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Abstract

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement
learning (RL) to problems with large state and action spaces by using the task (or action)
structure to restrict the space of policies. Prior work in HRL including HAMs, options,
MAXQ, and PHAMs has been limited to the discrete-time discounted reward semi-Markov
decision process (SMDP) model. The average reward optimality criterion has been rec-
ognized to be more appropriate for a wide class of continuing tasks than the discounted
framework. Although average reward RL has been studied for decades, prior work has been
largely limited to flat policy representations.

In this paper, we develop a framework for HRL based on the average reward optimality
criterion. We investigate two formulations of HRL based on the average reward SMDP
model, both for discrete-time and continuous-time. These formulations correspond to two
notions of optimality that have been previously explored in HRL: hierarchical optimality and
recursive optimality. We present algorithms that learn to find hierarchically and recursively
optimal average reward policies under discrete-time and continuous-time average reward
SMDP models.

We use two automated guided vehicle (AGV) scheduling tasks as experimental testbeds
to study the empirical performance of the proposed algorithms. The first problem is a rel-
atively simple AGV scheduling task, in which the hierarchically and recursively optimal
policies are different. We compare the proposed algorithms with three other HRL methods,
including a hierarchically optimal discounted reward algorithm and a recursively optimal
discounted reward algorithm on this problem. The second problem is a larger AGV schedul-
ing task. We model this problem using both discrete-time and continuous-time models. We
use a hierarchical task decomposition in which the hierarchically and recursively optimal
policies are the same for this problem. We compare the performance of the proposed algo-
rithms with a hierarchically optimal discounted reward algorithm and a recursively optimal
discounted reward algorithm, as well as a non-hierarchical average reward algorithm. The
results show that the proposed hierarchical average reward algorithms converge to the same
performance as their discounted reward counterparts.

Keywords: Semi-Markov Decision Processes, Hierarchical Reinforcement Learning, Av-
erage Reward Reinforcement Learning, Hierarchical and Recursive Optimality.

1. Introduction

Sequential decision making under uncertainty is a fundamental problem in artificial intelli-
gence (AI). Many sequential decision making problems can be modeled using the Markov
decision process (MDP) formalism. A MDP (Howard, 1960; Puterman, 1994) models a
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system that we are interested in controlling as being in some state at each time step. As a
result of actions, the system moves through some sequence of states and receives a sequence
of rewards. The goal is to select actions to maximize (minimize) some measure of long-term
reward (cost), such as the expected discounted sum of rewards (costs), or the expected
average reward (cost).

Reinforcement learning (RL) is a machine learning framework for solving sequential
decision-making problems. Despite its successes in a number of different domains, including
backgammon (Tesauro, 1994), job-shop scheduling (Zhang and Dietterich, 1995), dynamic
channel allocation (Singh and Bertsekas, 1996), elevator scheduling (Crites and Barto, 1998),
and helicopter flight control (Ng et al., 2004), current RL methods do not scale well to
high dimensional domains — they can be slow to converge and require many training
samples to be practical for many real-world problems. This issue is known as the curse of
dimensionality: the exponential growth of the number of parameters to be learned with the
size of any compact encoding of system state (Bellman, 1957). Recent attempts to combat
the curse of dimensionality have turned to principled ways of exploiting abstraction in RL.
This leads naturally to hierarchical control architectures and associated learning algorithms.

Hierarchical reinforcement learning (HRL) is a general framework for scaling RL to
problems with large state spaces by using the task (or action) structure to restrict the space
of policies. Hierarchical decision making represents policies over fully or partially specified
temporally extended actions. Policies over temporally extended actions cannot be simply
treated as single-step actions over a coarser time scale, and therefore cannot be represented
in the MDP framework since actions take variable durations of time. Semi-Markov decision
process (SMDP) (Howard, 1971; Puterman, 1994) is a well-known statistical framework for
modeling temporally extended actions. Action duration in a SMDP can depend on the
transition that is made. The state of the system may change continually between actions,
unlike MDPs where state changes are only due to actions. Therefore, SMDPs have become
the main mathematical model underlying HRL methods.

Prior work in HRL including hierarchies of abstract machines (HAMs) (Parr, 1998),
options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable
HAMs (PHAMs) (Andre and Russell, 2001; Andre, 2003) has been limited to the discrete-
time discounted reward SMDP model. In these methods, policies are learned that maximize
the long-term discounted sum of rewards. On the other hand, the average reward optimal-
ity criterion has been shown to be more appropriate for a wide class of continuing tasks
than the well-studied discounted framework. A primary goal of continuing tasks, including
manufacturing, scheduling, queuing, and inventory control, is to find a gain-optimal pol-
icy that maximizes (minimizes) the long-run average reward (cost) over time. Although
average reward RL has been studied using both the discrete-time MDP model (Schwartz,
1993; Mahadevan, 1996; Tadepalli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy, 1998)
as well as the continuous-time SMDP model (Mahadevan et al., 1997b; Wang and Mahade-
van, 1999), prior work has been limited to flat policy representations. In addition to being
an appropriate optimality criterion for continuing tasks, average reward optimality allows
for more efficient state abstraction in HRL than discounted reward optimality, as will be
discussed in Section 5.

In this paper, we extend previous work on HRL to the average reward setting, and
investigate two formulations of HRL based on average reward SMDPs. These two formula-
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tions correspond to two notions of optimality in HRL: hierarchical optimality and recursive
optimality (Dietterich, 2000). We extend the MAXQ hierarchical RL method (Dietterich,
2000) and introduce a HRL framework for simultaneous learning of policies at multiple
levels of a task hierarchy. We then use this HRL framework to derive discrete-time and
continuous-time algorithms that learn to find hierarchically and recursively optimal av-
erage reward policies. In these algorithms, we assume that the overall task (the root of
the hierarchy) is continuing. Hierarchically optimal average reward RL (HAR) al-
gorithms find a hierarchical policy within the space of policies defined by the hierarchical
decomposition that maximizes the global gain. Recursively optimal average reward
RL (RAR) algorithms treat non-primitive subtasks as continuing average reward problems,
where the goal at each subtask is to maximize its gain given the policies of its children.
We investigate the conditions under which the policy learned by RAR algorithm at each
subtask is independent of the context in which it is executed and therefore can be reused
by other hierarchies. We use two automated guided vehicle (AGV) scheduling tasks as
experimental testbeds to study the empirical performance of the proposed algorithms. The
first problem is a relatively simple AGV scheduling task, in which the hierarchically and
recursively optimal policies are different. We compare the proposed algorithms with three
other HRL methods, including a hierarchically optimal discounted reward algorithm and a
recursively optimal discounted reward algorithm on this problem. The second problem is a
relatively larger AGV scheduling task. We model this problem using both discrete-time and
continuous-time models. We use a hierarchical task decomposition where the hierarchically
and recursively optimal policies are the same. We compare the performance of the proposed
algorithms with a hierarchically optimal discounted reward algorithm and a recursively op-
timal discounted reward algorithm, as well as a non-hierarchical average reward algorithm.
The results show that the proposed hierarchical average reward algorithms converge to the
same performance as their discounted reward counterparts.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
HRL. In Section 3, we concisely describe discrete-time SMDPs, and discuss average reward
optimality in this model. Section 4 describes the HRL framework, which is used to develop
the algorithms of this paper. In Section 5, we extend the previous work on HRL to the
average reward setting, and study two formulations of HRL based on the average reward
SMDP model. In Section 5.1, we present discrete-time and continuous-time hierarchically
optimal average reward RL (HAR) algorithms. In Section 5.2, we investigate different
methods to formulate subtasks in a recursively optimal hierarchical average reward RL
setting, and present discrete-time and continuous-time recursively optimal average reward
RL (RAR) algorithms. We demonstrate the type of optimality achieved by HAR and
RAR algorithms as well as their empirical performance and convergence speed compared to
other algorithms using two AGV scheduling problems in Section 6. Section 7 summarizes
the paper and discusses some directions for future work. For convenience, a table of the
symbols used in this paper is given in Appendix A.

2. An Overview of Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a class of learning algorithms that share a
common approach to scaling up reinforcement learning (RL). The key principle underlying
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HRL is to develop learning algorithms that do not need to learn policies from scratch, but
instead reuse existing policies for simpler subtasks. Subtasks form the basis of hierarchical
specifications of action sequences because they can include other subtasks in their defini-
tions. It is similar to the familiar idea of subroutines from programming languages. A
subroutine can call other subroutines as well as execute primitive commands. A subtask as
an open-loop control policy is inappropriate for most interesting control purposes, especially
the control of stochastic systems. HRL methods generalize the subtask idea to closed-loop
policies or, more precisely, closed-loop partial policies because they are generally defined
for a subset of the state space. The partial policies must also have well-defined termina-
tion conditions. The partial policies with well-defined termination conditions are sometimes
called temporally extended actions. Work in HRL has followed three trends: focusing on
subsets of the state space in a divide and conquer approach (state space decomposition),
grouping sequences or sets of actions together (temporal abstraction), and ignoring differ-
ences between states based on the context (state abstraction). Much of the work in HRL
falls into several of these categories. Barto and Mahadevan (2003) provide a more detailed
introduction to HRL.

Mahadevan and Connell (1992) were among the first to systematically investigate the
use of task structure to accelerate RL. In their work, the robot was given a pre-specified
task decomposition, and learned a set of local policies instead of an entire global policy.
Singh (1992) investigated reinforcement learning using abstract actions of different temporal
granularity using a hierarchy of models with variable temporal resolution. Singh applied
the mixture of experts framework as a special-purpose task selection architecture to switch
between abstract actions. Kaelbling (1993a,b) investigated using subgoals to learn sub-
policies. Dayan and Hinton (1993) describe Feudal RL, a hierarchical technique which uses
both temporal abstraction and state abstraction to recursively partition the state space and
the time scale from one level to the next.

One key limitation of all the above methods is that decisions in HRL are no longer made
at synchronous time steps, as is traditionally assumed in RL. Instead, agents make decisions
intermittently, where each epoch can be of variable length, such as when a distinguishing
state is reached (e.g., an intersection in a robot navigation task), or a subtask is completed
(e.g., the elevator arrives on the first floor). Fortunately, a well-known statistical model is
available to treat variable length actions: the semi-Markov decision process (SMDP) model
(Howard, 1971; Puterman, 1994). In a SMDP, state-transition dynamics is specified not
only by the state where an action was taken, but also by parameters specifying the length
of time since the action was taken. Early work on the SMDP model extended algorithms
such as Q-learning to continuous-time (Bradtke and Duff, 1995; Mahadevan et al., 1997b).
The early work on SMDP was then expanded to include hierarchical task models over fully
or partially specified lower level subtasks, which led to developing powerful HRL models
such as hierarchies of abstract machines (HAMs) (Parr, 1998), options (Sutton et al., 1999;
Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs) (Andre and
Russell, 2001; Andre, 2003).

In the options framework policies are defined over not just primitive actions, but over
fully specified lower-level policies. In the HAMs formulation, hierarchical learning could
be achieved even when the policies for lower-level subtasks were only partially specified.
The MAXQ model is one of the first methods to combine temporal abstraction with state
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abstraction. It provides a more comprehensive framework for hierarchical learning where
instead of policies for subtasks, the learner is given pseudo-reward functions. Unlike options
and HAMs, MAXQ does not rely directly on reducing the entire problem to a single SMDP.
Instead, a hierarchy of SMDPs is created whose solutions can be learned simultaneously.
The key feature of MAXQ is the decomposed representation of the value function. The
MAXQ method views each subtask as a separate SMDP, and thus represents the value of
a state within that SMDP as composed of the reward for taking an action at that state
(which might be composed of many rewards along a trajectory through a subtask) and
the expected reward for completing the subtask. To isolate the subtask from the calling
context, MAXQ uses the notion of a pseudo-reward. At the terminal states of a subtask,
the agent is rewarded according to the pseudo-reward, which is set a priori by the designer,
and does not depend on what happens after leaving the current subtask. Each subtask
can then be treated in isolation from the rest of the problem with the caveat that the
solutions learned are only recursively optimal. Each action in the recursively optimal policy
is optimal with respect to the subtask containing the action, all descendant subtasks, and
the pseudo-reward chosen by the designer of the system. Another important contribution of
MAXQ is the idea that state abstraction can be done separately on the different components
of the value function, which allows one to perform dynamic abstraction. We describe the
MAXQ framework and related concepts such as recursive optimality and value function
decomposition in Section 4. In the PHAM model, Andre and Russell extended HAMs and
presented an agent-design language for RL. Andre and Russell (2002) also addressed the
issue of safe state abstraction in their model. Their method yields state abstraction while
maintaining hierarchical optimality.

3. Discrete-time Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) (Howard, 1971; Puterman, 1994) extend the
Markov decision process (MDP) (Howard, 1971; Puterman, 1994) model by allowing ac-
tions that can take multiple time steps to complete. Note that SMDPs do not theoretically
provide additional expressive power but they do provide a convenient formalism for tem-
poral abstraction. The duration of an action can depend on the transition that is made.1

The state of the system may change continually between actions unlike MDPs where state
changes are only due to actions. Thus, SMDPs have become the preferred language for
modeling temporally extended actions (Mahadevan et al., 1997a) and, as a result, the main
mathematical model underlying hierarchical reinforcement learning (HRL).

A SMDP is defined as a five tuple 〈S,A,P,R,I〉. All components are defined as in a
MDP except the transition probability function P and the reward function R. S is the set
of states of the world, A is the set of possible actions from which the agent may choose on
at each decision epoch, and I : S → [0, 1] is the initial state distribution. The transition
probability function P now takes the duration of the actions into account. The transition
probability function P : S×N×S×A → [0, 1] is a multi-step transition probability function
(N is the set of natural numbers), where P (s′, N |s, a) denotes the probability that action a

will cause the system to transition from state s to state s′ in N time steps. This transition
is at decision epochs only. Basically, the SMDP model represents snapshots of the system

1. Continuous-time SMDPs typically allow arbitrary continuous action durations.
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at decision points, whereas the so-called natural process describes the evolution of the
system over all times. If we marginalize P (s′, N |s, a) over N , we will obtain F (s′|s, a) the
transition probability for the embedded MDP. The term F (s′|s, a) denotes the probability
that the system occupies state s′ at the next decision epoch, given that the decision maker
chooses action a in state s at the current decision epoch. The key difference in the reward
function for SMDPs is that the rewards can accumulate over the entire duration of an
action. As a result, the reward in an SMDP for taking an action in a state depends on
the evolution of the system during the execution of the action. Formally, the reward in an
SMDP is modeled as a function R : S ×A → R (R is the set of real numbers), with r(s, a)
representing the expected total reward between two decision epochs, given that the system
occupies state s at the first decision epoch and the agent chooses action a. This expected
reward contains all necessary information about the reward to analyze the SMDP model.
For each transition in a SMDP, the expected number of time steps until the next decision
epoch is defined as

y(s, a) = E[N |s, a] =
∑

N∈N

N
∑

s′∈S

P (s′, N |s, a).

The notion of policy and the various forms of optimality are the same for SMDPs as for
MDPs. In infinite-horizon SMDPs, the goal is to find a policy that maximizes either the
expected discounted reward or the average expected reward. We discuss the average reward
optimality criterion for the SMDP model in the next section.

3.1 Average Reward Semi-Markov Decision Processes

The theory of infinite-horizon SMDPs with the average reward optimality criterion is more
complex than that for discounted models (Howard, 1971; Puterman, 1994). The aim of
average reward SMDP algorithms is to compute policies that yield the highest average
reward or gain. The average reward or gain of a policy µ at state s, gµ(s), can be defined
as the ratio of the expected total reward and the expected total number of time steps of
following policy µ starting at state s

gµ(s) = lim inf
n→∞

E
[

∑n−1
t=0 r(st, µ(st))|s0 = s, µ

]

E
[

∑n−1
t=0 Nt|s0 = s, µ

] .

In this equation, Nt is the total number of time steps until the next decision epoch, when
agent takes action µ(st) in state st.

A key observation that greatly simplifies the design of average reward algorithms is that
for unichain SMDPs,2 the gain of any policy is state independent, that is

gµ(s) = gµ = lim inf
n→∞

E
[

∑n−1
t=0 r(st, µ(st))|µ

]

E
[

∑n−1
t=0 Nt|µ

] , ∀s ∈ S. (1)

2. In unichain SMDPs, the underlying Markov chain for every stationary policy has a single recurrent class,
and a (possibly empty) set of transient states.
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To simplify exposition, we consider only unichain SMDPs in this paper. When the state
space of a SMDP, S, is finite or countable, Equation 1 can be written as

gµ =
F̄

µ
rµ

F̄
µ
yµ

, (2)

where F µ and F̄
µ

= limn→∞
1
n

∑n−1
t=0 (F µ)t are the transition probability matrix and the

limiting matrix of the embedded Markov chain for policy µ, respectively,3 and rµ and yµ

are vectors with elements r(s, µ(s)) and y(s, µ(s)), for all s ∈ S. Under the unichain
assumption, F̄ has equal rows, and therefore the right hand side of Equation 2 is a vector
with elements all equal to gµ.

In the average reward SMDP model, a policy µ is measured using a different value
function, namely the average-adjusted sum of rewards earned following that policy4

Hµ(s) = lim
n→∞

E

{

n−1
∑

t=0

[r(st, µ(st))− gµy(st, µ(st))] |s0 = s, µ

}

.

The term Hµ is usually referred to as the average-adjusted value function. Furthermore,
the average-adjusted value function satisfies the Bellman equation

Hµ(s) = r(s, µ(s))− gµy(s, µ(s)) +
∑

s′∈S,N∈N

P (s′, N |s, µ(s))Hµ(s′).

Similarly, the average-adjusted action-value function for a policy µ, Lµ, is defined,
and it satisfies the Bellman equation

Lµ(s, a) = r(s, a)− gµy(s, a) +
∑

s′∈S,N∈N

P (s′, N |s, a)Lµ(s′, µ(s′)).

4. A Framework for Hierarchical Reinforcement Learning

In this section, we describe a general hierarchical reinforcement learning (HRL) framework
for simultaneous learning of policies at multiple levels of a hierarchy. Our treatment builds
upon existing methods, including HAMs (Parr, 1998), options (Sutton et al., 1999; Precup,
2000), MAXQ (Dietterich, 2000), and PHAMs (Andre and Russell, 2002; Andre, 2003),
and, in particular, uses the MAXQ value function decomposition. We extend the MAXQ
framework by including the three-part value function decomposition (Andre and Russell,
2002) to guarantee hierarchical optimality, as well as reward shaping (Ng et al., 1999) to
reduce the burden of exploration. Rather than redundantly explain MAXQ and then our
hierarchical framework, we will present our model and note throughout this chapter where
the key pieces were inspired by or are directly related to MAXQ. In the next section, we will
extend this framework to the average reward model and present our hierarchical average
reward reinforcement learning algorithms.

3. The limiting matrix F̄ satisfies the equality F̄ F = F̄ .
4. This limit assumes that all policies are aperiodic. For periodic policies, it changes to the Cesaro limit

Hµ(s) = limn→∞
1
n

Pn−1
k=0 E

n

Pk

t=0 [r(st, µ(st)) − gµy(st, µ(st))] |s0 = s, µ
o

(Puterman, 1994).
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4.1 Motivating Example

In the HRL framework, the designer of the system imposes a hierarchy on the problem
to incorporate domain knowledge and thereby reduces the size of the space that must be
searched to find a good policy. The designer recursively decomposes the overall task into a
collection of subtasks that are important for solving the problem.

Let us illustrate the main ideas using a simple search task shown in Figure 1. Consider
the domain of an office-type environment (with rooms and connecting corridors), where a
robot is assigned the task of picking up trash from trash cans (T1 and T2) over an extended
area and accumulating it into one centralized trash bin (Dump). For simplicity, we assume
that the robot can observe its true location in the environment. The main subtasks in this
problem are root (the whole trash-collection task), collect trash at T1 and T2, navigate to
T1, T2, and Dump. Each of these subtasks is defined by a set of termination states. After
defining subtasks, we must indicate, for each subtask, which other subtasks or primitive
actions it should employ to reach its goal. For example, navigate to T1, T2, and Dump

use three primitive actions find wall, align with wall, and follow wall. Collect trash at T1
uses two subtasks, navigate to T1 and Dump, plus two primitive actions Put and Pick, and
so on. Similar to MAXQ, all of this information can be summarized by a directed acyclic
graph called task graph. The task graph for the trash-collection problem is shown in
Figure 1. This hierarchical model is able to support state abstraction (while the agent is
moving toward the Dump, the status of trash cans T1 and T2 is irrelevant and cannot affect
this navigation process. Therefore, the variables defining the status of trash cans T1 and
T2 can be removed from the state space of the navigate to Dump subtask), and subtask
sharing (if the system could learn how to solve the navigate to Dump subtask once, then
the solution could be shared by both collect trash at T1 and T2 subtasks.)

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Figure 1: A robot trash-collection task and its associated task graph.

Like HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich,
2000), and PHAMs (Andre and Russell, 2001; Andre, 2003), this framework also relies
on the theory of SMDPs. While SMDP theory provides the theoretical underpinnings of
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temporal abstraction by modeling actions that take varying amounts of time, the SMDP
model provides little in the way of concrete representational guidance, which is critical from
a computational point of view. In particular, the SMDP model does not specify how tasks
can be broken up into subtasks, how to decompose value functions etc. We examine these
issues next.

As in MAXQ, a task hierarchy such as the one illustrated above can be modeled by
decomposing the overall task MDP M, into a finite set of subtasks {M0,M1, . . . ,Mm−1},

5

where M0 is the root task. Solving M0 solves the entire MDP M.

Definition 1: Each non-primitive subtask Mi (Mi is not a primitive action) consists
of five components 〈Si, Ii, Ti, Ai, Ri〉:

• Si is the state space for subtask Mi. It is described by those state variables that are
relevant to subtask Mi. The range of a state variable describing Si might be a subset
of its range in S (the state space of MDP M).

• Ii ⊆ Si is the initiation set for subtask Mi. Subtask Mi can be initiated only in
states belonging to Ii.

• Ti ⊆ Si is the set of terminal states for subtask Mi. Subtask Mi terminates when
it reaches a state in Ti. A policy for subtask Mi can only be executed if the current
state s belongs to (Si − Ti).

• Ai is the set of actions that can be performed to achieve subtask Mi. These actions
can be either primitive actions from A (the set of primitive actions for MDP M), or
they can be other subtasks. Technically, Ai is a function of states, since it may differ
from one state to another. However, we will suppress this dependence in our notation.

• Ri is the reward structure inside subtask Mi and could be different from the reward
function of MDP M. Here, we use the idea of reward shaping (Ng et al., 1999) and
define a more general reward structure than MAXQ’s. Reward shaping is a method
for guiding an agent toward a solution without constraining the search space. Besides
the reward of the overall task MDPM, each subtask Mi can use additional rewards to
guide its local learning. Additional rewards are only used inside each subtask and do
not propagate to upper levels in the hierarchy. If the reward structure inside a subtask
is different from the reward function of the overall task, we need to define two types of
value functions for each subtask, internal value function and external value function.
Internal value function is defined based on both the local reward structure of the
subtask and the reward of the overall task, and only is used in learning the subtask.
On the other hand, external value function is defined only based on the reward
function of the overall task and is propagated to the higher levels in the hierarchy to
be used in learning the global policy. This reward structure for each subtask in our
framework is more general than the one in MAXQ, and of course, includes MAXQ’s
pseudo-reward.6 �

5. m is the total number of subtasks in the hierarchy.
6. The MAXQ pseudo-reward function is defined only for transitions to terminal states, and is zero for

non-terminal states.
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Each primitive action a is a primitive subtask in this decomposition, such that a is always
executable and it terminates immediately after execution. From now on in this paper, we
use subtask to refer to non-primitive subtasks.

4.2 Policy Execution

If we have a policy for each subtask in a hierarchy, we can define a hierarchical policy
for the model.

Definition 2: A hierarchical policy µ is a set of policies, one policy for each subtask
in the hierarchy: µ = {µ0, . . . , µm−1}. �

The hierarchical policy is executed using a stack discipline, similar to ordinary programming
languages. Each subtask policy takes a state and returns the name of a primitive action to
execute or the name of a subtask to invoke. When a subtask is invoked, its name is pushed
onto the Task-Stack and its policy is executed until it enters one of its terminal states.
When a subtask terminates, its name is popped off the Task-Stack. If any subtask on the
Task-Stack terminates, then all subtasks below it are immediately aborted, and control re-
turns to the subtask that had invoked the terminated subtask. Hence, at any time, the root
task is located at the bottom and the subtask which is currently being executed is located
at the top of the Task-Stack.

Under a hierarchical policy µ, we define a multi-step transition probability P
µ

i : Si×N×
Si → [0, 1] for each subtask Mi in the hierarchy, where P

µ

i (s′, N |s) denotes the probability
that hierarchical policy µ will cause the system to transition from state s to state s′ in N

primitive steps at subtask Mi. We also define a multi-step abstract transition probability
F

µ

i : Si × N × Si → [0, 1] for each subtask Mi under the hierarchical policy µ. The term
F

µ

i (s′, N |s) denotes the N -step abstract transition probability from state s to state s′ under
hierarchical policy µ at subtask Mi, where N is the number of actions taken by subtask
Mi, not the number of primitive actions taken in this transition. In this paper, we use
the multi-step abstract transition probability F

µ

i to model state transition at the subtask
level, and the multi-step transition probability P

µ

i to model state transition at the level
of primitive actions. For N = 1, F

µ

i (s′, 1|s) is the transition probability for the embedded
MDP at subtask Mi. We can write F

µ

i (s′, 1|s) as F
µ

i (s′|s), and it can also be obtained by
marginalizing P

µ

i (s′, N |s) over N as described in Section 3.

4.3 Local versus Global Optimality

Using a hierarchy reduces the size of the space that must be searched to find a good policy.
However, a hierarchy constrains the space of possible policies so that it may not be possible
to represent the optimal policy or its value function, and hence make it impossible to learn
the optimal policy. If we cannot learn the optimal policy, the next best target would be to
learn the best policy that is consistent with the given hierarchy. Two notions of optimality
have been explored in the previous work on hierarchical reinforcement learning, hierarchi-
cal optimality and recursive optimality (Dietterich, 2000).

Definition 3: A hierarchically optimal policy for MDP M is a hierarchical policy which

10
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has the best performance among all policies consistent with the given hierarchy. In other
words, hierarchical optimality is a global optimum consistent with the given hierarchy. In
this form of optimality, the policy for each individual subtask is not necessarily locally op-
timal, but the policy for the entire hierarchy is optimal. The HAMQ HRL algorithm (Parr,
1998) and the SMDP Q-learning algorithm for a fixed set of options (Sutton et al., 1999;
Precup, 2000) both converge to a hierarchically optimal policy. �

Definition 4: Recursive optimality is a weaker but more flexible form of optimality which
only guarantees that the policy of each subtask is optimal given the policies of its children.
It is an important and flexible form of optimality because it permits each subtask to learn
a locally optimal policy while ignoring the behavior of its ancestors in the hierarchy. This
increases the opportunity for subtask sharing and state abstraction. The MAXQ-Q HRL
algorithm (Dietterich, 2000) converges to a recursively optimal policy. �

4.4 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ = {µ0, . . . , µm−1} such
that for each subtask Mi in the hierarchy, the expected cumulative reward of executing
policy µi and the policies of all descendants of Mi is maximized. In this case, the value
function to be learned for subtask Mi under hierarchical policy µ must contain only the
reward received during the execution of subtask Mi. We call this the projected value
function after Dietterich (2000), and define it as follows:

Definition 5: The projected value function of a hierarchical policy µ on subtask Mi,
denoted V̂ µ(i, s), is the expected cumulative reward of executing policy µi and the policies
of all descendants of Mi starting in state s ∈ Si until Mi terminates. �

The expected cumulative reward outside a subtask is not a part of its projected value
function. It makes the projected value function of a subtask dependent only on the subtask
and its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical policy
that maximizes the expected cumulative reward. In this case, the value function to be
learned for subtask Mi under hierarchical policy µ must contain the reward received during
the execution of subtask Mi, and the reward after subtask Mi terminates. We call this the
hierarchical value function, following Dietterich (2000). The hierarchical value function
of a subtask includes the expected reward outside the subtask and therefore depends on
the subtask and all its ancestors up to the root of the hierarchy. In the case of hierarchical
optimality, we need to consider the contents of the Task-Stack as an additional part of the
state space of the problem, since a subtask might be shared by multiple parents.

Definition 6: Ω is the space of possible values of the Task-Stack for hierarchy H. �

Let us define joint state space X = Ω × S for the hierarchy H as the cross product of
the set of the Task-Stack values Ω and the state space S. We also define a transition
probability function of the Markov chain that results from flattening the hierarchy using

11
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the hierarchical policy µ, mµ : X × X → [0, 1], where mµ(x′|x) denotes the probability
that the hierarchical policy µ will cause the system to transition from state x = (ω, s) to
state x′ = (ω′, s′) at the level of primitive actions. We will use this transition probability
function in Section 5.1 to define global gain for a hierarchical policy. Finally, we define the
hierarchical value function using the joint state space X as follows:

Definition 7: A hierarchical value function for subtask Mi in state x = (ω, s) under
hierarchical policy µ, denoted V µ(i, x), is the expected cumulative reward of following the
hierarchical policy µ starting in state s ∈ Si and Task-Stack ω. �

The current subtask Mi is a part of the Task-Stack ω and as a result is a part of the state
x. So we can exclude it from the hierarchical value function notation and write V µ(i, x) as
V µ(x). However for clarity, we use V µ(i, x) in the rest of this paper.

Theorem 1: Under a hierarchical policy µ, each subtask Mi can be modeled by a SMDP
consisting of components (Si, Ai, P

µ

i , R̄i), where R̄i(s, a) = V̂ µ(a, s) for all a ∈ Ai. �

This theorem is similar to Theorem 1 in Dietterich (2000). Using this theorem, we can
define a recursive optimal policy for MDPM with hierarchical decomposition {M0,M1, . . .

,Mm−1} as a hierarchical policy µ = {µ0, . . . , µm−1} such that for each subtask Mi, the
corresponding policy µi is optimal for the SMDP defined by the tuple (Si, Ai, P

µ

i , R̄i).

4.5 Value Function Decomposition

A value function decomposition splits the value of a state or a state-action pair into multiple
additive components. Modularity in the hierarchical structure of a task allows us to carry
out this decomposition along subtask boundaries. In this section, we first describe the
two-part or MAXQ decomposition proposed by Dietterich (2000), and then the three-part
decomposition proposed by Andre and Russell (2002). We use both decompositions in our
hierarchical average reward framework depending on the type of optimality (hierarchical or
recursive) that we are interested in.

The two-part value function decomposition is at the center of the MAXQ method. The
purpose of this decomposition is to decompose the projected value function of the root task,
V̂ µ(0, s), in terms of the projected value functions of all of the subtasks in the hierarchy.
The projected value of subtask Mi at state s under hierarchical policy µ can be written as

V̂ µ(i, s) = E

[

∞
∑

k=0

γkr(sk, ak)|s0 = s,µ

]

. (3)

Now, let us suppose that the first action chosen by µi is invoked and executed for a number
of primitive steps N and terminates in state s′ according to P

µ

i (s′, N |s). We can rewrite
Equation 3 as

V̂ µ(i, s) = E

[

N−1
∑

k=0

γkr(sk, ak) +
∞
∑

k=N

γkr(sk, ak)|s0 = s,µ

]

. (4)
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The first summation on the right-hand side of Equation 4 is the discounted sum of rewards
for executing subtask µi(s) starting in state s until it terminates. In other words, it is
V̂ µ(µi(s), s), the projected value function of the child task µi(s). The second term on the
right-hand side of the equation is the projected value of state s′ for the current task Mi,
V̂ µ(i, s′), discounted by γN , where s′ is the current state when subroutine µi(s) terminates
and N is the number of transition steps from state s to state s′. We can therefore write
Equation 4 in the form of a Bellman equation:

V̂ µ(i, s) = V̂ µ(µi(s), s) +
∑

s′,N

P
µ

i (s′, N |s)γN V̂ µ(i, s′). (5)

Equation 5 can be restated for the projected action-value function as follows:

Q̂µ(i, s, a) = V̂ µ(a, s) +
∑

s′,N

P
µ

i (s′, N |s, a)γN Q̂µ(i, s′, µi(s
′)).

The right-most term in this equation is the expected discounted cumulative reward of com-
pleting subtask Mi after executing action a in state s. Dietterich called this term comple-
tion function and denoted it by

Cµ(i, s, a) =
∑

s′,N

P
µ

i (s′, N |s, a)γN Q̂µ(i, s′, µi(s
′)). (6)

With this definition, we can express the projected action-value function recursively as

Q̂µ(i, s, a) = V̂ µ(a, s) + Cµ(i, s, a), (7)

and we can rewrite the definition for projected value function as

V̂ µ(i, s) =

{

Q̂µ(i, s, µi(s)) if Mi is a non-primitive subtask,
r(s, i) if Mi is a primitive action.

(8)

Equations 6 to 8 are referred to as two-part value function decomposition equations
for a hierarchy under a hierarchical policy µ. These equations recursively decompose the
projected value function for the root into the projected value functions for the individual sub-
tasks, M1, . . . ,Mm−1, and the individual completion functions Cµ(j, s, a), j = 1, . . . ,m− 1.
The fundamental quantities that must be stored to represent this value function decom-
position are the C values for all non-primitive subtasks and the V values for all primitive
actions.7 The two-part value function decomposition is summarized graphically in Fig-
ure 2. As mentioned in Section 4.4, since the expected reward after execution of subtask
Mi is not a component of the projected action-value function, the two-part value function
decomposition allows only for recursive optimality.

Andre and Russell (2002) proposed a three-part value function decomposition to achieve
hierarchical optimality. They added a third component for the expected sum of rewards
outside the current subtask to the two-part value function decomposition. This decomposi-
tion decomposes the hierarchical value function of each subtask into three parts. As shown
in Figure 3, these three parts correspond to executing the current action (which might itself
be a subtask), completing the rest of the current subtask (so far is similar to the MAXQ
decomposition), and all actions outside the current subtask.

7. The projected value function and value function are the same for a primitive action.
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Figure 2: This figure shows the two-part decomposition for V̂ (i, s), the projected value
function of subtask Mi for the shaded state s. Each circle is a state of the SMDP
visited by the agent. Subtask Mi is initiated at state sI and terminates at state
sT . The projected value function V̂ (i, s) is broken into two parts: Part 1) the
projected value function of subtask Ma for state s, and Part 2) the completion
function, the expected discounted cumulative reward of completing subtask Mi

after executing action a in state s.

5. Hierarchical Average Reward Reinforcement Learning

As described in Section 1, the average reward formulation is more appropriate for a wide
class of continuing tasks including manufacturing, scheduling, queuing, and inventory con-
trol than the more well-studied discounted framework. Moreover, average reward optimality
allows for more efficient state abstraction in HRL than the discounted reward formulation.
Consider the case that a set of state variables Ya is irrelevant for the result distribution of
action (subtask) Ma, when Ma is executed under subtask Mi. It means that for all policies
executed by Ma and its descendants, and for all pairs of states s1 and s2 in Si (the state
space of subtask Mi) that differ only in their values for the state variables in Ya, we have

P
µ

i (s′, N |s1, a) = P
µ

i (s′, N |s2, a) , ∀s′ ∈ Si , ∀N ∈ N.

Dietterich (2000) first defined this condition and called it result distribution irrelevance. If
this condition is satisfied for subtask Ma, then the completion function values of its parent
task Mi can be represented compactly, i.e., all states s ∈ Si that differ only in their values for
the state variables in Ya have the same completion function, and therefore their completion
function values can be represented only by one quantity Cµ(i, s, a), defined by Equation 6.

The definition of result distribution irrelevance can be weakened to eliminate N , the
number of steps. All that is needed is that for all pairs of states s1 and s2 in Si that differ
only in the irrelevant state variables, P

µ

i (s′|s1, a) = P
µ

i (s′|s2, a) for all s′ ∈ Si. Although
the result distribution irrelevance condition would rarely be satisfied, we often find cases
where the weakened result distribution irrelevance condition is true.
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Figure 3: This figure shows the three-part decomposition for V (i, x), the hierarchical value
function of subtask Mi for the shaded state x = (ω, s). Each circle is a state of the
SMDP visited by the agent. Subtask Mi is initiated at state xI and terminates at
state xT . The hierarchical value function V (i, x) is broken into three parts: Part
1) the projected value function of subtask Ma for state s, Part 2) the completion
function, the expected discounted cumulative reward of completing subtask Mi

after executing action a in state s, and Part 3) the sum of all rewards after
termination of subtask Mi.

Under this revised definition, the compact representation of a completion function still
holds in the undiscounted case, but not in the discounted formulation. Consider, for ex-
ample, the collect trash at T1 subtask in the robot trash-collection problem described in
Section 4.1. No matter what location the robot has in state s, it will be at the Dump
location when the collect trash at T1 subtask terminates. Hence, the starting location is
irrelevant to the resulting location of the robot, and P

µ

Root(s
′|s1, collect trash at T1) =

P
µ

Root(s
′|s2, collect trash at T1) for all states s1 and s2 in SRoot that differ only in the

robot’s location. However, if we were using discounted reward optimality, the robot’s loca-
tion would not be irrelevant, because the probability that the collect trash at T1 subtask
will terminate in N steps would depend on the location of the robot, which could differ
in states s1 and s2. Different values of N will produce different amounts of discounting in
Equation 6, and hence we cannot ignore the robot location when representing the comple-
tion function for the collect trash at T1 subtask. When we use undiscounted optimality,
such as average reward, we can use the weakened result distribution irrelevance and still
represent the completion function for the collect trash at T1 subtask with only one quantity.

In this section, we extend previous work on hierarchical reinforcement learning (HRL)
to the average reward framework, and investigate two formulations of HRL based on the
average reward SMDP model. These two formulations correspond to two notions of opti-
mality in HRL: hierarchical optimality and recursive optimality described in Section 4.3. We
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present discrete-time and continuous-time algorithms to find hierarchically and recursively
optimal average reward policies. In these algorithms, we assume that the overall task (the
root of the hierarchy) is continuing. In the hierarchically optimal average reward RL
(HAR) algorithms, the aim is to find a hierarchical policy within the space of policies de-
fined by the hierarchical decomposition that maximizes the global gain (Ghavamzadeh and
Mahadevan, 2002). In the recursively optimal average reward RL (RAR) algorithms,
we treat subtasks as continuing average reward problems, where the goal at each subtask
is to maximize its gain given the policies of its children (Ghavamzadeh and Mahadevan,
2001). We investigate the conditions under which the policy learned by the RAR algo-
rithm at each subtask is independent of the context in which it is executed and therefore
can be reused by other hierarchies. In Section 6, we use two automated guided vehicle
(AGV) scheduling tasks as experimental testbeds to study the empirical performance of
the proposed algorithms. We model the second AGV task using both discrete-time and
continuous-time models. We compare the performance of our proposed algorithms with
other HRL methods and a non-hierarchical average reward RL algorithm in this problem.

5.1 Hierarchically Optimal Average Reward RL Algorithm

Given the basic concepts of the average reward SMDP model described in Section 3.1, the
fundamental principles of HRL, and the HRL framework in Section 4, we now describe a
hierarchically optimal average reward RL formulation. Since we are interested in hierarchi-
cal optimality, we include the contents of the Task-Stack as a part of the state space of the
problem. In this section, we consider HRL problems for which the following assumptions
hold.

Assumption 1 (Continuing Root Task): The root of the hierarchy is a continuing
task, i.e., the root task continues without termination. �

Assumption 2: For every hierarchical policy µ, the Markov chain that results from flatten-
ing the hierarchy using the hierarchical policy µ, represented by the transition probability
matrix mµ (defined in Section 4.4), has a single recurrent class and a (possibly empty) set
of transient states. �

If Assumptions 1 and 2 hold, the gain8

gµ =

(

lim
n→∞

1

n

n−1
∑

t=0

(mµ)t

)

rµ = m̄µrµ (9)

is well defined for every hierarchical policy µ and does not depend on the initial state. In
Equation 9, m̄µ is the limiting matrix of the Markov chain that results from flattening the
hierarchy using the hierarchical policy µ, and satisfies the equality m̄µmµ = m̄µ, and rµ

is a vector with elements r(x,µ(x)), for all x ∈ X . We call gµ the global gain under the
hierarchical policy µ. The global gain, gµ, is the gain of the Markov chain that results from
flattening the hierarchy using the hierarchical policy µ.

8. Under the unichain assumption, m̄µ has equal rows. Therefore, the right hand side of Equation 9 is a
vector with elements all equal to gµ .
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Here, we are interested in finding a hierarchical policy µ∗ that maximizes the global gain

gµ
∗

≥ gµ, for all µ. (10)

We refer to a hierarchical policy µ∗ which satisfies Equation 10 as a hierarchically opti-
mal average reward policy, and to gµ

∗

as the hierarchically optimal average reward or the
hierarchically optimal gain.

We replace the value and the action-value functions in the HRL framework of Section 4
with the average-adjusted value and the average-adjusted action-value functions described
in Section 3.1. The hierarchical average-adjusted value function for hierarchical policy µ and
subtask Mi, denoted Hµ(i, x), is the average-adjusted sum of rewards earned by following
hierarchical policy µ starting in state x = (ω, s) until Mi terminates, plus the expected
average-adjusted reward outside subtask Mi

Hµ(i, x) = lim
N→∞

E

{

N−1
∑

k=0

[rµ(xk, ak)− gµyµ(xk, ak)] |x0 = x,µ

}

. (11)

Here, the rewards are adjusted with gµ, the global gain under the hierarchical policy µ.
Now, let us suppose that the first action chosen by µi is executed for a number of

primitive steps N1 and terminates in state x1 = (ω, s1) according to multi-step transition
probability P

µ

i (x1, N1|x, µi(x)), and then subtask Mi itself executes for N2 steps at the level of
subtask Mi (N2 is the number of actions taken by subtask Mi, not the number of primitive
actions) and terminates in state x2 = (ω, s2) according to multi-step abstract transition
probability F

µ

i (x2, N2|x1). We can rewrite Equation 11 in the form of a Bellman equation
as

Hµ(i, x) = r
µ

i (x, µi(x))− gµy
µ

i (x, µi(x)) +

(12)

∑

N1,s1∈Si

P
µ

i (x1, N1|x, µi(x))



Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ

i (x2, N2|x1)H
µ(Parent(i), (ω ր i, s2))



 ,

where Ĥµ(i, .) is the projected average-adjusted value function of the hierarchical policy µ

and subtask Mi, y
µ

i (x, µi(x)) is the expected number of time steps until the next decision
epoch of subtask Mi after taking action µi(x) in state x and following the hierarchical policy
µ afterward, and ω ր i is the content of the Task-Stack after popping subtask Mi off.
Notice that Ĥ does not contain the average-adjusted rewards outside the current subtask
and should be distinguished from the hierarchical average-adjusted value function H, which
includes the sum of average-adjusted rewards outside the current subtask.

Since r
µ

i (x, µi(x)) is the expected reward between two decision epochs of subtask Mi,
given that the system occupies state x at the first decision epoch, and the agent chooses
action µi(x), we have

r
µ

i (x, µi(x)) = V̂ µ(µi(x), (µi(x)ց ω, s)) = Ĥµ(µi(x), (µi(x)ց ω, s)) + gµy
µ

i (x, µi(x)),
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where µi(x)ց ω is the content of the Task-Stack after pushing subtask µi(x) onto it. By
replacing r

µ

i (x, µi(x)) from the above expression, Equation 12 can be written as

Hµ(i, x) = Ĥµ(µi(x), (µi(x)ց ω, s)) +

(13)

∑

N1,s1∈Si

P
µ

i (x1, N1|x, µi(x))



Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ

i (x2, N2|x1)H
µ(Parent(i), (ω ր i, s2))



 .

We can restate Equation 13 for hierarchical average-adjusted action-value function as

Lµ(i, x, a) = Ĥµ(a, (aց ω, s)) +
∑

N1,s1∈Si

P
µ

i (x1, N1|x, a)

(14)


Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ

i (x2, N2|x1)L
µ(Parent(i), (ω ր i, s2), µparent(i)(ω ր i, s2))



 .

From Equation 14, we can rewrite the hierarchical average-adjusted action-value function
L recursively as

Lµ(i, x, a) = Ĥµ(a, (aց ω, s)) + Cµ(i, x, a) + CEµ(i, x, a), (15)

where

Cµ(i, x, a) =
∑

N1,s1∈Si

P
µ

i (x1, N1|x, a)Ĥµ(i, x1), (16)

and

CEµ(i, x, a) =
∑

N1,s1∈Si

P
µ

i (x1, N1|x, a)

(17)




∑

N2,s2∈Si

F
µ

i (x2, N2|x1)L
µ(Parent(i), (ω ր i, s2), µparent(i)(ω ր i, s2))



 .

The term Cµ(i, x, a) is the expected average-adjusted reward of completing subtask Mi

after executing action a in state x = (ω, s). We call this term completion function after
Dietterich (2000). The term CEµ(i, x, a) is the expected average-adjusted reward received
after subtask Mi terminates. We call this term external completion function after
Andre and Russell (2002).

We can rewrite the definition of Ĥ as

Ĥµ(i, x) =

{

L̂µ(i, x, µi(x)) if Mi is a non-primitive subtask,
r(s, i)− gµ if Mi is a primitive action,

(18)
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where L̂µ is the projected average-adjusted action-value function and can be written as

L̂µ(i, x, a) = Ĥµ(a, (aց ω, s)) + Cµ(i, x, a). (19)

Equations 15 to 19 are the decomposition equations under a hierarchical policy µ.
These equations recursively decompose the hierarchical average-adjusted value function
for root, Hµ(0, x), into the projected average-adjusted value functions Ĥµ for the in-
dividual subtasks, M1, . . . ,Mm−1, in the hierarchy, the individual completion functions
Cµ(i, x, a), i = 1, . . . ,m− 1, and the individual external completion functions CEµ(i, x, a),
i = 1, . . . ,m − 1. The fundamental quantities that must be stored to represent the hier-
archical average-adjusted value function decomposition are the C and the CE values for
all non-primitive subtasks, the Ĥ values for all primitive actions, and the global gain g.
The decomposition equations can be used to obtain update equations for Ĥ, C, and CE

in this hierarchically optimal average reward model. Pseudo-code for the discrete-time hi-
erarchically optimal average reward RL (HAR) algorithm is shown in Algorithm 1. In this
algorithm, primitive subtasks update their projected average-adjusted value functions Ĥ

(Line 5), while non-primitive subtasks update both their completion functions C (Line 17),
and external completion functions CE (Lines 20 and 22). We store only one global gain g

and update it after each non-random primitive action (Line 7). In the update formula on
Line 17, the projected average-adjusted value function Ĥ(a∗, (a∗ ց ω, s′)) is the average-
adjusted reward of executing action a∗ in state (a∗ ց ω, s′) and is recursively calculated by
subtask Ma∗ and its descendants using Equations 18 and 19. Notice that the hierarchical
average-adjusted action-value function L on Lines 15, 19, and 20 is recursively evaluated
using Equation 15.

This algorithm can be easily extended to continuous-time by changing the update for-
mulas for Ĥ and g on Lines 5 and 7 as

Ĥt+1(i, x)←[1− αt(i)]Ĥt(i, x) + αt(i) [k(s, i) + r(s, i)τ(s, i) − gtτ(s, i)] ,

gt+1 =
rt+1

tt+1
=

rt + k(s, i) + r(s, i)τ(s, i)

tt + τ(s, i)
,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed
reward of taking action Mi in state s, and r(s, i) is the reward rate for the time between
state s and the next state.

5.2 Recursively Optimal Average Reward RL

In the previous section, we introduced discrete-time and continuous-time hierarchically
optimal average reward RL (HAR) algorithms. In HAR algorithms, we define only a global
gain for the entire hierarchy to guarantee hierarchical optimality for the overall task. HAR
algorithms find a hierarchical policy that has the highest global gain among all policies
consistent with the given hierarchy. However, there may exist subtasks where their policies
must be locally suboptimal so that the overall policy becomes optimal. Recursive optimality
is a kind of local optimality in which the policy at each node is optimal given the policies
of its children (see Section 4.3). Thus, the goal at root is to maximize its gain given the
policies for its descendants. The reason seeking recursive optimality rather than hierarchical
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Algorithm 1 : Discrete-time hierarchically optimal average reward RL (HAR) algorithm.

1: Function HAR(Task Mi, State x = (ω, s))
2: let Seq = {} be the sequence of states visited while executing subtask Mi

3: if Mi is a primitive action then
4: execute action Mi in state x = (ω, s), observe state x′ = (ω, s′) and reward r(s, i)
5: Ĥt+1(i, x)← [1− αt(i)]Ĥt(i, x) + αt(i)[r(s, i) − gt]
6: if Mi and all its ancestors are non-random actions then
7: update the global gain gt+1 = rt+1

nt+1
= rt+r(s,i)

nt+1
8: end if
9: push state x1 = (ω ր i, s) into the beginning of Seq

10: else
11: while Mi has not terminated do
12: choose action (subtask) Ma according to the current exploration policy µi(x)
13: let ChildSeq = HAR(Ma, (a ց ω, s)), where ChildSeq is the sequence of states

visited while executing subtask Ma

14: observe result state x′ = (ω, s′)
15: let a∗ = arg maxa′∈Ai(s′) Lt(i, x

′, a′)
16: for each x = (ω, s) in ChildSeq from the beginning do

17: Ct+1(i, x, a)← [1− αt(i)]Ct(i, x, a) + αt(i)
[

Ĥt(a
∗, (a∗ ց ω, s′)) + Ct(i, x

′, a∗)
]

18: if s′ ∈ Ti (s′ belongs to the set of terminal states of subtask Mi) then
19: a′′ = arg maxa′∈AParent(i)

Lt(Parent(i), (ω ր i, s′), a′)

20: CEt+1(i, x, a)← [1− αt(i)]CEt(i, x, a) + αt(i)Lt(Parent(i), (ω ր i, s′), a′′)
21: else
22: CEt+1(i, x, a)← [1− αt(i)]CEt(i, x, a) + αt(i)CEt(i, x

′, a∗)
23: end if
24: replace state x = (ω, s) with (ω ր i, s) in the ChildSeq
25: end for
26: append ChildSeq onto the front of Seq
27: x = x′

28: end while
29: end if
30: return Seq
31: end HAR

optimality is that recursive optimality makes it possible to solve each subtask without
reference to the context in which it is executed, and therefore the learned subtask can be
reused by other hierarchies. This leaves open the question of what local optimality criterion
should be used for each subtask in a recursively optimal average reward RL setting.

One approach pursued by Seri and Tadepalli (2002) is to optimize subtasks using their
expected total average-adjusted reward with respect to the global gain. Seri and Tadepalli
introduced a model-based algorithm called hierarchical H-Learning (HH-Learning). For
every subtask, this algorithm learns the action model and maximizes the expected total
average-adjusted reward with respect to the global gain at each state. In this method,
the projected average-adjusted value functions with respect to the global gain satisfy the
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following equations:

Ĥµ(i, s) =























r(s, i)− gµ if Mi is a primitive action,

0 if s ∈ Ti (s is a terminal state of subtask Mi),

maxa∈Ai(s)[Ĥ
µ(a, s) +

∑

N,s′∈Si
P

µ

i (s′, N |s, a)Ĥµ(i, s′)] otherwise.

(20)

The first term of the last part of Equation 20, Ĥµ(a, s), denotes the expected total average-
adjusted reward during the execution of subtask Ma (the projected average adjusted value
function of subtask Ma), and the second term denotes the expected total average-adjusted
reward from then on until the completion of subtask Mi (the completion function of subtask
Mi after execution of subtask Ma). Since the expected average-adjusted reward after execu-
tion of subtask Mi is not a component of the average-adjusted value function of subtask Mi,
this approach does not necessarily allow for hierarchical optimality, as we will show in the
experiments of Section 6. Moreover, the policy learned for each subtask using this approach
is not context free, since each subtask maximizes its average-adjusted reward with respect
to the global gain. However, Seri and Tadepalli (2002) showed that this method finds the
hierarchically optimal average reward policy when the result distribution invariance condi-
tion holds.

Definition 8 (Result Distribution Invariance Condition): For all subtasks Mi and
states s in the hierarchy, the distribution of states reached after the execution of any sub-
task Ma (Ma is one of Mi’s children) is independent of the policy µa of subtask Ma and the
policies of Ma’s descendants, i.e., P

µ

i (s′|s, a) = Pi(s
′|s, a). �

In other words, states reached after the execution of a subtask cannot be changed by
altering the policies of the subtask and its descendants. Note that the result distribution
invariance condition does not hold for every problem, and therefore HH-Learning is neither
hierarchically nor recursively optimal in general.

Another approach is to formulate subtasks as continuing average reward problems,
where the goal at each subtask is to maximize its gain given the policies of its children
(Ghavamzadeh and Mahadevan, 2001). We describe this approach in detail in Sections
5.2.1 and 5.2.2. In Section 5.2.3, we use this method to find recursively optimal average
reward policies, and present discrete-time and continuous-time recursively optimal average
reward RL (RAR) algorithms. Finally, in Section 5.2.4, we investigate the conditions under
which the policy learned by RAR algorithm at each subtask is independent of the context
in which it is executed and therefore can be reused by other hierarchies.

5.2.1 Root Task Formulation

In our recursively optimal average reward RL approach, we consider those problems for
which Assumption 1 (Continuing Root Task) and the following assumption hold.

Assumption 3 (Root Task Recurrence): There exists a state s∗0 ∈ S0 such that,
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for every hierarchical policy µ and for every state s ∈ S0, we have9

|S0|
∑

N=1

F
µ

0 (s∗0, N |s) > 0,

where F
µ

0 is the multi-step abstract transition probability function of root under the hierar-
chical policy µ described in Section 4.2, and |S0| is the number of states in the state space
of root. �

Assumption 3 is equivalent to assuming that the underlying Markov chain at root for
every hierarchical policy µ has a single recurrent class, and state s∗0 is a recurrent state. If
Assumptions 1 and 3 hold, the gain at the root task under the hierarchical policy µ, g

µ

0 , is
well defined for every hierarchical policy µ and does not depend on the initial state. When
the state space at root is finite or countable, the gain at root can be written as10

g
µ

0 =
F̄

µ

0 r
µ

0

F̄
µ

0 y
µ

0

,

where r
µ

0 and y
µ

0 are vectors with elements r
µ

0 (s, µ0(s)) and y
µ

0 (s, µ0(s)), for all s ∈ S0.
r
µ

0 (s, µ0(s)) and y
µ

0 (s, µ0(s)) are the expected total reward and the expected number of
time steps between two decision epochs at root, given that the system occupies state s

at the first decision epoch and the agent chooses its actions according to the hierarchical
policy µ. The terms F

µ

0 and F̄
µ

0 = limn→∞
1
n

∑n−1
t=0 (F µ

0 )t are the transition probability
matrix and the limiting matrix of the embedded Markov chain at root for hierarchical policy
µ, respectively. The transition probability F

µ

0 is obtained by marginalizing the multi-step
transition probability P

µ

0 . The term F
µ

0 (s′|s, µ0(s)) denotes the probability that the SMDP
at root occupies state s′ at the next decision epoch, given that the agent chooses action
µ0(s) in state s at the current decision epoch and follows the hierarchical policy µ.

5.2.2 Subtask Formulation

In Section 5.2.1, we described the average reward formulation for the root task of a hierar-
chical decomposition. In this section, we illustrate how we formulate all other subtasks in a
hierarchy as average reward problems. From now on in this section, we use subtask to refer
to non-primitive subtasks in a hierarchy except root.

In HRL methods, we typically assume that every time a subtask Mi is executed, it starts
at one of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after
a finite number of time steps. Therefore, we can make the following assumption for every
subtask Mi in the hierarchy. Under this assumption, each subtask can be considered an
episodic problem and each instantiation of a subtask can be considered an episode.

Assumption 4 (Subtask Termination): There exists a dummy state s∗i such that,

9. Notice that the root task is represented as subtask M0 in the HRL framework described in Section 4.
Thus, we use index 0 to represent components of the root task.

10. When the underlying Markov chain at root for every hierarchical policy µ has a single recurrent class,
F̄

µ

0 has equal rows, and the right hand side of the equation is a vector with elements all equal to g
µ

0 .
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for every action a ∈ Ai and every terminal state s ∈ Ti, we have

ri(s, a) = 0 and Pi(s
∗
i , 1|s, a) = 1

and for all hierarchical stationary policies µ and non-terminal states s ∈ (Si−Ti), we have

F
µ

i (s∗i , 1|s) = 0

and finally for all states s ∈ Si, we have

F
µ

i (s∗i , |Si||s) > 0

where F
µ

i is the multi-step abstract transition probability function of subtask Mi under the
hierarchical policy µ described in Section 4.2, and |Si| is the number of states in the state
space of subtask Mi. �

Although subtasks are episodic problems, when the overall task (root of the hierarchy)
is continuing as we assumed in this chapter (Assumption 1), they are executed an infinite
number of times, and therefore can be modeled as continuing problems using the model
described in Figure 4. In this model, each subtask Mi terminates at one of its terminal
states s ∈ Ti. All terminal states transit with probability 1 and reward 0 to a dummy state
s∗i . Finally, the dummy state s∗i transits with reward zero to one of the initial states (∈ Ii)
of subtask Mi upon the next instantiation of Mi. These are dummy transitions and do not
add any time-step to the cycle of subtask Mi and therefore are not taken into consideration
when the average reward of subtask Mi is calculated. It is important for the validity of the
model to fix the value of dummy states to zero.

*s

Terminal States
n

. . .
1

.

.

.
.
.
.

1

n

Set of
Ti Initial States I i

Set of

r = 0 , I = In

r = 0 , I = I1

I    +           +  I    =  1

i

r = 0 , F = 1

r = 0 , F = 1

Figure 4: This figure shows how each subtask in a hierarchical decomposition of a continuing
problem can be modeled as a continuing task.
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Under this model, for every hierarchical policy µ, we define a new SMDP for each subtask
Mi in the hierarchy with the following multi-step transition probabilities and rewards:

P
µ

Ii
(s′, N |s, µi(s)) =















P
µ

i (s′, N |s, µi(s)) s, s′ 6= s∗i , ∀N ∈ N,
Ii(s

′) s = s∗i , N = 1,
1 s′ = s∗i , s ∈ Ti , N = 1,
0 otherwise.

(21)

r
µ

Ii
(s, µi(s)) =

{

r
µ

i (s, µi(s)) s ∈ (Si − Ti),
0 s = s∗i or s ∈ Ti.

where Ii(s) is the probability that subtask Mi starts at state s ∈ Ii. The SMDP defined
by Equation 21 has an embedded MDP with the following transition probability function:

F
µ

Ii
(s′|s, µi(s)) =















F
µ

i (s′|s, µi(s)) s, s′ 6= s∗i ,
Ii(s

′) s = s∗i ,
1 s′ = s∗i , s ∈ Ti,
0 s′ = s∗i , s ∈ (Si − Ti).

(22)

Lemma 1: Let Assumption 4 (Subtask Termination) hold. Then, for every F
µ

Ii
and every

state s ∈ Si, we have
∑|Si|

N=1 F
µ

Ii
(s∗i , N |s) > 0.11 �

Lemma 1 is equivalent to assuming that for every subtask Mi in the hierarchy, the un-
derlying Markov chain for every hierarchical policy µ has a single recurrent class and state
s∗i is its recurrent state. Under this model, the gain of subtask Mi under the hierarchical
policy µ, g

µ

i , is well defined for every hierarchical policy µ and does not depend on the
initial state. When the state space of subtask Mi is finite or countable, the gain of subtask
Mi can be written as12

g
µ

i =
F̄

µ

Ii
r

µ

Ii

F̄
µ

Ii
y

µ

Ii

,

where r
µ

Ii
and y

µ

Ii
are vectors with elements r

µ

Ii
(s, µi(s)) and y

µ

Ii
(s, µi(s)), for all s ∈ Si.

r
µ

Ii
(s, µi(s)) and y

µ

Ii
(s, µi(s)) are the expected total reward and the expected number of

time steps between two decision epochs of the SMDP defined by Equation 21 at subtask
Mi, given that the system occupies state s at the first decision epoch and the agent chooses
its actions according to hierarchical policy µ. The term F̄

µ

Ii
= limn→∞

1
n

∑n−1
t=0 (F µ

Ii
)t is the

limiting matrix of the Markov chain defined by Equation 22 at subtask Mi.

5.2.3 A Recursively Optimal Average Reward RL Algorithm

In this section, we present discrete-time and continuous-time recursively optimal average
reward RL (RAR) algorithms using the formulation described in Sections 5.2.1 and 5.2.2.
We consider problems for which Assumptions 1, 3, and 4 (Continuing Root-Task, Root-Task

11. This lemma is a restatement of Lemma 5 on page 34 of Peter Marbach’s thesis (Marbach, 1998).
12. When the underlying Markov chain for every hierarchical policy µ at subtask Mi has a single recurrent

class, F̄
µ

Ii
has equal rows, and thus the right hand side of the equation is a vector with elements all equal

to g
µ

i .
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Recurrence, and Subtask Termination) hold, root is modeled as an average reward problem
as described in Section 5.2.1, and every other non-primitive subtask in the hierarchy is
modeled as an average reward problem using the model described in Section 5.2.2. Under
these assumptions, the average reward for every non-primitive subtask in the hierarchy
including root is well defined for every hierarchical policy and does not vary with initial
state. Since we are interested in finding a recursively optimal average reward policy, we
do not need to include the contents of the Task-Stack as a part of the state space of the
problem. We also replace the projected value and action-value functions in the hierarchical
model of Section 4 with the projected average-adjusted value and projected average-adjusted
action-value functions described in Section 3.1.

We show how the overall projected average-adjusted value function Ĥµ(0, s) is decom-
posed into a collection of projected average-adjusted value functions of individual subtasks
Ĥµ(i, s), i = 1, . . . ,m − 1, in RAR algorithm. The projected average-adjusted value func-
tion of hierarchical policy µ at subtask Mi is the average-adjusted (with respect to the local
gain g

µ

i ) sum of rewards earned by following policy µi and the policies of all descendants of
subtask Mi starting in state s until Mi terminates. Now, let us suppose that the first action
chosen by µi is executed for a number of primitive steps N and terminates in state s′ ac-
cording to multi-step transition probability P

µ

i (s′, N |s, µi(s)). We can write the projected
average-adjusted value function in the form of a Bellman equation as

Ĥµ(i, s) = r
µ

i (s, µi(s))− g
µ

i y
µ

i (s, µi(s)) +
∑

N,s′∈Si

P
µ

i (s′, N |s, µi(s))Ĥ
µ(i, s′). (23)

Since r
µ

i (s, µi(s)) is the expected total reward between two decision epochs of subtask
Mi, given that the system occupies state s at the first decision epoch, the agent chooses
action µi(s), and the number of time steps until the next decision epoch is defined by
y

µ

i (s, µi(s)), we have

r
µ

i (s, µi(s)) =



















V̂ µ(µi(s), s) = Ĥµ(µi(s), s) + g
µ

µi(s)
y

µ

i (s, µi(s))

if Mµi(s) is a non-primitive subtask,

V̂ µ(µi(s), s)
if Mµi(s) is a primitive action.

By replacing r
µ

i (s, µi(s)) from the above expression, and the fact that y
µ

i (s, µi(s)) equals 1
when Mµi(s) is a primitive action, Equation 23 can be written as

Ĥµ(i, s) =







































Ĥµ(µi(s), s)− (gµ

i − g
µ

µi(s)
)yµ

i (s, µi(s)) +
∑

N,s′∈Si
P

µ

i (s′, N |s, µi(s))Ĥ
µ(i, s′)

if Mµi(s) is a non-primitive subtask,

V̂ µ(µi(s), s)− g
µ

i +
∑

N,s′∈Si
P

µ

i (s′, N |s, µi(s))Ĥ
µ(i, s′)

if Mµi(s) is a primitive action.

(24)

We can restate Equations 24 for the projected action-value function as follows:
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L̂µ(i, s, a) =







































Ĥµ(a, s)− (gµ

i − gµ

a )yµ

i (s, a) +
∑

N,s′∈Si
P

µ

i (s′, N |s, a)L̂µ(i, s′, µi(s
′))

if Ma is a non-primitive subtask,

V̂ µ(a, s)− g
µ

i +
∑

N,s′∈Si
P

µ

i (s′, N |s, a)L̂µ(i, s′, µi(s
′))

if Ma is a primitive action.

(25)

By defining

Cµ(i, s, a) =







































−(gµ

i − gµ

a )yµ

i (s, a) +
∑

N,s′∈Si
P

µ

i (s′, N |s, a)L̂µ(i, s′, µi(s
′))

if Ma is a non-primitive subtask,

−g
µ

i +
∑

N,s′∈Si
P

µ

i (s′, N |s, a)L̂µ(i, s′, µi(s
′))

if Ma is a primitive action,

(26)

we can express the average-adjusted action-value function L̂µ recursively as

L̂µ(i, s, a) =

{

Ĥµ(a, s) + Cµ(i, s, a) if Ma is a non-primitive subtask,

V̂ µ(a, s) + Cµ(i, s, a) if Ma is a primitive action,
(27)

where
Ĥµ(i, s) = L̂µ(i, s, µi(s)). (28)

We call Cµ(i, s, a) defined by Equation 26 completion function.
Equations 24 to 28 are the decomposition equations for the projected average-adjusted

value and projected average-adjusted action-value functions. They can be used to obtain
update formulas for Ĥ and C in this recursively optimal average reward model. Pseudo-
code for the discrete-time recursively optimal average reward RL (RAR) algorithm is shown
in Algorithm 2. In this algorithm, a gain is defined for every non-primitive subtask in the
hierarchy and this gain is updated every time a subtask is non-randomly chosen. Primitive
subtasks store their projected value functions, and update them using the equation on
Line 5. Non-primitive subtasks store their completion functions and gains, and update
them using equations on Lines 17, 19, and 23. The projected average-adjusted action-value
function L̂ on Lines 12, 17, and 19 is recursively calculated using Equations 26 to 28.

This algorithm can be easily extended to continuous-time (Ghavamzadeh and Mahade-
van, 2001). In continuous-time RAR algorithm, in addition to visited state and reward, we
need to insert the execution time of primitive actions τ into the sequence Seq. Therefore,
N = N + 1 on Line 15 of the algorithm is changed to T = T + τ . We also need to change
the update formulas for V̂ , C, and gi on Lines 5, 17, 19, and 23 as

V̂t+1(i, s)←[1− αt(i)]Ĥt(i, s) + αt(i) [k(s, i) + r(s, i)τ(s, i)] ,

Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s
′, a∗)− gt(i)T ],

Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s
′, a∗)− (gt(i)− gt(a))T ],
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Algorithm 2 : Discrete-time recursively optimal average reward RL (RAR) algorithm.

1: Function RAR(Task Mi, State s)
2: let Seq ={}be the sequence of (state visited, reward) while executing subtask Mi

3: if Mi is a primitive action then
4: execute action Mi in state s, observe state s′ and reward r(s, i)
5: V̂t+1(i, s)← [1− αt(i)]V̂t(i, s) + αt(i)r(s, i)
6: push (state s, reward r(s, i)) into the beginning of Seq
7: else
8: while Mi has not terminated do
9: choose action (subtask) Ma according to the current exploration policy µi(s)

10: let ChildSeq = RAR(Ma, s), where ChildSeq is the sequence of (state visited, reward)

while executing subtask Ma

11: observe result state s′

12: let a∗ = arg maxa′∈Ai(s′) L̂t(i, s
′, a′)

13: let N = 0; ρ = 0;
14: for each (s, r) in ChildSeq from the beginning do
15: N = N + 1; ρ = ρ + r;
16: if a is a primitive action then
17: Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s

′, a∗)− gt(i)N ]
18: else
19: Ct+1(i, s, a)← [1−αt(i)]Ct(i, s, a)+αt(i)[L̂t(i, s

′, a∗)−(gt(i)−gt(a))N ]
20: end if
21: end for
22: if a and all its ancestors are non-random actions then
23: update the gain of subtask Mi gt+1(i) = rt+1(i)

nt+1(i)
= rt(i)+ρ

nt(i)+N

24: end if
25: append ChildSeq onto the front of Seq
26: s = s′

27: end while
28: end if
29: return Seq
30: end RAR

gt+1(i) =
rt+1(i)

tt+1(i)
=

rt(i) + ρ

tt(i) + T
,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed
reward of taking action Mi in state s, and r(s, i) is the reward rate for the time between
state s and the next state.

5.2.4 Analysis of the RAR Algorithm

In this section, we study the optimality achieved by RAR algorithm. As described earlier,
the expected average-adjusted sum of rewards after execution of subtask Mi is not a com-
ponent of the average-adjusted value function of subtask Mi in RAR algorithm. Therefore,
the algorithm fails to find a hierarchically optimal average reward policy in general, as
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was discussed in Seri and Tadepalli (2002) and will be demonstrated in the experiments of
Section 6.

To achieve recursive optimality, the policy learned for each subtask must be context free,
that is, each subtask should maximize its local gain given the policies of its descendants.
In RAR algorithm, although each subtask maximizes its local gain given the policies of its
descendants, the policy learned for each subtask is not necessarily context free, and as a
result, the algorithm does not find a recursively optimal average reward policy in general.
The reason is the local gain gi for each subtask Mi does not depend only on the policies
of its descendants. The local gain gi is the gain of the SMDP defined by Equation 21
and therefore depends on the initial state distribution Ii(s). The initial state distribution
Ii(s), the probability of being in state s at the next instantiation of subtask Mi, depends
not only on the policies of subtask Mi and all its descendants, but also on the policies of
its ancestors. It makes the local gain gi learned by RAR algorithm context dependent.
However, the algorithm finds a recursively optimal average reward policy when the initial
distribution invariance (IDI) condition holds. Under the IDI condition, the policy learned
by RAR algorithm at each subtask is independent of the context in which it is executed
and therefore can be reused by other hierarchies.

Definition 9 (Initial Distribution Invariance Condition): The initial state distri-
bution for each non-primitive subtask in the hierarchy is independent of the policies of its
ancestors. �

In other words, the initial state distribution for each non-primitive subtask cannot be
changed by altering the policies of its ancestors. One special case that satisfies the IDI
condition is when each non-primitive subtask in the hierarchy has only one initiation state,
|Ii| = 1, i = 1, . . . ,m− 1, and Mi is a non-primitive subtask.

6. Experimental Results

The goal of this section is to show the type of optimality achieved by the hierarchically
optimal average reward RL (HAR) and the recursively optimal average reward RL (RAR)
algorithms proposed in Sections 5.1 and 5.2, as well as their performance and speed com-
pared to other algorithms. We describe two sets of experiments. In Section 6.1, we apply
five HRL algorithms to a simple discrete-time automated guided vehicle (AGV) scheduling
problem. Since we use a hierarchical task decomposition in which the hierarchically and
recursively optimal policies are different for this problem, our experimental results clearly
demonstrate the difference between the optimality achieved by these algorithms. Then, we
turn to a relatively large AGV scheduling task in Section 6.2. We model this AGV schedul-
ing task as discrete time and continuous-time problems. In the discrete-time model, we
compare the performance of HAR and RAR algorithms with a hierarchically optimal dis-
counted reward algorithm and a recursively optimal discounted reward algorithm, as well as
a non-hierarchical (flat) average reward algorithm. In the continuous-time model, we com-
pare the performance of HAR and RAR algorithms with a recursively optimal discounted
reward algorithm. We do not use pseudo-reward or reward shaping in the experiments of
this section. The first problem is simple and can be solved easily without reward shaping.
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There are rewards associated with the terminal states of the subtasks in the original MDP of
the second problem. Therefore, the agent can find out about the desirability of the terminal
states upon completing the subtasks, without using pseudo-reward or reward shaping.

6.1 A Simple AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically optimal average reward RL (HAR)
algorithm described in Section 5.1, the discrete-time recursively optimal average reward RL
(RAR) algorithm described in Section 5.2, and HH-Learning, the algorithm proposed by
Seri and Tadepalli (2002), to a small AGV scheduling task. We also test MAXQ-Q, the
recursively optimal discounted reward HRL algorithm proposed by Dietterich (2000), and
a hierarchically optimal discounted reward RL algorithm (HDR) on this task. The HDR
algorithm is an extension of MAXQ-Q using the three-part value function decomposition
(Andre and Russell, 2002) described in Section 4.5.

A simple AGV domain is depicted in Figure 5. In this domain there are two machines
M1 and M2 that produce parts to be delivered to the corresponding destination stations
G1 and G2. Since machines and destination stations are in two different rooms, the AGV
has to pass one of the two doors D1 and D2 every time it goes from one room to another.
Part 1 is more important than part 2, therefore the AGV gets a reward of 20 when part
1 is delivered to destination G1 and a reward of 1 when part 2 is delivered to destination
G2. The AGV receives a reward of -1 for all other actions. Note that within subtasks “Go
to Machine” and “Go to Door”, the agent must choose which machine to go to, and which
door to pass through, respectively. This task is deterministic and the state variables are
AGV’s location and status (empty, carry part 1, carry part 2), which is a total of 26×3 = 78
states. In all experiments, we use the task graph shown in Figure 5 and set the discount
factor to 0.9 for the discounted reward algorithms. We tried several discounting factors and
γ = 0.9 yielded the best performance. Using this task graph, hierarchically and recursively
optimal policies are different. Since delivering part 1 has more reward than part 2, the
hierarchically optimal policy is one in which the AGV always serves machine M1. In the
recursively optimal policy, the AGV switches from serving machine M1 to serving machine
M2 and vice versa. In this policy, the AGV goes to machine M1, picks up a part of type
1, goes to goal G1 via door D1, drops the part there, then passes through door D2, goes
to machine M2, picks up a part of type 2, goes to goal G2 via door D2 and then switches
again to machine M1 and so on so forth.

Among the algorithms we applied to this task, the hierarchically optimal average reward
RL (HAR) and the hierarchically optimal discounted reward RL (HDR) algorithms find the
hierarchically optimal policy, where the other algorithms only learn the recursively optimal
policy. Figure 6 demonstrates the throughput of the system for the above algorithms. The
hierarchically optimal algorithms learn more slowly than the recursively optimal algorithms
due to more parameters to be learned. Since this problem is deterministic, the HH-Learning
algorithm, which is the only model-based RL algorithm used in this experiment, learns the
model of the environment quickly, and therefore converges much faster than the other
algorithms. In this figure, the throughput of the system is the number of parts deposited
at destination stations weighted by their rewards (part1×20+part2×1) in 250 time steps.
Each experiment was conducted twenty times and the results were averaged.
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Figure 5: A simple AGV scheduling task and its associated task graph. Note that within
subtasks “Go to Machine” and “Go to Door”, the agent must choose which ma-
chine to go to, and which door to pass through, respectively.
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Figure 6: This figure shows that HDR and HAR algorithms (the two top curves) learn
the hierarchically optimal policy while RAR, MAXQ-Q, and HH-Learning (the
three bottom curves) only find the recursively optimal policy for the small AGV
scheduling task.
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6.2 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on the AGV scheduling problem shown
in Figure 7. M1 to M3 are workstations in this environment. Parts of type i have to
be carried to the drop-off station at workstation i (Di), and the assembled parts brought
back from pick-up stations of workstations (Pi’s) to the warehouse. The AGV travel is
unidirectional as the arrows show. The AGV receives a reward of 20 when it picks up a
part at the warehouse, delivers a part to a drop-off station, picks up an assembled part from
a pick-up station, or delivers an assembled part to the warehouse. It also gets a reward
of -5 when it attempts to execute Put1–Put3, Pick1–Pick3, Load1–Load3, Unload, and
Idle actions illegally. There is a reward of -1 for all other actions. We model this AGV
scheduling task using both discrete-time and continuous-time models. In the discrete-time
model, we show the performance of four HRL algorithms: hierarchically optimal average
reward RL (HAR), recursively optimal average reward RL (RAR), hierarchically optimal
discounted reward RL (HDR), and recursively optimal discounted reward RL (MAXQ-Q),
as well as a non-hierarchical average reward algorithm. In the continuous-time model, we
compare the performance of HAR and RAR algorithms with the continuous-time MAXQ-Q
algorithm (Ghavamzadeh and Mahadevan, 2001). We use the task graph shown in Figure
8 in both experiments. Using this task graph, hierarchical and recursive optimal policies
are the same, and therefore hierarchical and recursive optimal algorithms should converge
to the same performance.

The state of the environment consists of the number of parts in the pick-up and drop-off
stations of each machine and whether the warehouse contains parts of each of the three
types. In addition, the agent keeps track of its own location and status as a part of its
state space. Thus, in the flat case, the state space consists of 33 locations, 6 buffers of
size 2, 7 possible states of the AGV (carrying part1–part3, carrying assembly1–assembly3,
empty), and 2 values for each part in the warehouse, i.e., 33×36×7×23 = 1, 347, 192 states.
Since there are 14 primitive actions (Left, Forward, Right, Put1–Put3, Pick1–Pick3, Load1–
Load3, Unload, Idle) in this problem, the total number of parameters that must be learned
(the size of the action-value function table) in the flat case is 1, 347, 192× 14 = 18, 860, 688.
State abstraction helps in reducing the state space considerably. Only the relevant state
variables are used while storing the value functions in each node of the task graph. For
example, for the 8 Navigation subtasks, only the location state variable is relevant and each
of these subtasks can be learned with only 33 values. Tables 1 and 2 show the relevant state
variables and the number of relevant states for non-primitive and primitive subtasks in the
AGV scheduling problem, respectively. These tables also contain the number of parameters
that must be stored by these subtasks, i.e., completion function values, C, and external
completion function values, CE, for non-primitive subtasks, and V values for primitive
actions. The number of parameters that must be stored by a subtask is its number of
relevant states times its number of children. Using Tables 1 and 2, the total number of
parameters that must be learned in hierarchically and recursively optimal algorithms for
this problem equal to 10, 809, 150 and 10, 834, 890, respectively.13 Both these numbers are
smaller than the number of parameters that must be learned in the flat case. This state

13. Note that in both recursively and hierarchically optimal algorithms, only one completion function is
defined at the Root of the hierarchy.
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Figure 7: An AGV scheduling task. An AGV agent (not shown) carries raw materials and
finished parts between machines (M1–M3) and warehouse.
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Figure 8: Task graph for the AGV scheduling task.
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abstraction gives us a compact way of representing the value functions and speeds up the
hierarchical algorithms.

Subtask Relevant States Num. of Relevant States Num. of C (CE) Values

Root entire state space 33 × 36 × 7 × 23 = 1, 347, 192 1, 347, 192 × 7 = 9, 430, 344

DMi AGV location, 33 × 7 × 3 × 2 = 1, 386 1, 386 × 4 = 5, 544
AGV status,

status of input buffer i,
whether part i exists

in the warehouse

DAi AGV location, 33 × 7 × 3 = 693 693 × 4 = 2, 772
AGV status,

status of output buffer i

Nav AGV location 33 33 × 3 = 99

Table 1: This table shows the relevant state variables, the number of relevant states, and
the number of completion (external completion) function values C (CE) for non-
primitive subtasks in the AGV scheduling problem.

Subtask Relevant States Num. of Relevant States =
Num. of V Values

Left , Forward , Right AGV location 33

Puti , Picki AGV location, 33 × 7 × 3 = 693
AGV status,

status of input/output buffer i

Loadi AGV location, 33 × 7 × 2 = 462
AGV status,

whether part i exists
in the warehouse

Unload AGV location, 33 × 7 = 231
AGV status

Idle entire state space 33 × 36 × 7 × 23 = 1, 347, 192

Table 2: This table shows the relevant state variables and the number of relevant states
(which is equal to the number of V values) for primitive actions in the AGV
scheduling problem.

The discrete-time experimental results were generated with the following model param-
eters. The inter-arrival time for parts at the warehouse is distributed according to a Poisson
distribution.14 The percentage of Part1, Part2, and Part3 in the part-arrival process are
40, 35, and 25 respectively. The time required for assembling the various parts are Gamma
random variables.15 Since this is a discrete-time model for the AGV problem, we round the
time x generated by these Gamma distributions to the nearest integer less than or equal

14. A random variable x = 0, 1, 2, . . . is said to be a Poisson random variable with parameter λ > 0, if
Pr(x = n) = e−λ λn

n!
. The mean and variance of the Poisson random variable x are both equal to λ.

15. A random variable x ≥ 0 is said to have a Gamma distribution with parameters (κ, λ), κ, λ > 0, if

its density function is given by f(x) = λe−λx(λx)κ−1

Γ(κ)
. The mean and variance of the Gamma random

variable x are κ
λ

and κ

λ2 respectively.
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to x. Table 3 shows the parameters of the discrete-time model. In these experiments, we
used discount factors 0.9 and 0.95 for the discounted reward algorithms. Using the discount
factor of 0.95 yielded a better performance.

Parameter Distribution Mean (steps) Var (steps)

Assembly Time for Part1 Gamma (κ = 180, λ = 3) 60 20
Assembly Time for Part2 Gamma (κ = 250, λ = 2.5) 100 40
Assembly Time for Part3 Gamma (κ = 288, λ = 2.4) 120 50

Inter-Arrival Time for Parts Poisson (λ = 80) 80 80

Table 3: Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model pa-
rameters. The time required for execution of each primitive action is uniformly distributed.
The inter-arrival time for parts at the warehouse is distributed according to a Poisson dis-
tribution. The percentage of Part1, Part2, and Part3 in the part-arrival process are 40,
35, and 25, respectively. The time required for assembling the various parts are Gamma
random variables. Table 4 contains the parameters of the continuous-time model.

Parameter Distribution Mean (sec) Var (sec)

Assembly Time for Part1 Gamma (κ = 180, λ = 3) 60 20
Assembly Time for Part2 Gamma (κ = 250, λ = 2.5) 100 40
Assembly Time for Part3 Gamma (κ = 288, λ = 2.4) 120 50

Inter-Arrival Time for Parts Poisson (λ = 80) 80 80
Execution Time for Primitive Actions Uniform (6 < t < 14) 10 5.33

Table 4: Parameters of the Continuous-Time Model

Figure 9 compares the performance of the discrete-time hierarchically (HAR) and recur-
sively (RAR) optimal average reward algorithms with the performance of the discrete-time
discounted reward hierarchically (HDR) and recursively optimal (MAXQ-Q) algorithms
on the AGV scheduling problem. All these algorithms eventually converge to the same
system performance. The hierarchically optimal algorithms learn slower than the recur-
sively optimal algorithms due to more parameters to be learned. This figure also shows
the performance of relative value iteration (RVI) Q-learning (Abounadi et al., 2001), a non-
hierarchical average reward RL algorithm. As shown in this figure, RVI Q-learning does not
converge to the optimal throughput after 105 time steps. Figure 10 shows the performance
of the RVI Q-learning algorithm for 3 × 106 time steps. The RVI Q-learning algorithm
converges to the optimal performance after over 2× 106 time steps, where the hierarchical
algorithms converge to this performance in less than 105 time steps as shown in Figure 9.
The difference in convergence speed between flat and hierarchical algorithms becomes more
significant as we increase the number of states. All the graphs in these figures are averaged
over twenty runs, except the RVI Q-learning graph, which is averaged over thirty runs.

With the inter-arrival time and assembly-time parameters used in this experiment, there
are time steps in which there is no part left in the warehouse. This is when the AGV must
learn to take the idle action and wait until new parts appear in the warehouse. At first,
the AGV does not serve the machines properly, and therefore parts are accumulated in the
warehouse. As the AGV learns to serve the machines, the system performance goes up
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Figure 9: This figure compares the performance of the discrete-time hierarchically (HAR)
and recursively (RAR) optimal average reward algorithms with the performance
of the hierarchically (HDR) and recursively optimal (MAXQ-Q) discounted re-
ward algorithms on the AGV scheduling problem. It also demonstrates the faster
convergence of the hierarchical algorithms comparing to RVI Q-learning, a non-
hierarchical average reward RL algorithm.

until the parts accumulated in the warehouse at the first learning steps are all processed.
Then, the system performance goes down and eventually converges to its optimal value.
This is why in Figures 9 and 10, the performance of the algorithms reaches a peak before
it converges to its optimal value.

Figure 11 compares the performance of the continuous-time hierarchically (HAR) and
recursively (RAR) optimal average reward algorithms with the performance of continuous-
time MAXQ-Q, a continuous-time recursively optimal discounted reward RL algorithm, first
presented by Ghavamzadeh and Mahadevan (2001), on the AGV scheduling problem. All
the algorithms converge to the same system performance. The discounted reward algorithm,
continuous-time MAXQ-Q, learns faster than both the average reward algorithms, HAR
and RAR. Moreover, the hierarchically optimal average reward algorithm (HAR) learns
more slowly than the recursively optimal average reward algorithm (RAR) due to more
parameters to be learned. All the graphs in this figure are averaged over fifty runs.
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Figure 10: This figure shows the performance of RVI Q-learning, a non-hierarchical average
reward algorithm, on the AGV scheduling problem. The RVI Q-learning algo-
rithm converges to the optimal performance after over 2×106 time steps, where
the hierarchical algorithms converge to this performance in less than 105 time
steps as shown in Figure 9.

7. Conclusions and Future Work

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement
learning (RL) to problems with large state spaces by using task (or action) structure to
restrict the space of policies. Prior work in HRL, including hierarchies of abstract machines
(HAMs) (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000),
and programmable HAMs (PHAMs) (Andre and Russell, 2001; Andre, 2003), has been lim-
ited to the discrete-time discounted reward semi-Markov decision process (SMDP) model.
These methods aim to find policies that maximize the long-term discounted sum of re-
wards. On the other hand, the average reward optimality criterion has been shown to be
more appropriate for a wide class of continuing tasks than the more well-studied discounted
formulation. A primary goal of continuing tasks, including manufacturing, scheduling,
queuing, and inventory control, is to find policies that yield the highest expected payoff
per step. Moreover, average reward optimality allows for more efficient state abstraction in
HRL than the discounted reward optimality, as discussed in Section 5. Although average
reward RL has been studied using both the discrete-time MDP model (Schwartz, 1993; Ma-
hadevan, 1996; Tadepalli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy, 1998) as well as
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Figure 11: This figure compares the performance of the continuous-time hierarchically
(HAR) and recursively (RAR) optimal average reward algorithms with the per-
formance of the continuous-time MAXQ-Q, a continuous-time recursively opti-
mal discounted reward RL algorithm, on the AGV scheduling problem.

the continuous-time SMDP model (Mahadevan et al., 1997b; Wang and Mahadevan, 1999),
prior work has been limited to flat policy representations.

In this paper, we extended previous work on HRL to the average reward setting, and
presented new discrete-time and continuous-time hierarchically optimal average reward RL
(HAR) and recursively optimal average reward RL (RAR) algorithms. These algorithms are
based on the average reward SMDP model, and correspond to two notions of optimality in
HRL: hierarchical optimality and recursive optimality (Dietterich, 2000). HAR algorithms
search the space of policies defined by the hierarchical decomposition to find a hierarchical
policy with maximum global gain (the gain of the Markov chain that results from flattening
the hierarchy using a hierarchical policy). In the recursively optimal average reward RL
setting, the formulation of learning algorithms directly depends on the local optimality cri-
terion used for each subtask in the hierarchy. RAR algorithms treat non-primitive subtasks
as continuing average reward problems and solve them by maximizing their local gain given
the policies of their children. We demonstrated that the policy learned for each subtask
by RAR algorithms is not necessarily context free, and as a result the algorithms do not
find a recursively optimal average reward policy in general. However, we showed that RAR
algorithms find a recursively optimal average reward policy when the initial distribution
invariance condition holds. We used two automated guided vehicle (AGV) scheduling tasks
as experimental testbeds to study the empirical performance of the proposed algorithms.
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The first problem is a relatively simple AGV scheduling task, in which the hierarchically and
recursively optimal policies are different. We compared the proposed algorithms with three
other HRL methods, including a hierarchically optimal discounted reward algorithm and a
recursively optimal discounted reward algorithm on this problem. The results demonstrate
the difference between the optimalities achieved by these algorithms. The second problem
is a relatively larger AGV scheduling task. We modeled this problem using both discrete-
time and continuous-time models. We used a hierarchical task decomposition with which
the hierarchically and recursively optimal policies are the same for this problem. We com-
pared the performance of the proposed algorithms with a hierarchically optimal discounted
reward algorithm and a recursively optimal discounted reward algorithm, as well as a flat
average reward algorithm in this problem. The results showed that the proposed hierarchi-
cal average reward algorithms converge to the same performance as their discounted reward
counterparts.

There are a number of directions for future work. An immediate question that arises
is proving the asymptotic convergence of the algorithms to hierarchically and recursively
optimal policies. These results should provide some theoretical validity to the proposed
algorithms, in addition to their empirical efficiency demonstrated in this paper. Studying
other local optimality criteria for subtasks in a hierarchy is an interesting problem that
needs to be addressed. It helps to develop more efficient recursively optimal average reward
RL algorithms. It is also clear that our hierarchical average reward framework can be
applied to many other manufacturing and robotics problems besides the AGV task.
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Appendix A. Index of Symbols

Here we present a list of the symbols used in this paper to provide a handy reference.

Notation Definition
R set of real numbers
N set of natural numbers
E expected value
M an MDP model
S set of states of an SMDP
A set of actions of an SMDP
P multi-step transition probability function of an SMDP
R reward function of an SMDP

r(s, a) reward of taking action a in state s

I initial state distribution of an SMDP
µ a policy

µ(a|s) probability that policy µ selects action a in state s

µ∗ optimal policy
γ discount factor
α learning rate parameter

V µ hierarchical value function of hierarchical policy µ

V̂ µ projected value function of hierarchical policy µ

V ∗ optimal value function
Qµ hierarchical action-value function of hierarchical policy µ

Q̂µ projected action-value function of hierarchical policy µ

Q∗ optimal action-value function
gµ average reward or gain of policy µ

gµ global gain under hierarchical policy µ

g
µ

i local gain of subtask Mi under hierarchical policy µ

g∗ optimal gain or gain of optimal policy
Hµ average-adjusted value function of policy µ

Hµ hierarchical average-adjusted value function of hierarchical policy µ

Ĥµ projected average-adjusted value function of hierarchical policy µ

H∗ optimal average-adjusted value function
Lµ average-adjusted action-value function of policy µ

Lµ hierarchical average-adjusted action-value function of hierarchical policy µ

L̂µ projected average-adjusted action-value function of hierarchical policy µ

L∗ optimal average-adjusted action-value function
P (s′, N |s, a) probability that action a will cause the system to transition from

state s to state s′ in N time steps
F (s′|s, a) probability that an SMDP occupies state s′ at the next decision epoch

given that the agent takes action a in state s at the current decision epoch
F

µ transition probability matrix of the embedded Markov chain of an SMDP
for policy µ

F̄
µ

limiting matrix of the embedded Markov chain of an SMDP for policy µ
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Notation Definition
y(s, a) expected number of transition steps until the next decision epoch in an SMDP
H a hierarchy
Mi subtask Mi in a hierarchy
Si set of states for subtask Mi in a hierarchy
|Si| cardinality of set of states Si

Ai set of actions for subtask Mi in a hierarchy
Ri reward function for subtask Mi in a hierarchy
Ii initiation set for subtask Mi in a hierarchy
Ti termination set for subtask Mi in a hierarchy
µi a policy for subtask Mi in a hierarchy
µ a hierarchical policy

P
µ

i multi-step transition probability function of subtask Mi

P
µ

i (s′, N |s) probability that action µi(s) causes transition from state s to
state s′ in N primitive steps under hierarchical policy µ

F
µ

i multi-step abstract transition probability function of subtask Mi

F
µ

i (s′, N |s) probability of transition from state s to state s′ in N abstract actions
taken by subtask Mi under hierarchical policy µ

F
µ

i (s′, 1|s) transition probability of the embedded Markov chain at subtask Mi under
hierarchical policy µ (same as F

µ

i (s′|s))
mµ transition probability function of the Markov chain that results from

flattening the hierarchy using the hierarchical policy µ

mµ(s′|s) probability that hierarchical policy µ will cause the system to transition
from state s to state s′ at the level of primitive actions

mµ transition probability matrix of the Markov chain that results from
flattening the hierarchy using the hierarchical policy µ

m̄µ limiting matrix of the Markov chain that results from flattening the
hierarchy using the hierarchical policy µ

Ω set of possible values for Task-Stack in a hierarchy
X = Ω× S joint state space of Task-Stack values and states in a hierarchy
x = (ω, s) joint state value x formed by Task-Stack value ω and state value s in a

hierarchy
ω ր i popping subtask Mi off Task-Stack with content ω in a hierarchy
iց ω pushing subtask Mi onto Task-Stack with content ω in a hierarchy
Cµ completion function of hierarchical policy µ

CEµ external completion function of hierarchical policy µ
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