin, x0 = 0, with the “known” cost c0 = 0. This is why c0 does not appear in
their bounds. Although later in their proofs, to guarantee that their algorithm does not violate the
constraint in the first round, they require the action set to contain the ball with radius τ/S around the
origin. Hence, our setting and action set are more general than theirs. We also prove a lower-bound
for the problem and show how our algorithm and analysis can be extended to multiple constraints and
to the case when the reward and cost of the safe action are unknown. Finally, unlike us, their action
set does not allow their results to be immediately applicable to MAB. However, their algorithm is TS,
and thus, is less complex than ours. Although it can still be intractable, even when the action set A is
convex, as we can see they require several approximations in their experiments. Unlike them, we
describe the minimum requirements on the action set in order for our algorithm to be tractable.

Amani et al. (2019) propose an explore-exploit algorithm for a slightly different setting than
ours, in which reward and cost have the same unknown parameter θ∗, and the constraint is defined
as ct = x⊤t Bθ∗ ≤ τ , for a “known” matrix B. They prove a regret bound of Õ(T 2/3) for their
algorithm. Although our algorithm has a better regret rate Õ(

√
T ), it cannot immediately give the

same rate for the setting studied in Amani et al. (2019), except in special cases, such as when all At

are convex and B = I .
Several authors have extended the constrained problem studied in this paper to other constrained

bandit settings. Chen et al. (2022) modified the constraint to cumulative and obtained an o(T ) bound
for cumulative constraint violation while obtaining an O(log(T )2) instance-dependent bound for the
cumulative regret. Other extensions include to anytime cumulative constraints (Liu et al., 2021b),
kernel setting (Zhou and Ji, 2022), best arm identification (Wang et al., 2022), and online convex
optimization (Chaudhary and Kalathil, 2022).

Our stage-wise constrained bandit problem has also been extended to reinforcement learning
(RL) where the goal is to find a policy with maximum expected cumulative reward while the learner
is required to keep the expected cumulative cost below a threshold at every single round. Here the
learner has access to a safe policy that can be deployed while the learner does not have sufficient
knowledge of the safety constraint. This RL setting has been studied in tabular (Efroni et al., 2020;
Liu et al., 2021a; Wei et al., 2021; Bura et al., 2022) and linear (Ding et al., 2021; Ghosh et al., 2022)
MDPs. It is notable that Liu et al. (2021a) make use of the optimism-pessimism principle that we
developed in our earlier work (Pacchiano et al., 2021) and used in the analysis of this paper. Their
result is a direct extension of ours to constrained RL.

Amani et al. (2021) extended this constrained RL setting to per-step (from per-round) constraints,
i.e., the expected cost of the action taken at every visited state should be below a threshold. The key
idea is that some actions are unsafe and need to be avoided at every step. Here the assumption is the
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access to a safe action whose expected cost is below the threshold. They use the same geometric
conditions that we impose in the analysis of our LC-LUCB algorithm (see Definition 8) to ensure that
knowledge of a safe action is sufficient for safe exploration. Moreover, their algorithmic techniques
rely heavily on our optimism-pessimism principle. Shi et al. (2023) later extended the per-step
constrained RL work of Amani et al. (2021) to the case where some state/action combinations are
unsafe.

3.1 A Summary of our Results

In this paper, we introduce several algorithms for constrained linear bandits in high-probability
and in-expectation settings. The learner’s objective is to achieve low regret while playing actions
that satisfy a cost constraint. An action (or policy) is safe if its expected cost is upper-bounded
by a known cost threshold τ . In order to achieve this, the learner has access to a safe arm x0 that
belongs to all contexts, and has an expected reward ⟨x0, θ∗⟩ = r0 and an expected cost ⟨x0, µ∗⟩ = c0
satisfying the constraint c0 < τ (see Assumption 5). All our algorithms satisfy a regret bound
of order O

(
1−r0
τ−c0

d
√
T
)

(ignoring logarithmic factors). In contrast, previous approaches such as

Safe-TS satisfy a regret bound of order O
(
1
τ d

3/2
√
T
)

for problems where c0 = 0. In the following
table, we compare and contrast our algorithms with Safe-TS. We also highlight the requirements that
our approaches require for computational tractability.

Algorithm Contextual Action Space x0 = 0

Safe-LTS (Moradipari et al., 2019) X Convex and Compact ✓
LC-LUCB (Algorithm 1) ✓ Star Convex X

OPLB (Algorithm 2) ✓ Arbitrary X
OPB (Algorithm 3) ✓ Multi-Armed Bandits X

Safe-LTS is not adapted to contextual scenarios and requires the action space to be convex and
compact, and to contain the safe action x0 = 0. In contrast, our algorithms LC-LUCB and OPLB are
adapted to the contextual scenario. LC-LUCB achieves high probability guarantees and is tractable
when the contexts are finite star-convex centered around the safe action x0. In contrast, the OPLB
algorithm achieves in-expectation guarantees and is not tractable for general context spaces. Finally,
the OPB algorithm attains in-expectation guarantees in multi-armed bandit problems. Note that the
OPB policies can be computed by solving a linear program.

Algorithm Regret Bound Tractability
Safe-LTS (Moradipari et al., 2019) O

(
1
τ d

3/2
√
T
)

✓

LC-LUCB (Algorithm 1) O
(
1−r0
τ−c0

d
√
T
)

Finite Star-Convex

OPLB (Algorithm 2) O
(
1−r0
τ−c0

d
√
T
)

X

OPB (Algorithm 3) O
(
1−r0
τ−c0

√
KT

)
Linear Program
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4 High Probability Constraint Satisfaction

As described in Section 2, we study a contextual linear bandit setting in which each action (arm) is
associated with two distributions, generating reward Rt = ⟨Xt, θ∗⟩+ ξrt and cost Ct = ⟨Xt, µ∗⟩+ ξct
signals. The agent aims to maximize its expected cumulative reward in T rounds, i.e.,

∑T
t=1⟨Xt, θ∗⟩,

while is required to satisfy the stage-wise linear constraint

⟨Xt, µ∗⟩ ≤ τ, ∀t ∈ [T ], (2)

with probability at least 1− δ. The agent knows the constraint threshold τ ≥ 0 and has access to a
safe action x0 ∈ At with known cost c0 = ⟨x0, µ∗⟩ < τ and reward r0 (Assumption 5).

Remark 7 It is important to note that the high probability constrained setting described above
cannot be solved for multi-armed bandits (MABs). This is because there is no generalization among
the arms/actions in MABs, and thus, we cannot have an estimate of the cost of an arm without
pulling it, which may itself violate the constraint (2). In other words, pulling the safe action/arm, x0,
does not give us any information about the cost of the other arms in MABs. Thus, only interaction
with decision sets At that allow for the safe exploration of progressively better actions may yield
provable guarantees. We capture this intuition via a geometric condition on the decision sets At

known as star-convexity. This is in contrast with the in-expectation constrained setting that we
study in Section 5, where it is possible to guarantee safety by playing a distribution over the arms.
Extensions to reinforcement learning, such as in Amani et al. (2021), follow the same in-expectation
structure that we study in Section 5 and cannot be achieved in the high probability setting studied in
this section.

Definition 8 (star-convex set) We call a set A star-convex around a point x ∈ A if for all other
points a ∈ A, the ray [x, a] (the line between x and a) is in A. When all action sets are star convex
centered around x0 the family of star-convex sets is rich enough to contain all convex sets (i.e., any
convex set is star-convex).

Definition 8 subsumes the case where the action sets At are convex, and thus, assuming At’s are
star-convex is weaker than assuming that they are convex. In this section, we make the following
assumption:

Assumption 9 All action sets At are star convex centered around the safe action x0.

Here we first propose an algorithm for the high probability contextual linear bandit setting
described above. We provide its regret analysis under Assumption 9, prove a lower-bound for it,
discuss how this setting can be extended to multiple constraints, and finally conclude with a set of
experimental results as a proof of concept.

4.1 Algorithm

Let {Xs}ts=1 be the sequence of actions played by the agent up to time t, and {Rs = ⟨Xs, θ∗⟩ +
ξrs}ts=1 and {Cs = ⟨Xs, µ∗⟩ + ξcs}ts=1 be the rewards and costs it observes in the same duration.
Since the agent knows the cost of the safe action, i.e., c0 = ⟨x0, µ∗⟩, it can compute the (random)
cost incurred by Xt along the subspace V⊥

o , i.e., C⊥
t = Ct − ⟨Xt,e0⟩c0

∥x0∥ . The knowledge of c0 allows
us to build a (regularized) least-squares estimator for µ∗ without estimating it along the e0 direction
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Algorithm 1 Linear Constraint Linear UCB (LC-LUCB)
1: Input: Safe action x0 with reward r0 and cost c0; Constraint threshold τ ≥ 0; Scaling

parameters αr, αc ≥ 1
2: for t = 1, . . . , T do
3: Observe star-convex At and build the estimated feasible action set Ãf

t using (6) and (7)
4: Compute action Xt = argmax

x∈Ãf
t
Ṽ r
t (x) (see (8) and (9) for the definition of Ṽ r

t )
5: Take action Xt and observe reward and cost signals (Rt, Ct)
6: end for

(recall x0 = ∥x0∥e0). For any regularization parameter λ > 0, we define the regularized covariance
matrix in round t as

Σt = λI +

t−1∑
s=1

XsX
⊤
s , Σo,⊥

t = λIo,⊥ +

t−1∑
s=1

Xo,⊥
s (Xo,⊥

s )⊤, (3)

where Io,⊥ = I − e0e
⊤
0 , and Σt and Σo,⊥

t are the Gram matrices of the actions and projection of
actions into the sub-space V⊥

o , respectively. Using (3), we define the regularized least-squares
estimates θ̂t and µ̂o,⊥t of the reward θ∗ and cost µo,⊥∗ parameters as

θ̂t = Σ−1
t

t−1∑
s=1

RsXs, µ̂o,⊥t = (Σo,⊥
t )†

t−1∑
s=1

C⊥
s X

o,⊥
s . (4)

To define high probability confidence sets around estimators θ̂t and µ̂o,⊥t , and to capture how far they
are from θ∗ and µo,⊥∗ , we make use of Theorem 2 in Abbasi-Yadkori et al. (2011). These confidence
sets, and in particular their radii, will play an important role in our algorithm.

Theorem 10 (Thm. 2 in Abbasi-Yadkori et al., 2011) For a fixed δ ∈ (0, 1) and

βt(δ, d) = R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+
√
λS, ∀t ∈ [T ],

it holds with probability (w.p.) at least 1− δ that

∥θ̂t − θ∗∥Σt ≤ βt(δ, d), ∥µ̂o,⊥t − µo,⊥∗ ∥
Σo,⊥

t
≤ βt(δ, d− 1).

Using Theorem 10, we now define the following confidence sets (ellipsoids):

Cr
t (αr) = {θ ∈ Rd : ∥θ − θ̂t∥Σt ≤ αrβt(δ, d)},

Cc
t (αc) = {µ ∈ V⊥

0 : ∥µ− µ̂o,⊥t ∥
Σo,⊥

t
≤ αcβt(δ, d− 1)},

(5)

around the estimates θ̂t and µ̂o,⊥t with scaling parameters αr, αc ≥ 1. It is important to note that
these confidence sets are asymmetrically scaled, i.e., their radii have been scaled with different
scaling parameters. Theorem 10 suggests that θ∗ ∈ Cr

t (αr) and µo,⊥∗ ∈ Cc
t (αc), each with probability

at least 1− δ.
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Algorithm 1 contains the pseudo-code of our upper confidence bound (UCB) algorithm, which
we call Linear Constraint Linear UCB (LC-LUCB). Our algorithm leverages the asymmetrically
scaled confidence sets in (5) to appropriately balance its optimism about rewards and pessimism
about costs. LC-LUCB starts by constructing a feasible (safe) action set Ãf

t from the original action
set At. In each round t, this is done by first computing a pessimistic cost value for an action x as

Ṽ c
t (x) =

⟨xo, e0⟩c0
∥x0∥︸ ︷︷ ︸

known cost along e0

+ max
µo,⊥∈Cc

t (αc)
⟨xo,⊥, µo,⊥⟩︸ ︷︷ ︸

max possible cost in V⊥
o

. (6)

Note that the known cost of x along e0 equals ⟨xo,e0⟩c0
∥x0∥ , since c0

∥x0∥ is the unit cost in direction e0.

Whenever the confidence interval Cc
t (αc) holds, Ṽ c

t (x) overestimates the cost of action x (pessimistic).
The feasible action set constructed by LC-LUCB in round t, i.e., Ãf

t , contains all actions whose
pessimistic cost value Ṽ c

t (·) is at most τ , i.e.,

Ãf
t =

{
x ∈ At : Ṽ

c
t (x) ≤ τ

}
. (7)

We construct Ãf
t pessimistically in order to ensure that all its actions are indeed feasible. It is

important to note that Ãf
t is always non-empty, since as a consequence of Assumption 5, the safe

action x0 is always in Ãf
t .

LC-LUCB then proceeds by playing optimistically w.r.t. the reward signal, but only makes use of
the feasible actions x ∈ Ãf

t . In each round t, this is done by first computing an optimistic reward
value for every action x ∈ At as

Ṽ r
t (x) = max

θ∈Cr
t (αr)

⟨x, θ⟩, (8)

and then playing the arm Xt that maximizes it over the feasible action set Ãf
t (see Lines 2 and 3 of

Algorithm 1). The following proposition contains the closed-form expressions for the pessimistic
cost and optimistic reward values defined by (6) and (8).

Proposition 11 The optimistic reward and pessimistic cost values in (8) and (6) can be written in
closed-form as

Ṽ r
t (x) = ⟨x, θ̂t⟩+ αrβt(δ, d)∥x∥Σ−1

t
, (9)

Ṽ c
t (x) =

⟨xo, e0⟩c0
∥x0∥

+ ⟨xo,⊥, µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥xo,⊥∥
(Σo,⊥

t )−1 . (10)

Proof See Appendix A.

The leading term ⟨xo,e0⟩c0
∥x0∥ in (10) accounts for the knowledge of µo,⊥∗ derived from the information we

possess about the safe action x0 and its cost c0. Later we use (9) and (10) to derive a computationally
efficient implementation of Algorithm 1 for a specific form of the action sets {At}Tt=1.

Remark 12 (unknown r0 and c0) As discussed in Section 2, knowing a safe action x0 is absolutely
necessary for solving the constrained contextual linear bandit setting studied in this paper, otherwise,

9
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it would be impossible to satisfy the constraint from the very first round. However, we can relax
the assumption of knowing the reward r0 and cost c0 of the safe arm. In this case, we start by
playing x0 for T0 rounds in order to construct conservative estimates ∆̂r and ∆̂c of the quantities
1− r0 and τ − c0 that satisfy ∆̂r ≥ 1−r0

2 and ∆̂c ≥ τ−c0
2 . We then warm-start our estimators for

θ∗ and µ∗ using the data collected by playing x0 and instead of only estimating µo,⊥∗ , we build an
estimator for µ∗ over all its directions, including e0, just as LC-LUCB already does for θ∗. Finally,
we set αr

αc
= ∆̂r

∆̂c
and run Algorithm 1 for rounds t > T0. The regret incurred during these first T0

rounds can be upper bounded by O
(
log(T/δ)max

(
1−r0

(τ−c0)2
, 1
1−r0

))
. We report the details of this

modification of LC-LUCB in Appendix F.1.

4.1.1 COMPUTATIONAL TRACTABILITY OF LC-LUCB

As described above, each round of LC-LUCB involves computing a feasible action set followed by
selecting an action that maximizes a linear function over this set. Unfortunately, even if the action
set At is convex, the feasible set Ãf

t can have a form for which maximizing the linear function is
intractable.3 Here we show (see Lemma 14) that whenever the action set At is star-convex and finite,
(see Definition 8), the optimization in Line 2 of LC-LUCB can be solved efficiently.

Definition 13 (finite star-convex set) We say a star-convex set (see Definition 13) is finite, if there
exist finitely many points {xi}Mi=1 such that A = ∪M

i=1{[x, xi]}.

It is important to emphasize that according to Definition 13, a finite star-convex set is not
necessarily a finite set and can have infinitely many members. We now report the main result of
this section that shows when the action sets {At}Tt=1 are all star-convex and finite, the LC-LUCB
algorithm is tractable. We also empirically evaluate LC-LUCB in Section 4.5.

Lemma 14 If all action sets {At}Tt=1 are star-convex around the safe action x0 and finite, then
LC-LUCB can be implemented in polynomial time.

Proof We may write each action set At as At = ∪M
i=1{[x0, xi]}, because it is star-convex around

x0 and finite. Since x0 ∈ Ãf
t , the feasible action set constructed by LC-LUCB, Ãf

t = At ∩ {x :

Ṽ c
t (x) ≤ τ}, is also a finite star-convex set around x0 and can be written as Ãf

t = ∪M
i=1{[x0, x̃i]},

where x̃i = α∗
i xi and α∗

i = argmax
α∈[0,1], αxi∈Ãf

t
α. Solving for α∗

i can be done by a simple line
search, hence, Line 2 in Algorithm 1 can be executed by optimizing over each ray [x0, x̃i], ∀i ∈ [M ].
This optimization is easy because Ṽ r

t (x) is a convex function of x (see Eq. 9), and thus, its maximum
over the one dimensional set [x0, x̃i] is achieved at either x0 or x̃i.

4.2 Regret Analysis

In this section, we prove a regret bound for Algorithm 1. Although LC-LUCB can be used in
the presence of arbitrary action sets At, we require At to be star convex around x0 for our regret

3. Note that even in unconstrained linear bandits, the optimization problem that needs to be solved in each round of
OFU-style algorithms (e.g., Abbasi-Yadkori et al. 2011) can be intractable even when the set is convex. This is because
the problem of maximizing a quadratic form over a convex set can be hard in general.

10
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analysis. Let {Xt}Tt=1 be the sequence of actions selected by Algorithm 1 and {Ṽ r
t (Xt)}Tt=1 be their

corresponding optimistic reward values defined by (8) and (9). We start by adding {Ṽ r
t (Xt)}Tt=1 to

and subtracting them from the regret defined by (1), and rewriting it as

RC(T ) =
T∑
t=1

V r
t (x

∗
t )− Ṽ r

t (Xt)︸ ︷︷ ︸
(I)

+
T∑
t=1

Ṽ r
t (Xt)− V r

t (Xt)︸ ︷︷ ︸
(II)

, (11)

where for any action x ∈ At, we denote its true reward value by V r
t (x) = ⟨x, θ∗⟩.

Optimism via Asymmetric Scaling. In the unconstrained bandit algorithms that are based on
the OFU principle (e.g., Abbasi-Yadkori et al. 2011), term (I) in (11) is upper-bounded by 0. This
is because most of such algorithms select action Xt that maximizes an optimistic reward value
Ṽ r
t : At → R, and thus, satisfies Ṽ r

t (xt) ≥ V r
t (x), ∀x ∈ At. Unfortunately, this property does

not hold for LC-LUCB, because it selects Xt as the maximizer of Ṽ r
t (x) over the pessimistic set

Ãf
t (see Eq. 8 and Line 2 in Algorithm 1), hence it is possible that x∗t ̸∈ Ãf

t . Therefore, it does not
immediately follow that Ṽ r

t (Xt) ≥ V r
t (x

∗
t ) in LC-LUCB. We get around this limitation using the

asymmetrically scaled confidence sets Cr
t (αr) and Cc

t (αc) defined in (5). By selecting αr to be much
larger than αc, we ensure that the scaling of Ṽ r

t (x) is enough to overcome the potential absence of
x∗t in Ãf

t . This imbalanced scaling allows us to enjoy the benefits of optimism without requiring the
optimal action x∗t to be in the estimated set of feasible actions Ãf

t . Although stretching the optimistic
reward value Ṽ r

t (x) allows us to control (I), the extra scaling causes challenges in bounding (II).
As we will show in Lemma 18, the amount of stretching needed for the argument to work for (II)
depends on the ratio between the sub-optimality, 1− r0, and safety gap, τ − c0, of the safe action x0.
Our results indicate that the smaller the value of 1−r0

τ−c0
, the harder learning becomes.

Before bounding the two terms in (11), we define the following event that according to Theo-
rem 10 holds with probability at least 1− δ:

E :=
{
∥θ̂t − θ∗∥Σt ≤ βt(δ, d) ∧ ∥µ̂o,⊥t − µo,⊥∗ ∥

Σo,⊥
t

≤ βt(δ, d− 1), ∀t ∈ [T ]
}
. (12)

Bounding (II): Let θ̃t = argmaxθ∈Cr
t (αr)max

x∈Ãf
t
⟨x, θ⟩ be the parameter attaining the opti-

mistic maximum. Since Ṽ r
t (Xt) = ⟨Xt, θ̃t⟩, we may write (II) =

∑T
t=1⟨Xt, θ̃t − θ∗⟩. We now state

the following proposition that is used in bounding (II). This proposition is a direct consequence of
Eq. 20.9 and Lemma 19.4 in Lattimore and Szepesvári (2019). Similar result has also been reported
in the appendix of Amani et al. (2019).

Proposition 15 For any given (possibly random) sequence of actions {xs}ts=1, let Σt be its corre-
sponding Gram matrix defined by (3) with λ ≥ 1. Then, for all t ∈ [T ], we have

T∑
s=1

∥xs∥Σ−1
s

≤

√
2Td log

(
1 +

TL2

λ

)
.

Armed with Proposition 15, we now prove an upper-bound for (II) in the following lemma.

11
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Lemma 16 On event E defined by (12) (that holds with probability at least 1− δ), we have

(II) ≤ αrβT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
.

Proof The following inequalities hold on event E :

T∑
t=1

⟨Xt, θ̃t⟩ − ⟨Xt, θ∗⟩
(a)
≤

T∑
t=1

∥xt∥Σ−1
t
∥θ̃t − θ∗∥Σt

(b)
≤

T∑
t=1

αrβt(δ, d)∥Xt∥Σ−1
t

(c)
≤ αrβT (δ, d)

T∑
t=1

∥Xt∥Σ−1
t

(d)
≤ αrβT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
.

(a) follows from Cauchy Schwartz. (b) is a direct consequence of conditioning on E that implies
∥θ̃t − θ∗∥ ≤ αrβt(δ, d). (c) holds because βt(δ, d) is an increasing function of t. (d) follows from
Proposition 15.

Bounding (I): Here we show that by appropriately selecting the reward and cost scaling param-
eters αr and αc, we can guarantee optimism for our constrained linear bandit formulation, i.e., in
each round t ∈ [T ], the optimistic reward value of the action selected by Algorithm 1, Ṽ r

t (Xt),
overestimates the true reward value of the optimal action, V r

t (x
∗
t ). This result implies that (I) can

be upper-bounded by 0. Before proving the main result of this section (Lemma 18), we state the
following supporting lemma, whose proof is reported in Appendix A.

Lemma 17 For any x ∈ Rd, the following inequality holds:

∥xo,⊥∥
(Σo,⊥

t )†
≤ ∥x∥Σ−1

t
. (13)

We now find the appropriate conditions on αr and αc in order to ensure optimism for Algorithm 1.

Lemma 18 If the scaling parameters αr and αc are set such that αr, αc ≥ 1 and (1+αc)(1−r0) ≤
(τ − c0)(αr − 1), then for all t ∈ [T ], with probability at least 1− δ, we have Ṽ r

t (Xt) ≥ V r
t (x

∗
t ).

Proof On event E , for any action x ∈ At, we have

Ṽ r
t (x) = max

θ∈Cr
t (αr)

⟨x, θ⟩ ≥ ⟨x, θ∗⟩ = V r
t (x). (14)

We divide the proof into two cases depending on whether in each round t ∈ [T ], the optimal action
x∗t belongs to the set of feasible actions Ãf

t , or not.

Case 1. When x∗t ∈ Ãf
t , the result follows immediately, since by definition Xt is a maximizer of

Ṽ r
t (x) over Ãf

t , and thus, we have
Ṽ r
t (Xt) ≥ Ṽ r

t (x
∗
t ). (15)

Combining (14) and (15), we can conclude that Ṽt(Xt) ≥ V r
t (x

∗
t ) as desired.

12
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Case 2. When x∗t ̸∈ Ãf
t , we know that the pessimistic cost value of the optimal action violates

the constraint, i.e., Ṽ c
t (x

∗
t ) > τ , while its true cost value satisfies the constraint, i.e., V c

t (x
∗
t ) :=

⟨xt, µ∗⟩ ≤ τ . Since At is assumed to be star-convex around x0, action γx∗t + (1− γ)x0 ∈ At for all
γ ∈ [0, 1]. Now consider the following mixture action x̃t = γtx

∗
t + (1− γt)x0, where γt ∈ [0, 1] is

the maximum value of γ for which the mixture action belongs to the estimated set of feasible actions,
i.e., x̃t ∈ Ãf

t . Since At is star-convex, all actions γx∗t + (1− γ)x0 for γ ≤ γt are in Ãf
t . From the

definition of x̃t, we have

x̃o,⊥t = γtx
∗,o,⊥
t , (16)

which allows us to write

Ṽ c
t (x

∗
t )

(a)
=

⟨x∗,ot , e0⟩c0
∥x0∥

+ ⟨x∗,o,⊥t , µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥x∗,o,⊥t ∥
(Σo,⊥

t )†
, (17)

Ṽ c
t (x̃t)

(b)
=

(
γt⟨x∗,ot , e0⟩+ (1− γt)⟨x0, e0⟩

)
c0

∥x0∥
+ γt⟨x∗,o,⊥t , µ̂o,⊥t ⟩+ γtαcβt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

(c)
= (1− γt)c0 + γtṼ

c
t (x

∗
t ). (18)

(a) is from the definition of pessimistic cost value in (10), (b) is obtained from the definition of x̃t,
together with (10) and (16), and finally, (c) comes directly from (17).

Since x∗t ̸∈ Ãf
t , from the definition of γt, it is easy to see that Ṽ c

t (x̃t) = τ . Using this fact
and (18), we first write γt in terms of Ṽ c

t (x
∗
t ) and then with the following chain of inequalities obtain

a lower-bound on γt as

γt =
τ − c0

Ṽ c
t (x

∗
t )− c0

=
τ − c0

⟨x∗,o
t ,e0⟩c0
∥x0∥ + ⟨x∗,o,⊥t , µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥x∗,o,⊥t ∥

(Σ0,⊥
t )†

− c0

=
τ − c0

⟨x∗,o
t ,e0⟩c0
∥x0∥ + ⟨x∗,o,⊥t , µo,⊥∗ ⟩+ ⟨x∗,o,⊥t , µ̂o,⊥t − µo,⊥∗ ⟩+ αcβt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

− c0

(a)
≥ τ − c0

⟨x∗,o
t ,e0⟩c0
∥x0∥ + ⟨x∗,o,⊥t , µo,⊥∗ ⟩+ (1 + αc)βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

− c0

(b)
≥ τ − c0

τ − c0 + (1 + αc)βt(δ, d− 1)∥x∗,o,⊥t ∥
(Σo,⊥

t )†

. (19)

(a) holds because

⟨x∗,o,⊥t , µ̂o,⊥t − µo,⊥∗ ⟩ ≤ ∥µ̂o,⊥t − µo,⊥∗ ∥
Σo,⊥

t
∥x∗,o,⊥t ∥

(Σo,⊥
t )†

≤ βt(δ, d− 1)∥x∗,o,⊥t ∥
(Σo,⊥

t )†
.

(b) holds because x∗t is the optimal action in round t, and thus, ⟨x∗,o
t ,e0⟩c0
∥x0∥ + ⟨x∗,o,⊥t , µo,⊥∗ ⟩ ≤ τ .

13
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Now let’s assume that ⟨x0, θ∗⟩ = ⟨x∗t , θ∗⟩ −∆t for all t ∈ [T ]. Since both Xt and x̃t are in the
feasible set Ãf

t , and given the definition of Xt, we may write

Ṽ r
t (Xt) ≥ Ṽ r

t (x̃t) = ⟨x̃t, θ̂t⟩+ αrβt(δ, d)∥x̃t∥Σ−1
t

= ⟨x̃t, θ∗⟩+ ⟨x̃t, θ̂t − θ∗⟩+ αrβt(δ, d)∥x̃t∥Σ−1
t

(a)
≥ ⟨x̃t, θ∗⟩+ (αr − 1)βt(δ, d)∥x̃t∥Σ−1

t

(b)
≥ ⟨x̃t, θ∗⟩+ (αr − 1)βt(δ, d− 1)∥x̃o,⊥t ∥

(Σo,⊥
t )†

(c)
= γt⟨x∗t , θ∗⟩+ (1− γt)⟨x0, θ∗⟩+ γt(αr − 1)βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

(d)
= ⟨x∗t , θ∗⟩ − (1− γt)∆t + γt(αr − 1)βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

= ⟨x∗t , θ∗⟩+ γt

(
(αr − 1)βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

+∆t

)
−∆t︸ ︷︷ ︸

(V)

. (20)

(a) follows from the definition of event E in (12) and Cauchy Schwartz, i.e.,

|⟨x̃t, θ̂t − θ∗⟩| ≤ ∥θ̂t − θ∗∥Σt∥x̃t∥Σ−1
t

≤ βt(δ, d)∥x̃t∥Σ−1
t
.

(b) is a consequence of Lemma 17. (c) is from the definition of x̃t and (16). (d) follows from the
assumption that ⟨x0, θ∗⟩ = ⟨x∗t , θ∗⟩ −∆t.

Now we derive conditions under which term (V) in (20) is non-negative. To reduce notation
clutter let C1 := βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

. Then, the following inequality holds for (V):

I ≥ τ − c0
τ − c0 + (1 + αc)C1

(
(αr − 1)C1 +∆t

)
−∆t,

where the inequality follows by lower-bounding γt using (19).
Consequently if τ−c0

τ−c0+(1+αc)C1
((αr − 1)C1 +∆t) −∆t ≥ 0, then (V) will be non-negative,

which holds whenever
(τ − c0)(αr − 1) ≥ (1 + αc)∆t. (21)

By the definition of ∆t and the fact that rewards are bounded in [0, 1] (Assumption 4), we have
∆t ≤ 1− r0. Thus, inequality (21) holds if (τ − c0)(αr − 1) ≥ (1 + αc)(1− r0). This concludes
the proof, since we proved that Ṽ r

t (Xt) ≥ V r
t (x

∗
t ) in both cases where x∗t ∈ Ãf

t and x∗t /∈ Ãf
t .

After bounding the two terms in (11) using Lemmas 16 to 18, we are now ready to state the main
theorem of this section, which is a regret bound for Algorithm 1.

Theorem 19 (regret bound for LC-LUCB) Let αc = 1 and αr = 1 + 2(1−r0)
τ−c0

. Then, with proba-
bility at least 1− δ, the regret of Algorithm 1 can be upper-bounded as

RC(T ) ≤ αrβT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
. (22)
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Proof The proof follows directly from bounding (I) and (II) in the regret decomposition (11) using
Lemmas 16 to 18.

Remark 20 When λ = 1, ignoring logarithmic dependencies on T and 1/δ, the term βT (δ, d)
in (22) is of order

√
d. Thus, this parameter setting yields a regret bound of order RC(T ) =

Õ
(
(1 + 1−r0

τ−c0
)d
√
T
)
, which shows that LC-LUCB recovers the same dependence on d and T as

unconstrained OFU-style linear bandit algorithms (e.g., Abbasi-Yadkori et al. 2011). The extra
term of Õ( 1−r0

τ−c0
d
√
T ) is the cost of satisfying the constraint and the multiplier 1−r0

τ−c0
represents the

hardness of the constrained problem.

4.3 Lower Bound

We also prove a min-max lower-bound for the constrained contextual linear bandit setting de-
scribed in Section 2. We prove in Theorem 21 that no algorithm can obtain a regret better than
O
(
max(d

√
T , 1−r0

(τ−c0)2
)
)

on all such constrained contextual linear bandit instances. This result
substantiates our intuition that learning while satisfying linear constraints is statistically harder than
the unconstrained case, particularly when the safety gap τ − c0 is small w.r.t. the horizon T and the
reward suboptimality 1− r0.

Theorem 21 Let τ, c0, r0 ∈ (0, 1), B = max
(
d
√
T

8e2
, 1−r0
21(τ−c0)2

)
, and assume T ≥ max(d −

1, 168eB1−r0
). Then, for any algorithm A, there is a pair of reward and cost parameters (θ∗, µ∗),

such that RC(T ) ≥ B.

Proof See Appendix E.

Theorem 21 shows that if 1
τ−c0

= Ω(
√
T ) and r0 ≤ 1/2, learning while satisfying linear constraints

is impossible in a min-max sense since in this case our lower bound indicates the regret must grow
at least linearly. As an additional example, if 1

τ−c0
=

√
d T 3/8 and r0 ≤ 1/2, Theorem 21 implies

that a constrained learner must incur Ω(d T 3/4) regret, while unconstrained learning can achieve a
regret rate of order d

√
T . This shows the existence of a fundamental statistical separation between

constrained and unconstrained learning as a function of the ratio between the safety gap τ − c0 and
the reward suboptimality 1 − r0. The question of whether the quadratic dependence on τ − c0 is
optimal in this lower-bound remains open.

4.4 Extension to Multiple Constraints

The formulation, algorithm, and analysis of the previous sections can be extended to multiple
constraints. In this setting, when the agent takes an action Xt in each round t ∈ [T ], in addition
to the reward signal Rt, it observes a vector of m cost signals C(i)

t = ⟨Xt, µ
(i)
∗ ⟩+ ξ

c(i)
t , ∀i ∈ [m],

where the reward and costs satisfy the assumptions listed in Section 2. The agent is required to
satisfy m stage-wise linear constraints ⟨Xt, µ

(i)
∗ ⟩ ≤ τi, ∀i ∈ [m]. Here we also need the following

assumption for the safe action, which is a generalization of Assumption 5 to multiple constraints.

Assumption 22 (safe action) There is a known safe action x0 ∈ At, ∀t ∈ [T ], with known reward
r0 and costs c(i)0 = ⟨x0, µ(i)∗ ⟩ ≤ τi, ∀i ∈ [m].
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In extending LC-LUCB to multiple constraints, we maintain estimators
{
µ̂
o,⊥(i)
t

}m
i=1

for all cost

parameters
{
µ
(i)
∗
}m
i=1

, and construct the feasible action set as

Ãf
t =

{
x ∈ At : Ṽ

c(i)
t (x) ≤ τi, ∀i ∈ [m]

}
, (23)

where Ṽ c(i)
t (·) is the pessimistic cost value for the i’th cost signal. The rest of the algorithm remains

unchanged.
To derive a regret bound for the extension of LC-LUCB to multiple constraints, it suffices to

prove the following extension of Lemma 18.

Lemma 23 If we set the scaling parameters αr and αc such that αr, αc ≥ 1 and (1+αc)(1− r0) ≤
∆∗

c(αr − 1), where ∆∗
c = mini∈[m](τ − c

(i)
0 ), then for all t ∈ [T ], with probability at least 1− δ, we

have Ṽ r
t (Xt) ≥ V r(x∗t ).

Proof A simple modification to the proof of Lemma 18 yields the desired result. Note that substituting
τ − c0 with ∆∗

c and following the same argument as in the derivation of inequality (19) yields

γt ≥
∆∗

c

∆∗
c + (1 + αc)βt(δ, d− 1)∥x∗,o,⊥t ∥

(Σo,⊥
t )†

. (24)

Plugging this result into (20) and continuing with the proof logic of Lemma 18 concludes the proof.

Lemma 23 allows us to derive a regret bound for the extension of LC-LUCB to multiple
constraints, identical to the one we proved for the single-constraint case in Theorem 19.

Theorem 24 Let αc = 1 and αr = 1 + 2(1 − r0)/∆
∗
c . Then, with probability at least 1 − δ, the

regret of the extension of LC-LUCB to multiple constraints can be upper-bounded as

RC(T ) ≤ αrβT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
. (25)

We show in Appendix F.1 how the multi-constraint algorithm (similar to the single-constraint
case) can be changed to handle the scenario where the reward r0 and costs {c(i)0 }mi=1 of the safe
action are unknown.

4.5 Experiments

In this section we compare the performance of LC-LUCB and the Safe-LTS algorithm of Moradipari
et al. (2019) in two simulation-based experiments. In each of these scenarios we show that LC-LUCB
performs better than Safe-LTS. In all our experiments, we run a regularized least-squares regression
by setting λ = 1.

In our first experiment, presented in Figure 1, we consider a linear bandit problem in which
the safe action is the zero-vector x0 = 0 and the arm sets, At, are 10 dimensional star-convex sets
generated by the 10 cyclic shifted versions of the vector v/∥v∥, where v = (0, 1, . . . , 9). For all t,
the action set At is the star-convex set defined by this set of actions and the lines emanating from
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Figure 1: Regret and cost evolution of LC-LUCB and Safe-LTS. Left: Constraint Threshold τ = 0.2.
Center: Constraint Threshold τ = 0.5. Right: Constraint Threshold τ = 0.8. Learning is harder for
smaller thresholds τ . The arm sets At are 10 dimensional star-convex sets generated by the 10 cyclic
shifted versions of the vector v/∥v∥, where v = (0, 1, . . . , 9). There exist optimal unconstrained
solutions with cost less than 0.561. This is less than the cost threshold τ = 0.8. This is why the
lower right cost evolution plot shows convergence to a level below the 0.8 threshold.

the zero vector. We set θ∗ = v/∥v∥ where v = (0, 1, . . . , 9) and4 µ∗ = (9, 8, . . . , 0)/∥v∥ to be
the ℓ2 normalized version of v and (9, . . . , 0). In Figure 1, we plot the regret and cost evolution of
LC-LUCB for different threshold values τ , and compare them with those for the Safe-LTS algorithm
of Moradipari et al. (2019). The safe action is the zero vector and each plot is an average over 10
runs. We show that as the threshold τ is driven to 0, the problem gets progressively harder. The
results show that for all threshold values and dimensions, LC-LUCB has a better regret profile than
Safe-LTS, while satisfying the constraint. We report the results for dimensions d = 3 and d = 5 of
this problem, and also show the reward evolution (in addition to regret and cost) for LC-LUCB and
Safe-LTS in Appendix 5.4.

In our second experiment, presented in Figure 2, we consider the setting where the action sets At

are the unit ball (infinite) and the safe action is the zero vector. Our plots compare the regret across
time of Safe-LTS and LC-LUCB when averaged across problem instances. We generate different
problem instances by sampling θ∗ and µ∗ vectors uniformly from the unit sphere and also generate
thresholds τ by sampling uniformly from the interval [0, 1]. Each sample run of this experiment
corresponds to a sample problem instance. In order to make the optimization problem at each round
of LC-LUCB tractable for this infinite size action set, we approximate At by sampling 100 vectors
{vi}1000i=1 uniformly from the unit sphere and defining an approximate (still infinite) action set Ãt,

4. The vector (9, 8, . . . , 0) is the flipped version of v.
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Figure 2: Unit sphere, left dimension d = 5, right dimension d = 10.

consisting of the rays from zero to each of the vi. Figure 2 compares the regret of LC-LUCB with
Safe-LTS for dimensions d = 5 and d = 10 of this problem. Each plot is averaged over 10 sample
runs and the shaded regions around the curves correspond to 1 standard deviation. Similar to the
previous experiment, LC-LUCB shows better performance than Safe-LTS.

5 Constraint Relaxation: From High Probability to Expectation

In Section 4, we studied a constrained contextual linear bandit setting in which the agent maximizes
its expected T -round cumulative reward (minimizes its expected T -round constrained pseudo-regret)
while satisfying a stage-wise linear high probability constraint defined in (2). In many constrained
or multi-objective problems, making sure that the constraints are not violated or certain objectives
are within certain thresholds with high probability would result in overly conservative strategies. A
common solution to balance performance and constraint satisfaction is to replace conservative high
probability constraints with more relaxed in-expectation constraints. In this section, we study such a
relaxation in which the high probability constraint (2) is replaced with a constraint in expectation. We
describe this relaxed setting in Section 5.1. We then propose an algorithm for this setting, provide its
regret analysis, specialize our results to multi-armed bandits (MABs),5 and report experimental results
as a proof of concept. Additionally, in Section 5.3 we extend these results to the scenario where the
reward and cost functions are non-linear. We propose an algorithm for this setting with regret analysis.
We use a characterization of function class complexity based on the eluder dimension (Russo and
Van Roy, 2013) in the derivation of this regret bound.

5.1 Linear Contextual Bandits with In-expectation Stage-Wise Linear Constraints

In the relaxed setting we study in this section, in each round t ∈ [T ], the agent selects its action
Xt ∈ At according to its policy πt ∈ Πt = ∆At , i.e., Xt ∼ πt. The goal of the agent is to produce
a sequence of policies {πt}Tt=1 with maximum expected cumulative reward over the course of T
rounds, while satisfying the stage-wise linear constraint

EX∼πt [⟨X,µ∗⟩] ≤ τ, ∀t ∈ [T ], (26)

5. Unlike the high probability constrained setting of Section 4 that is impossible to solve it in MABs (see Remark 7), the
relaxed setting we study in this section can be solved for MABs.
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Algorithm 2 Optimistic-Pessimistic Linear Bandit (OPLB)
1: Input: Safe action x0 with reward r0 and cost c0; Constraint threshold τ ≥ 0; Scaling

parameters αr, αc ≥ 1
2: for t = 1, . . . , T do
3: Compute regularized least-squares estimates θ̂t and µ̂o,⊥t using (4)
4: Construct confidence sets Cr

t (αr) and Cc
t (αc) using (5)

5: Observe At and construct the estimated feasible policy set Π̃f
t using (33)

6: Compute policy (πt, θ̃t) = argmax
π∈Π̃f

t , θ∈Cr
t (αr)

Ex∼π[⟨x, θ⟩]
7: Take action Xt ∼ πt and observe reward and cost signals (Rt, Ct)
8: end for

where τ ≥ 0 is the constraint threshold. Note that unlike the constraint (2) studied in Section 4
which is in high probability, this constraint is in expectation.

The policy πt that the agent selects in each round t ∈ [T ] should belong to the set of feasible
policies over the action set At, i.e., Πf

t = {π ∈ Πt : EX∼π[⟨X,µ∗⟩] ≤ τ}. Maximizing the expected
cumulative reward in T rounds is equivalent to minimizing the T -round constrained (pseudo)-regret

RΠ(T ) =
T∑
t=1

EX∼π∗
t
[⟨X, θ∗⟩]− EX∼πt [⟨X, θ∗⟩], (27)

where πt, π∗t ∈ Πt for all t ∈ [T ], and π∗t ∈ max
π∈Πf

t
EX∼π[⟨X, θ∗⟩] is the optimal feasible

policy in round t. The terms EX∼π[⟨X, θ∗⟩] in (27) and EX∼π[⟨X,µ∗⟩] in (26) are the expected
reward and cost of policy π, respectively. Thus, a feasible policy is the one whose expected cost is
below the constraint threshold τ , and the optimal feasible policy is a feasible policy with maximum
expected reward. We use the shorthand notations xπ := EX∼π[X], Rπ := EX∼π[⟨X, θ∗⟩], and
Cπ := EX∼π[⟨X,µ∗⟩] for the expected action, reward, and cost of a policy π, respectively. With
these notations, we may write the T -round regret in (27) as

RΠ(T ) =
T∑
t=1

Rπ∗
t
−Rπt . (28)

Notation. Here we use some extra notations in addition to those defined in Section 2. We define the
projection of a policy π into Vo and V⊥

o , as xoπ := EX∼π[X
o] and xo,⊥π := EX∼π[X

o,⊥], respectively.

5.1.1 ALGORITHM

We propose a UCB-style algorithm for this setting, called optimistic-pessimistic linear bandit
(OPLB), because it maintains a pessimistic assessment of the set of available policies, while acting
optimistically within this set. Algorithm 2 contains the pseudo-code of OPLB. Similar to LC-LUCB
(Algorithm 1), the main idea behind Algorithm 2 is to balance exploration and constraint satisfaction
by asymmetrically scaling the radii of the reward and cost confidence sets with different scaling
factors αr and αc. This will prove crucial in the regret analysis of OPLB. We now describe in detail
the steps of OPLB that differ from the LC-LUCB algorithm.

Just as in the analysis of LC-LUCB, the choice of αr, αc ≥ 1 and Theorem 10 suggest that
θ∗ ∈ Cr

t (αr) and µo,⊥∗ ∈ Cc
t (αc), each w.p. at least 1 − δ. Replacing actions with policies in (6)
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and (8), we define the optimistic reward and pessimistic cost values for any policy π in round t as

Ṽ r
t (π) := max

θ∈Cr
t (αr)

EX∼π[⟨X, θ⟩], (29)

Ṽ c
t (π) :=

⟨xoπ, e0⟩c0
∥x0∥

+ max
µ∈Cc

t (αc)
EX∼π[⟨X,µ⟩]. (30)

Similar to Proposition 11, we can derive the following closed-form expressions for Ṽ r
t (π) and Ṽ c

t (π).

Proposition 25 We may write Ṽ r
t (π) and Ṽ c

t (π), defined in (29) and (30), in closed-form as

Ṽ r
t (π) = ⟨xπ, θ̂t⟩+ αrβt(δ, d)∥xπ∥Σ−1

t
, (31)

Ṽ c
t (π) =

⟨xoπ, e0⟩c0
∥x0∥

+ ⟨xo,⊥π , µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥xo,⊥π ∥
(Σo,⊥

t )−1 . (32)

Proof See Appendix C.

Following the same logic as in the high probability formulation, we adapt the pessimistic
estimation of the feasible action set Ãf

t in (7) to the policy setting. After observing the action set At,
OPLB constructs its feasible (safe) policy set as

Π̃f
t =

{
π ∈ ∆At : Ṽ

c
t (π) ≤ τ

}
. (33)

Note that Π̃f
t is an approximation of Πf

t , i.e., the set of feasible policies over the action set At, and
is not an empty set because π0 is always in Π̃f

t . We can think of the safe action x0 as a policy π0
whose probability mass is all on x0, and thus, we have xoπ0

= x0 and xo,⊥π0 = 0. Plugging π0 into (32)

yields Ṽ c
t (π0) =

⟨xo
π0

,e0⟩c0
∥x0∥ = c0 ≤ τ . We prove in the following proposition that all policies in Π̃f

t

are feasible with high probability.

Proposition 26 With probability at least 1− δ, for all rounds t ∈ [T ], all policies in Π̃f
t are feasible.

Proof See Appendix C.

In Line 6 of Algorithm 2, the agent computes its policy πt as the one that is safe (belongs to Π̃f
t )

and attains the maximum optimistic reward value, i.e., Ṽ r
t (π) = maxθ∈Cr

t (αr)⟨xπ, θ⟩ = ⟨xπt , θ̃t⟩.
We refer to θ̃t as the optimistic reward parameter.

Computational Complexity of OPLB. As shown in Line 6 of Algorithm 2, in each round t, OPLB
solves the following optimization problem:

max
π∈∆At

⟨xπ, θ̂t⟩+ αrβt(δ, d)∥xπ∥Σ−1
t
, (34)

s.t.
⟨xoπ, e0⟩c0

∥x0∥
+ ⟨xo,⊥π , µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥xo,⊥π ∥

(Σo,⊥
t )−1 ≤ τ.

However, solving (34) could be challenging. The bottleneck is in computing the safe policy set
Π̃f

t , which is the intersection of ∆At and the ellipsoidal constraint. This is a consequence of the
intractability of the optimization problem that needs to be solved in each round of OFU-style algo-
rithms (e.g., Abbasi-Yadkori et al. 2011). In contrast to LC-LUCB (see Section 4.1.1), solving (34)
could be intractable even when the action set At is finite star-convex around the safe action x0.
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Unknown r0 and c0. In case that the reward r0 and cost c0 of the safe action are unknown,
OPLB may use the same warm-starting sub-routine as in LC-LUCB to estimate them with suf-
ficient accuracy. The regret incurred during these first T0 rounds can be upper bounded by
O
(
log(T/δ)max

(
1−r0

(τ−c0)2
, 1
1−r0

))
. We discuss this in more details in Appendix F.1.

5.1.2 REGRET ANALYSIS

In this section, we prove a regret bound for the OPLB algorithm. The main challenge in obtaining this
regret bound is to ensure that optimism holds in each round t ∈ [T ], i.e., the solution (πt, θ̃t) of (34)
satisfies Ṽ r

t (πt) = ⟨xπt , θ̃t⟩ ≥ V r
t (π

∗
t ). This is not obvious, since the approximate feasible policy

set Π̃f
t might have been constructed such that it does not contain the optimal policy π∗t . Similar to

the analysis of LC-LUCB in Section 4.2, our main algorithmic innovation is the use of asymmetric
confidence intervals Cr

t (αr) and Cc
t (αc) for θ∗ and µo,⊥∗ , respectively, that allows us to guarantee

optimism by appropriately selecting the ratio αr
αc

. We will show in our analysis that similar to the
case of LC-LUCB, αr

αc
depends on the ratio 1−r0

τ−c0
.

Theorem 27 (Regret Bound for OPLB) Let αc = 1 and αr = 1 + 2(1−r0)
τ−c0

. Then, with probability
at least 1− 2δ, the regret of OPLB satisfies

RΠ(T ) ≤
2L(αr + 1)βT (δ, d)√

λ

√
2T log(1/δ) + (αr + 1)βT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
. (35)

We provide a proof sketch for Theorem 27 here. Most of the results are obtained in a similar
fashion as those in the analysis of the LC-LUCB algorithm in Section 4.2. We use the high probability
event E defined by (12). We first decompose the regret RΠ(T ) in (27) as

RΠ(T ) =
T∑
t=1

V r
t (π

∗
t )− Ṽ r

t (πt)︸ ︷︷ ︸
(I)

+
T∑
t=1

Ṽ r
t (πt)− V r

t (πt)︸ ︷︷ ︸
(II)

, (36)

where for any policy π ∈ Πf
t , we denote by V r

t (π) = ⟨xπ, θ∗⟩, its true reward value and by Ṽ r
t (πt)

its optimistic reward value defined by (29) and (31). We first bound term (II) in (36) by further
decomposing it as

(II) =

T∑
t=1

⟨xπt , θ̃t⟩ − ⟨Xt, θ̃t⟩︸ ︷︷ ︸
(III)

+
T∑
t=1

⟨Xt, θ̃t⟩ − ⟨Xt, θ∗⟩︸ ︷︷ ︸
(IV)

+
T∑
t=1

⟨Xt, θ∗⟩ − ⟨xπt , θ∗⟩︸ ︷︷ ︸
(V)

.

When the event E defined by (12) holds, (IV) can be bounded by Lemma 16 as

(IV) ≤ αrβT (δ, d)

√
2Td log

(
1 +

TL2

λ

)
.

We bound the sum of (III) and (V) in the following lemma.
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Lemma 28 On the event E in (12), for any δ′ ∈ (0, 1), with probability at least 1− δ′, we have

(III) + (V) ≤ 2L(αr + 1)βT (δ, d)√
λ

·
√
2T log(1/δ′) .

Proof Applying Cauchy-Schwartz to (III) + (V) =
∑T

t=1 ⟨xπt − xt, θ̃t − θ∗⟩, we may write
|⟨xπt − Xt, θ̃t − θ∗⟩| ≤ ∥xπt − Xt∥Σ−1

t
∥θ̃t − θ∗∥Σt . Since θ̃t ∈ Cr

t (αr) on event E , we have

∥θ̃t − θ∗∥Σt ≤ αrβt(δ, d). From the definition of Σt, we have Σt ⪰ λI , and thus, ∥xπt −Xt∥Σ−1
t

≤
∥xπt −Xt∥/

√
λ ≤ 2L/

√
λ. Hence, Yt =

∑t
s=1⟨xπs −Xs, θ̃s − θ∗⟩ is a martingale sequence with

|Yt − Yt−1| ≤ 2L(αr + 1)βt(δ, d)/
√
λ, for all t ∈ [T ]. Using the Azuma–Hoeffding inequality and

since βt is an increasing function of t, i.e., βt(δ, d) ≤ βT (δ, d), ∀t ∈ [T ], with probability at least
1− δ′, we may write P

(
YT ≥ 2LαrβT (δ, d)

√
2T log(1/δ′)/λ

)
≤ δ′, which concludes the proof.

We now bound term (I) in (36). Similar to the regret proof for LC-LUCB, setting the values
of αr and αc to 1 and then solving for πt is not enough to ensure Ṽ r

t (πt) ≥ V r
t (π

⋆
t ). However, an

appropriate choice of radii αr and αc for the confidence intervals can help us to get around this issue.
Lemma 29 contains the main result in which we prove that by appropriately setting αr and αc, we
can guarantee that in each round t ∈ [T ], OPLB selects an optimistic policy, i.e., a policy πt whose
optimistic reward, Ṽ r

t (πt), is larger than the reward of the optimal policy, V r
t (π

∗
t ), on event E . This

means that with this choice of αr and αc, (I) is always non-positive. This result is the in-expectation
version of the one proved in Lemma 18.

Lemma 29 On the event E defined by (12), if we set αr and αc such that αr, αc ≥ 1 and (1 +
αc)(1− r0) ≤ (τ − c0)(αr − 1), then for any t ∈ [T ], we have Ṽ r

t (πt) ≥ V r
t (π

∗
t ).

Lemma 29 is a corollary of Lemma 18. The exact same proof argument holds with a few
notational substitutions. The optimal action x∗t ∈ Ãf

t is substituted with xπ∗
t
, which is the average

action vector of π∗t ∈ Π̃f
t . Consequently, the mixture action X̃t is substituted with xπ̃t

, where
π̃t = ηtπ

∗
t + (1− ηt)π0, π0 is the safe policy that always selects the safe action x0, and ηt ∈ [0, 1]

is the maximum value of η for which the mixture policy belongs to the set of feasible policies,
i.e., π̃t ∈ Π̃f

t . The rest of the proof remains unchanged.

5.2 Specializing to Multi-Armed Bandits

We now specialize the results of this section to multi-armed bandits (MABs) and show that the
structure of the MAB problem allows a computationally efficient implementation of our OPLB
algorithm as well as an improvement in its regret bound.

In the MAB setting, the action set consists of K arms A = {1, . . . ,K}, where each arm a ∈ [K]
has a reward and a cost distribution with means r̄a, c̄a ∈ [0, 1]. In each round t ∈ [T ], the agent
constructs a policy πt over A, pulls an arm At ∼ πt, and observes a reward-cost pair (RAt , CAt)
sampled i.i.d. from the reward and cost distributions of arm At. Similar to the constrained contextual
linear bandit case studied above, the goal of the agent is to produce a sequence of policies {πt}Tt=1

with maximum expected cumulative reward over T rounds, i.e.,
∑T

t=1 EAt∼πt [r̄At ], while satisfying
the stage-wise linear constraint EAt∼πt [c̄At ] ≤ τ, ∀t ∈ [T ]. Moreover, Arm 1 is assumed to be the
known safe arm, i.e., its mean reward r̄1 and cost c̄1 are known, and c̄1 ≤ τ .
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Algorithm 3 Optimism-Pessimism Bandit (OPB)
1: Input: Number of arms K; Mean reward r̄1 and cost c̄1 of the safe arm; Constraint threshold
τ ≥ 0; Scaling parameters αr, αc ≥ 1

2: for t = 1, . . . , T do
3: Compute estimates {ura(t)}a∈A and {uca(t)}a∈A
4: Form the approximate LP (37) using the estimates in Line 3
5: Compute policy πt by solving (37)
6: Play arm a ∼ πt
7: end for

Optimistic Pessimistic Bandit (OPB) Algorithm. Let {Ta(t)}Ka=1 and {r̂a(t), ĉa(t)}Ka=1 be the
total number of times that arm a has been pulled and the estimated mean reward and cost of arm
a up until round t. In each round t ∈ [T ], OPB relies on the high-probability upper-bounds on
the mean reward and cost of the arms, i.e., {ura(t), uca(t)}Ka=1, where ura(t) = r̂a(t) + αrβa(t),
uca(t) = ĉa(t) + αcβa(t), βa(t) =

√
2 log(1/δ′)/Ta(t), and constants αr, αc ≥ 1. In order to

produce a feasible policy, OPB solves the following linear program (LP) in each round t ∈ [T ]:

max
π∈∆K

∑
a∈A

πa u
r
a(t), s.t.

∑
a∈A

πa u
c
a(t) ≤ τ. (37)

As (37) indicates, OPB selects its policy by being optimistic about reward and pessimistic about
cost (using an upper-bound for both r and c). Algorithm 3 contains the pseudo-code of OPB.
Note that similar to OPLB, OPB constructs an (approximate) feasible (safe) policy set of the form
Π̃f

t =
{
π ∈ ∆K :

∑
a∈A πau

c
a(t) ≤ τ

}
(see Eq. 37) and sets βa(0) = 0, ∀a ∈ A.

Computational Complexity of OPB. Unlike OPLB whose optimization problem might be complex
to solve, OPB can be implemented extremely efficiently. The following lemma shows that (37)
always has a solution (policy) with support of at most 2. This property allows us to solve (37) in
closed-form without a LP solver and to implement OPB very efficiently.

Lemma 30 There exists a policy that solves (37) and has at most 2 non-zero entries.

Proof See Appendix D.1.

Regret Analysis of OPB. We also prove the following regret-bound for OPB.

Theorem 31 Let δ = 4KTδ′, αc = 1, and αr = 1 + 2(1−r̄1)
τ−c̄1

. Then, with probability at least 1− δ,
the regret of OPB satisfies

RΠ(T ) ≤
(
1 +

2(1− r̄1)

τ − c̄1

)
×
(
2
√
2KT log(4KT/δ) + 4

√
T log(2/δ) log(4KT/δ)

)
.

Proof See Appendix D.2.

The main component of this proof is the following lemma, which is the analogous to Lemma 29
(and therefore also Lemma 18) in the contextual linear bandit case.
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Lemma 32 If we set αr and αc such that αr, αc ≥ 1 and (1 + αc)(1 − r̄1) ≤ (τ − c̄1)(αr − 1),
then with high probability, for any t ∈ [T ], we have Ea∼πt [u

r
a(t)] ≥ Ea∼π∗ [r̄a].

Proof See Appendix D.2.

Remark 33 The constrained contextual linear bandit formulation of Section 5.1 is general enough
to include the constrained MAB one described here. As a result the regret bound of OPLB in
Theorem 27 can be instantiated for the constrained MAB setting, in which case it yields a regret
bound of order Õ

(
(1 + 1−r̄1

τ−c̄1
)K

√
T
)
. However, our OPB regret bound in Theorem 31 is of order

Õ((1 + 1−r̄1
τ−c̄1

)
√
KT ), which shows

√
K improvement over simply casting MAB as an instance of

contextual linear bandit and using the regret bound of OPLB.

Lower-bound. We also prove a min-max lower-bound for our constrained MAB problem. Our
lower-bound shows that no algorithm can attain a regret better than O

(
max(

√
KT, 1−r̄1

(τ−c̄1)2
)
)

for
this problem. The formal statement of the lower-bound can be found below.

Theorem 34 Let τ, c̄1, r̄1 ∈ (0, 1), B = max
(

1
27

√
(K − 1)T , 1−r̄1

21(τ−c̄1)2

)
, and assume T ≥

max(K − 1, 168eB1−r̄1
). Then, for any algorithm there is a pair of reward and cost parameters (θ∗, µ∗),

such that RC(T ) ≥ B.

Proof See Appendix E.

Extension to Multiple Constraints. In the case of m constraints, the learner receives m cost
signals after pulling each arm. The cost vector of the safe arm c1 satisfies c1(i) < τi, ∀i ∈ [m],
where {τi}mi=1 are the constraint thresholds. Similar to single-constraint OPB, multi-constraint OPB
is computationally efficient. The main reason is that the LP of m-constraint OPB has a solution
with at most (m+ 1) non-zero entries. We also obtain a regret-bound of Õ(

√
KT

mini∈[K](τi−c1(i))
) for

m-constraint OPB. The proofs and details of this case are reported in Appendix D.4.

Unknown c̄1 and r̄1. The same warm starting sub-routine as in LC-LUCB and OPLB can be used
for computing sufficiently accurate estimators of r̄1 and c̄1 for OPB. A detailed explanation can be
found in Appendix F.1.

5.3 Extension to Nonlinear Rewards and Costs

Building on a rich line of research that extends bandit problems to function approximation—such
as Russo and Van Roy (2013), Zhou et al. (2020), Foster and Rakhlin (2020), and Liu and Wang
(2023)—we investigate how to adapt constrained bandit problems to this setting. In this work, we
leverage the eluder dimension framework to develop our bounds and algorithms.

In this section, we explore constrained learning beyond linearity and extend the OPLB algorithm
to the setting where the reward and cost functions are possibly nonlinear functions of the actions.
We call the resulting algorithm Optimistic-Pessimistic Nonlinear Bandit algorithm (OPNLB). In
each round t ∈ [T ], the agent is given an action set At ⊆ A, where A is a formal action set. Upon
taking action Xt ∈ At the learner observes a reward-cost pair (Rt, Ct) such that Rt = θ∗(Xt) + ξrt
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and Ct = µ∗(Xt) + ξct , where θ∗(·) ∈ Gr and µ∗(·) ∈ Gc are the mean reward and mean cost
functions that belong to known function classes Gr and Gc, and ξrt and ξct are conditionally zero-mean
sub-Gaussian random variables. The rewards and costs satisfy the following assumption.

Assumption 35 (Bounded Responses) For all t ∈ [T ] and x ∈ At, the mean rewards and costs
are bounded, i.e., θ∗(x), µ∗(x) ∈ [0, 1]. Moreover, the rewards and costs observed in all rounds of
the algorithm are also bounded, i.e., Rt, Ct ∈ [0, 1], ∀t ∈ [T ].

Moreover, the action sets At satisfy the safe action Assumption 5, i.e., there is an action x0 ∈ At,
∀t ∈ [T ], with known average reward r0 = θ∗(x0) and known average cost c0 = µ∗(x0), such that
c0 < τ . The policy πt according to which an action is taken in round t is an element of ∆At . We
denote by Πf

t = {π ∈ ∆At : EX∼π[µ∗(X)] ≤ τ} and π∗t = argmax
π∈Πf

t
EX∼π[θ∗(X)] the set of

feasible polices and the optimal policy in round t ∈ [T ]. Finally, we define the T -round regret as

RΠ(T ) =

T∑
t=1

EX∼π∗
t

[
θ∗(X)

]
− EX∼πt

[
θ∗(X)

]
. (38)

The nonlinear reward and cost model that we discuss in this section does not allow for a high
probability constraint satisfaction scenario without making strong assumptions on the action set. The
star-convexity requirement of Definition 8 does not extend to non-linear action spaces. This is the
reason why we study an expected constraint scenario instead. Before introducing our algorithm for
this setting, we formally define the eluder dimension, i.e., a notion of complexity relevant to adaptive
selection procedures introduced in Russo and Van Roy (2013).

Definition 36 (Action Independence and Eluder Dimension) Let ε > 0 and {xi}ni=1 be a set of
actions. Then, we have the following definitions:

• An action x is ε-dependent on {xi}ni=1 w.r.t. the function space G, if any f, f ′ ∈ G satisfying√∑n
i=1(f(xi)− f ′(xi))2 ≤ ε also satisfy |f(x)− f ′(x)| ≤ ε. An action x is ε-independent

of {xi}ni=1 w.r.t. G if it is not ε-dependent on {xi}ni=1.

• The ε-eluder dimension deluder(G, ε) is the length of the longest sequence of elements in
{xi}ni=1 such that for some ε′ ≥ ε, every element is ε′-independent of its predecessors.

Throughout this section, we will use the notation dreluder = deluder(Gr, 1/T ) and dceluder =
deluder(Gc, 1/T ) to denote the eluder dimensions of the function spaces Gr and Gc, respectively.

Optimistic-Pessimistic Non-Linear Bandit (OPNLB). In each round t ∈ [T ], we define two
confidence sets

Cr
t (δ) =

{
θ ∈ Gr : ∥θ − θ̂t∥Dt ≤ γr(t, δ/2)

}
,

Cc
t (δ) =

{
µ ∈ Gc : ∥µ− µ̂t∥Dt ≤ γc(t, δ/2) and µ(x0) = c0

}
,

where Dt = {(Xs, Rs, Cs)}t−1
s=1 is the dataset of actions, rewards, and costs observed up until the

beginning of round t, ∥f∥Dt =
√∑

x∈Dt
f2(x) is the norm defined by the dataset Dt for any

function f : At → R, and γr(t, δ) and γc(t, δ) are the reward and cost confidence set radii defined as

γr(t, δ) = 512 log

(
24|Gr| log(2t)

δ

)
, γc(t, δ) = 512 log

(
24|Gc| log(2t)

δ

)
.
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Algorithm 4 Optimistic-Pessimistic Nonlinear Bandit (OPNLB)
1: Input: Safe action x0 with reward r0 and cost c0; Constraint threshold τ ≥ 0; Scaling

parameters αr, αc ≥ 1
2: for t = 1, . . . , T do
3: Compute θ̂t, µ̂t using least squares
4: Observe action set At and construct the estimated feasible policy set Π̃f

t using (40).
5: Compute policy πt = argmax

π∈Π̃f
t
Ṽ r
t (π).

6: Take action Xt ∼ πt and observe reward and cost signals (Rt, Ct)
7: end for

Let E be the event defined as

E := {θ∗ ∈ Cr
t (δ) ∧ µ∗ ∈ Cr

t (δ), ∀t ∈ [T ]} . (39)

This is the same event as in (12) for the linear case where the confidence sets Cr
t (δ) and Cc

t (δ) satisfy
θ∗ ∈ Cr

t (δ) and µ∗ ∈ Cc
t (δ) for all t ∈ [T ]. Corollary 55 in Appendix G.1 implies that P(E) ≥ 1− δ.

We define pessimistic cost Ṽ c
t (π) and optimistic reward Ṽ r

t (π) values for a policy π in each
round t as

Ṽ c
t (π) = max

µ∈Cc
t (δ)

Ex∼π

[
µ(x)

]
,

Ṽ r
t (π) = max

θ∈Cr
t (δ)

Ex∼π

[
θ(x)

]
+ αr max

µ′,µ′′∈Cc
t (δ)

Ex∼π

[
µ′(x)

]
− Ex∼π

[
µ′′(x)

]
.

Note that Ṽ r
t is the combination of an optimistic reward estimator plus an artificially inflated

confidence interval that depends on the cost function class. We define the set of feasible policies in
round t as

Π̃f
t =

{
π ∈ ∆At : Ṽ

c
t (π) ≤ τ

}
. (40)

We now show that by appropriately setting the scaling parameters αr and αc, the policy πt selected
by Algorithm 4 is feasible and a basic optimistic relationship holds between πt and π∗t , i.e., Ṽ r

t (πt) ≥
V r
t (π

∗
t ). The following lemma is the equivalent of Lemma 29 from the linear case.

Lemma 37 If the event E defined by (39) holds and the scaling parameter satisfies αr =
1−r0
τ−c0

, then

for all t ∈ [T ], we have Ṽ r
t (πt) ≥ V r

t (π
∗
t ) = θ∗(π

∗
t ,At).

Proof See Appendix G.2.

The proof of Lemma 37 follows a similar logic as that of Lemmas 18 and 29. Given this result,
we now prove a regret bound for OPNLB in terms of the eluder dimensions dreluder and dceluder. When
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E holds for all t ∈ [T ], the following inequalities are satisfied

RΠ(T ) =
T∑
t=1

EX∼π∗
t

[
θ∗(X)

]
− EX∼πt

[
θ∗(X)

]
(a)
≤

T∑
t=1

Ṽ r
t (πt)− EX∼πt

[
θ∗(X)

]
=

T∑
t=1

max
θ∈Cr

t (δ)
EX∼πt

[
θ(X)

]
− EX∼πt

[
θ∗(X)

]
+ αr max

µ,µ′∈Cc
t (δ)

EX∼πt

[
µ(X)

]
− EX∼πt

[
µ′(X)

]
(b)
≤

T∑
t=1

max
θ,θ′∈Cr

t (δ)
EX∼πt

[
θ(X)

]
− EX∼πt

[
θ′(X)

]
+ αr max

µ,µ′∈Cc
t (δ)

EX∼πt

[
µ(X)

]
− EX∼πt

[
µ′(X)

]
.

(a) holds because of Lemma 37. (b) holds because θ∗ ∈ Cr
t (δ) for all t ∈ [T ] with probability at least

1− δ. The inequality sequence above implies that the regret can be upper-bounded by a weighted
sum of uncertainty widths. We bound the sum of the uncertainty widths using Lemma 3 in Chan
et al. (2023) (by setting the parallelism parameter P = 1) as

T∑
t=1

max
θ,θ′∈Cr

t (δ)
EX∼πt

[
θ(X)

]
− EX∼πt

[
θ′(X)

]
= O

(
dreluder +

√
Tdreluderγr(T, δ/2)

)
and

T∑
t=1

max
µ,µ′∈Cc

t (δ)
EX∼πt

[
µ(X)

]
− EX∼πt

[
µ′(X)

]
= O

(
dceluder +

√
Tdceluderγc(T, δ/2)

)
.

Combining these results and using P(E) ≥ 1− δ, we obtain the main result of this section, which is
a regret bound for the OPNLB algorithm (Algorithm 4).

Theorem 38 (OPNLB regret-bound) With probability at least 1 − δ, the regret of Algorithm 4
satisfies

RΠ(T ) = O
(√

Tdreluderγr(T, δ/2) +
1− r0
τ − c0

√
Tdceluderγc(T, δ/2) + dreluder +

1− r0
τ − c0

dceluder

)
.

Remark 39 It is not possible to extend the results of this section (the non-linear case) to the high
probability setting studied in Section 4. In the linear high probability scenario, star-convexity around
the safe action x0 allows the learner to form a model of µ⋆(x) by playing a convex combination of
the safe action and any other action x. In the non-linear setting, since At ⊂ A is a formal action
set, closure of At under convexity is not defined. Thus, it is possible to have actions x that are safe,
i.e., µ⋆(x) < τ , but can never b explored safely.

Computational Tractability of ONPLB. Step 5 of Algorithm 4 involves solving a constrained
optimization problem that, in general, can be intractable. It remains an open question how to design
tractable algorithms for constrained non-linear bandit problems.

27



PACCHIANO, GHAVAMZADEH AND BARTLETT

Figure 3: Regret of OPB for three instances of the randomly generated constrained multi-armed
bandit problem with the number of arms equal to 5 (a), 10 (b), and 20 (c). The cost and reward of
the safe arm are set to c̄1 = r̄1 = 0.

Figure 4: Regret (left), cost (middle), and reward (right) evolution of OPB in a 4-armed bandit
problem with Bernoulli reward and cost distributions with means r̄ = (0.1, 0.2, 0.4, 0.7) and c̄ =
(0, 0.4, 0.5, 0.2). The cost of the safe arm (Arm 1) is c̄1 = 0. The constraint threshold is set to
τ = 0.8 (top) and τ = 0.2 (bottom).
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5.4 Experimental Results

We run a set of experiments to show the behavior of the OPB algorithm and validate our theoretical
results. In our first experiment, presented in Figure 3, we produce random instances of our constrained
multi-armed bandit problem. In all the instances, we set the safe arm to have reward and cost 0.
We generate different problem instances by sampling the Bernoulli mean rewards and costs of the
rest of the arms uniformly at random from the interval [0, 1]. Each sample run in this experiment
corresponds to a sample problem instance. In Figure 3, we report the regret of OPB for each of the
number of arms K equal to 5 (left), 10 (middle), and 20 (right), and for three constraint threshold
τ values, 0.8 (red), 0.5 (blue), and 0.2 (black). For each parameter setting we sample 10 random
problem instances and report the average regret curves with a shaded region corresponding to the
±0.5 standard deviation around the regret. Figure 3 also shows that the regret of OPB grows inversely
with the safety gap.

In the next experiment, presented in Figure 4, we consider a K = 4-armed bandit problem in
which the reward and cost distributions of the arms are Bernoulli with means r̄ = (0.1, 0.2, 0.4, 0.7)
and c̄ = (0, 0.4, 0.5, 0.2). Arm 1 is the safe arm with the expected cost c̄1 = 0. We gradually reduce
the constraint threshold τ , and as a result, the safety gap τ − c̄1, and show the regret (left), cost
(middle), and reward (right) evolution of OPB. The cost and reward of OPB are in blue and the
optimal cost and reward are in red. All results are averaged over 10 runs and the shade is the ±0.5
standard deviation around the regret.

Figure 4 shows that the regret of OPB grows as we reduce τ , and as a result the safety gap
(left). This is in support of our theories that identified the safety gap as the complexity of this
constrained bandit problem. The results also indicate that the algorithm is successful in satisfying
the constraint (middle) and in reaching the optimal reward/performance (right). In the bottom three
plots of Figure 4, the cost of the best arm (Arm 4) is equal to the constraint threshold τ = 0.2. Thus,
the cost of the optimal policy (red) and the constraint threshold (black) overlap in the cost evolution
(middle) sub-figure. In Figure 8 in Appendix 5, we report more experiments with the same 4-armed
bandit problem instance with constraint threshold values τ = 0.5 and 0.6. Using these intermediate
threshold values we provide further support to our results showing the the safety gap governs the
complexity in this constrained bandit problem.

6 Conclusions

In this work, we expand the frontier of the study of constrained bandit problems with anytime
cost constraints. We extend the results of Pacchiano et al. (2021) in a variety of ways. First, we
introduce the high probability constraint satisfaction regime for linear bandit problems with stage-
wise constraints along with the LC-LUCB algorithm (Section 4). This formulation captures problems
where an in-expectation constraint is not sufficient to ensure safety. We show that in contrast with
OPLB, when the action set is finite and star-convex, the LC-LUCB algorithm is computationally
tractable (Section 4.1.1). This stands in marked contrasts with the case of OPLB, that only has a
tractable form in the multi-armed bandit setting (see the OPB algorithm in Section 5.2). Second, we
improve the regret-bound of OPLB reported in Pacchiano et al. (2021) to better identify the quantity
representing the hardness of the constrained problem 1−r0

τ−c0
.

Finally, we go beyond the scenario of linear rewards and cost functions and explore the nonlinear
regime where the reward and cost functions come from arbitrary function classes of bounded eluder
dimension (Section 5.3). When the reward and cost function classes are arbitrary and the requirement
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is to satisfy an anytime expected cost constraint, we introduce the OPNLB algorithm and prove it
satisfies a regret-bound equivalent to the regret-bound for OPLB where the eluder dimension of the
reward and cost function classes plays the role of the linear dimension in the linear case. Since the
eluder dimension of linear classes equals the dimension of the ambient space, these results subsume
the regret-bounds for OPLB in Pacchiano et al. (2021).

The design of all of our algorithms (LC-LUCB, OPLB, OPB and OPNLB) relies on the principle
of optimism-pessimism and the technique of asymmetric confidence intervals that enables the
provable analysis of optimistic-pessimistic algorithms. We hope the results of this work can serve
as inspiration to extend the study of stage-wise constrained problems to richer scenarios such as
reinforcement learning and beyond.
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Appendix A. Proofs of Section 4

Proof of Proposition 11: We only prove the statement (9) for the optimistic reward Ṽ r
t (x).

The proof of statement (10) for the pessimistic cost Ṽ c
t (x) is analogous. From the definition of

the confidence set Cr
t (αr), any vector θ ∈ Cr

t (αr) can be written as θ̂t + v, where v satisfying
∥v∥Σt ≤ αrβt(δ, d). Thus, we may write

Ṽ r
t (x) = max

β∈Cr
t (αr)

⟨x, θ⟩ = ⟨x, θ̂t⟩+ max
v:∥v∥Σt≤αrβt(δ,d)

⟨x, v⟩

(a)
≤ ⟨x, θ̂t⟩+ αrβt(δ, d)∥x∥Σ−1

t
. (41)

(a) By Cauchy-Schwartz, for all v, we have ⟨x, v⟩ ≤ ∥x∥Σ−1
t
∥v∥Σt . The result follows from the

condition on v in the maximum, i.e., ∥v∥Σt ≤ αrβt(δ, d).

Let us define v∗ := αrβt(δ,d)Σ
−1
t x

∥x∥
Σ−1
t

. This value of v∗ is feasible because

∥v∗∥Σt =
αrβt(δ, d)

∥x∥Σ−1
t

√
x⊤Σ−1

t ΣtΣ
−1
t x =

αrβt(δ, d)

∥x∥Σ−1
t

√
x⊤Σ−1

t x = αrβt(δ, d).

We now show that v∗ also achieves the upper-bound in the above inequality resulted from Cauchy-
Schwartz

⟨x, v∗⟩ = αrβt(δ, d)x
⊤Σ−1

t x

∥x∥Σ−1
t

= αrβt(δ, d)∥x∥Σ−1
t
.

Thus, v∗ is the maximizer and we can write

Ṽ r
t (x) = ⟨x, θ̂t⟩+ ⟨x, v∗⟩ = ⟨x, θ̂t⟩+ αrβt(δ, d)∥x∥Σ−1

t
,

which concludes the proof.

Proof of Lemma 18: In order to prove the desired result, it is enough to show that

(xo,⊥)⊤(Σo,⊥
t )†xo,⊥ ≤ x⊤Σ−1

t x.

Without loss of generality, we can assume xo = e1, where e1 is the first basis vector. Note that in this
case Σo,⊥

t can be thought of as a sub-matrix of Σt such that Σt[2 :, 2 :] = Σo,⊥
t , where Σt[2 :, 2 :]

denotes the sub-matrix with row and column indices from 2 onward. Using the following formula
for the inverse of a positive semi-definite (PSD) symmetric matrix[

Z δ
δ⊤ A

]
=

[
1
D −A−1δ

D

− δ⊤A−1

D A−1 + A1δδ⊤A−1

D

]
,

where D = z − δ⊤A−1δ, we may write Σ−1
t as

Σ−1
t =

[
1/D − (Σo,⊥

t )†Σt[2,:d]
D

−Σ⊤
t [2:d](Σo,⊥

t )†

D (Σo,⊥
t )† +

(Σo,⊥
t )†Σt[2:d]Σt[2:d](Σ

o,⊥
t )†

D

]
,
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where D = Σt[1, 1]− Σt[2 : d]⊤(Σo,⊥
t )†Σt[2 : d] ∈ R. This allows us to write

x⊤(Σ−1
t )x =

x(1)2 − 2x(1)Σt[2 : d]⊤(Σo,⊥
t )†x[2 : d]

D

+
x[2 : d]⊤(Σo,⊥

t )†Σt[2 : d]Σt[2 : d]⊤(Σo,⊥
t )†x[2 : d]

D
+ x[2 : d]⊤(Σo,⊥

t )†x[2 : d]

≥ x[2 : d]⊤(Σo,⊥
t )†x[2 : d].

The result follows by noting that x[2 : d] = xo,⊥.

Appendix B. Additional Experiments for Section 4

In this section, we present a comprehensive set of results extending the experiments presented in
Figure 1. We consider a linear bandit problem in which the safe action equals the zero vector x0 = 0
and the arm sets At are d dimensional star convex sets generated by the d cyclic shifted versions
of the vector v/∥v∥ where v = (0, 1, · · · , d− 1). Just like in Figure 1, the action set At is the star
convex set defined by this set of actions and the lines emanating from the zero vector. We let We let
θ∗ = v/∥v∥ and µ⋆ = (d− 1, d− 2, · · · , 0)/∥v∥, where (d− 1, d− 2, · · · , 0) is the flipped version
of (0, 1, · · · , d− 1).

In Figures 5, 6, and 7, we plot the regret and cost evolution of LC-LUCB for dimensions
d = 3, 5, 10, and threshold values τ = 0.2, 0.5, 0.8, and compare them with those for the Safe-LTS
algorithm of Moradipari et al. (2019). The results for dimensions d = 3, 5 and 10 are presented in
Figures 5, 6, and 7 respectively. We show that as the threshold τ is driven to 0, the problem gets
progressively harder. The results show that LC-LUCB has a better regret profile than Safe-LTS,
while satisfying the constraint, for all threshold values and dimensions.

Appendix C. Proofs of Section 5

Proof of Proposition 25: The proof follows the exact same structure as Proposition 11. Instead of
using Equation 41 we utilize the following identity,

Ṽ r
t (π) = max

θ∈Cr
t (αr)

EX∼π[⟨X, θ⟩] = max
θ∈Cr

t (αr)
⟨xπ, θ⟩ = ⟨xπ, θ̂t⟩+ max

v:∥v∥Σt≤αrβt(δ,d)
⟨xπ, v⟩

(a)
≤ ⟨xπ, θ̂t⟩+ αrβt(δ, d)∥xπ∥Σ−1

t
.

The rest of the argument remains the same, substituting x by xπ.

Proof of Proposition 26: Recall that

c̃π,t =
⟨xoπ, e0⟩c0

∥x0∥
+ ⟨xo,⊥π , t̂o,⊥π ⟩+ αcβt(δ, d− 1)∥xo,⊥π ∥

(Σo,⊥
t )−1 ≤ τ.
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Dimension d = 3.

Figure 5: LC-LUCB: Dimension d = 3. Top: Constraint Threshold τ = 0.2. Center: Constraint
Threshold τ = 0.5. Bottom: Constraint Threshold τ = 0.8. The shaded regions around the curves
correspond to one standard deviation.

Conditioned on the event E defined in Eq. 12, it follows that

|⟨xo,⊥π , µ̂o,⊥t − µo,⊥∗ ⟩| ≤ ∥µo,⊥∗ − µ̂o,⊥t ∥
Σo,⊥

t
∥xπ∥(Σo,⊥

t )−1

≤ ⟨xo,⊥π , µ̂o,⊥t − µo,⊥∗ ⟩βt(δ, d− 1)∥xπ∥(Σo,⊥
t )−1 .

Thus, we have

0 ≤ ⟨xo,⊥π , µ̂o,⊥t − µo,⊥∗ ⟩+ βt(δ, d− 1)∥xπ∥(Σo,⊥
t )−1 . (42)
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Dimension d = 5.

Figure 6: LC-LUCB: Dimension d = 5. Top: Constraint Threshold τ = 0.2. Center: Constraint
Threshold τ = 0.5. Bottom: Constraint Threshold τ = 0.8. The shaded regions around the curves
correspond to one standard deviation.

Note that

cπ =
⟨xoπ, e0⟩c0

∥x0∥
+ ⟨xo,⊥π , µo,⊥∗ ⟩ (43)

≤ ⟨xoπ, e0⟩c0
∥x0∥

+ ⟨xo,⊥π , µ̂o,⊥t ⟩+ αcβt(δ, d− 1)∥xo,⊥π ∥
(Σo,⊥

t )−1︸ ︷︷ ︸
(V)

.

The above inequality holds by adding the inequality in Eq. 42 to Eq. 43. Since by assumption we
have (V) ≤ τ for all π ∈ Πt, we obtain that cπ ≤ τ which concludes the proof.
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Dimension d = 10.

Figure 7: LC-LUCB: Dimension d = 10. Top: Constraint Threshold τ = 0.2. Center: Constraint
Threshold τ = 0.5. Bottom: Constraint Threshold τ = 0.8. The shaded regions around the curves
correspond to one standard deviation.

Appendix D. Constrained Multi-Armed Bandits

D.1 The LP Structure

The main purpose of this section is to prove the optimal solutions of the linear program from (37) are
supported on a set of size at most 2. This structural result will prove important to develop simple
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efficient algorithms to solve for solving it. Let’s recall the form of the Linear program in (37), i.e.,

max
π∈∆K

∑
a∈A

πau
r
a(t), s.t.

∑
a∈A

πau
c
a(t) ≤ τ.

Let’s start by observing that in the case K = 2 with A = {a1, a2} and uca1(t) < τ < uca2(t), the
optimal policy π∗ is a mixture policy satisfying:

π∗a1 =
uca2(t)− τ

uca2(t)− uca1(t)
, π∗a2 =

τ − uca1(t)

uca2(t)− uca1(t)
. (44)

The main result in this section is the following Lemma:

Lemma 40 (support of π∗) If (37) is feasible, there exists an optimal solution with at most 2 non-
zero entries.

Proof We start by inspecting the dual problem of (37):

min
λ≥0

max
a

λ(τ − uca(t)) + ura(t) (D)

This formulation is easily interpretable. The quantity τ − uca(t) measures the feasibility gap of arm
a, while ura(t) introduces a dependency on the reward signal. Let λ∗ be the optimal value of the dual
variable λ. Define A∗ ⊆ A as A∗ = argmaxa λ

∗(τ − uca(t)) + ura(t). By complementary slackness
the set of nonzero entries of π∗ must be a subset of A∗.

If |A∗| = 1, complementary slackness immediately implies the desired result. If a1, a2 are two
elements of A∗, it is easy to see that:

ura1(t)− λ∗uca1(t) = ura2(t)− λ∗uca2(t),

and thus,

λ∗ =
ura2(t)− ura1(t)

uca2(t)− uca1(t)
. (45)

If λ∗ = 0, the optimal primal value is achieved by concentrating all mass on any of the arms in A∗.
Otherwise, plugging (45) back into the objective of (D) and rearranging the terms, we obtain

(D) = λ∗(τ − uca1(t)) + ura1(t) = ura2(t)

(
τ − uca1(t)

uca2(t)− uca1(t)

)
+ ura1(t)

(
uca2(t)− τ

uca2(t)− uca1(t)

)
.

If uca2(t) ≥ τ ≥ uca1(t), we obtain a feasible value for the primal variable π∗a1 =
τ−uc

a1
(t)

uc
a2

(t)−uc
a1

(t) ,

π∗a2 =
uc
a2

(t)−τ

uc
a2

(t)−uc
a1

(t) and zero for all other a ∈ A\{a1, a2}. Since we have assumed (37) to be

feasible there must be either one arm a∗ ∈ A∗ satisfying a∗ = argmaxa∈A∗ ura(t) and uca∗(t) ≤ τ
or two such arms a1 and a2 in A∗ that satisfy uca2(t) ≥ τ ≥ uca1(t), since otherwise it would
be impossible to produce a feasible primal solution without having any of its supporting arms a
satisfying uca(t) ≤ τ , there must exist an arm a ∈ A∗ with uca(t) < τ . This completes the proof.
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From the proof of Lemma 30 we can conclude the optimal policy is either a delta mass centered
at the arm with the largest reward - whenever this arm is feasible - or it is a strict mixture supported
on two arms.

A further consequence of Lemma 40 is that it is possible to find the optimal solution π∗ to
problem 37 by simply enumerating all pairs of arms (ai, aj) and all singletons, compute their optimal
policies (if feasible) using Equation 44 and their values and selecting the feasible pair (or singleton)
achieving the largest value. More sophisticated methods can be developed by taking into account
elimination strategies to prune out arms that can be determined in advance not to be optimal nor to
belong to an optimal pair. Overall this method is more efficient than running a linear programming
solver on (37).

If we had instead m constraints, a similar statement to Lemma 30 holds, namely it is possible to
show the optimal policy will have support of size at most m+ 1. The proof is left as an exercise for
the reader.

D.2 Regret Analysis

In order to show a regret bound for Algorithm 3, we start with the following regret decomposition:

RΠ(T ) =

T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [r̄a]

=

(
T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [u
r
a(t)]

)
︸ ︷︷ ︸

(I)

+

(
T∑
t=1

Ea∼πt [u
r
a(t)]− Ea∼πt [r̄a]

)
︸ ︷︷ ︸

(II)

.

In order to bound RΠ(T ), we independently bound terms (I) and (II). We start by bounding term (I).
We proceed by first proving an Lemma 32, the equivalent version of Lemma 29 for the multi armed
bandit problem.

D.3 Proof of Lemma 32

Lemma 41 If we set αr and αc such that αr, αc ≥ 1 and (1 + αc)(1 − r̄1) ≤ (τ − c̄1)(αr − 1),
then with high probability, for any t ∈ [T ], we have Ea∼πt [u

r
a(t)] ≥ Ea∼π∗ [r̄a].

Proof Throughout this proof we denote as π0 to the delta function over the safe arm 1. We’ll use the
notation ura(t) = r̄a + ξra(t) and uca(t) = c̄a + ξca(t). We start by noting that under E , and because
αr, αc ≥ 1, then:

(αr−1)βa(t) ≤ ξra(t) ≤ (αr+1)βa(t) ∀a and (αc−1)βa(t) ≤ ξca(t) ≤ (αc+1)βa(t) ∀a ̸= 0.
(46)

If π∗ ∈ Π̃t, it immediately follows that:

Ea∼π∗ [r̄a] ≤ Ea∼π∗ [ura(t)] ≤ Ea∼πt [u
r
a(t)] . (47)

Let’s now assume π∗ ̸∈ Π̃t, i.e., Ea∼π∗ [uca(t)] > τ . Let π∗ = ρ∗π̄∗ + (1 − ρ∗)π0 with
π̄∗ ∈ ∆K [2 : K]6.

6. In other words, the support of π̄∗ does not contain the safe arm 1.
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Consider a mixture policy π̃t = γtπ
∗ + (1− γt)π0 = γtρ

∗π̄∗ + (1− γtρ
∗)π0, where γt is the

maximum γt ∈ [0, 1] such that π̃t ∈ Π̃t. It can be easily established that

γt =
τ − c̄1

ρ∗Ea∼π̄∗ [uca(t)]− ρ∗c̄1
=

τ − c̄1
Ea∼π̄∗ [ρ∗(c̄a + ξca(t))]− ρ∗c̄1

(i)
≥ τ − c̄1
τ − c̄1 + ρ∗(1 + αc)Ea∼π̄∗ [βa(t)]

.

(i) is a consequence of (46) and of the observation that since π∗ is feasible ρ∗Ea∼π̄∗ [c̄a]+(1−ρ∗)c̄1 ≤
τ . Let ∆ = Ea∼π∗ [r̄a]− Ea∼π0 [r̄a]. Since π̃t ∈ Πt, we have

Ea∼πt [u
r
a(t)] ≥ Ea∼π̃t [u

r
a(t)] = Ea∼π̃t [r̄a] + Ea∼π̃t [ξa(t)]

(a)

≥ Ea∼π̃t [r̄a] + (αr − 1)Ea∼π̃t [βa(t)]

(b)

≥ γtEa∼π∗ [r̄a] + (1− γt)Ea∼π0 [r̄a] + (αr − 1)γtρ
∗Ea∼π̄∗ [βa(t)]

= Ea∼π∗ [r̄a] + (1− γt)Ea∼π0 [r̄a]− (1− γt)Ea∼π∗ [r̄a] + (αr − 1)γtρ
∗Ea∼π̄∗ [βa(t)]

= Ea∼π∗ [r̄a]− (1− γt)∆ + (αr − 1)γtρ
∗Ea∼π̄∗ [βa(t)]

= Ea∼π∗ [r̄a] + γt (∆ + (αr − 1)ρ∗Ea∼π̄∗ [βa(t)])−∆︸ ︷︷ ︸
A

.

Where (a) holds by Equation 46, (b) holds by definition of π̃t and because Ea∼π∗ [βa(t)] ≥
Ea∼π̄∗ [βa(t)]. Let C0 = ρ∗Ea∼π̄∗ [βa(t)]. Let’s show conditions under which I ≥. The following
chain of inequalities holds,

A
(a)

≥ τ − c̄1
τ − c̄1 + (1 + αc)C0

(∆ + (αr − 1)C0 −∆)−∆.

Where (a) follows by substituting γ ≥ τ−c̄1
τ−c̄1+(1+αc)C0

. Following the same logic as in the analysis
of Equation 21 in the proof of Lemma 29 we conclude that I is non-negative whenever,

(τ − c̄1)(αr − 1) ≥ (1 + αc)∆.

Since ∆ ≤ 1− r̄1 this concludes the proof.

Proposition 42 If δ = δ′

4KT for δ′ ∈ (0, 1), αr, αc ≥ 1 with (1 + αc)(1− r̄1) ≤ (τ − c̄1)(αr − 1),
then with probability at least 1− δ′

2 , we have

T∑
t=1

Ea∼π∗ [r̄a]− Ea∼πt [u
r
a(t)] ≤ 0

Proof A simple union bound implies that P(E) ≥ 1− δ′

2 . Combining this observation with Lemma
32 yields the result.

Term (II) can be bounded using the confidence intervals radii:
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Proposition 43 If δ = δ′

4KT for an δ′ ∈ (0, 1), then with probability at least 1− δ′

2 , we have

T∑
t=1

Ea∼πt [u
r
a(t)]− Ea∼πt [r̄a] ≤ (αr + 1)

(
2
√
2TK log(1/δ) + 4

√
T log(2/δ′) log(1/δ)

)
.

Proof Under these conditions P(E) ≥ 1− ε
2 . Recall ura(t) = r̂a(t) + αrβa(t) and that conditional

on E , r̄a ∈ [r̂a(t)− βa(t), r̂a(t) + βa(t)] for all t ∈ [T ] and a ∈ A. Thus, for all t, we have

Ea∼πt [u
r
a(t)]− Ea∼πt [r̄a] ≤ (αr + 1)Ea∼πt [βa(t)].

Let Ft−1 be the sigma algebra defined up to the choice of πt and a′t be a random variable distributed
as πt | Ft−1 and conditionally independent from at, i.e., a′t ⊥ at | Ft−1. Note that by definition the
following equality holds:

Ea∼πt [βa(t)] = Ea′t∼πt
[βa(t) | Ft−1].

Consider the following random variables At = Ea′t∼πt
[βa′t(t) | Ft−1] − βat(t). Note that Mt =∑t

i=1Ai is a martingale. Since |At| ≤ 2
√

2 log(1/δ), a simple application of Azuma-Hoeffding7

implies:

P


T∑
t=1

Ea∼πt [βa(t)] ≥
T∑
t=1

βat(t) + 4
√
T log(2/δ′) log(1/δ)︸ ︷︷ ︸

Ec
A

 ≤ ε/2.

We can now upper-bound
∑T

t=1 βat(t). Note that
∑T

t=1 βat(t) =
∑

a∈A
∑T

t=1 1{at = a}βa(t). We
start by bounding for an action a ∈ A:

T∑
t=1

1{at = a}βa(t) =
√

2 log(1/δ)

Ta(T )∑
t=1

1√
t
≤ 2
√
2Ta(T ) log(1/δ).

Since
∑

a∈A Ta(T ) = T and by concavity of
√
·, we have∑

a∈A
2
√
2Ta(T ) log(1/δ) ≤ 2

√
2TK log(1/δ).

Conditioning on the event E ∩ EA whose probability satisfies P(E ∩ EA) ≥ 1− δ′ yields the result.

We can combine these two results into our main theorem:

Theorem 31 Let δ = 4KTδ′, αc = 1, and αr = 1 + 2(1−r̄1)
τ−c̄1

. Then, with probability at least 1− δ,
the regret of OPB satisfies

RΠ(T ) ≤
(
1 +

2(1− r̄1)

τ − c̄1

)
×
(
2
√
2KT log(4KT/δ) + 4

√
T log(2/δ) log(4KT/δ)

)
.

Proof This result is a direct consequence of Propositions 42 and 43 by setting δ = 4KTδ′.

7. We use the following version of Azuma-Hoeffding: if Xn, n ≥ 1 is a martingale such that |Xi −Xi−1| ≤ di, for

1 ≤ i ≤ n, then for every n ≥ 1, we have P(Xn > r) ≤ exp
(
− r2

2
∑n

i=1 d2i

)
.
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D.4 Multiple Constraints

We consider the problem where the learner must satisfy M constraints with threshold values
τ1, . . . , τM . Borrowing from the notation in the previous sections, we denote by as {r̄a}a∈A the
mean reward signals and {c̄(i)a } the mean cost signals for i = 1, . . . ,M . The full information optimal
policy can be obtained by solving the following linear program:

max
π∈∆K

∑
a∈A

πar̄a, s.t.
∑
a∈A

πac̄
(i)
a ≤ τi, for i = 1, . . . ,M. (P-M)

In order to ensure the learner’s ability to produce a feasible policy at all times, we make the following
assumption:

Assumption 44 The learner has knowledge of c̄(i)1 < τi for all i = 1, . . . ,M .

We denote by {r̂a}a∈A and {ĉ(i)a }a∈A, for i = 1, . . . ,M the empirical means of the reward and cost
signals. We call {ura(t)}a∈A to the upper confidence bounds for our reward signal and {uca(t, i)}a∈A,
for i = 1, . . . ,M the costs’ upper confidence bounds:

ura(t) = r̂a(t) + αrβa(t), uca(t, i) = ĉ(i)a (t) + αcβa(t),

where βa(t) =
√

2 log(1/δ)/Ta(t), δ ∈ (0, 1) as before. A straightforward extension of Algorithm
3 considers instead the following M−constraints LP:

max
π∈∆K

∑
a∈A

πa u
r
a(t), s.t.

∑
a∈A

πa u
c
a(t, i) ≤ τi, for i = 1, . . . ,M. (P̂ −M )

We now generalize Lemma 32:

Lemma 45 Let αr, αc ≥ 1 satisfying αc ≤ mini(τi − c̄
(i)
1 )(αr − 1). Conditioning on Ea(t) ensures

that with probability 1− δ:
Ea∼πt [u

r
a(t)] ≥ Ea∼π∗ [r̄a] .

Proof The same argument as in the proof of Lemma 32 follows through, the main ingredient is to real-
ize that γt satisfies the sequence of inequalities in the lemma with τ−c̄1 substituted by min τi−c̄(i)1 .

The following result follows:

Theorem 46 (Multiple Constraints Main Theorem) If ε ∈ (0, 1), αc = 1 and αr =
2

mini τi−c̄
(i)
1

+

1, then with probability at least 1− ε, Algorithm 3 satisfies the following regret guarantee:

RΠ(T ) ≤

(
2

mini τi − c̄
(i)
1

+ 1

)(
2
√

2TK log(4KT/ε) + 4
√
T log(2/ε) log(4KT/ε)

)
Proof The proof follows the exact same argument we used for the proof of Theorem 31 substituting
τ − c̄1 by mini τi − c̄

(i)
1 .
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Appendix E. Lower Bounds

In this section we prove the two lower bounds from the main text. We will do so by exhibiting a
lower bound for the

We start by stating a generalized version of the divergence decomposition lemma for bandits.
The proof is a direct application of Lemma 15.1 in Lattimore and Szepesvári (2019) to this case.

Lemma 47 (Divergence decomposition for constrained multi-armed bandits) Let ν = ((P1, Q1), · · · , (PK , QK))
be the reward and constraint distributions associated with one instance of the single constraint multi-
armed bandit, and let ν ′ = ((P ′

1, Q
′
1), · · · , (P ′

K , Q
′
K)) be the reward and constraint distributions

associated with another constrained bandit instance. Fix some algorithm A and let Pν = PνA and
Pν′ = Pν′A be the probability measures on the cannonical bandit model (see Section 4.6 of Lattimore
and Szepesvári 2019) induced by the T round interconnection of A and ν (respectively A and ν ′).
Then,

KL(Pν ,Pν′) =

K∑
a=1

Eν

[
Ta(T )

]
KL
(
(Pa, Qa), (P

′
a, Q

′
a)
)
,

where Ta(T ) denotes the number of times that arm ”a” has been pulled by A up to time T .

The following two lemmas will also be useful in our lower-bound proof, so we state them here.

Lemma 48 (Gaussian Divergence) The divergence between two multi-variate normal distributions
with means µ1, µ2 ∈ Rd and spherical identity covariance Id is equal to

KL
(
N (µ1, Id),N (µ2, Id)

)
= ∥µ1 − µ2∥2/2.

Lemma 49 The binary relative entropy to be

d(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
,

and satisfies
d(x, y) ≥ (1/2) log(1/4y), (48)

for x ∈ [1/2, 1] and y ∈ (0, 1).

Lemma 50 (Adapted from Kaufmann et al. 2016, Lemma 1.) Let ν, ν ′ be two constrained bandit
models with K arms. Borrow the setup, definitions and notations of Lemma 47, then for any
measurable event B ∈ FT :

KL(Pν ,Pν′) =

K∑
a=1

Eν

[
Ta(T )

]
KL
(
(Pa, Qa), (P

′
a, Q

′
a)
)
≥ d
(
Pν(B),Pν′(B)

)
. (49)

We start by showing that under an appropriate noise assumption, it is possible to reduce the
constrained (in expectation) Multi Armed Bandit (CE-MAB) problem studied in Pacchiano et al.
(2021) to our setting. The argument behind the proof of the main result in this section, the lower
bound Theorem 21 relies on the problem structure behind the LC-LUCB version of the CE-MAB
problem given by this reduction.
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Setup: Let’s first describe the CE-MAB setup. In the constrained K-armed bandit setting, the
action sets satisfy At = ∆K , where ∆K is the K-dimensional simplex. The reward and cost
parameters are reduced to the K-dimensional vectors containing the mean reward and cost values of
the K arms, i.e., θ∗ = (r̄0, . . . , r̄K−1) and µ∗ = (c̄0, . . . , c̄K−1).

In this case Xt ∈ ∆K and we assume that abusing notation at ∼ Xt, an index in [K] is sampled
from the distribution Xt, after which the reward value and the cost satisfy:

Rt = r̄at + νrt , Ct = c̄at + νct ,

where νrt and νct are conditionally zero mean sub-Gaussian random variables. The learner’s objective
is to play policies Xt such that for all t, ⟨Xt, µ∗⟩ ≤ τ while at the same time maximizing ⟨Xt, θ∗⟩.
We work under the assumption that c̄0 is known to the learner and satisfies c̄0 ≤ τ .

Reduction: We now show that it is possible to reduce the CE-MAB problem to the LC-LUCB
setup. Using the notation in Assumption 1 we define ξrt = Rt −

∑
a∈[K]Xt(a)r̄a and ξrt =

Ct −
∑

a∈[K]Xt(a)c̄a. Where Xt(a) corresponds to the a−th coordinate of Xt. Notice that:

RT = ⟨Xt, θ∗⟩+ ξrt , CT = ⟨Xt, µ∗⟩+ ξct ,

with ξrt and ξct both conditionally zero mean subgaussian random variables:
Indeed since {r̄a, c̄a}a∈[K] are all assumed to be bounded, the conditional subgaussianity as-

sumption of ξrt and ξct is satisfied for an appropriate choice of subgaussianity parameter R, dependent
on the subgaussianity parmeters of νrt , ν

c
t and the boundedness of {r̄a, c̄a}a∈[K]. This finalizes the

reduction.
We now proceed to prove Theorem 21 the main result of this section:

Theorem 21 Let τ, c0, r0 ∈ (0, 1), B = max
(
d
√
T

8e2
, 1−r0
21(τ−c0)2

)
, and assume T ≥ max(d −

1, 168eB1−r0
). Then, for any algorithm A, there is a pair of reward and cost parameters (θ∗, µ∗),

such that RC(T ) ≥ B.

Proof If max
(
d
√
T , 1−r0

21(τ−c0)2

)
= d

√
T , then the argument in Theorem 24.1 of Lattimore and

Szepesvári (2019) yields the desired result by noting that the framework of constrained bandits
subsumes linear bandits. In this case we conclude there is a constrained linear bandit instance with
θ∗ ∈ {− 1√

T
, 1√

T
}d and At = [−1, 1]d satisfying:

RC(T ) ≥
d
√
T

8e2
.

Let’s instead focus on the case where B = max
(
d
√
T

8e2
, 1−r0
21(τ−c0)2

)
= 1−r0

21(τ−c0)2
.

Pick any algorithm A. We want to show that the algorithm’s regret on some environment is as
large as B. For the remainder of the proof we restrict ourselves to instances where At = ∆d and
θ∗ = r̄, µ∗ = c̄ with r̄, c̄ ∈ [0, 1]d parametrize a constrained Multi Armed Bandit problem such that
arm 0, the (known) safe arm satisfies r̄0 = r0 and c̄0 = c0.

If there was any such instance r̄, c̄ such that RC(T ) > B there would be nothing to prove.
Hence without loss of generality, and by the way of contradiction we assume algorithm A satisfies
RC(T ) ≤ B for all r̄, c̄ ∈ [0, 1]d with r̄0 = r0 and c̄0 = c0 and where all arms have unit variance
Gaussian rewards and costs.
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In what follows we denote RC(T, r̄, c̄) as the regret incurred by algorithm A on instance θ∗ =
r̄, µ∗ = c̄.

For simplicity we will introduce a couple of shorthand notational choices. Let c = τ − c0,
∆ = 1−r0

7 and D = 8r0−1
7 when r0 ≥ 1

8 . This will make it easier to explain the logic of the proof
argument. Let’s consider the following constrained bandit instance inducing measure ν:

c̄1 = (τ − c, τ + 2c, τ − c, τ + 2c, . . . , τ + 2c)

r̄1 = (D +∆, D + 8∆, D, D + 4∆, . . . , D + 4∆ ).

Notice that by definition c̄10 = c0 and r̄10 = r0. For the (r̄1, c̄1) problem instance, the optimal policy
is a mixture between arms 0 and 1, where arm 0 is chosen with probability 2/3 and arm 1 with
probability 1/3. The value of this optimal policy equals D + 10

3 ∆.
Let T̄j(T ) ∈ [0, T ] be the total amount of probability mass that A allocated to arm j up to time

T .
Let’s lower bound the regret in the event that T̄0(T ) < T

2 . By the feasibility assumption it follows

the average visitation policy πT defined as πT (i) =
T̄i(T )
T is feasible.

When the event {T̄0(T ) < T
2 } holds policy πT satisfies πT (0) ≤ 1

2 . A simple computation shows
that to maximize its cumulative reward while maintaining feasibility constrained to πT (0) ≤ 1

2 , πT ’s
optimal mass allocation is

πT (i) =


1
2 if i = 0
1
3 if i = 1
1
6 if i = 2

This policy has a reward of D + 19∆
6 and therefore the regret of πT is lower bounded by ∆

6 . Thus,
the regret RC(T, r̄

1, c̄1) can be lower bounded bounded as

RC(T, r̄
1, c̄1) ≥ ∆T

6
Pν

(
T̄0(T ) <

T

2

)
Since by assumption, A satisfies RC(T, r̄

1, c̄1) ≤ B:

B ≥ RC(T, r̄
1, c̄1) ≥ ∆T

6
Pν

(
T̄0(T ) <

T

2

)
And therefore:

Pν

(
T̄0(T ) ≥

T

2

)
= 1− Pν

(
T̄0(T ) <

T

2

)
≥ 1− 6B

∆T
≥ 1/2 (50)

The last inequality follows from the assumption T ≥ max(d− 1, 168eB1−r0
) (recall that ∆ = 1−r0

7 .
Let’s now consider the following constrained bandit instance inducing measure ν ′:

c̄2 = (τ − c, τ + 2c, τ − c, τ − c, . . . , τ + 2c)

r̄2 = (D +∆, D + 8∆, D, D + 4∆, . . . , D + 4∆ ).

In this instance the optimal policy is to play arm 3 deterministically. This policy achieves a reward of
D + 4∆.
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We will now lower bound the regret RC(T, r̄
2, c̄2) under measure ν ′. We’ll do so by lower

bounding the regret in the event that {T̄0 ≥ T
2 } holds.

Similar to the argument we expanded on above, when {T̄0 ≥ T
2 } feasibility guarantees the

average policy π′T (i) =
T̄i(T )
T is feasible. When {T̄0 ≥ T

2 } holds policy π′T satisfies π′T (0) ≥
1
2 .

Simple computations show that to maximize the cumulative reward of policy π′T while maintaining
feasibility constrained to π′T (0) ≥

1
2 the optimal allocation satisfies,

π′T (i) =

{
1
2 if i = 0
1
2 if i = 3

This policy achieves an expected reward of D + 5∆
2 and therefore the regret of π′T is lower bounded

by D + 4∆−D − 5
2∆ = 3

2∆. Therefore,

RC(T, r̄
2, c̄2) ≥ 3

2
∆Pν′

(
T̄0(T ) ≥

T

2

)
Since by assumption A satisfies RC(T, r̄

2, c̄2) ≤ B, we have

Pν′

(
T̄0(T ) ≥

T

2

)
≤ 2B

3∆T
≤ 1

4e
.

The last inequality follows from the assumption that T ≥ max(d − 1, 168eB1−r0
). We now apply the

results of Lemma 49 to this upper bound and the lower bound from Equation 50 and obtain,

d

(
Pν

(
T̄0(T ) ≥

T

2

)
,Pν′

(
T̄0(T ) ≥

T

2

))
≥ 1/2.

As a consequence of (48), Lemma 48 and 50, we have

KL(Pν ,Pν′) = Eν

[
T3(T )

]
×KL

(
N
((

τ + 2c

4∆

)
, Id
)
,N
((

τ − c

4∆

)
, Id
))

= 2c2Eν

[
T3(T )

]
≥ d

(
Pν

(
T̄0(T ) ≥

T

2

)
,Pν′

(
T̄0(T ) ≥

T

2

))
≥ 1

2
.

Therefore, we can conclude

Eν [T̄3(T )] = Eν [T3(T )] ≥
1

4c2
. (51)

Since in ν, any feasible policy with support in arm 4 and no support in arm 2 has a suboptimality gap
of 4

3∆, we conclude the regret RC(T, r̄
2, c̄2) must satisfy:

RC(T, r̄
2, c̄2) ≥ ∆

3c2
.

Since ∆ = 1−r0
7 and D = 8r0−1

7 and noting that in this case ∆
3c2

= B. The result follows.
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Theorem 34 Let τ, c̄1, r̄1 ∈ (0, 1), B = max
(

1
27

√
(K − 1)T , 1−r̄1

21(τ−c̄1)2

)
, and assume T ≥

max(K − 1, 168eB1−r̄1
). Then, for any algorithm there is a pair of reward and cost parameters (θ∗, µ∗),

such that RC(T ) ≥ B.

Proof
If max

(
1
27

√
(K − 1)T , 1−r0

21(τ−c0)2

)
= 1

27

√
(K − 1)T , then the argument in Theorem 15.2 of

Lattimore and Szepesvári (2019) yields the desired result by noting that the framework of constrained
bandits subsumes multi armed bandits. In this case we conclude there is a constrained multi armed
bandit instance satisfying:

RC(T ) ≥
1

27

√
(K − 1)T .

WhenB = max
(
d
√
T

8e2
, 1−r0
21(τ−c0)2

)
= 1−r0

21(τ−c0)2
, the same argument as in the proof of Theorem 21

finalizes the result.

Appendix F. Extensions

F.1 Unknown c0 and r0

In this section, we relax Assumption 5, and instead assume that we only have the knowledge of a
safe action x0, and no knowledge about its cost c0 and reward r0. The same discussion applies to c̄1
and r̄1 in OPB. The objective will be to design an algorithm capable of estimating c0 and r0 up to an
accuracy of τ − c0 and 1− r0 for c0 and r0 respectively. We summarize the algorithm in the box
below,

Algorithm 5 Unknown c0, r0 estimation.
Input: Safe arm x0.
for t = 1, . . . , T do

1. Pull arm x0.
2. Compute average cost estimator ĉ0(t).
3. Compute average reward estimator r̂0(t).
4. if ĉ0(t) + 3

√
2 log(1/δ)/t ≤ τ : then

Stop estimating c0.
end
5. if r̂0(t) + 3

√
2 log(1/δ)/t ≤ 1: then

Stop estimating r0.
end
6. if ĉ0(t) + 3

√
2 log(1/δ)/t ≤ τ and r̂0(t) + 3

√
2 log(1/δ)/t ≤ 1: then

Return ĉ0(T c
0 ) and r̂0(T r

0 ).
end

end
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For all t rounds to produce empirical mean estimators ĉ0 and r̂0. Note that for all δ ∈ (0, 1) and
all t ≤ T , ĉ0(t) and r̂0(t) satisfy,

P
(
|ĉ0(t)− c0| ≤

√
2 log(2T/δ)/t

)
≥ 1− δ/2T (52)

P
(
|r̂0(t)− r0| ≤

√
2 log(2T/δ)/t

)
≥ 1− δ/2T. (53)

Let’s define Ẽ as the event where Equations 52 and 53 hold for all t ≤ T . The reasoning above
implies P(Ẽ) ≥ 1− δ.

Denote T c
0 , T

r
0 as the times when conditions 4. and 5. of Algorithm 5 trigger. Let’s analyze T c

0 .
Since T c

0 is the first time when conditions 4. triggers thus,

c0 + 2
√
2 log(2T/δ)/T c

0

(i)

≤ ĉ0(T
c
0 ) + 3

√
2 log(2T/δ)/T c

0 ≤ τ.

Where (i) holds because of equation 52. Thus√
2 log(2T/δ)/T c

0 ≤ τ − c0
2

. (54)

Since Ẽ implies ĉ0(T c
0 ) ∈

[
c0 −

√
2 log(2T/δ)/t, c0 +

√
2 log(2T/δ)/t

]
we have,

τ− ĉ0(T c
0 ) ∈

[
τ − c0 −

√
2 log(2T/δ)/T c

0 , τ − c0 +
√
2 log(2T/δ)/T c

0

]
⊆
[
τ − c0

2
,
3(τ − c0)

2

]
Similarly we conclude that whenever Ẽ holds,

1− r̂0(T r
0 ) ∈

[
1− r0 −

√
2 log(2T/δ)/T r

0 , 1− r0 +
√

2 log(2T/δ)/T r
0

]
⊆
[
1− r0

2
,
3(1− r0)

2

]
We define ∆̂c = τ − ĉ0(T

c
0 ) and ∆̂r = 1 − r̂0(T

r
0 ). The above discussion implies ∆c and ∆r are

upper and lower bounded by constant multiples of τ − c0 and 1− r0 respectively.
When Ẽ holds, Equation 54 implies T c

0 ≥ 8 log(2T/δ)
(τ−c0)2

and T r
0 ≥ 8 log(2T/δ)

(1−r0)2
. We now see that we

can also upper bound these quantities, let’s work through the argument for c0. For all t such that√
2 log(2T/δ)/t ≤ τ−c0

4 , when Ẽ holds,

ĉ0(t) + 3
√

2 log(2T/δ)/t ≤ c0 + 4
√
2 log(2T/δ)/t ≤ τ.

Thus, condition 4. of Algorithm 5 holds. Similarly for all t such that
√
2 log(2T/δ)/t ≤ 1−r0

4 , when
Ẽ holds,

r̂0(t) + 3
√

2 log(2T/δ)/t ≤ r0 + 4
√
2 log(2T/δ)/t ≤ 1.

Thus condition 5. of Algorithm 5 holds. This implies T c
0 ≤ 32 log(2T/δ)

(τ−c0)2
and T r

0 ≤ 32 log(2T/δ)
(1−r0)2

. If we
define as T0 to the time-step when condition 6. of Algorithm 5 triggers, it follows that

T0 ≤ 32 log(2T/δ)max

(
1

(τ − c0)2
,

1

(1− r0)2

)
.
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We then set αr
αc

= ∆̂r/∆̂c and run LC-LUCB for rounds t > T0. Since the scaling of αr w.r.t. αc is
optimal up to constants, the same regret bounds (plus the regret incurred up to T0) would hold. We
can upper bound the regret incurred during T0,

32 log(2T/δ)max

(
1− r0

(τ − c0)2
,

1

1− r0

)
Therefore, in case c0 is unknown, the algorithm proceeds by warm-starting our estimates of θ∗

and µ∗ using the data collected by playing the safe arm x0. However, instead of estimating µo,⊥∗ , we
build an estimator for µ∗ over all its directions, including e0, similar to what Algorithm 1 (LC-LUCB)
and Algorithm 1 (OPLB) do for the reward parameter θ∗. For the multi-constrained setting the
estimation procedure of Algorithm 5 can be used to estimate each of the cost signals simultaneously.
An equivalent stopping condition yields a scheme to estimate the minimal cost gap up to constant
accuracy. The same analysis as in the single constraint case holds.

Appendix G. Nonlinear Rewards

G.1 Properties of Least Squares Estimators

In this section we derive convergence properties of least squares estimators. These results will
be crucial to analyze the NLC-LUCB algorithm in the following section. Let {Xt, Yt}∞t=1 be a
martingale sequence such that Xt ∈ X and Yt ∈ R with Yt = f⋆(Xt) + ξt where ξt satisfies
Assumption 1. Throughout this section we will use the notation Ft−1 = σ(X1, Y1 · · · , Xt−1, Yt−1)
to denote the sigma algebra generated by all previous outcomes.

Let G be a finite8 class of functions such that f⋆ ∈ G and for all t ∈ N consider the least squares
regression estimator f̂t defined as,

f̂t = min
f∈F

t∑
ℓ=1

(f(Xℓ)− Yℓ)
2

We assume that

Assumption 51 (Bounded responses) There exists a B > 0 such that for all X ∈ X , and all
f ∈ F ,

|f(X)| ≤ B, and |Yi| ≤ B.

Our results rely on the following Uniform Empirical Bernstein bound from Howard et al. (2021).

Lemma 52 (Uniform empirical Bernstein bound) In the terminology of Howard et al. (2021), let
Zt =

∑t
i=1 Yi be a sub-ψP process with parameter c > 0 and variance process Wt. Then with

probability at least 1− δ̃ for all t ∈ N

Zt ≤ 1.44

√
max(Wt,m)

(
1.4 log log

(
2

(
max

(
Wt

m
, 1

)))
+ log

5.2

δ̃

)
+ 0.41c

(
1.4 log log

(
2

(
max

(
Wt

m
, 1

)))
+ log

5.2

δ̃

)
where m > 0 is arbitrary but fixed.

8. Our results can be easily extended to the case of infinite function classes with bounded metric entropy.
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As a corollary of Lemma 52 we can show the following,

Lemma 53 (Freedman) Suppose {Xt}∞t=1 is a martingale difference sequence with |Xt| ≤ b. Let
St =

∑t
ℓ=1X

2
ℓ For any δ̃ ∈ (0, 1), with probability at least 1− δ̃,

t∑
ℓ=1

Xℓ ≤ 4

√
St log

12 log 2t

δ̃
+ 6b log

12 log 2t

δ̃
.

for all t ∈ N simultaneously.

Proof We are ready to use Lemma 52 (with c = b). Let St =
∑t

ℓ=1Xt and Wt =
∑t

ℓ=1Varℓ(Xℓ).
Let’s set m = b2. It follows that with probability 1− δ̃ for all t ∈ N

St ≤ 1.44

√
max(Wt, b2)

(
1.4 log log

(
2

(
max

(
Wt

b2
, 1

)))
+ log

5.2

δ̃

)
+ 0.41b

(
1.4 log log

(
2

(
max

(
Wt

b
, 1

)))
+ log

5.2

δ̃

)
≤ 2

√
max(Wt, b2)

(
2 log log

(
2

(
max

(
Wt

b2
, 1

)))
+ log

6

δ̃

)
+ b

(
2 log log

(
2

(
max

(
Wt

b2
, 1

)))
+ log

6

δ̃

)
= 2max(

√
Wt, b)At + bA2

t

≤ 2
√
WtAt + 2bAt + bA2

t

(i)

≤ 2
√
WtAt + 3bA2

t ,

where At =
√
2 log log

(
2
(
max

(
Wt
b2
, 1
)))

+ log 6

δ̃
. Inequality (i) follows because At ≥ 1. By

identifying Vt =Wt we conclude that for any δ̃ ∈ (0, 1) and t ∈ N

P

(
t∑

ℓ=1

Xℓ > 2
√
VtAt + 3bA2

t

)
≤ δ̃

Where At =
√
2 log log

(
2
(
max

(
Vt
b2
, 1
)))

+ log 6

δ̃
. Since Vt ≤ tb2 with probability 1,

Vt
b2

≤ t,

And therefore 2 log log
(
2max(Vt

b2
, 1)
)
≤ 2 log log 2t implying,

At ≤

√
2 log

12 log t

δ̃
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Thus

P

(
t∑

ℓ=1

Xℓ > 4

√
Vt log

12 log 2t

δ̃
A+ 6b log

12 log 2t

δ̃

)
≤ δ̃

Since Vt ≤ St the result follows.

Lemma 54 Let δ̃ ∈ (0, 1). The estimator f̂t satisfies,

t∑
ℓ=1

(
f̂t(Xℓ)− f⋆(Xℓ)

)2
≤ γ(t, δ̃)

for all t ∈ N with probability at least 1− δ̃, where γ(t, δ̃) = 256B(B + 1) log
(
12|G| log 2t

δ̃

)
.

Proof Since f̂t is the minimizer of the square loss over the data up to time t,

t∑
ℓ=1

(f̂t(Xℓ)− Yℓ)
2 ≤

t∑
ℓ=1

(f⋆(Xℓ)− Yℓ)
2

Plugging in the definition Yℓ = f⋆(Xℓ) + ξℓ and expanding both sides of the inequality yields,

t∑
ℓ=1

(f̂t(Xℓ)− f⋆(Xℓ)− ξℓ)
2 ≤

t∑
ℓ=1

ξ2ℓ

and therefore,

t∑
ℓ=1

(f̂t(Xℓ)− f⋆(Xℓ))
2 ≤ 2

t∑
ℓ=1

ξℓ

(
f̂t(Xℓ)− f⋆(Xℓ)

)
(55)

For any fixed f ∈ F consider the martingale difference process {Zℓ}∞ℓ=1,

Zf
ℓ = ξℓ (f(Xℓ)− f⋆(Xℓ)) .

Since |Zℓ| ≤ B it is easy to see that by the boundedness assumption, E
[(
Zf
ℓ

)2 ∣∣∣Oℓ−1

]
≤

B2 (f(Xℓ)− f⋆(Xℓ))
2. Thus, Freedman’s inequality (Lemma 53) implies,

t∑
ℓ=1

Zf
ℓ ≤ 4

√√√√ t∑
ℓ=1

E
[(
Zf
ℓ

)2 ∣∣∣Oℓ−1

]
log

(
12|G| log 2t

δ̃

)
+ 6B log

12|G| log 2t
δ̃

≤ 4B

√√√√[ t∑
ℓ=1

(f(Xℓ)− f⋆(Xℓ))
2

]
log

(
12|G| log 2t

δ̃

)
+ 6B log

12|G| log 2t
δ̃

(i)

≤
∑t

ℓ=1 (f(Xℓ)− f⋆(Xℓ))
2

4
+ 64B2 log

(
12|G| log 2t

δ̃

)
+ 6B log

(
12|G| log 2t

δ̃

)
≤
∑t

ℓ=1 (f(Xℓ)− f⋆(Xℓ))
2

4
+ 64B(B + 1) log

(
12|G| log 2t

δ̃

)
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with probability at least 1 − δ̃
|G| for all t ∈ N. Where (i) holds because of the inequality 2

√
ab ≤

αa+ b
α for any α > 0. Plugging this back into equation 55 we obtain,

t∑
ℓ=1

(f̂t(Xℓ)− f⋆(Xℓ))
2 ≤ 128B(B + 1) log

(
12|G| log 2t

δ̃

)
+

1

2

t∑
ℓ=1

(
f̂t(Xℓ)− f⋆(Xℓ)

)2
Canceling terms on both sides yields (and multiplying by two) yields,

t∑
ℓ=1

(f̂t(Xℓ)− f⋆(Xℓ))
2 ≤ 256B(B + 1) log

(
12|G| log 2t

δ̃

)
The result follows.

Corollary 55 If γr(t, δ) = 512 log
(
24|Gr| log 2t

δ

)
, γc(t, δ) = 512 log

(
24|Gc| log 2t

δ

)
then θ⋆ ∈ Cr

t (δ)

and µ⋆ ∈ Cc
t (δ) for all t ∈ N with probability at least 1− δ.

Proof This result is an immediate consequence of setting B = 1 and δ̃ = δ/2 in Lemma 54.

G.2 Proof of Lemma 37

Notice that for any policy π

Ṽ c
t (π) ≤ µ⋆(π) + max

µ,µ′∈Cc
t (δ)

µ(π)− µ′(π). (56)

with probability at least 1− δ for all t ∈ N. This is because µ⋆ belongs to Cc
t (δ) w.h.p and therefore

Ṽ c
t (π) = max

µ∈Cc
t (δ)

µ(π) = µ⋆(π) + max
µ∈Cc

t (δ)
µ(π)− µ⋆(π)

≤ µ⋆(π) + max
µ,µ′∈Cc

t (δ)
µ(π)− µ′(π).

Similarly since θ⋆ ∈ Cr
t (δ) with high probability, maxθ∈Cr

t (δ)
θ(π) ≥ θ⋆(π) and therefore

Ṽ r
t (π) ≥ θ⋆(π)︸ ︷︷ ︸

V r
t (π)

+αr max
µ′ ,µ′′∈Cc

t (δ)
µ

′
(π)− µ

′′
(π) (57)

Lemma 56 If the event E defined by (39) holds and the scaling parameter satisfies αr =
1−r0
τ−c0

, then

for all t ∈ [T ], we have Ṽ r
t (πt) ≥ V r

t (π
∗
t ) = θ∗(π

∗
t ,At).

Proof We are going to prove this result by splitting it into two cases determined by whether π⋆t
belongs to Π̃t or not.

Case 1. π∗t ∈ Π̃t. Recall that πt = argmax
π∈Π̃t

Ṽ r
t (π). It follows that Ṽ r

t (πt) ≥ Ṽ r
t (π

∗
t ) ≥

V r
t (π

∗
t ) where the last inequality is true because Ṽ r

t (π) is an optimistic estimator of the value of all
policies (see Equation 57).
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Case 2. π∗t ̸∈ Π̃t. Let π0 = δ(x0). By definition for all µ ∈ Cc
t (δ) it follows that µ(x0) = c0.

Consider a mixture policy π̃t = γtπ
∗
t + (1− γt)π0 where γt is the smallest value in [0, 1] such that

π̃t ∈ Π̃t. Let’s see this value exists:
Let µ̃t = argmaxµ∈Cc

t (δ) s.t µ(x0)=c0 µ(π
⋆
t ,At). Observe that µ̃t by definition also satisfies

µ̃t = argmaxµ∈Cc
t (δ) s.t µ(x0)=c0 µ(γπ

∗
t + (1− γ)π0,At) and that

Ṽ c
t (γπ

∗
t + (1− γ)π0) = µ̃t(γπ

∗
t + (1− γ)π0,At) = γµ̃t(π

∗
t ,At) + (1− γ)c0.

This shows there exists a value γt ∈ [0, 1] such that Ṽ c
t (π̃t) = µ̃t(γtπ

∗
t + (1− γt)π0,At) = τ . Let’s

start by proving a lower bound for γt. By definition

Ṽ c
t (π̃t) = γtṼ

c
t (π

∗
t ) + (1− γt)c0 = τ.

And therefore,

γt =
τ − c0

Ṽ c
t (π

∗
t )− c0

(i)

≥ τ − c0
µ⋆(π∗t )− c0 +maxµ,µ′∈Cc

t (δc)
µ(π∗t ,At)− µ′(π∗t ,At)

(ii)

≥ τ − c0
τ − c0 +maxµ,µ′∈Cc

t (δc)
µ(π∗t ,At)− µ′(π∗t ,At)

(58)

Where (i) follows from 56 and (ii) holds because it satisfies µ⋆(π∗t ,At) ≤ τ . Let r0 = θ⋆(x0).
Since πt and π̃t are both feasible, it follows that Ṽ r

t (πt) ≥ Ṽ r
t (π̃t) and therefore,

Ṽ r
t (πt) ≥ Ṽ r

t (π̃t) = γtṼ
r
t (π

∗
t ) + (1− γt)r0

(i)

≥ γt

(
θ⋆(π

⋆
t ,At) + αr max

µ′ ,µ′′∈Cc
t (δ)

µ
′
(π⋆t ,At)− µ

′′
(π⋆t ,At)

)
+ (1− γt)r0.

Where (i) is a result of inequality 57. Let C1 = maxµ′ ,µ′′∈Cc
t (δ)

µ
′
(π⋆t ,At)− µ

′′
(π⋆t ,At). Substitut-

ing the γt lower bound from Equation 58 in the RHS of the equation above,

γt(θ⋆(π
⋆
t ,At) + αrC1) + (1− γt)r0 =

τ − c0
τ − c0 + C1

(θ⋆(π
⋆
t ,At) + αrC1) +

C1

τ − c0 + C1
r0

Since θ⋆(π∗t ,At) ≤ 1 (Assumption 35), setting αr = 1−r0
τ−c0

is enough to guarantee the inequality

Ṽ r
t (πt) ≥ θ⋆(π

⋆
t ,At) holds.
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Figure 8: Regret (left), cost (middle), and reward (right) evolution of OPB in a 4-armed bandit problem with
Bernoulli reward and cost distributions with means r̄ = (0.1, 0.2, 0.4, 0.7) and c̄ = (0, 0.4, 0.5, 0.2). The cost
of the safe arm (Arm 1) is c̄1 = 0.

Appendix H. Additional Experiments of Section 5
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Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems 24, pages 2312–2320, 2011.

M. Abeille and A. Lazaric. Linear Thompson sampling revisited. Electronic Journal of Statistics, 11
(2):5165–5197, 2017.

S. Agrawal and N. Devanur. Bandits with concave rewards and convex knapsacks. In Proceedings of
the Fifteenth ACM conference on Economics and computation, pages 989–1006, 2014.

S. Agrawal and N. Devanur. Linear contextual bandits with knapsacks. In Advances in Neural
Information Processing Systems 29, pages 3450–3458, 2016.

S. Agrawal and N. Goyal. Further optimal regret bounds for Thompson sampling. In Proceedings of
the 16th International Conference on Artificial Intelligence and Statistics, pages 99–107, 2013a.

54



CONTEXTUAL BANDITS WITH STAGE-WISE CONSTRAINTS

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
Proceedings of the 30th International Conference on Machine Learning, pages 127–135, 2013b.

S. Amani, M. Alizadeh, and C. Thrampoulidis. Linear stochastic bandits under safety constraints. In
Advances in Neural Information Processing Systems, pages 9252–9262, 2019.

S. Amani, C. Thrampoulidis, and L. Yang. Safe reinforcement learning with linear function approxi-
mation. In International Conference on Machine Learning, pages 243–253, 2021.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235–256, 2002.

A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. In IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 207–216, 2013.

A. Badanidiyuru, J. Langford, and A. Slivkins. Resourceful contextual bandits. In Proceedings of
The 27th Conference on Learning Theory, pages 1109–1134, 2014.

A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi. Using contextual bandits with behavioral
constraints for constrained online movie recommendation. In IJCAI, pages 5802–5804, 2018.

A. Bura, A. Hasanzade Zonuzy, D. Kalathil, S. Shakkottai, and J.-F. Chamberland. Dope: Doubly
optimistic and pessimistic exploration for safe reinforcement learning. In Advances in Neural
Information Processing Systems, 2022.

J. Chan, A. Pacchiano, N. Tripuraneni, Y. Song, P. Bartlett, and M. Jordan. Parallelizing contextual
bandits. arXiv:2105.10590, 2023.

S. Chaudhary and D. Kalathil. Safe online convex optimization with unknown linear safety constraints.
In AAAI Conference on Artificial Intelligence, pages 6175–6182, 2022.

T. Chen, A. Gangrade, and V. Saligrama. A doubly optimistic strategy for safe linear bandits. arXiv
preprint arXiv:2209.13694, 2022.

V. Dani, T. Hayes, and S. Kakade. Stochastic linear optimization under bandit feedback. In
Proceedings of the 21st Annual Conference on Learning Theory, pages 355–366, 2008.

D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic. Provably efficient safe exploration via primal-
dual policy optimization. In International Conference on Artificial Intelligence and Statistics,
pages 3304–3312, 2021.

Y. Efroni, S. Mannor, and M. Pirotta. Exploration-exploitation in constrained mdps.
arXiv:2003.02189, 2020.

Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 3199–3210. PMLR,
2020.

E. Garcelon, M. Ghavamzadeh, A. Lazaric, and M. Pirotta. Improved algorithms for conservative
exploration in bandits. In AAAI, 2020.

55



PACCHIANO, GHAVAMZADEH AND BARTLETT

A. Ghosh, X. Zhou, and N. Shroff. Provably efficient model-free constrained RL with linear
function approximation. In Advances in Neural Information Processing Systems, volume 35, pages
13303–13315, 2022.

S. Howard, A. Ramdas, J. McAuliffe, and J. Sekhon. Time-uniform, nonparametric, nonasymptotic
confidence sequences. The Annals of Statistics, 2021.
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