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Abstract

In this paper, we report a performance bound for the widely used least-squares policy
iteration (LSPI) algorithm. We first consider the problem of policy evaluation in reinforce-
ment learning, that is, learning the value function of a fixed policy, using the least-squares
temporal-difference (LSTD) learning method, and report finite-sample analysis for this
algorithm. To do so, we first derive a bound on the performance of the LSTD solution
evaluated at the states generated by the Markov chain and used by the algorithm to learn
an estimate of the value function. This result is general in the sense that no assumption is
made on the existence of a stationary distribution for the Markov chain. We then derive
generalization bounds in the case when the Markov chain possesses a stationary distribu-
tion and is β-mixing. Finally, we analyze how the error at each policy evaluation step is
propagated through the iterations of a policy iteration method, and derive a performance
bound for the LSPI algorithm.

Keywords: Markov decision processes, reinforcement learning, least-squares temporal-
difference, least-squares policy iteration, generalization bounds, finite-sample analysis

1. Introduction

Least-squares temporal-difference (LSTD) learning (Bradtke and Barto, 1996; Boyan, 1999)
is a widely used algorithm for prediction in general, and in the context of reinforcement
learning (RL), for learning the value function V π of a given policy π. LSTD has been
successfully applied to a number of problems especially after the development of the least-
squares policy iteration (LSPI) algorithm (Lagoudakis and Parr, 2003), which extends LSTD
to control by using it in the policy evaluation step of policy iteration. More precisely, LSTD
computes the fixed point of the operator ΠT , where T is the Bellman operator and Π is
the projection operator in a linear function space F . Although LSTD and LSPI have been
widely used in the RL community, a finite-sample analysis of LSTD, that is, performance
bounds in terms of the number of samples, the space F , and the characteristic parameters
of the MDP at hand, is still missing.

Most of the theoretical work analyzing LSTD have been focused on the model-based
case, where explicit models of the reward function and the dynamics are available. In par-
ticular, Tsitsiklis and Van Roy (1997) showed that the distance between the LSTD solution
and the value function V π is bounded by the distance between V π and its closest approxi-
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mation in the linear space, multiplied by a constant which increases as the discount factor
approaches 1. In this bound, it is assumed that the Markov chain possesses a stationary
distribution ρπ and the distances are measured according to ρπ. Yu (2010) has extended
this analysis and derived an asymptotic convergence analysis for off-policy LSTD(λ), that is
when the samples are collected following a behavior policy different from the policy π under
evaluation. Finally, on-policy empirical LSTD has been analyzed by Bertsekas (2007). His
analysis reveals a critical dependency on the inverse of the smallest eigenvalue of the LSTD’s
A matrix (note that the LSTD solution is obtained by solving a system of linear equations
Ax = b). Nonetheless, Bertsekas (2007) does not provide a finite-sample analysis of the al-
gorithm. Although these analyses already provide some insights on the behavior of LSTD,
asymptotic results do not give a full characterization of the performance of the algorithm
when only a finite number of samples is available (which is the most common situation in
practice). On the other hand, a finite-sample analysis has a number of important advan-
tages: 1) unlike in Tsitsiklis and Van Roy (1997), where they assume that model-based
LSTD always returns a solution, in a finite-sample analysis we study the characteristics of
the actual empirical LSTD fixed point, including its existence, 2) a finite-sample bound ex-
plicitly reveals how the prediction error of LSTD is related to the characteristic parameters
of the MDP at hand, such as the discount factor, the dimensionality of the function space
F , and the number of samples, 3) once this dependency is clear, the bound can be used
to determine the order of magnitude of the number of samples needed to achieve a desired
accuracy.

Recently, several works have been focused on deriving a finite-sample analysis for differ-
ent RL algorithms. In the following, we review those that are more strictly related to LSTD
and to the results reported in this paper. Antos et al. (2008) analyzed the modified Bellman
residual (MBR) minimization algorithm for a finite number of samples, bounded function
spaces, and a µ-norm that might be different from the norm induced by ρπ. Although
MBR minimization was shown to reduce to LSTD in case of linear spaces, it is not straight-
forward to extend the finite-sample bounds derived by Antos et al. (2008) to unbounded
linear spaces considered by LSTD. Farahmand et al. (2008) proposed a `2-regularized ex-
tension of LSPI and provided finite-sample analysis for the algorithm when the function
space is a reproducing kernel Hilbert space (RKHS). In this work, the authors consider
the optimization formulation of LSTD (instead of the better known fixed-point formula-
tion) and assume that a generative model of the environment is available. Moreover, the
analysis is for `2-regularized LSTD (LSPI) and also for the case that the function space
F is a RKHS. Pires and Szepesvári (2012) also analyzed a regularized version of LSTD
reporting performance bounds for both the on-policy and off-policy case. In this paper,
we first report a finite-sample analysis of LSTD. To the best of our knowledge, this is the
first complete finite-sample analysis of this widely used algorithm. Our analysis is for a
specific implementation of LSTD that we call pathwise LSTD. Pathwise LSTD has two spe-
cific characteristics: 1) it takes a single trajectory generated by the Markov chain induced
by policy π as input, and 2) it uses the pathwise Bellman operator (precisely defined in
Section 3), which is defined to be a contraction w.r.t. the empirical norm. We first derive a
bound on the performance of the pathwise LSTD solution for a setting that we call Markov
design. In this setting, the performance is evaluated at the points used by the algorithm to
learn an estimate of V π. This bound is general in the sense that no assumption is made on
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the existence of a stationary distribution for the Markov chain. Then, in the case that the
Markov chain admits a stationary distribution ρπ and is β-mixing, we derive generalization
bounds w.r.t. the norm induced by ρπ. Finally, along the lines of Antos et al. (2008), we
show how the LSTD error is propagated through the iterations of LSPI, and under suitable
assumptions, derive a performance bound for the LSPI algorithm.

Besides providing a full finite-sample analysis of LSPI, the major insights gained by the
analysis in the paper may be summarized as follows. The first result is about the existence
of the LSTD solution and its performance. In Theorem 1 we show that with a slight
modification of the empirical Bellman operator T̂ (leading to the definition of pathwise
LSTD), the operator Π̂T̂ (where Π̂ is an empirical projection operator) always has a fixed
point v̂, even when the sample-based Gram matrix is not invertible and the Markov chain
does not admit a stationary distribution. In this very general setting, it is still possible
to derive a bound for the performance of the LSTD solution, v̂, evaluated at the states of
the trajectory used by the algorithm. Moreover, an analysis of the bound reveals a critical
dependency on the smallest strictly positive eigenvalue νn of the sample-based Gram matrix.
Then, in the case in which the Markov chain has a stationary distribution ρπ, it is possible
to relate the value of νn to the smallest eigenvalue of the Gram matrix defined according to
ρπ. Furthermore, it is possible to generalize the previous performance bound over the entire
state space under the measure ρπ, when the samples are drawn from a stationary β-mixing
process (Theorem 5). It is important to note that the asymptotic bound obtained by taking
the number of samples, n, to infinity is equal (up to constants) to the bound in Tsitsiklis
and Van Roy (1997) for model-based LSTD. Furthermore, a comparison with the bounds in
Antos et al. (2008) shows that we successfully leverage on the specific setting of LSTD: 1)
the space of functions is linear, and 2) the distribution used to evaluate the performance is
the stationary distribution of the Markov chain induced by the policy, and obtain a better
bound both in terms of 1) estimation error, a rate of order O(1/n) instead of O(1/

√
n)

for the squared error, and 2) approximation error, the minimal distance between the value
function V π and the space F instead of the inherent Bellman errors of F . The extension
in Theorem 6 to the case in which the samples belong to a trajectory generated by a fast
mixing Markov chain shows that it is possible to achieve the same performance as in the
case of stationary β-mixing processes. Finally, the analysis of LSPI reveals the need for
several critical assumptions on the stationary distributions of the policies that are greedy
w.r.t. to the functions in the linear space F . These assumptions seem unavoidable when an
on-policy method is used at each iteration, and whether they can be removed or relaxed in
other settings is still an open question. This paper extends and improves over the conference
paper by Lazaric et al. (2010) in the following respects: 1) we report the full proofs and
technical tools for all the theoretical results, thus making the paper self-contained, 2) we
extend the LSTD results to LSPI showing how the approximation errors are propagated
through iterations.

The rest of the paper is organized as follows. In Section 2, we set the notation used
throughout the paper. In Section 3, we introduce pathwise LSTD by a minor modification to
the standard LSTD formulation in order to guarantee the existence of at least one solution.
In Section 4, we introduce the Markov design setting for regression and report an empirical
bound for LSTD. In Section 5, we show how the Markov design bound of Section 4 may be
extended when the Markov chain admits a stationary distribution. In Section 6, we analyze
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how the LSTD error is propagated through the iterations of LSPI and derive a performance
bound for the LSPI algorithm. Finally in Section 7, we draw conclusions and discuss some
possible directions for future work.

2. Preliminaries

For a measurable space with domain X , we let S(X ) and B(X ;L) denote the set of prob-
ability measures over X , and the space of bounded measurable functions with domain X
and bound 0 < L < ∞, respectively. For a measure ρ ∈ S(X ) and a measurable function
f : X → R, we define the `2(ρ)-norm of f , ||f ||ρ, and for a set of n points X1, . . . , Xn ∈ X ,
we define the empirical norm ||f ||n as

||f ||2ρ =

∫
f(x)2ρ(dx) and ||f ||2n =

1

n

n∑

t=1

f(Xt)
2.

The supremum norm of f , ||f ||∞, is defined as ||f ||∞ = supx∈X |f(x)|.
We consider the standard RL framework (Bertsekas and Tsitsiklis, 1996; Sutton and

Barto, 1998) in which a learning agent interacts with a stochastic environment and this
interaction is modeled as a discrete-time discounted Markov decision process (MDP). A
discounted MDP is a tupleM = 〈X ,A, r, P, γ〉 where the state space X is a bounded closed
subset of the s-dimensional Euclidean space, A is a finite (|A| < ∞) action space, the
reward function r : X × A → R is uniformly bounded by Rmax, the transition kernel P is
such that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution over X , and γ ∈ (0, 1) is a
discount factor. A deterministic policy π : X → A is a mapping from states to actions.
For a given policy π, the MDPM is reduced to a Markov chainMπ = 〈X , Rπ, P π, γ〉 with
the reward function Rπ(x) = r

(
x, π(x)

)
, transition kernel P π(·|x) = P

(
· |x, π(x)

)
, and

stationary distribution ρπ (if it admits one). The value function of a policy π, V π, is the
unique fixed-point of the Bellman operator T π : B(X ;Vmax = Rmax

1−γ ) → B(X ;Vmax) defined
by

(T πV )(x) = Rπ(x) + γ

∫

X
P π(dy|x)V (y).

We also define the optimal value function V ∗ as the unique fixed-point of the optimal
Bellman operator T ∗ : B(X ;Vmax)→ B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)V (y)

]
.

In the following sections, to simplify the notation, we remove the dependency to the policy
π and use R, P , V , ρ, and T instead of Rπ, P π, V π, ρπ, and T π whenever the policy π is
fixed and clear from the context.

To approximate the value function V , we use a linear approximation architecture with
parameters α ∈ Rd and basis functions ϕi ∈ B(X ;L), i = 1, . . . , d. We denote by φ :

X → Rd, φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)>
the feature vector, and by F the linear function space

spanned by the basis functions ϕi. Thus F =
{
fα | α ∈ Rd and fα(·) = φ(·)>α

}
.

Let (X1, . . . , Xn) be a sample path (trajectory) of size n generated by the Markov chain
Mπ. Let v ∈ Rn and r ∈ Rn be such that vt = V (Xt) and rt = R(Xt) be the value
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vector and the reward vector, respectively. Also, let Φ = [φ(X1)>; . . . ;φ(Xn)>] be the
feature matrix defined at the states, and Fn = {Φα, α ∈ Rd} ⊂ Rn be the corresponding
vector space. We denote by Π̂ : Rn → Fn the orthogonal projection onto Fn, defined as
Π̂y = arg minz∈Fn ||y − z||n, where ||y||2n = 1

n

∑n
t=1 y

2
t . Note that the orthogonal projection

Π̂y for any y ∈ Rn exists and is unique. Moreover, Π̂ is a non-expansive mapping w.r.t. the
`2-norm: since the projection is orthogonal and using the Cauchy-Schwarz inequality ||Π̂y−
Π̂z||2n = 〈y−z, Π̂y−Π̂z〉n ≤ ||y−z||n||Π̂y−Π̂z||n, and thus, we obtain ||Π̂y−Π̂z||n ≤ ||y−z||n.

3. Pathwise LSTD

Algorithm 1 A pseudo-code for the batch pathwise LSTD algorithm.

Input: Linear space F = span{ϕi, 1 ≤ i ≤ d}, sample trajectory {(xt, rt)}nt=1 of the
Markov chain

Build the feature matrix Φ = [φ(x1)>; . . . ;φ(xn)>]
Build the empirical transition matrix P̂ : P̂ij = I {j = i+ 1, j 6= n}
Build matrix A = Φ>(I − γP̂ )Φ
Build vector b = Φ>r
Return the pathwise LSTD solution α̂ = A+b

Pathwise LSTD (Algorithm 1) is a version of LSTD that takes as input a linear function
space F and a single trajectory X1, . . . , Xn generated by following the policy, and returns
the fixed-point of the empirical operator Π̂T̂ , where T̂ : Rn → Rn is the pathwise Bellman
operator defined as

(T̂ y)t =

{
rt + γyt+1 1 ≤ t < n,
rt t = n.

Note that by defining the operator P̂ : Rn → Rn as (P̂ y)t = yt+1 for 1 ≤ t < n and
(P̂ y)n = 0, we have T̂ y = r + γP̂ y. The motivation for using the pathwise Bellman
operator is that it is γ-contraction in `2-norm, that is, for any y, z ∈ Rn, we have

||T̂ y − T̂ z||2n = ||γP̂ (y − z)||2n ≤ γ2||y − z||2n .

Since the orthogonal projection Π̂ is non-expansive w.r.t. `2-norm, from Banach fixed point
theorem, there exists a unique fixed-point v̂ of the mapping Π̂T̂ , that is, v̂ = Π̂T̂ v̂. Since
v̂ is the unique fixed point of Π̂T̂ , the vector v̂ − T̂ v̂ is perpendicular to the space Fn, and
thus, Φ>(v̂−T̂ v̂) = 0. By replacing v̂ with Φα, we obtain Φ>Φα = Φ>(r+γP̂Φα) and then
Φ>(I − γP̂ )Φα = Φ>r. Therefore, by setting A = Φ>(I − γP̂ )Φ and b = Φ>r, we recover a
d× d system of equations Aα = b similar to the one in the original LSTD algorithm. Note
that since the fixed point v̂ exists, this system always has at least one solution. We call the
solution with minimal norm, α̂ = A+b, where A+ is the Moore-Penrose pseudo-inverse of
A, the pathwise LSTD solution.1

1. Note that whenever the matrix A is invertible A+ = A−1.
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Finally, notice that the algorithm reported in Figure 1 may be easily extended to the
incremental version of LSTD by incrementally building the inverse of the matrix A as the
samples are collected.

4. Markov Design Bound

In Section 3, we defined the pathwise Bellman operator with a slight modification in the
definition of the empirical Bellman operator T̂ , and showed that the operator Π̂T̂ always
has a unique fixed point v̂. In this section, we derive a bound for the performance of v̂
evaluated at the states of the trajectory used by the pathwise LSTD algorithm. We first
state the main theorem and we discuss it in a number of remarks. The proofs are postponed
at the end of the section.

Theorem 1 Let X1, . . . , Xn be a trajectory generated by the Markov chain, and v, v̂ ∈ Rn
be the vectors whose components are the value function and the pathwise LSTD solution
at {Xt}nt=1, respectively. Then with probability at least 1 − δ (the probability is w.r.t. the
random trajectory), we have

||v − v̂||n ≤
1√

1− γ2
||v − Π̂v||n +

1

1− γ

[
γVmaxL

√
d

νn

(√8 log(2d/δ)

n
+

1

n

)]
, (1)

where the random variable νn is the smallest strictly-positive eigenvalue of the sample-based
Gram matrix 1

nΦ>Φ.

Remark 1 Theorem 1 provides a bound on the prediction error of the LSTD solution
v̂ w.r.t. the true value function v on the trajectory X1, . . . , Xn used as a training set for
pathwise-LSTD. The bound contains two main terms. The first term ||v − Π̂v||n is the
approximation error and it represents the smallest possible error in approximating v with
functions in F . This error cannot be avoided. The second term, of order O(

√
d/n), is

the estimation error and it accounts for the error due to the use of a finite number of
noisy samples and it shows what is the influence of the different elements of the problem
(e.g., γ, d, n) on the prediction error and it provides insights about how to tune some
parameters. We first notice that the bound suggests that the number of samples n should
be significantly bigger than the number of features d in order to achieve a small estimation
error. Furthermore, the bound can be used to estimate the number of samples needed to
guarantee a desired prediction error ε. In fact, apart from the approximation error, which
is unavoidable, we have that n = O(d/((1 − γ)2ε2)) samples are enough to achieve an ε-
accurate approximation of the true value function v. We also remark that one might be
tempted to reduce the dimensionality d, so as to reduce the sample cost of the algorithm.
Nonetheless, this is likely to reduce the approximation capability of F and thus increase
the approximation error.

Remark 2 When the eigenvalues of the sample-based Gram matrix 1
nΦ>Φ are all non-

zero, Φ>Φ is invertible, and thus, Π̂ = Φ(Φ>Φ)−1Φ>. In this case, the uniqueness of v̂
implies the uniqueness of α̂ since

v̂ = Φα =⇒ Φ>v̂ = Φ>Φα =⇒ α̂ = (Φ>Φ)−1Φ>v̂.
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On the other hand, when the sample-based Gram matrix 1
nΦ>Φ is not invertible, the system

Ax = b may have many solutions. Among all the possible solutions, one may choose the
one with minimal norm: α̂ = A+b.

Remark 3 Note that in case there exists a constant ν > 0, such that with probability 1−δ′
all the eigenvalues of the sample-based Gram matrix are lower-bounded by ν, Equation 1
(with νn replaced by ν) holds with probability at least 1 − (δ + δ′) (see Section 5.1 for a
case in which such constant ν can be computed and it is related to the smallest eigenvalue
of the model based Gram matrix).

Remark 4 Theorem 1 provides a bound without any reference to the stationary distribu-
tion of the Markov chain. In fact, the bound of Equation 1 holds even when the chain does
not admit a stationary distribution. For example, consider a Markov chain on the real line
where the transitions always move the states to the right, that is, p(Xt+1 ∈ dy|Xt = x) = 0
for y ≤ x. For simplicity assume that the value function V is bounded and belongs to F .
This Markov chain is not recurrent, and thus, does not have a stationary distribution. We
also assume that the feature vectors φ(X1), . . . , φ(Xn) are sufficiently independent, so that
all the eigenvalues of 1

nΦ>Φ are greater than ν > 0. Then according to Theorem 1, path-
wise LSTD is able to estimate the value function at the samples at a rate O(1/

√
n). This

may seem surprising because at each state Xt the algorithm is only provided with a noisy
estimation of the expected value of the next state. However, the estimates are unbiased
conditioned on the current state, and we will see in the proof that using a concentration
inequality for martingale, pathwise LSTD is able to learn a good estimate of the value
function at a state Xt using noisy pieces of information at other states that may be far
away from Xt. In other words, learning the value function at a given state does not require
making an average over many samples close to that state. This implies that LSTD does not
require the Markov chain to possess a stationary distribution.

Remark 5 The most critical part of the bound in Equation 1 is the inverse dependency
on the smallest positive eigenvalue νn. A similar dependency is shown in the LSTD analysis
of Bertsekas (2007). The main difference is that here we have a more complete finite-sample
analysis with an explicit dependency on the number of samples and the other characteristic
parameters of the problem. Furthermore, if the Markov chain admits a stationary distribu-
tion ρ, we are able to relate the existence of the LSTD solution to the smallest eigenvalue
of the Gram matrix defined according to ρ (see Section 5.1).

In order to prove Theorem 1, we first introduce the regression setting with Markov
design and then state and prove a lemma about this model. Delattre and Gäıffas (2011)
recently analyzed a similar setting in the general case of martingale incremental errors.

Definition 2 The model of regression with Markov design is a regression problem where
the data (Xt, Yt)1≤t≤n are generated according to the following model: X1, . . . , Xn is a
sample path generated by a Markov chain, Yt = f(Xt) + ξt, where f is the target function,
and the noise term ξt is a random variable which is adapted to the filtration generated by
X1, . . . , Xt+1 and is such that

|ξt| ≤ C and E[ξt|X1, . . . , Xt] = 0. (2)
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ξ̂

Fn

Z

Y

ŵ

w

ξ

ξ̂

Figure 1: This figure shows the components used in Lemma 3 and its proof such as w, ŵ,
ξ, and ξ̂, and the fact that 〈ξ̂, ξ〉n = ||ξ̂||2n.

The next lemma reports a risk bound for the Markov design setting which is of inde-
pendent interest.

Lemma 3 (Regression bound for the Markov design setting) We consider the model
of regression with Markov design in Definition 2. Let ŵ ∈ Fn be the least-squares estimate
of the (noisy) values Y = {Yt}nt=1, that is, ŵ = Π̂Y , and w ∈ Fn be the least-squares esti-

mate of the (noiseless) values Z = {Zt = f(Xt)}nt=1, that is, w = Π̂Z. Then for any δ > 0,
with probability at least 1− δ (the probability is w.r.t. the random sample path X1, . . . , Xn),
we have

||ŵ − w||n ≤ CL
√

2d log(2d/δ)

nνn
, (3)

where νn is the smallest strictly-positive eigenvalue of the sample-based Gram matrix 1
nΦ>Φ.

Proof [Lemma 3] We define ξ ∈ Rn to be the vector with components ξt = Yt − Zt, and
ξ̂ = ŵ − w = Π̂(Y − Z) = Π̂ξ. Since the projection is orthogonal we have 〈ξ̂, ξ〉n = ||ξ̂||2n
(see Figure 1). Since ξ̂ ∈ Fn, there exists at least one α ∈ Rd such that ξ̂ = Φα, so by
Cauchy-Schwarz inequality we have

||ξ̂||2n = 〈ξ̂, ξ〉n =
1

n

d∑

i=1

αi

n∑

t=1

ξtϕi(Xt) ≤
1

n
||α||2

[
d∑

i=1

( n∑

t=1

ξtϕi(Xt)
)2
]1/2

. (4)

Now among the vectors α such that ξ̂ = Φα, we define α̂ to be the one with minimal
`2-norm, that is, α̂ = Φ+ξ̂. Let K denote the null-space of Φ, which is also the null-space
of 1

nΦ>Φ. Then α̂ may be decomposed as α̂ = α̂K + α̂K⊥ , where α̂K ∈ K and α̂K⊥ ∈ K⊥,
and because the decomposition is orthogonal, we have ||α̂||22 = ||α̂K ||22 + ||α̂K⊥ ||22. Since α̂
is of minimal norm among all the vectors α such that ξ̂ = Φα, its component in K must be
zero, thus α̂ ∈ K⊥.

The Gram matrix 1
nΦ>Φ is positive-semidefinite, thus its eigenvectors corresponding to

zero eigenvalues generate K and the other eigenvectors generate its orthogonal complement
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K⊥. Therefore, from the assumption that the smallest strictly-positive eigenvalue of 1
nΦ>Φ

is νn, we deduce that since α̂ ∈ K⊥,

||ξ̂||2n =
1

n
α̂>Φ>Φα̂ ≥ νnα̂>α̂ = νn||α̂||22. (5)

By using the result of Equation 5 in Equation 4, we obtain

||ξ̂||n ≤
1

n
√
νn

[
d∑

i=1

( n∑

t=1

ξtϕi(Xt)
)2
]1/2

. (6)

Now, from the conditions on the noise in Equation 2, we have that for any i = 1, . . . , d

E[ξtϕi(Xt)|X1, . . . , Xt] = ϕi(Xt)E[ξt|X1, . . . , Xt] = 0,

and since ξtϕi(Xt) is adapted to the filtration generated by X1, . . . , Xt+1, it is a martingale
difference sequence w.r.t. that filtration. Thus one may apply Azuma’s inequality to deduce
that with probability 1− δ,

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2/δ) ,

where we used that |ξtϕi(Xt)| ≤ CL for any i and t. By a union bound over all features,
we have that with probability 1− δ, for all 1 ≤ i ≤ d

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2d/δ) . (7)

The result follows by combining Equations 7 and 6.

Remark about Lemma 3 Note that this lemma is an extension of the bound for re-
gression with deterministic design in which the states, {Xt}nt=1, are fixed and the noise
terms, ξt’s, are independent. In deterministic design, usual concentration results provide
high probability bounds similar to Equation 3 (see, e.g., Hsu et al., 2012), but without the
dependence on νn. An open question is whether it is possible to remove νn in the bound
for the Markov design regression setting.

In the Markov design model considered in this lemma, states {Xt}nt=1 are random vari-
ables generated according to the Markov chain and the noise terms ξt may depend on
the next state Xt+1 (but should be centered conditioned on the past states X1, . . . , Xt).
This lemma will be used in order to prove Theorem 1, where we replace the target func-
tion f with the value function V , and the noise term ξt with the temporal difference
r(Xt) + γV (Xt+1)− V (Xt).

Proof [Theorem 1]
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T̂ v̂
v

Fn

Π̂v

T̂ v

Π̂T̂ v

v̂ = Π̂T̂ v̂

Figure 2: This figure represents the space Rn, the linear vector subspace Fn and some
vectors used in the proof of Theorem 1.

Step 1: Using the Pythagorean theorem and the triangle inequality, we have (see Figure 2)

||v − v̂||2n = ||v − Π̂v||2n + ||v̂ − Π̂v||2n ≤ ||v − Π̂v||2n +
(
||v̂ − Π̂T̂ v||n + ||Π̂T̂ v − Π̂v||n

)2
. (8)

From the γ-contraction of the operator Π̂T̂ and the fact that v̂ is its unique fixed point, we
obtain

||v̂ − Π̂T̂ v||n = ||Π̂T̂ v̂ − Π̂T̂ v||n ≤ γ||v̂ − v||n, (9)

Thus from Equation 8 and 9, we have

||v − v̂||2n ≤ ||v − Π̂v||2n +
(
γ||v − v̂||n + ||Π̂T̂ v − Π̂v||n

)2
. (10)

Step 2: We now provide a high probability bound on ||Π̂T̂ v− Π̂v||n. This is a consequence
of Lemma 3 applied to the vectors Y = T̂ v and Z = v. Since v is the value function at
the points {Xt}nt=1, from the definition of the pathwise Bellman operator, we have that for
1 ≤ t ≤ n− 1,

ξt = yt − vt = r(Xt) + γV (Xt+1)− V (Xt) = γ
[
V (Xt+1)−

∫
P (dy|Xt)V (y)

]
,

and ξn = yn − vn = −γ
∫
P (dy|Xn)V (y). Thus, Equation 2 holds for 1 ≤ t ≤ n − 1. Here

we may choose C = 2γVmax for a bound on ξt, 1 ≤ t ≤ n− 1, and C = γVmax for a bound
on ξn. Azuma’s inequality may be applied only to the sequence of n − 1 terms (the n-th
term adds a contribution to the bound), thus instead of Equation 7, we obtain

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ γVmaxL

(
2
√

2n log(2d/δ) + 1
)
,

with probability 1− δ, for all 1 ≤ i ≤ d. Combining with Equation 6, we deduce that with
probability 1− δ, we have

||Π̂T̂ v − Π̂v||n ≤ γVmaxL

√
d

νn

(√8 log(2d/δ)

n
+

1

n

)
, (11)
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where νn is the smallest strictly-positive eigenvalue of 1
nΦ>Φ. The claim follows by solving

Equation 10 for ||v − v̂||n and replacing ||Π̂T̂ v − Π̂v||n from Equation 11.

5. Generalization Bounds

As we pointed out earlier, Theorem 1 makes no assumption on the existence of the stationary
distribution of the Markov chain. This generality comes at the cost that the performance
is evaluated only at the states visited by the Markov chain and no generalization on other
states is possible. However in many problems of interest, the Markov chain has a stationary
distribution ρ, and thus, the performance may be generalized to the whole state space under
the measure ρ. Moreover, if ρ exists, it is possible to derive a condition for the existence of
the pathwise LSTD solution depending on the number of samples and the smallest eigenvalue
of the Gram matrix defined according to ρ ; G ∈ Rd×d , Gij =

∫
ϕi(x)ϕj(x)ρ(dx). In

this section, we assume that the Markov chain Mπ is exponentially fast β-mixing with
parameters β̄, b, κ, that is, its β-mixing coefficients satisfy βi ≤ β̄ exp(−biκ) (see Section A.2
in the appendix for a more detailed definition of β-mixing processes).

Before stating the main results of this section, we introduce some notation. If ρ is the
stationary distribution of the Markov chain, we define the orthogonal projection operator
Π : B(X ;Vmax)→ F as

ΠV = arg min
f∈F
||V − f ||ρ .

Furthermore, in the rest of the paper with a little abuse of notation, we replace the empirical
norm ||v||n defined on states X1, . . . , Xn by ||V ||n, where V ∈ B(X ;Vmax) is such that
V (Xt) = vt. Finally, we should guarantee that the pathwise LSTD solution V̂ is uniformly
bounded on X . For this reason, we move from F to the truncated space F̃ in which for any
function f ∈ F , a truncated function f̃ is defined as

f̃(x) =

{
f(x) if |f(x)| ≤ Vmax ,
sgn
(
f(x)

)
Vmax otherwise.

(12)

In the next sections, we present conditions on the existence of the pathwise LSTD solu-
tion and derive generalization bounds under different assumptions on the way the samples
X1, . . . , Xn are generated.

5.1 Uniqueness of Pathwise LSTD Solution

In this section, we assume that all the eigenvalues of G are strictly positive; that is, we
assume the existence of the model-based solution of LSTD, and derive a condition to guar-
antee that the sample-based Gram matrix 1

nΦ>Φ is invertible. More specifically, we show
that if a large enough number of samples (depending on the smallest eigenvalue of G) is
available, then the smallest eigenvalue of 1

nΦ>Φ is strictly positive with high probability.

Lemma 4 Let G be the Gram matrix defined according to the distribution ρ and ω > 0 be
its smallest eigenvalue. Let X1, . . . , Xn be a trajectory of length n of a stationary β-mixing
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process with parameters β̄, b, κ and stationary distribution ρ. If the number of samples n
satisfies the following condition

n >
288L2Λ(n, d, δ)

ω
max

{
Λ(n, d, δ)

b
, 1

}1/κ

, (13)

where2 Λ(n, d, δ) = 2(d+1) log n+log e
δ +log+

(
max{18(6e)2(d+1), β̄}

)
, then with probability

1 − δ, the family of features (ϕ1, . . . , ϕd) is linearly independent on the states X1, . . . , Xn

(i.e., ||fα||n = 0 implies α = 0) and the smallest eigenvalue νn of the sample-based Gram
matrix 1

nΦ>Φ satisfies

√
νn ≥

√
ν =

√
ω

2
− 6L

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

> 0 . (14)

Proof From the definition of the Gram matrix and the fact that ω > 0 is its smallest
eigenvalue, for any function fα ∈ F , we have

||fα||2ρ = ||φ>α||2ρ = α>Gα ≥ ωα>α = ω||α||2. (15)

Using the concentration inequality from Corollary 18 in the appendix and the fact that the
basis functions ϕi are bounded by L, thus fα is bounded by L||α||, we have ||fα||ρ−2||fα||n ≤
ε with probability 1− δ, where

ε = 12L‖α‖
√

2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

.

Thus we obtain

2||fα||n + ε ≥ √ω||α||. (16)

Let α be such that ||fα||n = 0, then if the number of samples n satisfies the condition of
Equation 13, we may deduce from Equation 16 and the definition of ε that α = 0. This
indicates that given Equation 13, with probability 1− δ, the family of features (ϕ1, . . . , ϕd)
is linearly independent on the states X1, . . . , Xn, and thus, νn > 0. The inequality in
Equation 14 is obtained by choosing α to be the eigenvector of 1

nΦ>Φ corresponding to
the smallest eigenvalue νn. For this value of α, we have ||fα||n =

√
νn||α||. By using the

definition of ε in Equation 16 and reordering we obtain

2
√
νn||α||+ 12L||α||

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

≥ √ω||α|| ,

and the claim follows.

2. We define log+ x = max{log x, 0}.
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Remark 1 In order to make the condition on the number of samples and its dependency
on the critical parameters of the problem at hand more explicit, let us consider the case of
a stationary process with b = β = κ = 1. Then the condition in Equation 13 becomes (up
to constant and logarithmic factors)

n ≥ Õ
(

288L2

ω

(
(d+ 1) log

n

δ

)2
)
.

As can be seen, the number of samples needed to have strictly positive eigenvalues in the
sample-based Gram matrix has an inverse dependency on the smallest eigenvalue of G. As a
consequence, the more G is ill-conditioned the more samples are needed for the sample-based
Gram matrix 1

nΦ>Φ to be invertible.

5.2 Generalization Bounds for Stationary β-mixing Processes

In this section, we show how Theorem 1 may be generalized to the entire state space X
when the Markov chain Mπ has a stationary distribution ρ. In particular, we consider the
case in which the samples X1, . . . , Xn are obtained by following a single trajectory in the
stationary regime of Mπ, that is, when we consider that X1 is drawn from ρ.

Theorem 5 Let X1, . . . , Xn be a path generated by a stationary β-mixing process with
parameters β̄, b, κ and stationary distribution ρ. Let ω > 0 be the smallest eigenvalue of the
Gram matrix defined according to ρ and n satisfy the condition in Equation 13. Let Ṽ be
the truncation (using Equation 12) of the pathwise LSTD solution, then

||Ṽ −V ||ρ ≤
2√

1− γ2

(
2
√

2||V −ΠV ||ρ+ε2

)
+

2

1− γ

[
γVmaxL

√
d

ν

(√8 log (8d/δ)

n
+

1

n

)]
+ε1

(17)
with probability 1−δ, where ν is a lower-bound on the eigenvalues of the sample-based Gram
matrix defined by Equation 14,

ε1 = 24Vmax

√
2Λ1(n, d, δ/4)

n
max

{
Λ1(n, d, δ/4)

b
, 1

}1/κ

,

with Λ1(n, d, δ/4) = 2(d+ 1) log n+ log 4e
δ + log+

(
max{18(6e)2(d+1), β̄}

)
, and

ε2 = 12
(
Vmax + L||α∗||

)
√

2Λ2(n, δ/4)

n
max

{
Λ2(n, δ/4)

b
, 1

}1/κ

, (18)

with Λ2(n, δ/4) = log 4e
δ + log

(
max{6, nβ̄}

)
and α∗ is such that fα∗ = ΠV .

Proof This result is a consequence of applying generalization bounds to both sides of
Equation 1 (Theorem 1). We first bound the left-hand side:

2||V̂ − V ||n ≥ 2||Ṽ − V ||n ≥ ||Ṽ − V ||ρ − ε1

with probability 1−δ′. The first step follows from the definition of the truncation operator,
while the second step is a straightforward application of Corollary 17 in the appendix.
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We now bound the term ||V − Π̂V ||n in Equation 1:

||V − Π̂V ||n ≤ ||V −ΠV ||n ≤ 2
√

2||V −ΠV ||ρ + ε2

with probability 1 − δ′. The first step follows from the definition of the operator Π̂. The
second step is an application of the inequality of Corollary 19 in the appendix for the
function V −ΠV .

From Theorem 1, the two generalization bounds, and the lower-bound on ν, each one
holding with probability 1 − δ′, the statement of the Theorem (Equation 17) holds with
probability 1− δ by setting δ = 4δ′.

Remark 1 Rewriting the bound in terms of the approximation and estimation error terms
(up to constants and logarithmic factors), we obtain

||Ṽ − V ||ρ ≤ Õ
(

1√
1− γ2

||V −ΠV ||ρ +
1

1− γ
1√
n

)
.

While the first term (approximation error) only depends on the target function V and the
function space F , the second term (estimation error) primarily depends on the number of
samples. Thus, when n goes to infinity, the estimation error goes to zero and we obtain the
same performance bound (up to a 4

√
2 constant) as for the model-based case reported by

Tsitsiklis and Van Roy (1997). The additional multiplicative constant 4
√

2 in front of the
approximation error is the standard cost to have the improved rate bounds for the squared
loss and linear spaces (see, e.g., Györfi et al., 2002). In fact, it is possible to derive a bounds
with constant 1 but a worse rate n−1/4 instead of n−1/2. The bound in Theorem 5 is more
accurate whenever the approximation error is small and few samples are available.

Remark 2 Antos et al. (2008) reported a sample-based analysis for the modified Bellman
residual (MBR) minimization algorithm. They consider a general setting in which the func-
tion space F is bounded and the performance of the algorithm is evaluated according to an
arbitrary measure µ (possibly different than the stationary distribution of the Markov chain
ρ). Since Antos et al. (2008) showed that the MBR minimization algorithm is equivalent
to LSTD when F is a linearly parameterized space, it would be interesting to compare the
bound in Theorem 5 to the one in Lemma 11 of Antos et al. (2008). In Theorem 5, similar
to Antos et al. (2008), samples are drawn from a stationary β-mixing process, however, F
is a linear space and ρ is the stationary distribution of the Markov chain. It is interesting
to note the impact of these two differences in the final bound. The use of linear spaces has
a direct effect on the estimation error and leads to a better convergence rate due to the
use of improved functional concentration inequalities (Lemma 16 in the appendix). In fact,
while in Antos et al. (2008) the estimation error for the squared error is of order O(1/

√
n),

here we achieve a faster convergence rate of order O(1/n). Moreover, although Antos et al.
(2008) showed that the solution of MBR minimization coincides with the LSTD solution, its
sample-based analysis cannot be directly applied to LSTD. In fact, in Antos et al. (2008) the
function space F is assumed to be bounded, while general linear spaces cannot be bounded.
Whether the analysis of Antos et al. (2008) may be extended to the truncated solution of
LSTD is an open question that requires further investigation.
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5.3 Generalization Bounds for Markov Chains

The main assumption in the previous section is that the trajectory X1, . . . , Xn is generated
by a stationary β-mixing process with stationary distribution ρ. This is possible if we
consider samples of a Markov chain during its stationary regime, that is, X1 ∼ ρ. However
in practice, ρ is not known, and the first sample X1 is usually drawn from a given initial
distribution and the rest of the sequence is obtained by following the Markov chain from X1

on. As a result, the sequence X1, . . . , Xn is no longer a realization of a stationary β-mixing
process. Nonetheless, under suitable conditions, after ñ < n steps, the distribution of Xñ

approaches the stationary distribution ρ. In fact, according to the convergence theorem
for fast-mixing Markov chains (see, e.g., Proposition 20 in the appendix), for any initial
distribution λ ∈ S(X ), we have

∣∣∣∣
∣∣∣∣
∫

X
λ(dx)Pn(·|x)− ρ(·)

∣∣∣∣
∣∣∣∣
TV

≤ β̄ exp(−bnκ).

where || · ||TV is the total variation.3

We now derive a bound for a modification of pathwise LSTD in which the first ñ samples
(that are used to burn the chain) are discarded and the remaining n− ñ samples are used
as training samples for the algorithm.

Theorem 6 Let X1, . . . , Xn be a trajectory generated by a β-mixing Markov chain with
parameters β̄, b, κ and stationary distribution ρ. Let ñ (1 ≤ ñ < n) be such that n − ñ
satisfies the condition of Equation 13, and Xñ+1, . . . , Xn be the samples actually used by
the algorithm. Let ω > 0 be the smallest eigenvalue of the Gram matrix defined according
to ρ and α∗ ∈ Rd be such that fα∗ = ΠV . Let Ṽ be the truncation of the pathwise LSTD

solution (using Equation 12), then by setting ñ =
(

1
b log 2eβ̄n

δ

)1/κ
, with probability 1− δ, we

have

||Ṽ−V ||ρ ≤
2√

1− γ2

(
2
√

2||V−ΠV ||ρ+ε2

)
+

2

1− γ

[
γVmaxL

√
d

ν

(√8 log (8d/δ)

n− ñ +
1

ñ

)]
+ε1,

(19)
where ε1 and ε2 are defined as in Theorem 5 (with n− ñ as the number of training samples).

The proof of this result is a simple consequence of Lemma 24 in the appendix applied
to Theorem 5.

Remark 1 The bound in Equation 19 indicates that in the case of β-mixing Markov
chains, a similar performance to the one for stationary β-mixing processes is obtained by
discarding the first ñ = O(log n) samples.

6. Finite-Sample Analysis of LSPI

In the previous sections we studied the performance of pathwise-LSTD for policy evalua-
tion. Now we move to the analysis of the least-squares policy iteration (LSPI) algorithm

3. We recall that for any two distributions µ1, µ2 ∈ S(X ), the total variation norm is defined as ||µ1 −
µ2||TV = supX⊆X |µ1(X)− µ2(X)|.
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(Lagoudakis and Parr, 2003) in which at each iteration k samples are collected by following
a single trajectory of the policy under evaluation, πk, and LSTD is used to compute an
approximation of V πk . In particular, in the next section we report a performance bound by
comparing the value of the policy returned by the algorithm after K iterations, V πK , and
the optimal value function, V ∗, w.r.t. an arbitrary target distribution σ. In order to achieve
this bound we introduce assumptions on the MDP and the linear space F . In Section 6.2
we show that in some cases one of these assumptions does not hold and the performance of
LSPI can be arbitrarily bad.

6.1 Generalization Bound for LSPI

In this section, we provide a performance bound for the LSPI algorithm (Lagoudakis and
Parr, 2003). We first introduce the greedy policy operator G that maps value functions to
their corresponding greedy policies:

(
G(V )

)
(x) = arg max

a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)V (y)

]
.

We use G(F) to refer to the set of all the greedy policies w.r.t. the functions in F . LSPI
is a policy iteration algorithm that uses LSTD for policy evaluation at each iteration. It
starts with an arbitrary initial value function V−1 ∈ F̃ and its corresponding greedy policy
π0. At the first iteration, it approximates V π0 using LSTD and returns a function V0 whose
truncated version Ṽ0 is used to build the policy π1 for the second iteration.4 More precisely,
π1 is the greedy policy w.r.t. Ṽ0, that is, π1 = G(Ṽ0). So, at each iteration k of LSPI, a
function Vk−1 is computed as an approximation to V πk−1 , and then truncated, Ṽk−1, and
used to build the policy πk = G(Ṽk−1). Note that the MDP model is needed in order to
generate the greedy policy πk. To avoid the need for the model, we could simply move from
LSTD to LSTD-Q. The analysis of LSTD in the previous sections may be easily extended
to action-value function, and thus, to LSTD-Q.5 For simplicity we use value function in the
paper and report the LSPI bound in terms of the distance to the optimal value function.

It is important to note that in general the measure used to evaluate the final performance
of LSPI, σ ∈ S(X ), might be different than the distribution used to generate the samples at
each iteration. Moreover, the LSTD performance bounds of Section 5 require the samples
to be collected by following the policy under evaluation. Thus, we make the following
assumption.

Assumption 1 (Lower-bounding distribution) There exists a distribution µ ∈ S(X ) such
that for any policy π that is greedy w.r.t. a function in the truncated space F̃ , µ ≤ Cρπ,
where C <∞ is a constant and ρπ is the stationary distribution of policy π.

4. Unlike in the original formulation of LSPI, here we need to explicitly truncate the function so as to
prevent unbounded functions.

5. We point out that moving to LSTD-Q requires the introduction of some exploration to the current policy.
In fact, in the on-policy setting, if the policy under evaluation is deterministic, it does not provide any
information about the value of actions a 6= π(·) and the policy improvement step would always fail. Thus,
we need to consider stochastic policies where the current policy is perturbed by an ε > 0 randomization
which guarantees that any action has a non-zero probability to be selected in any state.
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Assumption 2 . (Discounted-average Concentrability of Future-State Distribution [Antos
et al., 2008]) Given the target distribution σ ∈ S(X ) and an arbitrary sequence of policies
{πm}m≥1, let

cσ,µ = sup
π1,...,πm

∣∣∣∣∣

∣∣∣∣∣
d(µP π1 . . . P πm)

dσ

∣∣∣∣∣

∣∣∣∣∣.

We define the second-order discounted-average concentrability of future-state distributions
as

Cσ,µ = (1− γ)2
∑

m≥1

mγm−1cσ,µ(m)

and we assume that Cσ,µ <∞.

We also need to guarantee that with high probability a unique LSTD solution exists at
each iteration of the LSPI algorithm, thus, we make the following assumption.

Assumption 3 (Linear independent features) Let µ ∈ S(X ) be the lower-bounding distri-
bution from Assumption 1. We assume that the features φ(·) of the function space F are
linearly independent w.r.t. µ. In this case, the smallest eigenvalue ωµ of the Gram matrix
Gµ ∈ Rd×d w.r.t. µ is strictly positive.

Lemma 7 Under Assumption 3, at each iteration k of LSPI, the smallest eigenvalue ωk
of the Gram matrix Gk defined according to the stationary distribution ρk = ρπk is strictly
positive and ωk ≥ ωµ

C .

Proof Similar to Lemma 4, for any function fα ∈ F , we have ||α|| ≤ ||fα||µ√
ωµ

. Using As-

sumption 1, ||fα||µ ≤
√
C ||fα||ρk , and thus, ||α|| ≤

√
C
ωµ
||fα||ρk . For the α that is the

eigenvector of Gk corresponding to ρk, we have ||α|| =
||fα||ρk√

ωk
. For this value of α, we

may write
||fα||ρk√

ωk
≤
√

C
ωµ
||fα||ρk , and thus, ωk ≥ ωµ

C , which guarantees that ωk is strictly

positive, because ωµ is strictly positive according to Assumption 3.

Finally, we make the following assumption on the stationary β-mixing processes corre-
sponding to the stationary distributions of the policies encountered at the iterations of the
LSPI algorithm.

Assumption 4 (Slower β-mixing process) We assume that there exists a stationary β-
mixing process with parameters β̄, b, κ, such that for any policy π that is greedy w.r.t. a
function in the truncated space F̃ , it is slower than the stationary β-mixing process with
stationary distribution ρπ (with parameters β̄π, bπ, κπ). This means that β̄ is larger and b
and κ are smaller than their counterparts β̄π, bπ, and κπ (see Definition 14).

Now we may state the main theorem of this section.
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Theorem 8 Let us assume that at each iteration k of the LSPI algorithm, a path of size n
is generated from the stationary β-mixing process with stationary distribution ρk−1 = ρπk−1.
Let n satisfy the condition in Equation 13 for the slower β-mixing process defined in As-
sumption 4. Let V−1 ∈ F̃ be an arbitrary initial value function, V0, . . . , VK−1 (Ṽ0, . . . , ṼK−1)
be the sequence of value functions (truncated value functions) generated by LSPI after K
iterations, and πK be the greedy policy w.r.t. the truncated value function ṼK−1. Then under
Assumptions 1- 4, with probability 1− δ (w.r.t. the random samples), we have

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

{
(1 + γ)

√
CCσ,µ

[
2√

1− γ2

(
2
√

2E0(F) + E2

)

+
2

1− γ
(
γVmaxL

√
d

νµ

(
√

8 log(8dK/δ)

n
+

1

n

))
+ E1

]
+ γ

K−1
2 Rmax

}
,

where

1. E0(F) = sup
π∈G(F̃)

inff∈F ||f − V π||ρπ ,

2. E1 is ε1 from Theorem 5 written for the slower β-mixing process defined in Assump-
tion 4,

3. E2 is ε2 from Theorem 5 written for the slower β-mixing process defined in Assump-

tion 4 and ||α∗|| replaced by
√

C
ωµ

Rmax
1−γ , and

4. νµ is ν from Equation 14 in which ω is replaced by ωµ defined in Assumption 3, and
the second term is written for the slower β-mixing process defined in Assumption 4.

Remark 1 The previous theorem states a bound on the prediction error when LSPI is
stopped after a fixed number K of iterations. The structure of the bound resembles the
one in Antos et al. (2008). Unlike policy evaluation, the approximation error E0(F) now
depends on how well the space F can approximate the target functions V π obtained in
the policy improvement step. While the estimation errors are mostly similar to those in
policy evaluation, an additional term of order γK is introduced. Finally, we notice that the
concentrability terms may significantly amplify the prediction error (see also next remark).
Farahmand et al. (2010) recently performed a refined analysis of the propagation of the
error in approximate policy iteration and have interesting insights on the concentrability
terms.

Remark 2 The most critical issue about Theorem 8 is the validity of Assumptions 1–4.
The analysis of LSTD explicitly requires that the samples are collected by following the
policy under evaluation, πk, and the performance is bounded according to its stationary
distribution ρk. Since the performance of LSPI is assessed w.r.t. a target distribution σ,
we need each of the policies encountered through the LSPI process to have a stationary
distribution which does not differ too much from σ. Furthermore, since the policies are ran-
dom (at each iteration k the new policy πk is greedy w.r.t. the approximation Ṽk−1 which
is random because of the sampled trajectory), we need to consider the distance of σ and
the stationary distribution of any possible policy generated as greedy w.r.t. a function in
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the truncated space F̃ , that is, ρπ, π ∈ G(F̃). Thus in Assumption 1 we first assume the
existence of a distribution µ lower-bounding any possible stationary distribution ρk. The
existence of µ and the value of the constant C depend on the MDP at hand. In Section 6.2,
we provide an example in which the constant C is infinite. In this case, we show that
the LSPI performance, when the samples at each iteration are generated according to the
stationary distribution of the policy under evaluation, can be arbitrarily bad. A natural
way to relax this assumption would be the use of off-policy LSTD in which the samples are
collected by following a behavior policy. Nonetheless, we are not aware of any finite-sample
analysis for such an algorithm. Another critical term appearing in the bound of LSPI,
inherited from Theorem 5, is the maximum of ||α∗k|| over the iterations, where α∗k is such
that fα∗k = ΠρkV

πk . Each term ||α∗k|| can be bounded whenever the features of the space F
are linearly independent according to the stationary distribution ρk. Since α∗k is a random
variable, the features {ϕi}di=1 of the space F should be carefully chosen so as to be linearly
independent w.r.t. the lower-bounding distribution µ.

We now prove a lemma that is used in the proof of Theorem 8.

Lemma 9 Let πk be the greedy policy w.r.t. Ṽk−1, that is, πk = G(Ṽk−1) and ρπk be the
stationary distribution of the Markov chain induced by πk. We have

||Ṽk − T πk Ṽk||ρπk ≤ (1 + γ)||Ṽk − V πk ||ρπk .

Proof [Lemma 9] We first show that Ṽk − T πk Ṽk = (I − γP πk)(Ṽk − V πk)

(I − γP πk)(Ṽk − V πk) = Ṽk − V πk − γP πk Ṽk + γP πkV πk = Ṽk − V πk − T πk Ṽk + T πkV πk

= Ṽk − V πk − T πk Ṽk + V πk = Ṽk − T πk Ṽk .

For any distribution σ ∈ S(X ), we may write

||Ṽk − T πk Ṽk||σ = ||(I − γP πk)(Ṽk − V πk)||σ ≤ ||I − γP πk ||σ||Ṽk − V πk ||σ
≤
(
1 + γ||P πk ||σ

)
||Ṽk − V πk ||σ

If σ is the stationary distribution of πk, that is, σ = ρπk , then ||P πk ||σ = 1 and the claim
follows. Note that this theorem holds not only for `2-norm, but for any `p-norm, p ≥ 1.

Proof [Theorem 8] Rewriting Lemma 12 in Antos et al. (2008) for V instead of Q, we
obtain6

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

(√
Cσ,µ max

0≤k<K
||Ṽk − T πk Ṽk||µ + γ

K−1
2 Rmax

)
. (20)

6. The slight difference between Equation 20 and the bound in Lemma 12 of Antos et al. (2008) is due
to a small error in Equation 26 of Antos et al. (2008). It can be shown that the r.h.s. of Equation 26
in Antos et al. (2008) is not an upper-bound for the r.h.s. of its previous equation. This can be easily
fixed by redefining the coefficients αk while we make sure that they remain positive and still sum to one.
This modification causes two small changes in the final bound: the constant 2 in front of the parenthesis
becomes 4 and the power of the γ in front of Rmax changes from K/p to (K − 1)/p.
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From Assumption 1, we know that || · ||µ ≤
√
C|| · ||ρk for any 0 ≤ k < K and thus we may

rewrite Equation 20 as

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

(√
CCσ,µ max

0≤k<K
||Ṽk − T πk Ṽk||ρk + γ

K−1
2 Rmax

)
. (21)

Using the result of Lemma 9, Equation 21 may be rewritten as

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

(
(1 + γ)

√
CCσ,µ max

0≤k<K
||Ṽk − V πk ||ρk + γ

K−1
2 Rmax

)
. (22)

We can now use the result of Theorem 5 (which holds with probability δ/K) and replace
||Ṽk − V πk ||ρk with its upper-bound. The next step would be to apply the maximum over
k to this upper-bound (the right hand side of Equation 17). There are four terms on the
r.h.s. of Equation 17 that depend on k and in following we find a bound for each of them.

1. ||V πk−ΠρkV
πk ||ρk : This term can be upper-bounded by E0(F). This quantity, E0(F),

measures the approximation power of the linear function space F .

2. ε1: This term only depends on the parameters β̄k, bk, κk of the stationary β-mixing
process with stationary distribution ρk. Using Assumption 4, this term can be upper-
bounded by E1, which is basically ε1 written for the slower β-mixing process from
Assumption 4.

3. ε2: This term depends on the following k-related terms.

• The term under the root-square in Equation 18: This term depends on the pa-
rameters β̄k, bk, κk of the stationary β-mixing process with stationary distribution
ρk. Similar to ε1, this term can be upper-bounded by rewriting it for the slower
β-mixing process from Assumption 4.

• α∗k: The coefficient vector α∗k is such that fα∗k = ΠρkV
πk . This term can be

upper-bounded as follows:

||α∗k||
(a)

≤ ||fα∗ ||µ√
ωµ

(b)

≤
√
C

ωµ
||fα∗ ||ρk =

√
C

ωµ
||ΠρkV

πk ||ρk
(c)

≤
√
C

ωµ
||V πk ||ρk

≤
√
C

ωµ
||V πk ||∞ =

√
C

ωµ
Vmax =

√
C

ωµ

Rmax

1− γ .

(a) Similar to Equation 15, this is true for any function fα ∈ F .
(b) This is an immediate application of Assumption 1.
(c) We use the fact that the orthogonal projection Πρk is non-expansive for norm
|| · ||ρk .

4. νρk : This term depends on the following k-related terms.

• ωk: This is the smallest eigenvalue of the Gram matrix Gk defined according to
the distribution ρk. From Lemma 7, this term can be lower-bounded by ωµ.
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Figure 3: (left) The MDP used in the example of Section 6.2 and (right) the value function
for policy πa in this MDP.

• The second term on the r.h.s. of Equation 14: This term depends on the param-
eters β̄k, bk, κk of the stationary β-mixing process with stationary distribution
ρk. Similar to ε1 and ε2, this term can be upper-bounded by rewriting it for the
slower β-mixing process from Assumption 4.

By replacing the above lower and upper bounds in Equation 14, we obtain νµ which
is a lower-bound for any νρk .

The claim follows by replacing the bounds for the above four terms in Equation 22.

6.2 A Negative Result for LSPI

In the previous section we analyzed the performance of LSPI when at each iteration the
samples are obtained from a trajectory generated by following the policy under evaluation.
In order to bound the performance of LSPI in Theorem 8, we made a strong assumption on
all possible stationary distributions that can be obtained at the iterations of the algorithm.
Assumption 1 states the existence of a lower-bounding distribution µ for the stationary
distribution ρπ of any policy π ∈ G(F̃). If such a distribution does not exist (C is infinite),
the LSPI performance can no longer be bounded. In other words, this result states that in
some MDPs, even if at each iteration the target function V πk is perfectly approximated by
V̂k under ρk-norm, that is, ||V πk − V̂k||ρk = 0, the LSPI performance could be arbitrarily
bad. In this section we show a very simple MDP in which this is actually the case.

Let consider a finite MDP with X = {x1, x2, x3}, A = {a, b}, and the reward function r
and transition model p as illustrated in Figure 3. As it can be noticed only two policies are
available in this MDP: πa which takes action a in state x1 and πb which takes action b in
this state. It is easy to verify that the stationary distribution ρπa assigns probabilities ε

1+ε ,
1

1+ε , and 0 to x1, x2, and x3, while ρπb has probabilities ε
1+ε , 0, and 1

1+ε . Since ρπa and ρπb

assign a probability 0 to two different states, it is not possible to find a finite constant C
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such that a distribution µ is lower-bounding both ρπa and ρπb , thus, C =∞ and according
to Theorem 8 LSPI may have an arbitrary bad performance.

Let initialize LSPI with the suboptimal policy πa. The value function V πa is shown in
Figure 3 (note that the specific values depend on the choice of ε and γ). Let F = {fα(x) =
α1x + α2, α ∈ R2} be the space of lines in dimension 1. Let α∗ be the solution to the
following minimization problem α∗ = arg infα∈R ||V πa − fα||2ρπa (the projection of V πa onto
space F). Since ρπa assigns a probability 0 to state x3, the fα∗ in Figure 3 has a zero loss,
that is, ||V πa − fα∗ ||ρπa = 0. Nonetheless, while the greedy policy w.r.t. V πa is the optimal
policy πb, the policy improvement step w.r.t. fα∗ returns the policy πa. As a result, although
at each iteration the function space F may accurately approximate the value function of the
current policy π w.r.t. its stationary distribution ρπ, LSPI never improves its performance
and returns πa instead of the optimal policy πb. By properly setting the rewards we could
make the performance of πa arbitrarily worse than πb.

7. Conclusions

In this paper we presented a finite-sample analysis of the least-squares policy iteration
(LSPI) algorithm (Lagoudakis and Parr, 2003). This paper substantially extends the anal-
ysis in Lazaric et al. (2010) by reporting all the lemmas used to prove the performance
bounds of LSTD in the case of β-mixing and Markov chain processes and by analyzing how
the performance of LSTD is propagated through iterations in LSPI.

More in detail, we first studied a version of LSTD, called pathwise LSTD, for policy
evaluation. We considered a general setting where we do not make any assumption on the
Markov chain. We derived an empirical performance bound that indicates how close the
LSTD solution is to the value function at the states along a trajectory generated by fol-
lowing the policy and used by the algorithm. The bound is expressed in terms of the best
possible approximation of the value function in the selected linear space (approximation
error), and an estimation error which depends on the number of samples and the smallest
strictly-positive eigenvalue of the sample-based Gram matrix. We then showed that when
the Markov chain possesses a stationary distribution, one may deduce generalization perfor-
mance bounds using the stationary distribution of the chain as the generalization measure.
In particular, we considered two cases, where the sample trajectory is generated by station-
ary and non-stationary β-mixing Markov chains, and derived the corresponding bounds.
Finally, we considered the whole policy iteration algorithm (LSPI) and showed that under
suitable conditions it is possible to bound the error cumulated through the iterations.

The techniques used for the analysis of LSTD have also been recently employed for the
development of the finite-sample analysis of a number of novel algorithms such as LSTD
with random projections (Ghavamzadeh et al., 2010), LassoTD (Ghavamzadeh et al., 2011),
and Classification-based Policy Iteration with a Critic (Gabillon et al., 2011).
Technical issues. From a technical point of view there are two main open issues.

1. Dependency on νn in the bound of Theorem 1. In Section 4 we introduced the Markov
design setting for regression in which the samples are obtained by following a Markov
chain and the noise is a zero-mean martingale. By comparing the bound in Lemma 3
with the bounds for least-squares regression in deterministic design (see, e.g., The-
orem 11.1 in Györfi et al., 2002), the main difference is the inverse dependency on
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the eigenvalue νn of the empirical Gram matrix. It is not clear whether this depen-
dency is intrinsic in the process generating the samples or whether it can be removed.
Abbasi-Yadkori et al. (2011) recently developed improved Azuma’s inequalities for
self-normalizing process (see also, e.g., de la Peña et al., 2007; de la Peña and Pang,
2009) which suggest that the bound can be improved by removing the dependency
from νn and, thus, also from the L∞-norm L of the features.

2. The log n dependency in the generalization bounds. Chaining techniques (Talagrand,
2005) can be successfully applied to remove the log n dependency in Pollard’s in-
equalities for regression in bounded spaces. An interesting question is whether similar
techniques can be applied to the refined analysis for squared losses and linear spaces
(see, e.g., Lemma 10) used in our theorems.

Extensions. Some extensions to the current work are possible.

1. LSTD(λ). A popular improvement to LSTD is the use of eligibility traces, thus
obtaining LSTD(λ). The extension of the results presented in this paper to this setting
does not seem to be straightforward since the regression problem solved in LSTD(λ)
does not match the Markov design setting introduced in Definition 2. Hence, it is an
open question how a finite-sample analysis of LSTD(λ) could be derived.

2. Off-policy LSTD. Yu and Bertsekas (2010) derived new bounds for projected linear
equations substituting the 1√

1−γ2
term in front of the approximation error with a

much sharper term depending on the spectral radius of some matrices defined by the
problem. An open question is whether these new bounds can be effectively reused in
the finite-sample analysis derived in this paper, thus obtaining much sharper bounds.

3. Joint analysis of BRM and LSTD. Scherrer (2010) recently proposed a unified view of
Bellman residual minimization (BRM) (Schweitzer and Seidmann, 1985; Baird, 1995)
and temporal difference methods through the notion of oblique projections. This
suggests the possibility that the finite-sample analysis of LSTD could be extended to
BRM through this unified view over the two methods.
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Appendix A.

In this appendix we report a series of lemmata which are used throughout the paper. In
particular, we derive concentration of measures inequalities for linear spaces and squared
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loss when samples are generated from different stochastic processes. We start with the
traditional setting of independent and identically distributed samples in Section A.1, then
move to samples generated from mixing processes in Section A.2, and finally consider the
more general case of samples obtained by simulating a fast mixing Markov chain starting
from an arbitrary distribution in Section A.3.

As a general rule, we use proposition to indicate results which are copied from other
sources, while lemma refers to completely or partially new results.

A.1 IID Samples

Although in the setting considered in the paper the samples are non-i.i.d., we first report
functional concentration inequalities for i.i.d. samples which will be later extended to sta-
tionary and non-stationary β-mixing processes. We first recall the definition of expected
and empirical `2-norms for a function f : X → R

‖f‖2Xn
1

=
1

n

n∑

t=1

|f(Xt)|2 , ‖f‖2 = E
[
|f(X1)|2

]
.

Lemma 10 Let F be a class of functions f : X → R bounded in absolute value by B. Let
Xn

1 = {X1, . . . , Xn} be a sequence of i.i.d. samples. For any ε > 0

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ 3E

[
N2

(√
2

24
ε,F , X2n

1

)]
exp

(
− nε2

288B2

)
,

and

P
[
∃f ∈ F : ‖f‖Xn

1
− 2‖f‖ > ε

]
≤ 3E

[
N2

(√
2

24
ε,F , X2n

1

)]
exp

(
− nε2

288B2

)
,

where N2(ε,F , Xn
1 ) is the (L2, ε)-cover number of the function space F on the samples Xn

1

(see Györfi et al. 2002).

Proof The first statement is proved in Györfi et al. (2002) and the second one can be
proved similarly.

Proposition 11 Let F be a class of linear functions f : X → R of dimension d and F̃ be
the class of functions obtained by truncating functions f ∈ F at a threshold B. Then for
any sample Xn

1 = {X1, . . . , Xn} and ε > 0

N2

(
ε, F̃ , Xn

1

)
≤ 3

(
3e(2B)2

ε2

)2(d+1)

.

Proof Using Theorem 9.4. in Györfi et al. (2002) and the fact that the pseudo-dimension
of F̃ is the same as F , we have

N2

(
ε, F̃ , Xn

1

)
≤ 3

(
2e(2B)2

ε2
log

3e(2B)2

ε2

)d+1

≤ 3

(
3e(2B)2

ε2

)2(d+1)

.
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We now use Proposition 11 to invert the bound in Lemma 10 for truncated linear spaces.

Corollary 12 Let F be a class of linear functions f : X → R of dimension d, F̃ be the
class of functions obtained by truncating functions f ∈ F at a threshold B, and Xn

1 =
{X1, . . . , Xn} be a sequence of i.i.d. samples. By inverting the bound of Lemma 10, for any
f̃ ∈ F̃ , we have

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ),

‖f̃‖Xn
1
− 2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, d, δ)

n
, (23)

and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ + log

(
9(12e)2(d+1)

)
.

Proof In order to prove the corollary it is sufficient to verify that the following inequality
holds for the ε defined in Equation 23

3E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
exp

(
− nε2

288B2

)
≤ δ.

Using Proposition 11, we bound the first term as

E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
≤ 3

(
C1

ε2

)2(d+1)

,

with C1 = 3456eB2. Next we notice that Λ(n, d, δ) ≥ 1 and thus ε ≥
√

1/(nC2) with
C2 = (288B2)−1. Using these bounds in the original inequality and some algebra we obtain

3E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
exp

(
− nε2

288B2

)
≤ 9

(
C1

ε2

)2(d+1)

exp
(
−nC2ε

2
)

≤ 9 (nC1C2)2(d+1) exp

(
−C2n

Λ(n, d, δ)

nC2

)

= 9 (nC1C2)2(d+1) n−2(d+1) δ

e

1

9(C1C2)2(d+1)

=
δ

e
≤ δ.

Non-functional versions of Corollary 12 can be simply obtained by removing the covering
number from the statement of Lemma 10.
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Corollary 13 Let f : X → R be a function bounded in absolute value by B and Xn
1 =

{X1, . . . , Xn} be a sequence of i.i.d. samples. Then

‖f‖ − 2‖f‖Xn
1
≤ ε(δ),

‖f‖Xn
1
− 2‖f‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2

n
log

3

δ
.

A.2 Stationary β-mixing Processes

We first introduce β-mixing stochastic processes and β-mixing coefficients.

Definition 14 Let {Xt}t≥1 be a stochastic process. Let Xj
i = {Xi, Xi+1, . . . , Xj} and

σ(Xj
i ) denote the sigma-algebra generated by Xj

i . The i-th β-mixing coefficient of the
stochastic process is defined by

βi = sup
t≥1

E

[
sup

B∈σ(X∞t+i)
|P(B|Xt

1)− P(B)|
]
.

The process {Xt}t≥1 is said to be β-mixing if βi → 0 as i → ∞. In particular, {Xt}t≥1

mixes at an exponential rate with parameters β̄, b, κ if βi ≤ β̄ exp(−biκ). Finally, {Xt}t≥1

is strictly stationary if Xt ∼ ν for any t > 0.

Let X1, . . . , Xn be a sequence of samples drawn from a stationary β-mixing process with
coefficients {βi}. We first introduce the blocking technique of Yu (1994). Let us divide the
sequence of samples into blocks of size kn. For simplicity we assume n = 2mnkn with 2mn

be the number of blocks.7 For any 1 ≤ j ≤ mn we define the set of indexes in an odd and
even block respectively as

Hj = {t : 2(j − 1)kn + 1 ≤ t ≤ (2j − 1)kn}, and

Ej = {t : (2j − 1)kn + 1 ≤ t ≤ (2j)kn}.

Let H = ∪mnj=1Hj and E = ∪mnj=1Ej be the set of all indexes in the odd and even blocks,
respectively. We use X(Hj) = {Xt : t ∈ Hj} and X(H) = {Xt : t ∈ H}. We now introduce
a ghost sample X ′ (the size of the ghost sample X ′ is equal to the number of samples in
each block kn) in each of the odd blocks such that the joint distribution of X ′(Hj) is the
same as X(Hj) but independent from any other block. In the following, we also use another
ghost sample X ′′ independently generated from the same distribution as X ′.

Proposition 15 (Yu, 1994) Let X1, . . . , Xn be a sequence of samples drawn from a sta-
tionary β-mixing process with coefficients {βi}. Let Q, Q′ be the distributions of X(H) and
X ′(H), respectively. For any measurable function h : Xmnkn → R bounded by B

∣∣EQ [h(X(H))]− EQ′
[
h(X ′(H))

]∣∣ ≤ Bmnβkn .

7. The extension to the general case is straightforward.
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Before moving to the extension of Propsition 10 to β mixing processes, we report this
technical lemma.

Lemma 16 Let F be a class of functions f : X → R bounded in absolute value by B
and X1, . . . , Xn be a sequence of samples drawn from a stationary β-mixing process with
coefficients {βi}. For any ε > 0

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ 2δ(

√
2ε) + 2mnβkn , (24)

P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]
≤ 2δ(

√
2ε) + 2mnβkn , (25)

where

δ(ε) = 3E

[
N2

(√
2

24
ε,F , X ′(H) ∪X ′′(H)

)]
exp

(
− mnε

2

288B2

)
.

Proof Similar to Meir (2000), we first introduce F as the class of block functions f̄ :
X kn → R defined as

f̄
(
X(Hj)

)2
=

1

kn

∑

t∈Hj

f(Xt)
2.

It is interesting to notice that block functions have exactly the same norms as the functions
in F . In fact

‖f̄‖2X(H) =
1

mn

mn∑

j=1

|f̄(X(Hj))|2 =
1

mn

mn∑

j=1

1

kn

∑

t∈Hj

|f(Xt)|2 = ‖f‖X(H), (26)

and

‖f̄‖2 = E
[
|f̄(X(H1))|2

]
=

1

kn

∑

t∈H1

E
[
|f(Xt)|2

]
= E

[
|f(X1)|2

]
= ‖f‖, (27)

where in Equation 27, we used the fact that the process is stationary. We now focus on
Equation 24

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]

(a)

≤ P
[
∃f ∈ F : ‖f‖ −

(
‖f‖X(H) + ‖f‖X(E)

)
> ε
]

(b)
= P

[
∃f ∈ F :

1

2

(
‖f‖ − 2‖f‖X(H)

)
+

1

2

(
‖f‖ − 2‖f‖X(E)

)
> ε

]

(c)

≤ P
[
∃f ∈ F : ‖f‖ − 2‖f‖X(H) > 2ε

]
+ P

[
∃f ∈ F : ‖f‖ − 2‖f‖X(E) > 2ε

]

(d)
= 2P

[
∃f̄ ∈ F : ‖f̄‖ − 2‖f̄‖X(H) > 2ε

]

(e)

≤ 2
(
P
[
∃f̄ ∈ F : ‖f̄‖ − 2‖f̄‖X′(H) > 2ε

]
+mnβkn

)

(f)

≤ 2δ′(2ε) + 2mnβkn .
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(a) We used the inequality
√
a+ b ≥ 1√

2
(
√
a+
√
b) to split the norm ‖f‖Xn

1
≥ 1

2

(
‖f‖X(H) +

‖f‖X(E)

)
.

(b) Algebra.
(c) Split the probability.
(d) (1) Since the process is stationary the distribution over the even blocks is the same as
the distribution over the odd blocks. (2) From Equations 26 and 27.
(e) Using Proposition 15 with h equals to the indicator function of the event inside the
bracket, and the fact that the indicator function is bounded by B = 1 and its expected
value is equal to the probability of the event.
(f) Lemma 10 on space F where

δ′(ε) = 3E

[
N2

(√
2

24
ε,F , {X ′(Hj), X

′′(Hj)}mnj=1

)]
exp

(
− mnε

2

288B2

)
,

where X ′′ is a ghost sample independently generated from the same distribution as X ′. Now
we relate the `2-covering number of F to the covering number of F . Using the definition of
f̄ we have

||f̄ − ḡ||2X(H) =
1

mn

mn∑

j=1

(
f̄
(
X(Hj)

)
− ḡ
(
X(Hj)

))2

=
1

mnkn

mn∑

j=1



( ∑

t∈Hj

f(Xt)
2
) 1

2 −
( ∑

t′∈Hj

g(Xt′)
2
) 1

2




2

.

Taking the square and using the Cauchy-Schwarz inequality, each element of the outer
summation may be written as

∑

t∈Hj

(
f(Xt)

2 + g(Xt)
2
)
− 2
( ∑

t∈Hj

f(Xt)
2
) 1

2
( ∑

t′∈Hj

g(Xt′)
2
) 1

2

≤
∑

t∈Hj

(
f(Xt)

2 + g(Xt)
2 − 2f(Xt)g(Xt)

)
=
∑

t∈Hj

(
f(Xt)− g(Xt)

)2
.

By taking the sum over all the odd blocks we obtain

||f̄ − ḡ||2X(H) ≤ ||f − g||2X(H) ,

which indicates that N2

(
ε,F , {X ′(Hj), X

′′(Hj)}mnj=1

)
≤ N2

(
ε,F , X ′(H) ∪ X ′′(H)

)
. There-

fore, we have δ′(2ε) ≤ δ(2ε) ≤ δ(
√

2ε), which concludes the proof.
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With a similar approach, we can prove Equation 25

P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]

(a)

≤ P

[
∃f ∈ F :

√
2

2

(
‖f‖X(H) + ‖f‖X(E)

)
− 2
√

2‖f‖ > ε

]

(b)
= P

[
∃f ∈ F :

(√
2

2
‖f‖X(H) −

√
2‖f‖

)
+

(√
2

2
‖f‖X(E) −

√
2‖f‖

)
> ε

]

(c)

≤ P
[
∃f ∈ F : ‖f‖X(H) − 2‖f‖ >

√
2ε
]

+ P
[
∃f ∈ F : ‖f‖X(E) − 2‖f‖ >

√
2ε
]

(d)
= 2P

[
∃f̄ ∈ F : ‖f̄‖X(H) − 2‖f̄‖ >

√
2ε
]

(e)

≤ 2
(
P
[
∃f̄ ∈ F : ‖f̄‖X′(H) − 2‖f̄‖ >

√
2ε
]

+mnβkn

)

(f)

≤ 2δ′(
√

2ε) + 2mnβkn ≤ 2δ(
√

2ε) + 2mnβkn .

(a) We used the inequality
√
a+ b ≤ (

√
a+
√
b) to split the norm ‖f‖Xn

1
≤
√

2
2

(
‖f‖X(H) +

‖f‖X(E)

)
.

(b)-(f) use the same arguments as before.

Corollary 17 Let F be a class of linear functions f : X → R of dimension d, F̃ be the
class of functions obtained by truncating functions f ∈ F at a threshold B, and Xn

1 =
{X1, . . . , Xn} be a sequence of samples drawn from a stationary exponentially fast β-mixing
process with coefficients {βi}. By inverting the bound of Lemma 16, for any f̃ ∈ F̃ we have

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ),

‖f̃‖Xn
1
− 2
√

2‖f̃‖ ≤ ε(δ),
with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

, (28)

and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ + log+

(
max{18(6e)2(d+1), β̄}

)
.

Proof In order to prove the statement, we need to verify that ε in Equation 28 satisfies

δ′ = 6E
[
N2

(
1

12
ε, F̃ , X ′(H) ∪X ′′(H)

)]
exp

(
− mnε

2

144B2

)
+ 2mnβkn ≤ δ .

Using Proposition 11 the covering number can be bounded by

E
[
N2

(
1

12
ε, F̃ , X ′(H) ∪X ′′(H)

)]
≤ 3

(
1728eB2

ε2

)2(d+1)

.
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By recalling the definition of the β-coefficients {βi} and kn ≥ 1 we have

2mnβkn ≤
n

kn
β̄ exp(−bkκn) ≤ nβ̄ exp(−bkκn) .

From the last two inequalities, mn = n/2kn, setting C1 = 1728eB2 and D = 2(d + 1) we
obtain

δ′ ≤ 18

(
C1

ε2

)D
exp

(
− nε2

144B2

1

2kn

)
+ nβ̄ exp(−bkκn).

By equalizing the arguments of the two exponential we obtain the definition of kn as

kn =

⌈(
nC2ε

2

b

) 1
κ+1

⌉
,

where C2 = (576B2)−1, which implies

max

{(
nC2ε

2

b

) 1
κ+1

, 1

}
≤ kn ≤ max

{(
2nC2ε

2

b

) 1
κ+1

, 1

}
.

Thus we have the bound

1

2kn
≥ 1

4
min

{(
b

nC2ε2

) 1
κ+1

, 2

}
≥ 1

4
min

{(
b

nC2ε2

) 1
κ+1

, 1

}
.

Using the above inequalities, we may write δ′ as

δ′ ≤ 18

(
C1

ε2

)D
exp

(
−min

{
b

nC2ε2
, 1

} 1
κ+1

nC2ε
2

)
+ nβ̄ exp

(
−bmax

{
nC2ε

2

b
, 1

} κ
κ+1

)
.

The objective now is to make the arguments of the two exponential equal. For the second
argument we have

bmax

{
nC2ε

2

b
, 1

} κ
κ+1

= bmax

{
nC2ε

2

b
, 1

}
min

{
b

nC2ε2
, 1

} 1
κ+1

≥ nC2ε
2 min

{
b

nC2ε2
, 1

} 1
κ+1

.

Thus

δ′ ≤
(

18

(
C1

ε2

)D
+ nβ̄

)
exp

(
−min

{
b

nC2ε2
, 1

} 1
κ+1

nC2ε
2

)
.

Now we plug in ε from Equation 28. Using the fact that Λ ≥ 1, we know that ε2 ≥ (nC2)−1,
and thus

δ′ ≤
(

18 (nC1C2)D + nβ̄
)

exp (−Λ) .

Using the definition of Λ, we obtain

δ′ ≤
(

18 (nC1C2)D + nβ̄
)
n−D max{18(C1C2)D, β̄}−1 δ

e
≤ (1 + n1−D)

δ

e
≤ (1 + 1)

δ

e
≤ δ ,

3070



Finite-Sample Analysis of Least-Squares Policy Iteration

which concludes the proof.

In order to understand better the shape of the estimation error, we consider a simple
β-mixing process with parameters β̄ = b = κ = 1. Equation 28 reduces to

ε(δ) =

√
288B2Λ(n, d, δ)

n

2

,

with Λ(n, d, δ) = 2(d + 1) log n + log e
δ + log

(
18(6e)2(d+1)

)
. It is interesting to notice that

the shape of the bound in this case resembles the structure of the bound in Corollary 12
for i.i.d. samples. Finally, we report the non-functional version of the previous corollary.

Corollary 18 Let F be a class of linear functions f : X → R of dimension d such that
its features ϕi : X → R are bounded in absolute value by L for any i = 1, . . . , d and
Xn

1 = {X1, . . . , Xn} be a sequence of samples drawn from a stationary exponentially fast
β-mixing process with coefficients {βi}. For any f ∈ F we have

‖f‖ − 2‖f‖Xn
1
≤ ε(δ),

‖f‖Xn
1
− 2
√

2‖f‖ ≤ ε(δ),
with probability 1− δ, where

ε(δ) = 12||α||L
√

2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

,

and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ + log+

(
max{18(6e)2(d+1), β̄}

)
.

Proof Let G =
{
gα = fα

L||α||

}
so that

||gα||∞ =
1

L||α|| ||fα||∞ ≤
1

L||α|| ||α|| sup
i
||ϕi(x)||∞ ≤ 1.

We can thus apply Lemma 16 to the bounded space G with B = 1. By using a similar
inversion as in Corollary 17, we thus obtain that with probability 1 − δ, for any function
gα ∈ G

‖gα‖ − 2‖gα‖Xn
1
≤ ε(δ),

‖gα‖Xn
1
− 2
√

2‖gα‖ ≤ ε(δ),

with

ε(δ) = 12

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

.

Finally, we notice that ||gα|| = 1
L||α|| ||fα|| and ||gα||Xn

1
= 1

L||α|| ||fα||Xn
1

and the statement
follows.
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Corollary 19 Let f : X → R be a linear function, f̃ be its truncation at a threshold B,
and Xn

1 = {X1, . . . , Xn} be a sequence of samples drawn from a stationary exponentially
fast β-mixing process with coefficients {βi}. Then

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ),

‖f̃‖Xn
1
− 2
√

2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, δ)

n
max

{
Λ(n, δ)

b
, 1

}1/κ

,

Λ(n, δ) = log e
δ + log

(
max{6, nβ̄}

)
.

Proof The proof follows the same steps as in Corollary 17. We have the following sequence
of inequalities

δ′ ≤ 6 exp

(
−nC2ε

2

kn

)
+

n

kn
β̄ exp(−bkκn) ≤ (6 + nβ̄) exp(−Λ)

= (6 + nβ̄) max{6, nβ̄}−1 δ

e
≤ (1 + 1)

δ

e
≤ δ ,

where C2 = (576B2)−1.

A.3 Markov Chains

We first review the conditions for the convergence of Markov chains (Theorem 13.3.3. in
Meyn and Tweedie 1993).

Proposition 20 Let M be an ergodic and aperiodic Markov chain defined on X with sta-
tionary distribution ρ. If P (A|x) is the transition kernel of M with A ⊆ X and x ∈ X ,
then for any initial distribution λ

lim
i→∞

∣∣∣
∣∣∣
∫

X
λ(dx)P i(·|x)− ρ(·)

∣∣∣
∣∣∣
TV

= 0,

where || · ||TV is the total variation norm.

Definition 21 Let M be an ergodic and aperiodic Markov chain with stationary distri-
bution ρ. M is mixing with an exponential rate with parameters β̄, b, κ, if its β-mixing
coefficients {βi} satisfy βi ≤ β̄ exp(−biκ). Then for any initial distribution λ

∣∣∣
∣∣∣
∫

X
λ(dx)P i(·|x)− ρ(·)

∣∣∣
∣∣∣
TV
≤ β̄ exp(−biκ).
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Lemma 22 LetM be an ergodic and aperiodic Markov chain with a stationary distribution
ρ. Let X1, . . . , Xn be a sequence of samples drawn from the stationary distribution of the
Markov chain ρ and X ′1, . . . , X

′
n be a sequence of samples such that X ′1 ∼ ρ′ and X ′1<t≤n

are generated by simulating M from X ′1. Let η be an event defined on X n, then
∣∣P [η(X1, . . . , Xn)]− P

[
η(X ′1, . . . , X

′
n)
]∣∣ ≤ ‖ρ′ − ρ‖TV

Proof We prove one side of the inequality. Let Q be the conditional joint distribution
of (X1<t≤n|X1 = x) and Q′ be the conditional joint distribution of (X ′1<t≤n|X ′1 = x).
We first notice that Q is exactly the same as Q′. In fact, the first sequence (X1<t≤n) is
generated by drawing X1 from the stationary distribution ρ and then following the Markov
chain. Similarly, the second sequence (X ′1<t≤n) is obtained following the Markov chain from
X ′1 ∼ ρ′. As a result, the conditional distributions of the two sequences is exactly the same
and just depend on the Markov chain. As a result, we obtain the following sequence of
inequalities

P
[
η(X1, . . . , Xn)

]
= EX1,...,Xn [I {η(X1, . . . , Xn)}]
= EX1∼ρ [EX2,...,Xn [I {η(X1, X2 . . . , Xn)} |X1]]

= EX1∼ρ

[
EX′2,...,X′n

[
I
{
η(X1, X

′
2 . . . , X

′
n)
}
|X1

]]

(a)

≤ EX1∼ρ′
[
EX′2,...,X′n

[
I
{
η(X1, X

′
2 . . . , X

′
n)
}
|X1

]]
+ ‖ρ′ − ρ‖TV

(b)
= EX′1∼ρ′

[
EX′2,...,X′n

[
I
{
η(X ′1, X

′
2 . . . , X

′
n)
}
|X ′1
]]

+ ‖ρ′ − ρ‖TV

= P
[
η(X ′1, . . . , X

′
n)
]

+ ‖ρ′ − ρ‖TV .

Note that I {·} is the indicator function.
(a) simply follows from

EX∼ρ [f(X)]− EX∼ρ′ [f(X)] =

∫

X
f(x)ρ(dx)−

∫

X
f(x)ρ′(dx)

≤ ||f ||∞
∫

X

(
ρ(dx)− ρ′(dx)

)
≤ ||f ||∞||ρ− ρ′||TV .

(b) From the fact that X1 = X ′1 = x.

Lemma 23 Let F be a class of functions f : X → R bounded in absolute value by B, M be
a an ergodic and aperiodic Markov chain with a stationary distribution ρ. Let M be mixing
with an exponential rate with parameters β̄, b, κ. Let λ be an initial distribution over X and
X1, . . . , Xn be a sequence of samples such that X1 ∼ λ and X1<t≤n obtained by following
M from X1. For any ε > 0,

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ ‖λ− ρ‖TV + 2δ(

√
2ε) + 2mnβkn ,

and
P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]
≤ ‖λ− ρ‖TV + 2δ(

√
2ε) + 2mnβkn ,
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where

δ(ε) = 3E

[
N2

(√
2

24
ε,F , X(H) ∪X ′(H)

)]
exp

(
− mnε

2

288B2

)
.

Proof The proof is an immediate consequence of Lemma 16 and Lemma 22 by defining
η(X1, . . . , Xn) as

η(X1, . . . , Xn) = {∃f ∈ F : ‖f‖ − 2‖f‖Xn
1
> ε},

and
η(X1, . . . , Xn) = {∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε},
respectively.

Finally, we consider a special case in which out of the n total number of samples, ñ
(1 ≤ ñ < n) are used to “burn” the chain and n− ñ are actually used as training samples.

Lemma 24 Let F be a class of linear functions f : X → R of dimension d and F̃ be the
class of functions obtained by truncating functions f ∈ F at a threshold B. Let M be an
ergodic and aperiodic Markov chain with a stationary distribution ρ. Let M be mixing with
an exponential rate with parameters β̄, b, κ. Let µ be the initial distribution and X1, . . . , Xn

be a sequence of samples such that X1 ∼ µ and X1<t≤n obtained by following M from X1.
If the first ñ (1 ≤ ñ < n) samples are used to burn the chain and n − ñ are actually used
as training samples, by inverting Lemma 23, for any f̃ ∈ F̃ , we obtain

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ),

‖f̃‖Xn
1
− 2
√

2‖f̃‖ ≤ ε(δ),
with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n− ñ, d, δ)

(n− ñ)
max

{
Λ(n− ñ, d, δ)

b
, 1

}1/κ

,

and Λ(n, d, δ) = 2(d+1) log n+log e
δ+log+

(
max{18(6e)2(d+1), β̄}

)
, and ñ =

(
1
b log 2eβ̄n

δ

)1/κ
.

Proof After ñ steps, the first sample used in the training set (Xñ+1) is drawn from the
distribution λ = µP ñ. Using Proposition 20 and Definition 21 we have

||λ− ρ||TV ≤ β̄ exp(−bñκ). (29)

We first substitute the total variation in Lemma 23 with the bound in Equation 29, and
then verify that ε in Equation 24 satisfies the following inequality.

δ′ = ‖λ− ρ‖TV + 2δ(
√

2ε) + 2mn−ñβkn−ñ

≤ β̄ exp(−bñκ) + 18

(
C1

ε2

)D
exp

(
−(n− ñ)C2ε

2

kn−ñ

)
+ (n− ñ)β̄ exp(−bkκn−ñ)

≤
( 1

2n
+ 1 + (n− ñ)1−D)δ

e
≤ (

1

2
+ 1 + 1)

δ

e
≤ δ,
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where C1 = 1728eB2 and C2 = (288B2)−1. The above inequality can be verified by follow-
ing the same steps as in Corollary 17 and by optimizing the bound for ñ.
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