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Abstract

We study two regularization-based approximate policy iteration algorithms, namely REG-
LSPI and REG-BRM, to solve reinforcement learning and planning problems in discounted
Markov Decision Processes with large state and finite action spaces. The core of these
algorithms are the regularized extensions of the Least-Squares Temporal Difference (LSTD)
learning and Bellman Residual Minimization (BRM), which are used in the algorithms’
policy evaluation steps. Regularization provides a convenient way to control the complexity
of the function space to which the estimated value function belongs and as a result enables
us to work with rich nonparametric function spaces. We derive efficient implementations of
our methods when the function space is a reproducing kernel Hilbert space. We analyze the
statistical properties of REG-LSPI and provide an upper bound on the policy evaluation
error and the performance loss of the policy returned by this method. Our bound shows
the dependence of the loss on the number of samples, the capacity of the function space,
and some intrinsic properties of the underlying Markov Decision Process. The dependence
of the policy evaluation bound on the number of samples is minimax optimal. This is the
first work that provides such a strong guarantee for a nonparametric approximate policy
iteration algorithm.!

Keywords: reinforcement learning, approximate policy iteration, regularization, non-
parametric method, finite-sample analysis

1. This work is an extension of the NIPS 2008 conference paper by Farahmand et al. (2009b).
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1. Introduction

We study the approximate policy iteration (API) approach to find a close to optimal policy
in a Markov Decision Process (MDP), either in a reinforcement learning (RL) or in a
planning scenario. The basis of API, which is explained in Section 3, is the policy iteration
algorithm that iteratively evaluates a policy (i.e., finding the value function of the policy—
the policy evaluation step) and then improves it (i.e., computing the greedy policy with
respect to (w.r.t.) the recently obtained value function—the policy improvement step).
When the state space is large (e.g., a subset of R? or a finite state space that has too
many states to be exactly represented), the policy evaluation step cannot be performed
exactly, and as a result the use of function approximation is inevitable. The appropriate
choice of the function approximation method, however, is far from trivial. The best choice
is problem-dependent and it also depends on the number of samples in the input data.

In this paper we propose a nonparametric reqularization-based approach to API. This
approach provides a flexible and easy way to implement the policy evaluation step of API.
The advantage of nonparametric methods over parametric methods is that they are flex-
ible: Whereas a parametric model, which has a fixed and finite parameterization, limits
the range of functions that can be represented, irrespective of the number of samples, the
nonparametric models avoid such undue restrictions by increasing the power of the function
approximation as necessary. Moreover, the regularization-based approach to nonparamet-
rics is elegant and powerful: It has a simple algorithmic form and the estimator achieves
minimax optimal rates in a number of scenarios. Further discussion of and specific re-
sults about nonparametric methods, particularly in the supervised learning scenario, can
be found in the books by Gyorfi et al. (2002) and Wasserman (2007).

The nonparametric approaches to solve RL/Planning problems have received some at-
tention in the RL community. For instance, Petrik (2007); Mahadevan and Maggioni (2007);
Parr et al. (2007); Mahadevan and Liu (2010); Geramifard et al. (2011); Farahmand and
Precup (2012); Bohmer et al. (2013) and Milani Fard et al. (2013) suggest methods to gen-
erate data-dependent basis functions, to be used in general linear models. Ormoneit and
Sen (2002) use smoothing kernel-based estimate of the model and then use value iteration
to find the value function. Barreto et al. (2011, 2012) benefit from “stochastic factoriza-
tion trick” to provide computationally efficient ways to scale up the approach of Ormoneit
and Sen (2002). In the context of approximate value iteration, Ernst et al. (2005) consider
growing ensembles of trees to approximate the value function. In addition, there have been
some works where regularization methods have been applied to the RL/Planning prob-
lems, e.g., Engel et al. (2005); Jung and Polani (2006); Loth et al. (2007); Farahmand et al.
(2009a,b); Taylor and Parr (2009); Kolter and Ng (2009); Johns et al. (2010); Ghavamzadeh
et al. (2011); Farahmand (2011b); Avila Pires and Szepesvéri (2012); Hoffman et al. (2012);
Geist and Scherrer (2012). Nevertheless, most of these papers are algorithmic results and
do not analyze the statistical properties of these methods (the exceptions are Farahmand
et al. 2009a,b; Farahmand 2011b; Ghavamzadeh et al. 2011; Avila Pires and Szepesvari
2012). We compare these methods with ours in more detail in Sections 5.3.1 and 6.

It is worth mentioning that one might use a regularized estimator alongside a feature
generation approach to control the complexity of function space induced by the features. An
approach alternative to regularization for controlling the complexity of a function space is to
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use greedy algorithms, such as Matching Pursuit (Mallat and Zhang, 1993) and Orthogonal
Matching Pursuit (Pati et al., 1993), to select features from a large set of features. Greedy
algorithms have recently been developed for the value function estimation by Johns (2010);
Painter-Wakefield and Parr (2012); Farahmand and Precup (2012); Geramifard et al. (2013).
We do not discuss these methods any further.

1.1 Contributions

The algorithmic contribution of this work is to introduce two regularization-based nonpara-
metric approximate policy iteration algorithms, namely Regularized Least-Squares Policy
Improvement (REG-LSPI) and Regularized Bellman Residual Minimization (REG-BRM).
These are flexible methods that, upon the proper selection of their parameters, are sample
efficient. Each of REG-BRM and REG-LSPI is formulated as two coupled regularized op-
timization problems (Section 4). As we argue in Section 4.1, having a regularized objective
in both optimization problems is necessary for rich nonparametric function spaces. Despite
the unusual coupled formulation of the underlying optimization problems, we prove that
the solutions can be computed in a closed-form when the estimated action-value function
belongs to the family of reproducing kernel Hilbert spaces (RKHS) (Section 4.2).

The theoretical contribution of this work (Section 5) is to analyze the statistical prop-
erties of REG-LSPI and to provide upper bounds on the policy evaluation error and the
performance difference between the optimal policy and the policy returned by this method
(Theorem 14). The result demonstrates the dependence of the bounds on the number of
samples, the capacity of the function space to which the estimated action-value function
belongs, and some intrinsic properties of the MDP. It turns out that the dependence of
the policy evaluation error bound on the number of samples is minimax optimal. This pa-
per, alongside its conference (Farahmand et al., 2009b) and the dissertation (Farahmand,
2011b) versions, is the first work that analyzes a nonparametric regularized API algorithm
and provides such a strong guarantee for it.

2. Background and Notation

In the first part of this section, we provide a brief summary of some of the concepts and
definitions from the theory of MDPs and RL (Section 2.1). For more information, the
reader is referred to Bertsekas and Shreve (1978); Bertsekas and Tsitsiklis (1996); Sutton
and Barto (1998); Szepesvari (2010). In addition to this background on MDPs, we introduce
the notations we use to denote function spaces and their corresponding norms (Section 2.2)
as well as the considered learning problem (Section 2.3).

2.1 Markov Decision Processes

For a space 2, with a o-algebra oq, we define M(2) as the set of all probability measures
over og. We let B(2) denote the space of bounded measurable functions w.r.t. oq and we
denote B(f2, L) as the space of bounded measurable functions with bound 0 < L < co.

Definition 1 A finite-action discounted MDP is a 4-tuple (X, A, P,v), where X is a mea-
surable state space, A is a finite set of actions, P : X x A - M(R x X) is a map-
ping with domain X X A, and 0 < v < 1 is a discount factor. Mapping P evaluated
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at (x,a) € X x A gives a distribution over R x X, which we shall denote by P(-,-|z,a).
We denote the marginals of P by the overloaded symbol P : X x A — M(X) defined as

P(lz,a) = = [z P( d’r ‘|z, a) (transition probability kernel) and R : X x A — M(R)
defined as R ]ac a) = [, P(-,dy|x,a) (reward distribution).

An MDP together with an initial distribution P; of states encode the laws governing the
temporal evolution of a discrete-time stochastic process controlled by an agent as follows:
The controlled process starts at time ¢ = 1 with random initial state X; ~ P; (here and
in what follows X ~ @ denotes that the random variable X is drawn from distribution Q).
At stage t, action A; € A is selected by the agent controlling the process. In response, the
pair (R¢, Xy41) is drawn from P(-,-| Xy, Ay), i.e., (R, X¢q1) ~ P(+, | Xy, Ay), where, Ry is the
reward that the agent receives at time ¢ and X;;1 is the state at time ¢ + 1. The process
then repeats with the agent selecting action A;11, etc.

In general, the agent can use all past states, actions, and rewards in deciding about
its current action. However, for our purposes it will suffice to consider action-selection
procedures, or policies, that select an action deterministically and time-invariantly solely
based on the current state:

Definition 2 (Deterministic Markov Stationary Policy) A measurable mapping 7 :
X — A is called a deterministic Markov stationary policy, or just policy in short. Following
a policy 7 in an MDP means that at each time step t it holds that Ay = w(Xy).

Policy 7 induces the transition probability kernels P™ : X x A — M(X x A) defined as
follows: For a measurable subset C' of X x A, let (P™)(C|x,a) = J P(dylz, a)ly(y = (y))ecy-
The m-step transition probability kernels (P”)m X x A — M(X x A) for m =2,3,---
are defined inductively by (P™)™(C|z,a) £ [, P(dy|z,a)(P™)™ *(Cly,7(y)). Also given a
probability transition kernel P : X x A — M(X x A), we define the right-linear operator
P-: B(X x A) = B(X x A) by (PQ)(z,a) £ [, 4 P(dy,dd’|z,a)Q(y,d’). For a probability
measure p € M(X x A) and a measurable subset C' of X x A, we define the left-linear
operators -P : M(X x A) — M(X x A) by (pP)(C) = [ p(dx,da)P(dy, dd'|x,a)l;y.ayecy-

To study MDPs, two auxiliary functions are of central importance: the value and the
action-value functions of a policy .

Definition 3 (Value Functions) For a policy 7, the value function V™ and the action-
value function Q™ are defined as follows: Let (Ry;t > 1) be the sequence of rewards when
the Markov chain is started from a state Xi (or state-action (X1, A1) for the action-
value function) drawn from a positive probability distribution over X (or X x A) and

the agent follows policy m. Then, V™(z) £ E |32, *ytflRt‘Xl = x} and Q™ (z,a) =
E 327 R ‘ X, =24, =al.

It is easy to see that for any policy m, if the magnitude of the immediate expected reward
r(z,a) = [r P(dr,dy|z,a) is uniformly bounded by Rmax, then the functions V7™ and Q™
are bounded by max = Qmax = Rmax/(1 — ), independent of the choice of 7.

For a discounted MDP, we define the optimal value and optimal action-value functions by
V*(z) = sup, V™ (x) for all states x € X and Q*(z,a) = sup,, Q™ (z,a) for all state-actions
(z,a) € X x A. We say that a policy 7* is optimal if it achieves the best values in every
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state, i.e., if V™ = V*. We say that a policy 7 is greedy w.r.t. an action-value function Q if
7(z) = argmax,e 4 Q(z,a) for all z € X. We define function 7 (z; Q) £ argmax,. 4 Q(z, a)
(for all x € X) that returns a greedy policy of an action-value function @ (If there exist
multiple maximizers, a maximizer is chosen in an arbitrary deterministic manner). Greedy
policies are important because a greedy policy w.r.t. the optimal action-value function Q*
is an optimal policy. Hence, knowing Q* is sufficient for behaving optimally (cf. Proposition
4.3 of Bertsekas and Shreve 1978).2

Definition 4 (Bellman Operators) For a policy 7, the Bellman operators T™ : B(X) —
B(X) (for value functions) and T™ : B(X x A) — B(X x A) (for action-value functions)
are defined as

(T™V)(z) £ r(2, 7(x)) +’Y/XV(y)P(dylx,7r(fv)),

(T"Q)(x,a) 2 r(x,a) +4 /X QUy, (1)) P(dy|z, a).

To avoid unnecessary clutter, we use the same symbol to denote both operators. However,
this should not introduce any ambiguity: Given some expression involving 77 one can
always determine which operator 7™ means by looking at the type of function T is applied
to. It is known that the fixed point of the Bellman operator is the (action-)value function
of the policy 7, i.e., T™Q™ = Q™ and T™V7™ = V™ see e.g., Proposition 4.2(b) of Bertsekas
and Shreve (1978). We will also need to define the so-called Bellman optimality operators:

Definition 5 (Bellman Optimality Operators) The Bellman optimality operators T* :
B(X) — B(X) (for value functions) and T* : B(X x A) — B(X x A) (for action-value
functions) are defined as

TV)e) 2 max{r(ea) 4 [ VP ),

(T Q)(w.a) £ r(a,) +7 | maxQly.a')Pldle. ).

Again, we use the same symbol to denote both operators; the previous comment that no
ambiguity should arise because of this still applies. The Bellman optimality operators enjoy
a fixed-point property similar to that of the Bellman operators. In particular, T*V* = V*
and T*Q* = Q*, see e.g., Proposition 4.2(a) of Bertsekas and Shreve (1978). The Bellman
optimality operator thus provides a vehicle to compute the optimal action-value function
and therefore to compute an optimal policy.

2. Measurability issues are dealt with in Section 9.5 of the same book. In the case of finitely many actions,
no additional condition is needed besides the obvious measurability assumptions on the immediate reward
function and the transition kernel (Bertsekas and Shreve, 1978, Corollary 9.17.1), which we will assume
from now on.
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2.2 Norms and Function Spaces

In what follows we use F : X — R to denote a subset of measurable functions. The exact
specification of this set will be clear from the context. Further, we let FAl : X x A — R
to be a subset of vector-valued measurable functions with the identification of

f|A|:{(Q1,,Q‘A‘) t Qi € F, Z:]-’?|A|}

Q: X x AR, ie, QIF, 2 [1, 41Q(z,a)Pdv(z,a
Let z1., denote the Z-valued sequence (z1, ..., 2,
norm of function f: Z — R as

We shall use [|Ql],, to denote the L,(v)-norm (1 < p < co) of a measurable function
)
).

For D,, = z1.,,, define the empirical

P S If P (1)

=1

1£15p, = I1f

When there is no chance of confusion about D,, we may denote the empirical norm by
I£11} .- Based on this definition, one may define [|Q|, p, with the choice of Z = & x A.
Note that if D,, = (Z;)}_; is random with Z; ~ v, the empirical norm is random too, and

for any fixed function f, we have E [Hpr’Dn} = [|fll,,- When p = 2, we simply use |-[|,
and |-||p,-

2.3 Offline Learning Problem and Empirical Bellman Operators

We consider the offline learning scenario when we are only given a batch of data3
Dn:{(XlaAlaRle{)a--w(XnaAnaanX?,z)}v (2)

with Xz ~ Vx, Az ~ 7Tb(~‘Xi), and (RI,X{) ~ P(,’XZ,Al) for i = 1,...,7’L. Here Vy €
M(X) is a fixed distribution over the states and 7, is the data generating behavior policy,
which is a stochastic stationary Markov policy, i.e., given any state x € X, it assigns a
probability distribution over A. We shall also denote the common distribution underlying
(Xi, A;) by v € M(X x A).

Samples X; and X;;; may be sampled independently (we call this the “Planning sce-
nario”), or may be coupled through X! = X,y (“RL scenario”). In the latter case the
data comes from a single trajectory. Under either of these scenarios, we say that the data
D,, meets the standard offline sampling assumption. We analyze the Planning scenario,
where the states are independent, but one may also analyze dependent processes by con-
sidering mixing processes and using tools such as the independent blocks technique (Yu,
1994; Doukhan, 1994), as has been done by Antos et al. (2008b); Farahmand and Szepesvéri
(2012).

The data set D,, allows us to define the so-called empirical Bellman operators, which
can be thought of as empirical approximations to the true Bellman operators.

3. In what follows, when {-} is used in connection to a data set, we treat the set as an ordered multiset,
where the ordering is given by the time indices of the data points.
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Definition 6 (Empirical Bellman Operators) Let D,, be a data set as above. Define
the ordered multiset S, = {(X1,A41),...,(Xn, An)}. For a given fized policy 7, the empirical
Bellman operator T™ : RS» — R™ is defined as

(T7Q)(Xi, Ai) £ R +7Q(X[,m(X])), 1<i<n.
Similarly, the empirical Bellman optimality operator T* : RS» — R" s defined as

(T*Q)(X;, Ai)) & R; +'ymaz/1xQ(X£,a’), 1<i<n.

In words, the empirical Bellman operators get an n-element list S,, and return an n-
dimensional real-valued vector of the single-sample estimate of the Bellman operators ap-
plied to the action-value function () at the selected points. It is easy to see that the
empirical Bellman operators provide an unbiased estimate of the Bellman operators in the
following sense: For any fixed bounded measurable deterministic function @ : X x A —

R, policy m and 1 < ¢ < n, it holds that E [T’TQ(XZ-,Ai)\XZ-,Ai = T7Q(X;, 4;) and
E [T*Q(Xi,Ai)]Xi,Ai = T*Q(X;, A;).

3. Approximate Policy Iteration

The policy iteration algorithm computes a sequence of policies such that the new policy
in the iteration is greedy w.r.t. the action-value function of the previous policy. This
procedure requires one to compute the action-value function of the most recent policy (policy
evaluation step) followed by the computation of the greedy policy (policy improvement step).
In API, the exact, but infeasible, policy evaluation step is replaced by an approximate one.
Thus, the skeleton of API methods is as follows: At the k*" iteration and given a policy my,
the API algorithm approximately evaluates 7 to find a Q. The action-value function Qg
is typically chosen to be such that Qi ~ T™+Qy, i.e., it is an approximate fixed point of T7*.
The API algorithm then calculates the greedy policy w.r.t. the most recent action-value
function to obtain a new policy mg41, i.e., mp11 = 7(+; Q). The APT algorithm continues by
repeating this process again and generating a sequence of policies and their corresponding
approximate action-value functions Qo — m — Q1 — m — - --.4

The success of an APT algorithm hinges on the way the approximate policy evaluation
step is implemented. Approximate policy evaluation is non-trivial for at least two reasons.
First, policy evaluation is an inverse problem,” so the underlying learning problem is unlike
a standard supervised learning problem in which the data take the form of input-output
pairs. The second problem is the off-policy sampling problem: The distribution of (X;, A;)
in the data samples (possibly generated by a behavior policy) is typically different from the
distribution that would be induced if we followed the to-be-evaluated policy (i.e., target
policy). This causes a problem since the methods must be able to handle this mismatch of

4. In an actual API implementation, one does not need to compute 741 for all states, which in fact is
infeasible for large state spaces. Instead, one uses Qx to compute mr+1 at some select states, as required
in the approximate policy evaluation step.

5. Given an operator £ : F — F, the inverse problem is the problem of solving g = Lf for f when g is
known. In the policy evaluation problem, £L =1 —~P", g(-) = r(-,n(-)), and f = Q™.
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distributions.® In the rest of this section, we review generic LSTD and BRM methods for
approximate policy evaluation. We introduce our regularized version of LSTD and BRM in
Section 4.

3.1 Bellman Residual Minimization

The idea of BRM goes back at least to the work of Schweitzer and Seidmann (1985). It was
later used in the RL community by Williams and Baird (1994) and Baird (1995). The basic
idea of BRM comes from noticing that the action-value function is the unique fixed point
of the Bellman operator: @™ = T7Q™ (or similarly V™ = T™V™ for the value function).
Whenever we replace Q™ by an action-value function @) different from @™, the fixed-point
equation would not hold anymore, and we have a non-zero residual function Q —77Q. This
quantity is called the Bellman residual of (). The same is true for the Bellman optimality
operator 1.

The BRM algorithm minimizes the norm of the Bellman residual of ¢, which is called
the Bellman error. It can be shown that if ||Q — T*Q)|| is small, then the value function
of the greedy policy w.r.t. @, that is V(5@ ig also in some sense close to the optimal
value function V*, see e.g., Williams and Baird (1994); Munos (2003); Antos et al. (2008b);
Farahmand et al. (2010), and Theorem 13 of this work. The BRM algorithm is defined as
the procedure minimizing the following loss function:

Lpru(Q;m) 2 1Q = T™Q|12,

where v is the distribution of state-actions in the input data. Using the empirical Ls-norm
defined in (1) with samples D,, defined in (2), and by replacing (7T7Q)(Xy, A;) with the
empirical Bellman operator (Definition 6), the empirical estimate of Lpry/(Q;7) can be
written as

Lpn(@mn) 2 * Iy e an - (rerexiae) @
" t=1

Q-17q|

Nevertheless, it is well-known that ﬁBRM is mot an unbiased estimate of Lggrys when
the MDP is not deterministic (Lagoudakis and Parr, 2003; Antos et al., 2008b). To address
this issue, Antos et al. (2008b) propose the modified BRM loss that is a new empirical loss
function with an extra de-biasing term. The idea of the modified BRM is to cancel the
unwanted variance by introducing an auxiliary function A and a new loss function

Lprm(Q, h;m) = Lprar(Q;m) — | — T™Q||2 (4)
and approximating the action-value function Q™ by solving

QBrM = argmin sup Lpry(Q,h;7), (5)
QeFIAl heFlAl

6. A number of works in the domain adaptation literature consider this scenario under the name of covariate
shift problem, see e.g., Ben-David et al. 2006; Mansour et al. 2009; Ben-David et al. 2010; Cortes et al.
2015.
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where the supremum comes from the negative sign of || — T7Q||%. They have shown that
optimizing the new loss function still makes sense and the empirical version of this loss is
unbiased.

The min-max optimization problem (5) is equivalent to the following coupled (nested)
optimization problems:

h(;Q) = argmin |h' — T”QH?} ,
R eFIAl

Qprar = argmin | |1Q = T7QII} — |14(5 Q) — Q|2 |. (6)
QeF!Al

In practice, the norm ||-||,, is replaced by the empirical norm ||-||5 and T7Q is replaced

by its sample-based approximation T”Q, ie.,

ﬁn(,Q) :argmith—T“Q); , (7)
heFIAl n
QABRM:EZ;E;I&H[HQ_TWQ‘;_ ‘Bn(';Q)—TﬂQ‘;} (8)

From now on, whenever we refer to the BRM algorithm, we are referring to this modified
BRM.

3.2 Least-Squares Temporal Difference Learning

The Least-Squares Temporal Difference learning (LSTD) algorithm for policy evaluation
was first proposed by Bradtke and Barto (1996), and later used in an API procedure
by Lagoudakis and Parr (2003) and was called Least-Squares Policy Iteration (LSPI).

The original formulation of LSTD finds a solution to the fixed-point equation @) =
IL,T™Q, where II, is the simplified notation for v-weighted projection operator onto the
space of admissible functions FMI ie., II, £ Hf‘f” : B(X x A) - B(X x A) is defined

by HIJ,"“Q = argming, . z4 ||h — QHi for @ € B(X x A). We, however, use a different
optimization-based formulation. The reason is that whenever v is not the stationary distri-
bution induced by 7, the operator (II,7™) does not necessarily have a fixed point, but the
optimization problem is always well-defined.

We define the LSTD solution as the minimizer of the Lo-norm between @) and I1,T™Q:

Lpsrp(@;m) 2 1Q —ILT™Q|% . (9)

The minimizer of Ly s7p(Q; ) is well-defined, and whenever v is the stationary distribution
of 7 (i.e., on-policy sampling), the solution to this optimization problem is the same as the
solution to @ = II,77Q. The LSTD solution can therefore be written as the solution to
the following set of coupled optimization problems:

h(+; Q) = argmin Hh’ — T”QHIQ/ ,
h' e FIAl

Qrsrp = argmin [|Q — h(; Q)2 , (10)
QeFIAl
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Algorithm 1 Regularized Policy Iteration(K,Q1D FHI J {( gc)) kK;Ol)

// K: Number of iterations
// Q=): Initial action-value function
// FIAl: The action-value function space
// J: The regularizer
// {(Agn, (k) ) K+ The regularization coefficients
fork:—OtoK—ldo
me(() (5 QD)
Generate training samples D(k)
QW « REG-LSTD/BRM(my,, Dy; FIAI 7 AN A
end for

return Q(K 1) and i (+) :ﬁ(.;Q(Kfl))

where the first equation finds the projection of T7Q onto FMI, and the second one minimizes
the distance of () and the projection. The corresponding empirical version based on data
set D,, is

(- Q) = argmin |

heFIAl

R . 2

QrsTp = argmin HQ — hn(; Q)‘ . (12)
QeFIAl D

For general spaces FM!, these optimization problems can be difficult to solve, but when

FMI is a linear subspace of B (X x A), the minimization problem becomes computationally
feasible.

Comparison of BRM and LSTD is noteworthy. The population version of LSTD loss
minimizes the distance between @ and I, 7™ Q, which is ||Q — H,,T”QHE. Meanwhile, BRM
minimizes another distance function that is the distance between T7(Q and 11,77 sub-
tracted from the distance between Q and T7Q, i.e., ||Q — T™ Q|12 — ||hn( Q) — T™Q||2. See
Figure la for a pictorial presentation of these distances. When FMl is linear, because of
the Pythagorean theorem, the solution to the modified BRM (6) coincides with the LSTD
solution (10) (Antos et al., 2008b).

4. Regularized Policy Iteration Algorithms

In this section we introduce two Regularized Policy Iteration algorithms, which are
instances of the generic API algorithms. These algorithms are built on the regularized
extensions of BRM (Section 3.1) and LSTD (Section 3.2) for the task of approximate policy
evaluation.

The pseudo-code of the Regularized Policy Iteration algorithms is shown in Algorithm 1.
The algorithm receives K (the number of API iterations), an initial action-value function
Q(_l), the function Space ]-" Al the regularizer J : FI4 — R, and a set of regularization

coefficients {()\gC )n, )\(k)) e 0 Each iteration starts with a step of policy improvement, i.e.,

10
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Minimized by LSTD Minimized by REG-LSTD
(a) (b)

Figure 1: (a) This figure shows the loss functions minimized by the original BRM, the
modified BRM, and the LSTD methods. The function space FM! is represented
by the plane. The Bellman operator 7™ maps an action-value function Q € FI
to a function 77Q. The function 77Q — II,T™Q is orthogonal to FHI. The
original BRM loss function is [|Q — T™Q|? (solid line), the modified BRM loss is
Q — T’TQ||3 —|T7Q — HUT’TQH,% (the difference of two solid line segments; note
the + and — symbols), and the LSTD loss is ||Q — IT,77Q||? (dashed line). LSTD
and the modified BRM are equivalent for linear function spaces. (b) REG-LSTD
and REG-BRM minimize regularized objective functions. Regularization makes
the function 77Q — II,77Q to be non-orthogonal to FI. The dashed ellipsoids
represent the level-sets defined by the regularization functional J.

T 7(-; QW) = argmax, e 4 QY (-, a’). For the first iteration (k = 0), one may ignore
this step and provide an initial policy mo instead of Q(-Y. Afterwards, we have a data
generating step: At each iteration &k = 0,..., K — 1, the agent follows the data generating
policy m, to obtain DY = ((xP AP R® x/®y, .. For the kh iteration of the
algorithm, we use training samples Dﬁlk) to evaluate policy 7. In practice, one might want
to change 7, at each iteration in such a way that the agent ultimately achieves a better
performance. The relation between the performance and the choice of data samples, however,
is complicated. For simplicity of analysis, in the rest of this work we assume that a fixed
behavior policy is used in all iterations, i.e., m,, = 7p.” This leads to K independent data
sets Dﬁo), . ,D%K_l). From now on, to avoid clutter, we use symbols D,,, Xy, ... instead of
ng), t(k), ... with the understanding that each D,, in various iterations is referring to an
independent set of data samples, which should be clear from the context.

The approximate policy evaluation step is performed by REG-LSTD/BRM, which will
be discussed shortly. REG-LSTD/BRM receives policy 7, the training samples Dgf), the

function space FHI, the regularizer J, and the regularization coefficients ()\gi)n, )\gﬂ%), and

7. So we are in the so-called off-policy sampling scenario.

11
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returns an estimate of the action-value function of policy 7. This procedure repeats for K
iterations.

REG-BRM approximately evaluates policy m, by solving the following coupled opti-
mization problems:

n

ﬁn(-; Q) = argmin [Hh - T”’“Q‘

2
+ AP 2y, (13)
heFIAl Dn ’

hn (55 Q) —T”kQ’

O™ = argmin [HQ - T”kQ‘ 2D — ‘ i + )x(kv)nJQ(Q)} , (14)

QeFAl

where J : F — R is the regularization functional (or simply regularizer or penalizer),

and )\g?” /\g )n > 0 are regularization coefficients. The regularizer can be any pseudo-norm

defined on FMI; and D, is defined as (2).® The regularizer is often chosen such that
the functions that we believe are more “complex” have larger values of J. The notion
of complexity, however, is subjective and depends on the choice of FMI and J. Finally
note that we call J(Q) the smoothness of @), even though it might not coincide with the
conventional derivative-based notions of smoothness.

An example of the case that J has a derivative-based interpretation is when the function
space FHl is a Sobolev space and the regularizer .J is defined as its corresponding norm. In
this case, we are penalizing the weak-derivatives of the estimate (Gyorfi et al., 2002; van de
Geer, 2000). One can generalize the notion of smoothness beyond the usual derivative-
based ones (cf. Chapter 1 of Triebel 2006) and define function spaces such as the family
of Besov spaces (Devore, 1998). The RKHS norm for shift-invariant and radial kernels
can also be interpreted as a penalizer of higher-frequency terms of the function (i.e., a
low-pass filter Evgeniou et al. 1999), so they effectively encourage “smoother” functions.
The choice of kernel determines the frequency response of the filter. One may also use
other data-dependent regularizers such as manifold regularization (Belkin et al., 2006) and
Sample-based Approximate Regularization (Bachman et al., 2014). As a final example,
for the functions in the form of Q(x,a) = ,~; ¢i(x, a)w;, if we choose a sparsity-inducing
regularizer such as J(Q) £ Y, |w;| as the measure of smoothness, then a function that has
a sparse representation in the dictionary {@; };>1 is, by definition, a smooth function—even
though there is not necessarily any connection to the derivative-based smoothness.

REG-LSTD approximately evaluates the policy 7 by solving the following coupled
optimization problems:

hn(+; Q) = argmin [Hh - T’T’VQ‘

2 k
g L ARP] (15
eF n

QU = argmin U\Q — bl Q)
QeFlAl
Note that the difference between (7)-(8) ((11)-(12)) and (13)-(14) ((15)-(16)) is the addition
of the regularizers J2(h) and J2(Q).
Unlike the non-regularized case described in Section 3, the solutions of REG-BRM
and REG-LSTD are not the same. As a result of the regularized projection, (13) and

; + Agﬁilﬁ(g)] . (16)

8. A pseudo-norm J satisfies all properties of a norm except that J(Q) = 0 does not imply that Q = 0.

12
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(15), the function ﬁn(7 Q) — 7™ (@ is not orthogonal to the function space FMl—even if
FHA is a linear space. Therefore, the Pythagorean theorem is not applicable anymore:
1Q = hn(5 QN2 # 1Q = T QI — [[hn(s Q) — T™Q]? (See Figure 1b).

One may ask why we have regularization terms in both optimization problems, as op-
posed to only in the projection term (15) (similar to the Lasso-TD algorithm Kolter and
Ng 2009; Ghavamzadeh et al. 2011) or only in (16) (similar to Geist and Scherrer 2012;
Avila Pires and Szepesvéri 2012). We discuss this question in Section 4.1. Briefly speaking,
for large function spaces such as the Sobolev spaces or the RKHS with universal kernels,
if we remove the regularization term in (15), the coupled optimization problems reduces to
(unmodified) BRM, which is biased as discussed earlier; whereas if the regularization term

in (16) is removed, the solution can be arbitrary bad due to overfitting.

Finally note that the choice of the function space FMI the regularizer J, and the
regularization coefficients )\g)n and )\ELkT)L all affect the sample efficiency of the algorithms.
If one knew J(Q™), the regularization coefficients could be chosen optimally. Nonetheless,
the value of J(Q™) is often not known, so one has to use a model selection procedure to
set the best function space and the regularization coefficients. The situation is similar to
the problem of model selection in supervised learning (though the solutions are different).
After developing some tools necessary for discussing this issue in Section 5, we return to the
problem of choosing the regularization coefficients after Theorem 11 as well as in Section 6.

Remark 7 To the best of our knowledge, Antos et al. (2008b) were the first who explicitly
considered LSTD as the optimizer of the loss function (9). Their discussion was mainly to
prove the equivalence of modified BRM (5) and LSTD when FM is a linear function space.
In their work, the loss function is not used to derive any new algorithm. Farahmand et al.
(2009b) used this loss function to develop the regularized variant of LSTD (15)-(16). This
loss function was later called mean-square projected Bellman error by Sutton et al. (2009),
and was used to derive the GTD2 and TDC algorithms.

4.1 Why Two Regularizers?

We discuss why using regularizers in both optimization problems (15) and (16) of REG-
LSTD is necessary for large function spaces such as the Sobolev spaces and the RKHS
with universal kernels. Here we show that for large function spaces, depending on which
regularization term we remove, either the coupled optimization problems reduces to the
regularized variant of the unmodified BRM, which has a bias, or the solution can be arbitrary
bad.

Let us focus on REG-LSTD for a given policy w. Assume that the function space
FMI is rich enough in the sense that it is dense in the space of continuous functions w.r.t.
the supremum norm. This is satisfied by many large function spaces such as RKHS with
universal kernels (Definition 4.52 of Steinwart and Christmann 2008) and the Sobolev spaces
on compact domains. We consider what would happen if instead of the current formulation
of REG-LSTD (15)-(16), we only used a regularizer either in the first or second optimization
problem. We study each case separately. For notational simplicity, we omit the dependence
on the iteration number k.
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Case 1. In this case, we only regularize the empirical error ||Q — hn(+; Q)3 , but we do
not regularize the projection, i.e.,

Bn(-; Q) = argmin Hh — T’TQ‘ 2D ,
heFIAl n
Q= argmin [HQ — iLn('; Q)) 2D + /\Q,nJ2(Q)] . (17)
QeFAl "

When the function space FH! is rich enough, there exists a function lALnA e FMI that fits
perfectly well to its target values at data points {(X;, A;)}7 ;, that is, hy((X;, 4:); Q) =
(T™Q)(X;, A;) for i = 1,...,n.2 Such a function is indeed the minimizer of the loss [|Q —

A

hn(+;Q)|I3, - The second optimization problem (17) becomes

Q = argmin [HQ — T”Q’

QeFIAl

’ Ao nJ?
D, + Q.n (Q):| .

This is the regularized version of the original (i.e., unmodified) formulation of the BRM
algorithm. As discussed in Section 3.1, the unmodified BRM algorithm is biased when the
MDP is not deterministic. Adding a regularizer does not solve the biasedness problem of the
unmodified BRM loss. So without regularizing the first optimization problem, the function
h,, overfits to the noise and as a result the whole algorithm becomes incorrect.

Case 2. In this case, we only regularize the empirical projection ||h — T”Q||%n, but we do

not regularize ||Q — hy(+; Q3 , ie.,

ﬁn(-; Q) = argmin [Hh - T”Q)
heFIAl

2 2
-~ + )\h,nJ (h):| ,

Q = argmin[Q — b (: Q)

QeFlAl

(18)

n

For a fixed @, the first optimization problem is the standard regularized regression es-
timator with the regression function E [(T”Q)(X, ANX =z,A=a| = (T™Q)(x,a). There-

fore, if the function space FM! is rich enough and we set the regularization coefficient Ahon
properly, ||h—T7Q||, and ||h—T"Q||p, go to zero as the sample size grows (the rate of con-
vergence depends on the complexity of the target function; cf. Lemma 15 and Theorem 16).
So we can expect fzn(, @) to get closer to T™(Q as the sample size grows.

For simplicity of discussion, suppose that we are in the ideal situation where for any @,
we have h,((z,a); Q) = (T™Q)(x,a) for all (z,a) € {(X;, A)}7_, U {(X},7(X!)}",, that

9. To be more precise: First, for an ¢ > 0, we construct a continuous function h.(z) =
ZZiG{(Xi,Ai)}?:l max {1 - @, 0} (T™Q)(Z:). We then use the denseness of the function space F*!
in the supremum norm to argue that there exists he € FI Al such that Hhs — he Hoo is arbitrarily close to
zero. So when € — 0, the value of function h. is arbitrarily close to T™@Q at data points. We then choose

hn(-;@Q) = he. This construction is similar to Theorem 2 of Nadler et al. (2009). See also the argument
in Case 2 for more detail.
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is, we precisely know 77Q at all data points.'? Substituting this ﬁn( (z,a); Q) in the second
optimization problem (17), we get that we are solving the following optimization problem:

Q = argmin | Q — T7QI[%, (19)
QeFAl

This is the Bellman error minimization problem. We do not have the biasedness problem
here as we have T7Q instead of 77Q in the loss. Nonetheless, we face another problem:
Minimizing this empirical risk minimization without controlling the complexity of the func-
tion space might lead to an overfitted solution, very similar to the same phenomenon in
supervised learning.

To see it more precisely, we first construct a continuous function

Q) = > ah Aol

Zie{(Xi,Ad) Yo U{(X] (X))

=1

which for small enough € > 0 has the property that HQE — T”QEH; is zero, i.e., it is a

minimizer of the empirical loss. Due to the denseness of FM! we can find a Q. € FH
that is arbitrarily close to the continuous function Q.. Therefore, for small enough ¢, the
function Q. is a minimizer of (19), i.e., the value of [|Q. — T™Q.||%, is zero. But Q. is not
a good approximation of Q™ because Q). consists of spikes in the e-neighbourhood of data
points and zero elsewhere. In other words, (). does not generalize well beyond the data
points when € is chosen to be small.

Of course the solution is to control the complexity of FHI so that spiky functions such
as . are not selected as the solution of the optimization problem. When we regularize
both optimization problems, as we do in this work, none of these problems happen.

This argument applies to rich function spaces that can approximate any reasonably
complex functions (e.g., continuous functions) arbitrarily well. If the function space F 1Al
is much more limited, for example if it is a parametric function space, we may not need
to regularize both optimization problems. An example of such an approach for parametric
spaces has been analyzed by Avila Pires and Szepesvari (2012).

4.2 Closed-Form Solutions

In this section we provide a closed-form solution for (13)-(14) and (15)-(16) for two cases:
1) When FH! is a finite dimensional linear space and J2(-) is defined as the weighted squared
sum of parameters describing the function (a setup similar to the ridge regression Hoerl and
Kennard 1970) and 2) FM! is an RKHS and J(-) is the corresponding inner-product norm,
ie., J2() = ||H3_[ Here we use a generic m and D,, instead of m; and DY at the ki
iteration.

10. This is an ideal situation because 1) ||h — T"QHV is equal to zero only asymptotically and not in finite
samples regime, and 2) even if |h —T™Q||, = 0, it does not imply that h,(z,a; Q) = (T™Q)(x,a) almost
surely on X x A. Nonetheless, these simplifications are only in favour of the algorithm considered in this
case, so for simplicity of discussion we assume that they hold.
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4.2.1 A PARAMETRIC FORMULATION FOR REG-BRM aAND REG-LSTD

In this section we consider the case when h and @) are both given as linear combinations of
some basis functions:

h()=¢()Tu, Q) =e() w, (20)
where u,w € RP are parameter vectors and ¢(-) € RP is a vector of p linearly indepen-
dent basis functions defined over the space of state-action pairs.!’ These basis functions
might be predefined (e.g., Fourier (Konidaris et al., 2011) or wavelets) or constructed data-
dependently by one of already mentioned feature generation methods. We further assume
that the regularization terms take the form

J2(h) = u' Qu,
J(Q)=w'Pw.
for some user-defined choice of positive definite matrix ¥ € RP*P. A simple and common

choice would be ¥ = I. Define ®, ®' € R"*P and r € R" as follows:
T T T
P = <¢(Zl)a ceey ¢(Zn)) ) @, = (Cb(Zi), RN ¢(Z’:z)) , T = (R17 ) Rn) 3 (21)
with Z; = (X;, 4;) and Z] = (X, 7(X])).
The solution to REG-BRM is given by the following proposition.
Proposition 8 (Closed-form solution for REG-BRM) Under the setting of this sec-

tion, the approximate action-value function returned by REG-BRM is Q() = ¢(-)Tw*,
where

-1
w' = [BTB-7CTC+nxg,®| (BT +7CT(@A-1)r,
with A= (®T® + 1)\, ) @7, B=& — 7@, C = (PA-T1)¥'.
Proof Using (20) and (21), we can rewrite (13)-(14) as

1
u*(w) = argmin {n [®u — (r + fyq)/w)]T [®u — (r +7®'w)] + /\hmuTlIlu} , (22)
u€RP
1
w* = argmin { [®w — (r +79'w)] i [®w — (r +7®'w)|— (23)
weRP n

%[(IJU* (w) — (r+ 'y<I>’w)]T [Bu*(w) — (r 4+ yP'w)]| + )\QmwT‘Ilw}.

Taking the derivative of (22) w.r.t. w and equating it to zero, we obtain u* as a function
of w:

—1
ut(w) = (qﬂqa v n)\hvn\Il) & (r + 4 ®'w) = A(r + 1 ®'w). (24)

Plug u*(w) from (24) into (23), take the derivative w.r.t. w and equate it to zero to obtain
the parameter vector w* as announced above. |

The solution returned by REG-LSTD is given in the following proposition.

11. At the cost of using generalized inverses, everything in this section extends to the case when the basis
functions are not linearly independent.
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Proposition 9 (Closed-form solution for REG-LSTD) Under the setting of this sec-
tion, the approzimate action-value function returned by REG-LSTD is Q(-) = ¢(-) w*,
where

1
w* = [ETE + n)\Qyn\Il} ET Ar,

with A= (®T® +nX\p, ) @7 and E = ( — 7AP').

Proof Using (20) and (21), we can rewrite (15)-(16) as

u*(w) = argmin {1 [Pu — (r + 7@ w)] T [®u — (r +7®'w)] + )\thT‘I’U} ) (25)

uekRr (M
w* = argmin { [Pw — ®u*(w)] ’ [®w — ®u*(w)] + )\Qm'wT\Ilw} . (26)
welRP

Similar to the parametric REG-BRM, we solve (25) and obtain «*(w) which is the same as
(24). If we plug this w*(w) into (26), take derivate w.r.t. w, and find the minimizer, the
parameter vector w* will be as announced. |

4.2.2 RKHS FORMULATION FOR REG-BRM aAND REG-LSTD

The class of reproducing kernel Hilbert spaces provides a flexible and powerful family of
function spaces to choose FM! from. An RKHS H : X x A — R is defined by a positive
definite kernel K : (X x A) x (X x A) — R. With such a choice, we can use the corresponding
squared RKHS norm ||- H?_[ as the regularizer J?(-). REG-BRM with an RKHS function space
FHAI = H would be

~ ~ 2
in(:@) = argnin |0 =77Q]" + x| (27)
heFIAI[=1] Dn
~ ~ 2 o ~ 2
Q= argmin [HQ—T”Q{ ~|[pnt@) - 770 +AQ,n||QH34, (28)
QeFIAl=H] Dn Dn

and the coupled optimization problems for REG-LSTD are

A ~ 2
hn(Q) = argmin U\h ~17Q|| + thri} : (29)
heF 1A [=H] Dn
~ ~ 2
Q= argmin [HQ ~hn(5Q)| e ||Q|i] - (30)
QeFIAl=H] Dn

We can solve these coupled optimization problems by the application of the generalized
representer theorem for RKHS (Scholkopf et al., 2001). The result, which is stated in the
next theorem, shows that the infinite dimensional optimization problem defined on FM! = #
boils down to a finite dimensional problem with the dimension twice the number of data
points.

Theorem 10 Let Z be a vector defined as Z = (Zl,...,Zn,Zi,.;.,Z;L)T. Then the op-
timizer Q € H of (27)-(28) can be written as Q(-) = 32", &K(Z;,-) for some values of
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& € R?™. The same holds for the solution to (29)-(30). Further, the coefficient vectors can
be obtained in the following form:

REG-BRM: apry = (CKg +nignI) (D" ++4Cy B'B)r,
REG-LSTD: arstp = (F'FKg+nX\g,)) 'F'Er,

where r = (Rq,. .. ,Rn)T and the matrices Kq,B,C,C>, D, E,F are defined as follows:
K, € R is defined as [Kp)ij = K(Zi, Zj), 1 <i,j <n, and Kg € R27%27 s defined as
(Kqlij = K(Zi, Z;), 1 <i,j < 2n. Let C1 = ( Lixp Opxn ) and Co = ( Opxn Inxn ).
Denote D = Cy — ~vCs, E = Kh(Kh —I—’I’L)\hmI)_l, F =C, —-~vEC,y, B = Kh(Kh +
nA\pnD)' =1, and C = D" D — ~*(BC3) " (BC3).

Proof See Appendix A. |

5. Theoretical Analysis

In this section, we analyze the statistical properties of REG-LSPI and provide a finite-
sample upper bound on the performance loss ||Q* — Q™% ||1 o Here, g is the policy greedy

w.r.t. QE-D and p is the performance evaluation measure. The distribution p is chosen
by the user and is often different from the sampling distribution v.

Our study has two main parts. First, we analyze the policy evaluation error of REG-
LSTD in Section 5.1. We suppose that given any policy 7, we obtain Q by solving (15)-(16)
with 7 in these equations being replaced by w. Theorem 11 provides an upper bound
on the Bellman error ||Q — T7Q|,. We discuss the optimality of this upper bound for
policy evaluation for some general classes of function spaces. We show that the result is not
only optimal in its convergence rate, but also in its dependence on J(Q™). After that in
Section 5.2, we show how the Bellman errors of the policy evaluation procedure propagate
through the API procedure (Theorem 13). The main result of this paper, which is an upper
bound on the performance loss [|@Q* — Q"¥|[; ), is stated as Theorem 14 in Section 5.3,
followed by its discussion. We compare this work’s statistical guarantee with some other
papers’ in Section 5.3.1.

To analyze the statistical performance of the REG-LSPI procedure, we make the follow-
ing assumptions. We discuss their implications and the possible relaxations after stating
each of them.

Assumption A1 (MDP Regularity) The set of states X is a compact subset of R
The random immediate rewards Ry ~ R(:| Xy, Ay) (¢ = 1,2,...) as well as the expected
immediate rewards r(z,a) are uniformly bounded by Rpax, i.e., |Ry| < Rmax (t =1,2,...)
and ||7]| .. < Rmax-

Even though the algorithms were presented for a general measurable state space X,
the theoretical results are stated for the problems whose state space is a compact subset
of R?. Generalizing Assumption Al to other state spaces should be possible under certain
regularity conditions. One example could be any Polish space, i.e., separable completely
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metrizable topological space. Nevertheless, we do not investigate such generalizations here.
The boundedness of the rewards is a reasonable assumption that can be replaced by a more
relaxed condition such as its sub-Gaussianity (Vershynin, 2012; van de Geer, 2000). This
relaxation, however, increases the technicality of the proofs without adding much to the
intuition. We remark on the compactness assumption after stating Assumption A4.

Assumption A2 (Sampling) At iteration k£ of REG-LSPI (for k¥ = 0,..., K — 1), n
fresh independent and identically distributed (i.i.d.) samples are drawn from distribution

v e M(X x A), ie., DI = {(Zﬁ’“),Rf“),X;(’“))}"_l with Zz® = (x® AR Hd and
x{® ~ P(xM, A,

The i.i.d. requirement of Assumption A2 is primarily used to simplify the proofs. With
much extra effort, these results can be extended to the case when the data samples belong
to a single trajectory generated by a fixed policy. In the single trajectory scenario, samples
are not independent anymore, but under certain conditions on the Markov process, the
process (X, A;) gradually “forgets” its past. One way to quantify this forgetting is through
mixing processes. For these processes, tools such as the independent blocks technique (Yu,
1994; Doukhan, 1994) or information theoretical inequalities (Samson, 2000) can be used
to carry on the analysis—as have been done by Antos et al. (2008b) in the API context,
by Farahmand and Szepesvari (2012) for analyzing the regularized regression problem, and
by Farahmand and Szepesvéri (2011) in the context of model selection for RL problems.

It is worthwhile to emphasize that we do not require that the distribution v to be known.
The sampling distribution is also generally different from the distribution induced by the
target policy m. For example, it might be generated by drawing state samples from a
given vy and choosing actions according to a behavior policy 7, which is different from the
policy being evaluated. So we are in the off-policy sampling setting. Moreover, changing
v at each iteration based on the previous iterations is a possibility with potential practical
benefits, which has theoretical justifications in the context of imitation learning (Ross et al.,
2011). For simplicity of the analysis, however, we assume that v is fixed in all iterations.
Finally, we note that the proofs work fine if we reuse the same data sets in all iterations.
We comment on it later after the proof of Theorem 11 in Appendix B.

Assumption A3 (Regularizer) Define two regularization functionals J : B(X) — R and
J : B(X x A) — R that are pseudo-norms on F and FHMI respectively.'? For all Q € FIA
and a € A, we have J(Q(+,a)) < J(Q).

The regularizer J((Q)) measures the complexity of an action-value function @. The
functions that are more complex have larger values of J(Q). We also need to define a related
regularizer for value functions Q(-,a) (a € A). The latter regularizer is not explicitly used
in the algorithm, and is only used in the analysis. This assumption imposes some mild
restrictions on these regularization functionals. The condition that the regularizers be
pseudo-norms is satisfied by many commonly-used regularizers such as the Sobolev norms,

12. Note that here we are slightly abusing the notations as the same symbol is used for the regularizer over
both B(X) and B(X x .A). However, this should not cause any confusion since in any specific expression
the identity of the regularizer should always be clear from the context.
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the RKHS norms, and the ls-regularizer defined in Section 4.2.1 with a positive semi-
definite choice of matrix ¥. Moreover, the condition J(Q(-,a)) < J(Q) essentially states
that the complexity of @ should upper bound the complexity of Q(-,a) for all a € A. If
the regularizer J : B(X x A) — R is derived from a regularizer J' : B(X) — R through
J(Q) = |(J(Q(-;a))aeallp for some p € [1,00], then J will satisfy the second part of the
assumption. From a computational perspective, a natural choice for RKHS is to choose
p =2 and to define J?(Q) =>4 11Q(, a)Hg{ for H being the RKHS defined on X'.

Assumption A4 (Capacity of Function Space) For R > 0,let Fr={f € F:J(f) <
R}. There exist constants C' > 0 and 0 < a < 1 such that for any u, R > 0 the following
metric entropy condition is satisfied:

2a
log Moo, Fr) < C (R> .

u

This assumption characterizes the capacity of the ball with radius R in F. The value of
« is an essential quantity in our upper bounds. The metric entropy is precisely defined
in Appendix G, but roughly speaking it is the logarithm of the minimum number of balls
with radius v that are required to completely cover a ball with radius R in F. This is
a measure of complexity of a function space as it is more difficult to estimate a function
when the metric entropy grows fast when u decreases. As a simple example, when the
function space is finite, we effectively need to have good estimate of |F| functions in order
not to choose the wrong one. In this case, Noo(u, Fg) can be replaced by |F|, so a = 0
and C = log|F|. When the state space X is finite and all functions are bounded by
Qmax, we have log N (u, Fr) < log Noo (u, F) = | X| log(w%). This shows that the metric
entropy for problems with finite state spaces grows much slower than what we consider here.
Assumption A4 is suitable for large function spaces and is indeed satisfied for the Sobolev
spaces and various RKHS. Refer to van de Geer (2000); Zhou (2002, 2003); Steinwart and
Christmann (2008) for many examples.

An alternative assumption would be to have a similar metric entropy for the balls in
FHA (instead of F). This would slightly change a few steps of the proofs, but leave the
results essentially the same. Moreover, it makes the requirement that J(Q(-,a)) < J(Q) in
Assumption A3 unnecessary. Nevertheless, as results on the capacity of F is more common
in the statistical learning theory literature, we stick to the combination of Assumptions A3
and A4.

The metric entropy here is defined w.r.t. the supremum norm. All proofs, except that
of Lemma 23, only require the same bound to hold when the supremum norm is replaced
by the more relaxed empirical Lo-norm, i.e., those results require that there exist constants
C > 0and 0 < @ < 1 such that for any v,R > 0 and all x1,...,z, € X, we have
log Na(u, Fr,x1.) < C (%)M. Of course, the metric entropy w.r.t. the supremum norm
implies the one with the empirical norm. It is an interesting question to relax the supremum
norm assumption in Lemma 23.

We can now remark on the requirement that X is compact (Assumption Al). We stated
that requirement mainly because most of the metric entropy results in the literature are for
compact spaces (one exception is Theorem 7.34 of Steinwart and Christmann (2008), which
relaxes the compactness requirement by adding some assumptions on the tail of vy on X).
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So we could remove the compactness requirement from Assumption Al and implicitly let
Assumption A4 satisfy it, but we preferred to be explicit about it at the cost of a bit of
redundancy in our set of assumptions.

Assumption A5 (Function Space Boundedness) The subset FI4 € B(X x A; Qmax)
is a separable and complete Carathéodory set with Ryax < Qumax < 00.

Assumption A5 requires all the functions in F to be bounded so that the solutions of
optimization problems (15)-(16) stay bounded. If they are not, they should be truncated,
and thus, the truncation argument should be used in the analysis, see e.g., the proof of
Theorem 21.1 of Gyorfi et al. (2002). The truncation argument does not change the final
result, but complicates the proof at several places, so we stick to the above assumption to
avoid unnecessary clutter. Moreover, in order to avoid the measurability issues resulting
from taking supremum over an uncountable function space F Il we require the space to be
a separable and complete Carathéodory set (cf. Section 7.3 of Steinwart and Christmann
2008).

Assumption A6 (Function Approximation Property) The action-value function of
any policy 7 belongs to FAI, ie., Q™ € FIA.,

This “no function approximation error” assumption is standard in analyzing regularization-
based nonparametric methods. This assumption is realistic and is satisfied for rich function
spaces such as RKHS defined by universal kernels, e.g., Gaussian or exponential kernels
(Section 4.6 of Steinwart and Christmann 2008). On the other hand, if the space is not
large enough, we might have function approximation error. The behavior of the function
approximation error for certain classes of “small” RKHS has been discussed by Smale and
Zhou (2003); Steinwart and Christmann (2008). We stick to this assumption to simplify
many key steps in the proofs.

Assumption A7 (Expansion of Smoothness) For all Q € F Al there exist constants
0 < Lg,Lp < 0, depending only on the MDP and F!“, such that for policy ,

J(T™Q) < Ly +7LpJ(Q).

We require that the complexity of T7() to be comparable to the complexity of @) itself. In
other words, we require that if Q is smooth according to the regularizer J of a function space
FHMI it stays smooth after the application of the Bellman operator. We believe that this is
a reasonable assumption for many classes of MDPs with “sufficient” stochasticity and when
FMI is rich enough. The intuition is that if the Bellman operator has a “smoothing” effect,
the norm of T™Q does not blow up and the function can still be represented well within FM.
Proposition 25 in Appendix F presents the conditions that for the so-called convolutional
MDPs, Assumption A7 is satisfied. Briefly speaking, the conditions are 1) the transition
probability kernel should have a finite gain (in the control-theoretic sense) in its frequency
response, and 2) the reward function should be smooth according to the regularizer J. Of
course, this is only an example of the class of problems for which this assumption holds.
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5.1 Policy Evaluation Error

In this section, we focus on the k' iteration of REG-LSPI. To simplify the notation, we use

Dy, = {(Zt, Ry, X{)}1- to refer to D,(Zk). The policy 7, depends on data used in the earlier

iterations, but since we use independent set of samples Dfmk) for the k'™ iteration and 7y, is

independent of Dq(f), we can safely ignore the randomness of 7, by working on the probability

space obtained by conditioning on Dﬁlo), . ,Dgﬁ_l), i.e., the probability space used in the
k'™ iteration is (Q, oq,Py) with Py = P -’D,(ZO), . ,Dr(f_l) . In order to avoid clutter, we

do not use the conditional probability symbol. In the rest of this section, 7 refers to a
a(Dﬁf’), ... ,D,(lk_l))—measurable policy and is independent of D,; Q and izn(Q) = izn(-; Q)
refer to the solution to (15)-(16) when 7, A, and Ag,, replace my, )\5531, and )\g)n in that
set of equations, respectively.

The following theorem is the main result of this section and provides an upper bound
on the statistical behavior of the policy evaluation procedure REG-LSTD.

Theorem 11 (Policy Evaluation) For any fized policy =, let Q be the solution to the
optimization problem (15)-(16) with the choice of

EEe
An = Agn = [nﬂ(@rrJ |

If Assumptions A1-A7 hold, there exists c¢(0) > 0 such that for anyn € N and 0 < § < 1,
we have

2 1
<c(d)n The,
14

o e

with probability at least 1 — 6. Here ¢(0) is equal to

2a 2
o(5) = ¢ Lp)?) JE5 (QT) In(1/8) + ¢ [ LTF0 4 — TR ,
(6) =1 (1+ (vLp)?) (@) In(1/6) + 2( B +[J(QW)]IL>

for some constants c1,co > 0.

Theorem 11, which is proven in Appendix B, indicates how the number of samples and
the difficulty of the problem as characterized by J(Q™), Lp, and Lg influence the policy
evaluation error.'?

This upper bound provides some insights about the behavior of the REG-LSTD al-
gorithm. To begin with, it shows that under the specified conditions, REG-LSTD is a
consistent algorithm: As the number of samples increases, the Bellman error decreases and
asymptotically converges to zero. This is due to the use of a nonparametric function space
and the proper control of its complexity through regularization. A parametric function
space, e.g., a linear function approximator with a fixed number of features, does not gen-
erally have a similar guarantee unless the value function happens to belong to the span of
the features. Achieving consistency for parametric function spaces requires careful choice

13. Without loss of generality and for simplicity we assumed that J(Q™) > 0.
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of features, and might be difficult. On the other hand, a rich enough nonparametric func-
tion space, for example one defined by a universal kernel (cf. Assumption A6), ensures the
consistency of the policy evaluation algorithm.

This theorem, however, is much more powerful than a consistency result as it provides
a finite-sample upper bound guarantee for the error, too. If the parameters of the REG-
LSTD algorithm are selected properly, one may achieve the sample complexity upper bound
of O(n=/(17®)). For the case of the Sobolev space W*(X') with X being an open Euclidean
ball in R? and k > d/2, one may choose o = d/2k to obtain the error upper bound of
O(n_d/(2k+d)).14

To study the upper bound a bit closer, let us focus on the special case of v = 0. For this
choice of the discount factor, T™(Q is equal to ™ and (T Q) (X, A;) is equal to R;. One can
see that the policy evaluation problem becomes a regression problem with the regression
function ™. The guarantee of this theorem would be then on ||Q — T7Q|? = ||Q — r™||2,
which is the usual squared error in the regression literature. Hence we reduced a regression
problem to a policy evaluation problem. Because of this reduction, any lower bound on the
regression would also be a lower bound on the policy evaluation problem.

It is well-known that the convergence rate of n~%(2k+d) is asymptotically minimax opti-
mal for the regression estimation for target functions belonging to the Sobolev space W¥ (X))
as well as some other smoothness classes with the k order of smoothness, cf. e.g., Nuss-
baum (1999) for the results for the Sobolev spaces, Stone (1982) for a closely related Holder
space CP*  which with the choice of kK = p+ a (k € N and 0 < o < 1) has the same rate,
and Tsybakov (2009) for several results on minimax optimality of nonparametric estimators.
More generally, the rate of O(n~1/(1%%) is optimal too: For a regression function belonging
to a function space F with a packing entropy in the same form as in the upper bound
of Assumption A4, the rate Q(n~Y/(+®) is its minimax lower bound (Yang and Barron,
1999), making the upper bound optimal. Comparing these lower bounds with the upper
bound O(n~/(1+2)) (or O(n=%@k+d)) for the Sobolev space) of this theorem indicates that
REG-LSTD algorithm has the optimal error rate as a function of the number of samples n,
which is a remarkable result.

Furthermore, to understand the fine behavior of the upper bound, beyond the depen-
dence of the rate on n and «, we focus on the multiplicative term ¢(J). Again we consider
the special case of regression estimation as it is the only case we have some known lower
bounds. With the choice of v = 0, we have Q™ = ™, so J(Q™) = J(r™). Moreover, since
T7Q = r™ + 0P™Q = r™, we can choose Lr = J(r™) in Assumption A7. As a result
c(0) = a1 Jl%Taa(r”) In(1/6) for a constant ¢; > 0. We are interested in studying the de-
pendence of the upper bound on J(r™). We study its behavior when the function space is
the Sobolev space W¥([0,1]) and J(-) is the corresponding Sobolev space norm. We choose
a = 1/2k to get J%H(r”) dependence of ¢(d). On the other hand, for the regression es-
timation problem within the subset .7-"{“‘” ={Q(-,a) e WF([0,1]) : J(Q) < J(r™),Ya € A}
of this Sobolev space, the fine behavior of the asymptotic minimax rate is determined by

14. For examples of the metric entropy results for the Sobolev spaces, refer to Section A.5.6 alongside
Lemma 6.21 of Steinwart and Christmann (2008), or Theorem 2.4 of van de Geer (2000) for X = [0, 1]
or Lemma 20.6 of Gyorfi et al. (2002) for X = [0,1]%. Also in this paper we use the notation W*(X) to
refer to W*2(X), the Sobolev space defined based on the Lz-norm of the weak derivatives.
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the so-called Pinsker constant, whose dependence on J is in fact J %ﬂ(r”), cf. e.g., Nuss-
baum (1999, 1985); Golubev and Nussbaum (1990), or Section 3.1 of Tsybakov (2009).15
Therefore, not only the exponent of the rate is optimal for this function space, but also its
multiplicative dependence on the smoothness J(r™) is optimal.

For function spaces other than this choice of Sobolev space (i.e., the general case of «), we

are not aware of any refined lower bound that indicates the optimality of J T¥a (r™). We note
that some available upper bounds for regression with comparable assumptions on the metric
entropy have the same dependence on J(r™), e.g., Steinwart et al. (2009)!¢ or Farahmand
and Szepesvari (2012), whose result is for the regression setting with exponential -mixing
input, but can also be shown for i.i.d. data. We conjecture that under our assumptions this
dependence is optimal.

One may note that the proper selection of the regularization coeflicients to achieve the
optimal rate requires the knowledge of an unknown quantity J(Q™). This, however, is not
a major concern as a proper model selection procedure finds parameters that result in a
performance which is almost the same as the optimal performance. We comment on this
issue in more detail in Section 6.

The proof of this theorem requires several auxiliary results, which are presented in
the appendices, but the main idea behind the proof is as follows. Since ||Q - T”QH?, <
21Q — hn(-; Q)12 + 2||hn(; Q) — T™Q||2, we may upper bound the Bellman error by upper
bounding each term in the right-hand side (RHS). One can see that for a fixed @, the
optimization problem (15) essentially solves a regularized least-squares regression problem,
which leads to small value of ||, (+; Q) — T™Q||,,, when there are enough samples and under
proper conditions. The relation of the optimization problem (16) with |Q — (- Q)| is
evident too. The difficulty, however, is that these two optimization problems are coupled:
hn(; Q) is a function of Q which itself is a function of hy,(-; Q). Thus, Q appearing in (15) is
not fixed, but is a random function Q The same is true for the other optimization problem
as well. The coupling of the optimization problems makes the analysis more complicated
than the usual supervised learning type of analysis. The dependencies between all the
results that lead to the proof of Theorem 14 is depicted in Figure 2 in Appendix B.

In order to obtain fast convergence rates, we use concepts and techniques from the
empirical process theory such as the peeling device, the chaining technique, and the modulus
of continuity of the empirical process, cf. e.g., van de Geer (2000). By focusing on the
behavior of the empirical process over local subsets of the function space, these techniques
allow us to study the deviations of the process in a more refined way compared to a global
approach that studies the supremum of the empirical process in the whole function space.
These techniques are crucial to obtain a fast rate for large function spaces. We discuss them
in more detail as we proceed in the proofs.

15. The Pinsker constant determines the effect of the noise variance too. We do not present such information
in our bounds. Also note that most aforementioned results, except Golubev and Nussbaum (1990),
consider a normal noise model, which is different from our bounded noise.

16. This is obtained by using Corollary 3 of Steinwart et al. (2009) after substituting A2(A) by its upper
bound A||f||3,, which is valid whenever f* € H, as is in our case. This result can be used after one
converts the metric entropy condition to the condition on the decay rate of eigenvalues of a certain
integral operator.
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We mentioned earlier that one can actually reuse a single data set in all iterations. To
keep the presentation more clear, we keep the current setup. The reason behind this can be
explained better after the proof of Theorem 11. But note that from the convergence-rate
point of view, the difference between reusing data or not is insignificant. If we have a batch
of data with size n and we divide it into K chunks and only use one chunk per iteration of

API, the rate would be O((%)fl%a) For finite K, or slowly growing K, this is essentially

the same as O(n_l%a).

5.2 Error Propagation in API

Consider an API algorithm that generates the sequence Q(O) — T = Q(l) — Ty — e —
Q(K*U — Tk, where m is the greedy policy w.r.t. Q(kfl) and Q(k) is the approximate
action-value function for policy 7. For the sequence (Q(k))kK:_Ol, denote the Bellman Resid-
ual (BR) of the k' action-value function by

PR Q0 Q) B1)

The goal of this section is to study the effect of the v-weighted Ls-norm of the Bellman
residual sequence (eBR)7" 1 on the performance loss [|Q* — Q™% I, of the resulting policy
7mk. Because of the dynamical nature of the MDP, the performance loss ||Q* — Q™K Hp’ p
depends on the difference between the sampling distribution v and the future state-action
distribution in the form of pP™ P™2 .... The precise form of this dependence is formalized
in Theorem 13, which is a slight modification of a result by Farahmand et al. (2010).'7

Before stating the results, we define the following concentrability coefficients that are
used in a change of measure argument, see e.g., Munos (2007); Antos et al. (2008b); Farah-
mand et al. (2010).

Definition 12 (Expected Concentrability of Future State-Action Distributions)
Given the distributions p,v € M(X x A), an integer m > 0, and an arbitrary sequence of
stationary policies (T )m>1, let pP™ P™ ... P™m ¢ M(X xA) denote the future state-action
distribution obtained when the first state-action is distributed according to p and then we
follow the sequence of policies (my)j-,. Define the following concentrability coefficients:

1
2 2

APy E)")

dv

cpn pu(mi,me;m) = | E

with (X, A) ~ v. If the future state-action distribution p(P™ )™ (P™)™2 is not absolutely
continuous w.r.t. v, then we take cpr, 5, (M1, Mo; ) = 00.

In order to compactly present our results, we define the following notation:

(1=t

ok (0<E<K) (32)

ap =

17. The difference of these two results is in the way the norm of functions from the space F M g defined,
which in turn corresponds to whether the distributions v and p are defined over the state space X,
as Farahmand et al. (2010) defined, or over the state-action space X x A, as we define here. These
differences do not change the general form of the proof. See Theorem 3.2 in Chapter 3 of Farahmand
(2011b) for the proof of the current result.
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Theorem 13 (Error Propagation for API—Theorem 3 of Farahmand et al. 2010)
Let p > 1 be a real number, K be a positive integer, and Q mar < R"”” Then for any sequence

(Q(k))f;(f C B(X x A, Quaz) and the corresponding sequence (& ER)K U defined in (31), w
have

1

K _
”Q* - Qﬂ-KHp’p < C’PIp, (K 7,)52;7( 7- e 7{5[3;1%1;7,) +r lRmax:| ’

2y [ )
———— | inf
(1—=7)2 [re.y
where 5(80 EK’ 1; ) Zf O1 ai"' HEkRHZpV and
1—7)\? 2(1—
Cprpw (K1) = () sup Z ap' ™" [ > (CPh,p,u(K —k—1m+ L7 ,)+

s MK k=0 m>0
2

CPh,p,l/(K - k, m; ﬂ;))

For better understanding of the intuition behind the error propagation results in general,
refer to Munos (2007); Antos et al. (2008b); Farahmand et al. (2010). The significance of
this particular theorem and the ways it improves previous similar error propagation results
such as that of Antos et al. (2008b) (for API) and Munos (2007) (for AVI) is thoroughly
discussed by Farahmand et al. (2010). We briefly comment on it in Section 5.3.

5.3 Performance Loss of REG-LSPI

In this section, we use the error propagation result (Theorem 13 in Section 5.2) together
with the upper bound on the policy evaluation error (Theorem 11 in Section 5.1) to derive
an upper bound on the performance loss ||Q* — Q™ ||, , of REG-LSPL This is the main

theoretical result of this work. Before stating the theorem, let us denote f[(]: 1) as the set
of all policies that are greedy w.r.t. a member of FII ie. II(FA) = {#(;Q): Q € FAI}.

Theorem 14 Let (Q( k))K L be the solutions of the optimization problem (15)-(16) with the
choice of

_1
(k) (k) _ 1 o
Min = Ao = [nﬂ(@m] |

Let Assumptions A1-AS5 hold; Assumptions A6 and A7 hold for any © € f[(}""‘”), and
inf,.cpo,1 Cprpu(K;1) < 00. Then there exists Crspi(0, K; p,v) such that for anyn € N and
0 <0 <1, we have

I _
HQ* - Qﬂ-K Hl,p < [CLSP[((Sa K; P, V)TL 2(1Fe) - ’YK 1Rma$} )

2
(1—9)?

with probability at least 1 — 4.

In this theorem, the function Crsp1(d, K; p,v) = Crsp1(9, K; p,v; Lr, Lp,a, B,7) is

3o L—y \" [1=(*)F .}
OLSPI((Sv K7 P,V LR7LP704’5>’7) = CI (5) inf 1_ ,YK+1 1 _ 727« CPI,pJ/(K; ’l“) ’
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with C1(J) being defined as

Ci(d) = sup
mell(FIAl)

e (14 (L) T2 (@M (B 4o [ LT L%QH
(1 4+ (Lp)?) T (@) (5)+2<R e

in which ¢1, co > 0 are universal constants.

Proof Fix 0 < § < 1. For each iteration k£ = 0,..., K — 1, invoke Theorem 11 with the
confidence parameter 0/K and take the supremum over all policies to upper bound the
Bellman residual error [ePR|, as

k) _ ey || m s
[0 —17G®|" < sup e (IQ7). LrLp.a, B, ) m
Vo refi(FIAl)

N
=c/

which holds with probability at least 1 — %. Here ¢(-) is defined as in Theorem 11. For any
r € [0, 1], we have

K—1
(SR, .., e = Z HskRH <dn” THa Z ay
k=0

2
s (222 )f’l—ww

9

where we used the definition of ay (32). We then apply Theorem 13 with the choice of p = 1
to get that with probability at least 1 — J, we have

__1 _
”Q* - QTFKHLp < [CLSPI(pv V3 K)n Tha 4 7K lRmax] .

_ 2
(1—=7)?

Here

Crspi(p,v; K) =

J\ . -y \" 1)K 3
\/ §up C<J(QF>7LR7LP704777K> Tér[[l)fl] <1_7K+1> 1_,)/27‘ C}%Ipy(K.T)

eri(FlAl)

Theorem 14 upper bounds the performance loss and relates it to the number of samples
n, the capacity of the function space quantified by «, the number of iterations K, the
concentrability coefficients, and some other properties of the MDP such as Lr, Lp, and ~.
This theorem indicates that the behavior of the upper bound as a function of the number

of samples is O(n_m). This upper bound is notable because of its minimax optimality,
as discussed in detail after Theorem 11.

The term Crgpr has two main components. The first is Cpyp,(-;7), which describes
the effect of the sampling distribution v and the evaluation distribution p, as well as the
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transition probability kernel of the MDP itself on the performance loss. This term has been
thoroughly discussed by Farahmand et al. (2010), but briefly speaking it indicates that
v and p affect the performance through a weighted summation of cpy, ,, (Definition 12).
The concentrability coefficients cpry, ,,, is defined as the square root of the expected squared
Radon-Nikodym of the future state-action distributions starting from p w.r.t. the sampling
distribution v. This may be much tighter compared to the previous results (e.g., Antos
et al. 2008b) that depend on the supremum of the Radon-Nikodym derivative. One may
also notice that Theorem 13 actually provides a stronger result than what is reported in
Theorem 14: The effect of errors at earlier iterations on the performance loss is geometrically
decayed. So one may potentially use a fewer number of samples in the earlier iterations
of REG-LSPI (or any other API algorithm) to get the same guarantee on the performance
loss. We ignore this effect to simplify the result.

The other important term is C, which mainly describes the effect of Lr, Lp, and
SUD (1Al J(Q™) on the performance loss. These quantities depend on the MDP, as

well as the function space FI. If the function space is “matched” with the MDP, these
quantities would be small, otherwise they may even be infinity.

Note that C1 provides an upper bound on the constant in front of REG-LSTD procedure
by taking supremum over all policies in f[(]: |A|). This might be a conservative estimate as
the actual encountered policies are the rather restricted random sequence mg, 71, ..., TK—1
generated by the REG-LSPI procedure. One might expect that as the sequence Q(k_l)
converge to a neighbourhood of @Q*, the value function Q™ of the greedy policy 7 =
(- Q(k_l)), which is the policy being evaluated, converges to a neighbourhood of Q* too.
Thus with certain assumptions, one might be able to show that its smoothness J(Q™),
the quantity that appears in the upper bound of Theorem 11, belongs to a neighbourhood
of J(Q*). If J(Q*) is small, the value of J(Q™) in that neighbourhood can be smaller
than SUD, 1714l J(Q™). We postpone the analysis of this finer structure of the problem
to future work.

Finally we note that the optimality of the error bound for the policy evaluation task,
as shown by Theorem 11, does not necessarily imply that the REG-LSPI algorithm has the
optimal sample complexity rate for the corresponding RL/Planning problem as well. The
reason is that it is possible to get close to the optimal policy, which is the ultimate goal
in RL/Plannning, even though the estimate of the action-value function is still inaccurate.
To act optimally, it is sufficient to have an action-value function whose greedy policy is the
same as the optimal policy. This can happen even if there is some error in the estimated
action-value function. This is called the action-gap phenomenon and has been analyzed in
the reinforcement learning context by Farahmand (2011a).

5.3.1 COMPARISON WITH SIMILAR STATISTICAL GUARANTEES

Theorem 14 might be compared with the results of Antos et al. (2008b), who introduced
a BRM-based API procedure and studied its statistical properties, Lazaric et al. (2012),
who analyzed LSPI with linear function approximators, Avila Pires and Szepesvari (2012),
who studied a regularized variant of LSTD, and Ghavamzadeh et al. (2011), who analyzed
the statistical properties of Lasso-TD. Although these results address different algorithms,
comparing them with the results of this work is insightful.
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We first focus on Antos et al. (2008b). Their simplified upper bound for ||Q* — Q™¥||1,
is C;/VQ VVrlog(n) + In(K/8)n~'/4, in which Vr is the “effective” dimension of F and is
defined based on the pseudo-dimension of sub-graphs of F and the so-called “VC-crossing
dimension” of F; and C,, is a concentrability coefficient and plays a similar rule to our

1
Cp1,p,v (K 7). In contrast, our simplified upper bound is Crgpr(d)n 20+, in which Crsp1(9)
1

can roughly be factored into Cgl’pyy(K; r)C1(J(Q™), Lr, Lp) \/In(K/9).

One important difference between these two results is that Antos et al. (2008b) con-
sidered parametric function spaces, which have finite effective dimension Vz, while this
work considers nonparametric function spaces, which essentially are infinite dimensional.
The way they use the parametric function space assumption is equivalent to assuming that
log V1 (u, Fy21.,) < V;:log(%) as opposed to log Noo(u, Fp, 21.4) < C (%)2CY of Assump-
tion A4. Our assumption lets us describe the capacity of infinite dimensional function
spaces F. Disregarding this crucial difference, one may also note that our upper bound’s

dependence on the number of samples (i.e., O(n_m)) is much faster than theirs (i.e.,
O(n~'%)). This is more noticeable when we apply our result to a finite dimensional func-
tion space, which can be done by letting o« — 0 at a certain rate, to recover the error upper
bound of n~1/2.18 This improvement is mainly because of more advanced techniques used
in our analysis, i.e., the relative deviation tail inequality and the peeling device in this work
in contrast with the uniform deviation inequality of Antos et al. (2008b).

The other difference is in the definition of concentrability coefficients (Cpr,(K) vs.
C)). In Definition 12, we use the expectation of Radon-Nikodym derivative of two dis-
tributions while their definition uses the supremum of a similar quantity. This can be a
significant improvement in the multiplicative constant of the upper bound. For more infor-
mation regarding this improvement, which can be used to improve the result of Antos et al.
(2008Db) too, refer to Farahmand et al. (2010).

Lazaric et al. (2012) analyzed unregularized LSTD/LSPI specialized for linear function
approximators with finite number of basis functions (parametric setting). Their rate of
O(n=1/2) for |V* — V™K||3 , is faster than the rate in the work of Antos et al. (2008b), and
is comparable to our rate for ||Q* — Q" ||, when ov — 0. The difference of their work with
ours is that they focus on a parametric class of function approximators as opposed to the
nonparametric class in this work. Moreover, because they formulate the LSTD as a fixed-
point problem, in contrast to this work and that of Antos et al. (2008b), their algorithm
and results are only applicable to on-policy sampling scenario.

Avila Pires and Szepesvari (2012) studied a regularized version of LSTD in the para-
metric setting that works for both on-policy and off-policy sampling. Beside the difference
between the class of function spaces with this work (parametric vs. nonparametric), another
algorithmic difference is that they only use a regularizer for the projected Bellman error
term, similar to (16), as opposed to using regularizers in both terms of REG-LSTD (15)-(16)
(cf. Section 4.1). Also the weight used in their loss function, the matrix M in their paper, is
not necessarily the one induced by data. Their result indicates O(n~1/ 2) for the projected
Bellman error, which is comparable, though with some subtle differences, to Lazaric et al.

Qmax

u

18. For problems with finite state space, we have log Noo (u, Fr) < |X| log( ), so with a similar o — 0

argument, we get O(n71/2) error upper bound (disregarding the logarithmic terms).
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(2012). It is remarkable that they separate the error bound analysis to deterministic and
probabilistic parts. In the deterministic part, they use perturbation analysis to relate the
loss to the error in the estimation of certain parameters used by the algorithms. In the
probabilistic part, they provide upper bounds on the error in estimation of the parameters.
We conjecture that their proof technique, even though simple and elegant, cannot easily
be extended to provide the right convergence rate for large function spaces because the
current analysis is based on a uniform bound on the error of a noisy matrix. Providing a
tight uniform bound for a matrix (or operator) for large state spaces might be difficult or
impossible to achieve.

Ghavamzadeh et al. (2011) analyzed Lasso-TD, a policy evaluation algorithm that uses
linear function approximators and enforces sparsity by the [i-regularization, and provided
error upper bounds w.r.t. the empirical measure (or what they call Markov design). Their
error upper bound is O([||w*||? log(p)]*/*n~'/%), where w* is the weight vector describing
the projection of @™ onto the span of p basis functions. With some extra assumptions on
the Grammian of the basis functions, they obtain faster rate of O(y/[Jw*||olog(p) n=/?).
These results indicate that by using the sparsity-inducing regularizer, the dependence of
the error bound on the number of features becomes logarithmic.

We conjecture that if one uses REG-LSTD with a linear function space (similar to Sec-
tion 4.2.1) with J2(h) = ||u/1 and J?(Q) = ||w||1, the current analysis leads to the error
upper bound O(||w* |]1/2n_1/4) with a logarithmic dependence on p. This result might be ob-
tained using Corollary 5 of Zhang (2002) as Assumption A4. To get a faster rate of O(n~1/2),
one should make extra assumptions on the Grammian—as was done by Ghavamzadeh et al.
(2011). We should emphasize that even with the choice of linear function approximators
and the [;-regularization, REG-LSTD would not be the same algorithm as Lasso-TD since
REG-LSTD uses regularization in both optimization problems (15)-(16). Also note that
the error upper bound of Ghavamzadeh et al. (2011) is on the empirical norm || - ||2,p, as
opposed to the norm ||-||2,,, which is w.r.t. the measure v. This means that their result does
not provide a generalization upper bound on the quality of the estimated value function
over the whole state space, but provides an upper bound only on the training data.

Comparing this work with its conference version (Farahmand et al., 2009b), we observe
that the main difference in the theoretical guarantees is that the current results are for
more general function spaces than the Sobolev spaces considered in the conference paper.
Assumption A4 specifies the requirement on the capacity of the function space, which is
satisfied not only by the Sobolev spaces (with the choice of a = d/2k for WF(X) with X
being an open Euclidean ball in R? and & > d/2; cf. Section A.5.6 alongside Lemma 6.21
of Steinwart and Christmann (2008), or Theorem 2.4 of van de Geer (2000) for X = [0, 1]
or Lemma 20.6 of Gyorfi et al. (2002) for X = [0, 1]¢), but also many other large function
spaces including several commonly-used RKHS.

6. Conclusion and Future Work

We introduced two regularization-based API algorithms, namely REG-LSPI and REG-
BRM, to solve RL/Planning problems with large state spaces. Our formulation was general
and could incorporate many types of function spaces and regularizers. We specifically
showed how these algorithms can be implemented efficiently when the function space is the
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span of a finite number of basis functions (parametric model) or an RKHS (nonparametric
model).

We then focused on the statistical properties of REG-LSPI and provided its performance
loss upper bound (Theorem 14). The error bound demonstrated the role of the sample size,
the complexity of function space to which the action-value function belongs (quantified
by its metric entropy in Assumption A4), and the intrinsic properties of the MDP such
as the behavior of concentrability coefficients and the smoothness-expansion property of
the Bellman operator (Definition 12 and Assumption A7). The result indicated that the
dependence on the sample size for the task of policy evaluation is optimal.

This work (and its conference (Farahmand et al., 2009b) and the dissertation (Farah-
mand, 2011b) versions) alongside the work on the Regularized Fitted Q-Iteration algo-
rithm (Farahmand et al., 2008, 2009a) are the first that address the statistical performance
of a regularized RL algorithm. Nevertheless, there have been a few other work that also
used regularization for RL/Planning problems, most often without analyzing their statisti-
cal properties.

Jung and Polani (2006) studied adding regularization to BRM, but their solution is re-
stricted to deterministic problems. The main contribution of that work was the development
of fast incremental algorithms using the sparsification technique. The [;-regularization has
been considered by Loth et al. (2007), who were similarly concerned with incremental im-
plementations and computational efficiency. Xu et al. (2007) provided a kernel-based, but
not regularized, formulation of LSPI. They used sparsification to provide basis functions for
the LSTD procedure. Sparsification leads to a selection of only a subset of data points to
be used as the basis functions, thus indirectly controls the complexity of the resulting func-
tion space. This should be contrasted with a regularization-based approach in which the
regularizer interacts with the empirical loss to jointly determine the subset of the function
space to which the estimate belongs.

Kolter and Ng (2009) formulated an [;-regularization fixed-point formulation LSTD,
which is called Lasso-TD by Ghavamzadeh et al. (2011), and provided LARS-like algo-
rithm (Efron et al., 2004) to compute the solutions. Johns et al. (2010) considered the same
fixed-point formulation and cast it as a linear complementarity problem. The statistical
properties of this [i-regularized fixed-point formulation is studied by Ghavamzadeh et al.
(2011), as discussed earlier. Lasso-TD has a fixed-point formulation, which looks different
from our coupled optimization formulation (15)-(16), but under on-policy sampling scenario,
it is equivalent to a particular version of REG-LSTD: If we choose a fixed linear function
approximator (parametric), use the l;-norm in the projection optimization problem (15),
but do not regularize optimization problem (16) (i.e., Ag, = 0), we get Lasso-TD. Geist
and Scherrer (2012) suggested a different algorithm where the projection is not regular-
ized (i.e., Ap, = 0), but the optimization problem (16) is regularized with the /;-norm of
the parameter weights. The choice of only regularizing (16) is the same as the one in the
algorithm introduced and analyzed by Avila Pires and Szepesvéri (2012), except that the
latter work uses the lp-norm. Hoffman et al. (2012) introduced an algorithm similar to
that of Geist and Scherrer (2012) with the difference that the projection optimization (15)
uses the lo-norm (so it is a mixed [ /lo-regularized algorithm). All these algorithms are
parametric. Several TD-based algorithms and their regularized variants are discussed in a
survey by Dann et al. (2014).
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Taylor and Parr (2009) unified several kernelized reinforcement learning algorithms, and
showed the equivalence of kernelized value function approximators such as GPTD (Engel
et al., 2005), the work of Xu et al. (2007), and a few other methods with a model-based
reinforcement learning algorithm that has certain regularization on the transition kernel
estimator, reward estimator, or both. Their result was obtained by considering two separate
regularized regression problems: One that predicts the reward function given the current
state and the other that predicts the next-state kernel values given the current-state ones.
Their formulation is different from our formulation that is stated as a coupled optimization
problem in an RKHS.

Similar to other kernel-based algorithms (e.g., SVMs, Gaussian Process Regressions,
Splines, etc.), devising a computationally efficient implementation of REG-LSPI/BRM is
important to ensure that it is a practical algorithm for large-scale problems. A naive imple-
mentation of these algorithms requires the computation time of O(n3K), which is prohibitive
for large sample sizes. One possible workaround is to reduce the effective number of samples
by the sparsification technique (Engel et al., 2005; Jung and Polani, 2006; Xu et al., 2007).
The other is to use elegant vector-matrix multiplication methods, which are used in iterative
methods for matrix inversion, such as those based on the Fast Multipole Methods (Beatson
and Greengard, 1997) and the Fast Gauss Transform (Yang et al., 2004). These methods
can reduce the computational cost of vector-matrix multiplication from O(n?) to O(nlogn),
which results in computation time of O(n?K logn) for REG-LSPI/BRM, at the cost of some
small, but controlled, numerical error. Another possibility is to use stochastic gradient-like
algorithms similar to the works of Liu et al. (2012); Qin et al. (2014). The use of stochastic
gradient-like algorithms is especially appealing in the light of results such as Bottou and
Bousquet (2008); Shalev-Shwartz and Srebro (2008). They analyze the tradeoff between the
statistical error and the optimization error caused by the choice of optimization method.
They show that one might achieve lower generalization error by using a faster stochastic
gradient-like algorithm, which processes more data points less accurately, rather than a
slower but more accurate optimization algorithm, which can only process fewer data points.
Designing scalable optimization algorithms for REG-LSPI/BRM is a topic for future work.

An important issue in the successful application of any RL/Planning algorithm, in-
cluding REG-LSPI and REG-BRM, is the proper choice of parameters. In REG-BRM
and REG-LSTD we are faced with the choice of F| and the corresponding regularization
parameters g, and Ap,. The proper choice of these parameters, however, depends on
quantities that are not known, e.g., J(Q™) and the choice of FMI that “matches” with
the MDP. This problem in the RL/Planning context has been addressed by Farahmand
and Szepesvari (2011). They introduced a complexity-regularization-based model selection
algorithm that allows one to design adaptive algorithms: Algorithms that perform almost
the same as the one with the prior knowledge of the best parameters.

Another important question is how to extend these algorithms to deal with continuous
action MDPs. There are two challenges: Computational and statistical. The computational
challenge is finding the greedy action at each state in the policy improvement step. In
general, this is an intractable optimization problem, which cannot be solved exactly or
even with any suboptimality guarantee. To analyze this inexact policy improvement some
parts of the theory, especially the error propagation result, should be modified. Moreover,
we also have a statistical challenge: One should specifically control the complexity of the
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policy space as the complexity of {max,ec4 Q(-,a) : Q € F} might be infinity even though
FIAl has a finite complexity (Antos et al., 2008a). A properly modified algorithm might be
similar to the continuous-action extension of Farahmand et al. (2015), an API algorithm
that explicitly controls the complexity of the policy space.

Finally an open theoretical question is to characterize the properties of the MDP that
determine the function space to which action-value function belong. A similar question is
how the values of Lp and Lp in Assumption A7 are related to the intrinsic properties of
the MDP. We partially addressed this question for the convolutional MDPs, but analysis of
more general MDPs is remained to be done.
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Proofs and Auxiliary Results

In these appendices, we first prove Theorem 10, which provides the closed-form solutions
for REG-LSTD and REG-BRM when the function space is an RKHS (Appendix A). We
then attend to the proof of Theorem 11 (Policy Evaluation error for REG-LSTD). The main
body of the proof for Theorem 11 is in Appendix B. To increase the readability and flow, the
proofs of some of the auxiliary and more technical results are postponed to Appendices C,
D, and E.

More specifically, we prove an extension of Theorem 21.1 of Gyorfi et al. (2002) in Ap-
pendix C (Lemma 15). We present a modified version of Theorem 10.2 of van de Geer (2000)
in Appendix D. We then provide a covering number result in Appendix E (Lemma 20). The
reason we require these results will become clear in Appendix B. Finally, we introduce con-
volutional MDPs as an instance of problems that satisfy Assumption A7 (Appendix F).

We would like to remark that the generic “constants” ¢, > 0 in the proofs, especially
those related to the statistical guarantees, might change from line to line, if their exact
value is not important in the bound. These values are constant as a function of important
quantities of the upper bound (such as n, «, J(Q7), etc.), but may depend on Quax or |A|.
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Appendix A. Proof of Theorem 10 (Closed-Form Solutions for RKHS
Formulation of REG-LSTD/BRM)

Proof REG-BRM: First, notice that the optimization problem (28) can be written in the

form ¢, (Q) + Ag.n HQHE{ % min! with an appropriately defined functional ¢,.' In order to
apply the representer theorem (Scholkopf et al., 2001), we require to show that ¢, depends
on @ only through the data-points Zi, Z1,. .., Zy, Z),. This is immediate for all the terms
that define ¢, except the term that involves ﬁn(, Q). However, since h,, is defined as the
solution to the optimization problem (27), calling for the representer theorem once again,
we observe that ﬁn can be written in the form

t=1
where 3% = (B5,...,8;) " satisfies
. 2
8* = argmin [HKhﬂ - T”QHn + AnB KB .

BeR?

Solving this minimization problem leads to
B* = (Kp, +nip,I) 1 (T™Q).

In both equations (77Q) is viewed as the n-dimensional vector

((07Q)(2)..... (17Q)(Z)) = (R +7Q(Z). ... Bu +1Q(Z))

Thus, 8" depends on @ only through Q(Z1),...,Q(Z]). Plugging this solution into (28),
we get that ¢,(Q) indeed depends on @ through

Q(21),Q(Z1), -+ ,Q(Zn),Q(Zy),

and thus on data points Z1, Z1,-- - , Zn, Z,,. The representer theorem then implies that the
minimizer of ¢,(Q) + A\g.n ||Q||3{ can be written in the form Q(-) = 32", &K(Z;, -), where
Z;=Z;ifi<nand Z; = Z!_,,, otherwise.

Let & = (a1,...,apn,0af, ... ,aﬁl)—r. Using the reproducing kernel property of K, we get

the optimization problem

|C1K gé& — (1 +vC2 K &)|% — | B(r + 7C2K 0&)|> + Aond K& S min!.
Solving this for & concludes the proof for REG-BRM.
REG-LSTD: The first part of the proof that shows ¢,, depends on Q) only through the data-
points Z1, Z1, . . ., Zn, Zy, is exactly the same as the proof of REG-BRM. Thus, using the rep-
resenter theorem, the minimizer of (30) can be written in the form Q(-) = 21221 &K (Z;i, ),
where Z; = Z; if i <n and Z; = Z!_,, otherwise. Let & = (a1, ..., an, o], .. ,al)T. Using

i—n’
the reproducing kernel property of K, we get the optimization problem

I(C1 — YEC3)K géa — Er|? + Ao na " Kga S minl.
Replacing C'y — vEC5 with F' and solving for & concludes the proof. |

19. Here f(Q) 2 min! indicates that Q is a minimizer of f(Q).
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Thm. 14 (REG-LSPI)

/ \

Thm. 11 (REG-LSTD) Thm. 13
‘—\\\ (Brror Propagation)
Lem. 15 [||hn(Q) — T™Q|| — 0] Lem. 18 [J(Q) ~ J(Q™)] Lem. 19 [|Q — hn(Q)l| = 0]
/ Lem. 21
\
Lem. 22 (relative deviation) X Thm. 16 S Lem. 17
Hhn(Q)—=T7QlIn&J (hn(Q))] [ (hn(Q)= J(Q")+J(Q)+J(T7‘Q)]
/
/
Lem. 24 (modulus of continuity) Lem. 20 (covering number)

Lem. 23 (supremum of weighted sum)

Figure 2: Dependencies of results used to prove the statistical guarantee for REG-LSPI
(Theorem 14).

Appendix B. Proof of Theorem 11 (Statistical Guarantee for
REG-LSTD)

The goal of Theorem 11 is to provide a finite-sample upper bound on the Bellman error
1Q — T™Ql|, for REG-LSTD defined by the optimization problems (15) and (16). Since
1Q-T7Q|2 < 2| Q—hn(-; Q)[12+2]|hn(: Q) ~T™Q||2, we may upper bound the Bellman error
by upper bounding each term in the RHS. Recall from the discussion after Theorem 11 that
the analysis is more complicated than the conventional supervised learning setting because
the corresponding optimization problems are coupled: b (- Q) is a function of Q which
itself is a function of hy,(-; Q).

Theorem 11 is proven using Lemma 15, which upper bounds ”iLn(, Q) — T”QHV, and
Lemma 19, which upper bounds ||Q — hy,(-; Q)||,. We also require to relate the smoothness
J (Q) to the smoothness J(Q™). Lemma 18 specifies this relation. The proof of these lemmas
themselves require further developments, which will be discussed when we encounter them.
Figure 2 shows the dependencies between all results that lead to the proof of Theorem 11
and consequently Theorem 14.

The following lemma controls the error behavior resulting from the optimization prob-
lem (15). This lemma, which is a result on the error upper bound of a regularized regression
estimator, is similar to Theorem 21.1 of Gyorfi et al. (2002) with two main differences. First,
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it holds uniformly over T™() (as opposed to a fixed function 77 Q); second, it holds for func-
tion spaces that satisfy a general metric entropy condition (as opposed to the special case
of the Sobolev spaces).

Lemma 15 (Convergence of h,(-;Q) to T™Q) For any random Q € FAl, let hn(Q) be
defined according to (15). Under Assumptions A1-A5 and A7, there exist finite constants
c1,c2 > 0 such that for any n € N and 0 < § < 1, we have

. 2 1 In(1/6
[ @)~ T < ar o P@7Q) 4 2010 2(@) 1+
v h,n
with probability at least 1 — 4.
Proof See Appendix C. n

When we use this lemma to prove Theorem 11, the action-value function ) that appears
in the bound is the result of the optimization problems defined in (16), that is Q, and so
is random. Lemma 18, which we will prove later, provides a deterministic upper bound for
the smoothness J (Q) of this random quantity.

It turns out that to derive our main result, we require to know more about the behavior
of the regularized regression estimator than what is shown in Lemma 15. In particular, we
need an upper bound on the empirical error of the regularized regression estimator ﬁn(, Q)
(cf. (33) below). Moreover, we should bound the random smoothness .J(h,(-; Q)) by some
deterministic quantities, which turns out to be a function of J(77Q) and J(Q). Theorem 16
provides us with the required upper bounds. This theorem is a modification of Theorem
10.2 by van de Geer (2000), with two main differences: 1) It holds uniformly over @ and 2)
ﬁn(-; Q) uses the same data D,, that is used to estimate @ itself.

We introduce the following notation: Let w = (z, a,r, z") and define the random variables
w; = (X3, A, R, X]) for 1 < i < n. The data set D,, would be {wi,...,w,}. For a
measurable function g : X x A x R x X — R, let ||g||> = LS 1 lg(w;)|?. Consider the
regularized least squares estimator:

hn(+; Q) = argmin [Hh — [Ri + QX[ m(XD)]||2 + Ah,nﬂ(h)] : (33)
heFIAl

which is the same as (15) with 7 replacing 7.

Theorem 16 (Empirical error and smoothness of h,(-;Q)) For a random function Q
FIAL let hy(-, Q) be defined according to (33). Suppose that Assumptions A1-A5 and A7
hold. Then there exist constants c1,co > 0, such that for anyn € N and 0 < § < 1, we have

1+a, /In(1/9)
max n
‘ <ecimaxg ———,
n

o
2
)\h,n

ha(5Q) = T7Q

Qs (J(Q) + J(T7Q)) 155 (1“(1/‘”> e

\Y4 )\h,nJ(Tﬂ-Q) } )
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Q1+a In(1/9)

T(hn(5Q)) < cxmax$ J(Q) + J(T™Q), ——=—— 7,
Ann
with probability at least 1 — 4.
Proof See Appendix D. [ |

The following lemma, which is an immediate corollary of Theorem 16, indicates that
with the proper choice of the regularization coefficient, the complexity of the regression
function Bn(, Q) is in the same order as the complexities of @, T™Q, and Q™. This result
will be used in the proof of Lemma 21, which itself is used in the proof of Lemma 19.

Lemma 17 (Smoothness of h,(-;Q)) For a random Q € FXA, let hy,(-;Q) be the solu-
tion to the optimization problem (15) with the choice of regularization coefficient

R
A = [nﬂ(Q”)} |

Let Assumptions A1-A5 and A7 hold. Then, there exits a finite constant ¢ > 0, depending
0N Qmagz, such that for anyn € N and 0 < § < 1, the upper bound

J(hn(5Q)) < ¢ (JT7Q) + J(Q) + J(Q)Vn(1/9))

holds with probability at least 1 — §.

1

Proof With the choice of A, ,, = [W} m, Theorem 16 implies that there exist some

finite constant ¢; > 0 as well as co > 0, which depends on Quax, such that for any n € N
and 0 < 6 < 1, the inequality

14a , /In(1/6)

max n

J(h(5Q)) < 1 max{ J(Q) + J(T™Q),

=

cecall
< e (JT"Q) + J(@Q) + J(Q)VIn(1/9))

holds with probability at least 1 — é. |

An intuitive understanding of this result might be gained if we consider iLn(, Q™), which is
the regression estimate for T7Q™ = Q™. This lemma then indicates that the smoothness
of iLn(, Q™) is comparable to the smoothness of its target function Q7. This is intuitive
whenever the regularization coefficients are chosen properly.

The following lemma relates .J(Q) and J(T7Q), which are random, to the complexity
of the action-value function of the policy 7, i.e., J(Q™). This result is used in the proof of
Theorem 11.
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Lemma 18 (Smoothness of Q) Let Assumptions A1-A7 hold, and let Q be the solution
to (16) with the choice of

)\ 1 14+«
2 @n]
Then, there exists a finite constant ¢ > 0 such that for anyn € N and 0 < § < e™', we have
2a
A J1+e (Q™)In(1/6
Mol (Q) < Mgl (@7) + LU0,

nlta

with probability at least 1 — 4.

Proof By Assumption A6 we have Q™ € FMI, so by the optimizer property of Q (cf. (16)),
we get

dan(@ < Q- Q)

A (Q) < [| Q@7 = hu(: Q")

’ Aond2(QT 34
Dn+ Qn (Q) ( )

Since Q™ = T™Q™, we have ||Q™ — hy,(-; Q)lp, = IT"Q" - hn(+;Q™)||p,. So Theorem 16
shows that with the choice of A\pn = [52757y (Qﬂ)} , there exists a finite constant ¢ > 0 such
that for any n € N and for 0 < 6 < e”! ~ 0.3679, we have

) Jﬁfaa(@ﬂgln(l/a)’ (35)

nl+a

o =@

<a (1 vV Qe
with probability at least 1 — ¢. Chaining inequalities (34) and (35) finishes the proof. W

The other main ingredient of the proof of Theorem 11 is an upper bound to HQ —
hn(; Q)]l, which is closely related to the optimization problem (16). This task is done by
Lemma 19. In the proof of this lemma, we call Lemma 21, which shall be stated and proven
right after this result.

Lemma 19 (Convergence of HQ - ﬁn(7 Q)Hy) Let Q be the solution to the set of coupled
optimization problems (15)—(16). Suppose that Assumptions A1-A7 hold. Then there exists
a finite constant ¢ > 0 such that for any n € N and 0 < § < 2e~! and with the choice of

1 1+a
e =dan =[]

we have

2712 \e 7% (OT T¥a
0 — () i§6(1+7 Lp)* J1i+a(Q")In(1/6) + Ly

)

1
nlta

with probability at least 1 — 4.
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Proof Decompose

‘ Q = hn(+Q) j =Iin+ Iop,
with
o= Q- Q) +renr@.
o=@ =@ - fn (36)

In what follows, we upper bound each of these terms.
I ,: Use the optimizer property of @ to get

1
§Il,n =

~

Q - Bn(v Q)

e @[

2 A J2 T
D, + Q,n (Q )

i i 2
Qﬂ' ( .Qﬂ' J— HTTI'QW ( .Qﬂ') D
For our choice of A\g ,,, there exists a constant c1 > 0 such that foranyn € Nand 0 < §; < 1,
we have

To upper bound ‘

, we evoke Theorem 16.

2a
1 J1+a (Q™) In(1/0
Ll < M@)o LI/, 37)

nlta

with probability at least 1 — dy.

I ,: With our choice of A\g, and A ,, Lemma 21, which shall be proven later, indicates
that there exist some finite constants ¢, 3, ¢4 > 0 such that for any n € N and finite J(Q™),
Lg, and Lp, and 0 < J2 < 1, we have

2a

LIt 4 ™ T+a [In(1/d,)] T+ 1+4+~2L2%) In(1

b < i QT I /BT (A1) (/)
’ ana n)\%,n n

;o (38)

with probability at least 1 — d2. For 2 < e~ ! and o > 0, we have [1n(1/62)]1%a <In(1/62),
and also

L p@tE @ (39)
”)‘%,n nﬁ B nl%1

With the right choice of constants, % can be absorbed into the other terms. Select
01 = d2 = §/2. Inequalities (37), (38), and (39) imply that with the specified choice of g,
and Ay, ,, there exists a finite constant c¢5 > 0 such that for any 0 < ¢ < 2¢~1, we have

2a 2a
A s A |12 14 +2L%)> Ji+a (Q™)In(1/8) + L1t
Q — hn(5Q) 505( TLp) L) (1/0) + Lp ,
v n1+a
with probability at least 1 — 4. |

To upper bound Is,, defined in (36), we simultaneously apply the peeling device (cf.
Section 5.3 of van de Geer 2000) on two different, but coupled, function spaces (one to which
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Q belongs and the other to which hy,(+; Q) belongs). In each layer of peeling, we apply an
exponential tail inequality to control the relative deviation of the empirical mean from the
true mean (Lemma 22 in Appendix C). We also require a covering number result, which is
stated as Lemma 20. The final result of this procedure is a tight upper bound on I ., as
stated in Lemma 21.

To prepare for the peeling argument, define the following subsets of F and F Al

Fo2{f:feF,J(f)<o},
FALLr: fe AL <o},

Let
[A|

gan(,a) £ Y Tiama;y [Qs(x) — hy(2)]*. (40)
j=1

To simplify the notation, we use z = (z,a) and Z = (X, A) in the rest of this section.
Define G4, 4, as the space of gg  functions with J(Q) < o1 and J(h) < 09, ie.,

Govos 2 { g0 i RIx A RiQ e Fiil e FIA L. (41)

The following lemma provides an upper bound on the covering numbers of Gy, o, .

Lemma 20 (Covering Number) Let Assumptions A3, A4, and A5 hold. Then there
exists a constant ¢y > 0, independent of o1, 02, &, Qmaz, and |A|, such that for any
u >0 and all ((z1,a1),...,(Tn,an)) € X X A, the empirical covering number of the class of
functions Go, o, defined in (41) w.r.t. the empirical norm |-, ,, s upper bounded by

log-/\[?(u7 G017027 ((IJ, a)lin) < 61|A’1+a 2maam (Ula + UZQ) u72a.

Proof See Appendix E. |

Next, we state and prove Lemma 21, which provides a high probability upper bound on
I,.

Lemma 21 Let I5,, be defined according to (36). Under Assumptions A1-A5 and A7 and
with the choice of

1 1+
)\h,n = )\Q,n = W )

there exist constants c1,ca,c3 > 0, such that for any n € N, finite J(Q™), Lgr, and Lp, and
6 > 0 we have

2« 20 a

L 4+ [J(QM)]T+a [In(1/8)] T+ 14+ ~2L3%) In(1

o < o P T @ (AN | (+9PLh) | In(1/8)
nI+a n)\Qm n

with probability at least 1 — 4.
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Proof Let Z = (X, A) be a random variable with distribution v that is independent from
D,,. Without loss of generality, we assume that Qmax > 1/2. We use the peeling device
in conjunction with Lemmas 20 and 22 to obtain a tight high-probability upper bound on
I5 ,,. Based on the definition of I, in (36) we have

P{ly, >t} =P E |90,,:0(IPn] — % Sl 99,1,.0)(%)

1
>5 0 (42)
t+ zAQ,nJ (Q)+E [gg.5,:0)(Z)1n

'To benefit from the peeling device, we relate the complexity of ﬁn(, Q) to the complexity
of Q). For a fixed §; > 0 and some constant ¢ > 0, to be specified shortly, define the following
event:

Ap = {w : J2(ha( Q) < ¢ (JQ(T“Q) +J20) + J2(Q7r)1n(1/51)) } :

Lemma 17 indicates that P {4y} > 1 — 01, where the constant ¢ here can be chosen to be
three times of the squared value of the constant in the lemma. We have P{ly, >t} =
P {Ign >t .AC} +P{lzy >t, Ao} <01 +P{lo, >t Ao}, so we focus on upper bounding
P {IQ n>1 .Ao}

Since Q € FMI, there exists | € Ny such that 2! thgz0y < QAQnJQ(Q) < 21t Fix
I € Ny. For any Q € FMI Assumption A7 relates J(T7Q) to J(Q):

Thus on the event Ay, if Q € ]-" I where 01 )\2 t we also have h,, (Q) € .7-"(';;" with
2

l

J3(Q) < AQt = JHT™Q) <2 <L v2L%

2l
ag:c[2 <L (1+72L2))\

Q7n

> +J2(Q™) In(1 /51)} . (43)

Apply the peeling device on (42). Use (43) and note that if for an [ € Ny we have
2000 7%(Q) > QZtH{lﬂ)}, we also have t + 2\, J?(Q) > 2!t to get

P{ls, >t} =P{L, >t,Af} + P{L, > t, Ay}

<4+ ZP{A(), 2ltﬂ{l7g0} < QAQ’RJQ(Q) < 2l+1t,
=0

E |90 i (:0)(D)IPn| = £ 5201 9450 (Z0) . 1}

E+220n72(Q) +E 90, .0)(DID] 2

- E [9o.n(Z)|Dn) — 2 30 9un(Zi) _ 1
<N+ > P sup ’ n Lais > — 44
2 el P B2 2 W

Let us study the behavior of the I*® term of the above summation by verifying the
conditions of Lemma 22 with the choice of € = % and n = 2.
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Condition (A1): Since all functions involved are bounded by Qmuax, it is easy to see
that |ggu(e,a)] < S Ty \[Qj(m) —hj(x)ﬂ < 4Q2,.. Therefore, K;, defined in
Lemma 22, can be set to K; = 4Q?

Condition (A2): We have E “[Q(Z) - h(Z)]Qﬂ <4Q2, E [[Q(Z) — W(2)]2]. Therefore,
K can be set to Ky = 4Q?

max*
Condition (A3): We should satisfy %1 /mm > 288 max{8Q2 ..., V8Qmax}. Since n = 2t >
t, it is sufficient to have

t> =, (C1)

Slo

).
max
Condition (A4): We shall verify that for &/ > %77 = %2%, and o1 = o! and o9 = o, the
following holds:
V()
96v2max{K,2K2}

Ve Lo 1/2
/ Adye (10@;]\/2 <u, { 9€Go oyt - Zgz(zi) < 16¢ } ,z1m>> du. (45)

16 max{K1,2Ko} =1

in which ¢ is a function of Quax (we can choose ¢ = 2 x 46082 Q4

Notice that there exists a constant ¢ > 0 such that for any u,&’ > 0

1
logNZ (u, { g€ Go‘1,02 : ﬁ Zgz(zi) < 16¢ } 721:n> < 10gN2 (u7 Gal,aza Zl:n)
i=1
<c(of +08)u=??, (46)

where we used Lemma 20 in the second inequality.

Plug (46) into (45) with the choice of o7 = o! = % and oy = ob = c[2(L% +
(1+ 72L?g)%) + J2(Q™)In(1/61)]. Therefore, for some constant ¢ = ¢'(Qmax) > 0, the
inequality

1/2

«

VEL L/ ol \ @ 9lt
vz [ (A ) +c[2 <L?%+(1+72L%3) X )+J2<Qﬂ>ln<1/al> uedu,
0 Qn Qn

(a) (b)

implies (45). Because (a + b)% < (a% + b%) for non-negative a and b, it suffices to verify the
following two conditions:

(a) We shall verify that for &’ > £2't, we have
@ 14 &
2 \2 ia ne' "z A2
cv/ne' > ( > S PP A LU
)\Q,n (2%)5
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for some ¢ > 0. Substituting ¢’ with 2'¢, we see that it is enough if for some constant ¢ > 0,
c

t> —. D1

200y, (D1)

(b) We should verify that for &’ > 12!¢, the following is satisfied:

0! \

2lt -
vie'z e iy + (L7 Lp) 4 Q) (/6 | &=
~— ,n N———

(b1) (b3)
(b2)

for some ¢ > 0. After some manipulations, we get that the previous inequality holds if the
following three inequalities are satisfied:

2a

(b1) : t>c) ii, (D2)
nlta
212\
(ba): t> CIZ%YCQ“LP)’ (D3)

nlta

for some constants ¢}, ¢, ¢ > 0.
Fix § > 0 and let 6; = 6/2. Whenever (C1), (D1), (D2), (D3), and (D4) are satisfied,
for some choice of constants ¢, ¢’ > 0 we have

§ |~ n(2)(3)(1 - 3)
P{I <2
o>tk =5+ ;60 P ( 128 x 2304 x max{16Q% 402 1

)
< 3 +c exp(—=cnt).

Let the left-hand side be equal § and solve for t. Considering all aforementioned conditions,
we get that there exist constants ¢y, ca, c3 > 0 such that for any n € N, finite J(Q™), Lg,
and Lp, and > 0, we have

_2a 2a o
Lk J(QT)|1+a [In(1/9)]| T+ 2L20‘ In(1/6
by < o @I/ ) /)
nite n)\Qn n

with probability at least 1 — 4. |

After developing these tools, we are ready to prove Theorem 11.

Proof [Proof of Theorem 11] We want to show that |Q — T™Q||, is small. Since (15)-(16)
minimize ||h,(-; Q) — T™Q|, and ||Q — hn(+; Q)||, we upper bound ||Q — T7Q||,, in terms of
these quantities as follows:

A~

<2HQ b (5 Q) (47)
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Let us upper bound each of these two terms in the RHS. Fix 0 < § < 1.
Bounding |[|h,(;Q) — T7Q|,: Lemma 15 indicates that there exist constants cj,co > 0
such that for any random Q € FI and any fixed n € N, we have

< (27Q) H4PTQ) e+ )

(e}
n)\hm n

hn('; Q) - TWQ

2
v

with probability at least 1 — §/3. Note that T 7() € FM is implied by Assumption A7 and
Qe FIA.

Because () is random itself, the terms .J(Q) and J(T™Q) in the upper bound of (48) are
also random. In order to upper bound them, we use Lemma 18, which states that upon
the choice of A\, = Agn = 1%&, there exists a constant ¢s > 0 such that for any

n €N,

i)

Mn Q) = Ao T2 (Q) < Ao nJH(Q™) + 3 In(3/0) (49)

holds with probability at least 1 — §/3. We use Assumption A7 to show that we have

T Q)

nlta

M dH(T™Q) < 209 L% + 2(7Lp)? (AQ,nﬁ(Q”) + c3 1n(3/5)> , (50)
with the same probability. Plugging (49) and (50) into (48) and using the selected schedule
for Ag,n and A 5, we get

|

i 0) — 70|

v

<

2o 2a 2
(24 1+ 8(vLp)?) T3 (Q7) + 3 (2 + 8(yLp)?) J ¥ (Q7) In(3/8) + —o ] +
I (Q™) | n
1,6/
n

with probability at least 1 — 5. By the proper choice of constants, the term con™! In(3/6)

—1
can be absorbed into n1+a In(3/§). Therefore, there exists a constant ¢4 > 0 such that

8L%
[J(Qm)|Fa

1

h(5Q) = T™Q||” < [ea [1+ (vLp)?] T (Q7) In(1/6) +

2

1
n1+a

with probability at least 1 — %(5 .

Bounding ||Q — hy(+;Q)||,: With our choice of AQn and Ap p,, Lemma 19 states that there
exists a constant c; > 0 such that for any n € N,

Q - hn('; g Q)

@ 2a
> (L+92L3) 1 Q) In(1/6) + L
C
v ° nﬁ

< , (52)

holds with probability at least 1 —§/3.
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Thus, inequality (47) alongside upper bounds (51) and (52) indicate that there exist
constants c¢g, ¢y > 0 such that for any n € N and 6 > 0, we have

[e] 20 9
C6 [1 + (’yLP)Q] Jlaria(QT()ln(l/é) + e <L]1%+a + LRQ)
[J(Qm)] e
nlJ%a ’

2
<
v

-0

with probability at least 1 — 4. |

A careful study of the proof of Theorem 11 and the auxiliary results used in it reveals
that one can indeed reuse a single data set in all iterations. Recall that at the k' iteration of
an API procedure such as REG-LSPI, the policy m = 7y, is the greedy policy w.r.t. Q(kfl),
so it depends on earlier data sets. This implies that a function such as T”Q = Tﬁ('?Q(kil))Q
is random with two sources of randomness: One source is the data set used in the current
iteration, which defines the empirical loss functions. This directly affects . The other
source is 7(+; Q(k_l)), which depends on the data sets in earlier iterations. When we assume
that all data sets are independent from each other, the randomness of m does not cause any
problem because we can work on the probability space conditioned on the data sets of the
earlier iterations. Conditioned on that randomness, the policy @ becomes a deterministic
function. This is how we presented the statement of Theorem 11 by stating that 7 is fixed.
Nonetheless, the proofs can handle the dependence with no change. Briefly speaking, the
reason is that when we want to provide a high probability upper bounds on certain random
quantities, we take the supremum over both Q and T”Q and consider them as two separate
functions, even though they are related through a random T™ operator.

To see this more clearly, notice that in the proof of Lemma 15, which is used in the
proof of this theorem, we define the function spaces G; that chooses the functions h, ), and
T™(Q separately. We then take the supremum over all functions in G;. This means that for
the probabilistic upper bound, the randomness of 7 in T™() becomes effectively irrelevant
as we are providing a uniform over G; guarantee. In the proof of this theorem, we also use
Lemma 19, which itself uses Theorem 16 and Lemma 21 that have a similar construct.

Appendix C. Proof of Lemma 15 (Convergence of h,(-;Q) to T7Q)

The following lemma, quoted from Gyorfi et al. (2002), provides an exponential probability
tail inequality for the relative deviation of the empirical mean from the true mean. A
slightly modified version of this result was published as Theorem 2 of Kohler (2000). This
result is used in the proof of Lemmas 15 and 21.

Lemma 22 (Theorem 19.3 of Gyorfi et al. 2002) Let Z,Zy,--- , Z, be independent and
identically distributed random variables with values in Z. Let0 < e <1 andn > 0. Assume
that K1, K9 > 1 and let F be a permissible class of functions f : Z — R with the following
properties:

(A1) [[flloo < K1,

(A2) E[f(2)*] < KRE[f(2)],
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(A3) \/ﬁ6x/ 1-— 6\/ﬁ Z 288 max{?Kl, \/2K2},
(A4) Forall z1, -+ ,z, € Z and all § > n/8,

Vne(l—¢)d
96v2max{K1,2K>} —

Vs 1
/ c(1-2)s 1OgN2 u, {f e F: E ZfQ(Z’L) S 165}721171 du.

16 max{K,2Ko} i=1

Then
P{sup ‘E[f(z)]_ﬁZz 1 f(Z )‘ >8} < 60exp (_ n7752(1—€) >

feF n+E[f(Z)] 128 x 2304 max{K?, Ko}

Let us now turn to the proof of Lemma 15. This proof follows similar steps to the proof of
Theorem 21.1 of Gyorfi et al. (2002).

Proof [Proof of Lemma 15] Without loss of generality, assume that Qmax > 1/2. Denote
z = (z,a) and let Z = (X,A) ~ v, R ~ R(-|X,A4), and X’ ~ P(-|X,A) be random
variables that are independent of D, = {(X;, A4;, R;, X])},. Define the following error
decomposition

/XXA

hn(2.Q) = T™Q(2)

2dl/(Z)ZIE[iLn(Z;Q) [R+~Q(X H ]

E|[T"Q(2) = [R+ QX m(x))]|’

=L+ I,
with
3= 1 3 n5Q) = 1K = = 70 [k )+
Mo (k@) + (@) + 2T7Q))
Iy =E [ ha(Z;Q) — T7Q(Z ’ ‘T”Q T”f@(Z)’2 Dn} .

By the optimizer property of ﬁn(, Q), we get the following upper bound by substituting
hn(+; Q) with T7Q € FIAL:

I, < 2[ ‘T”Q T7Q(Z;) g ‘TWQ(Zi) —T7Q(Z;) : +
M (JHTTQ) + J2(Q) + JA(T™Q))
= A J2(TTQ) + 200 T (Q). (53)
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We now turn to upper bounding P{ls,, > t}. Given a policy = and functions h, Q, Q' €
FIA for w = (z,a,r,2") define g : X x AXx R x X — R as

Q@ W) = [h(z) = [r +1Q w(2)] " = |Q'(2) — [r +1Q, w(«))]|*.

Note that D (+0),QT7Q is the function appearing in the definition of I,. Define the
following function spaces for I =0,1,...:

2lt
G = {gh,«g,a XX AXRXX =R h,QQ € FAL2(R), JHQ), A(Q) < } .
h,n

Denote W = (X, A, R, X') and W; = (X;, A;, R;, X!). Apply the peeling device to get

P{lypm >t} <> P(Hh, Q € FAL 2120y < 20 (J2(B) + T2(Q) + JHTTQ)) < 27F1t;
=0

ot E [gh,q,77q(W)|Dy] — nZZ 1 9n,Q, 1 Q(W;) >}
h D]

t+ 22X (J2(h) + J2(Q) + J2(T7Q)) + E [gn,o(W
( l9(W)I D] — % 311 g(W) 1)_
gEgl

I+ E [g(W)[Dy] ~ 3

Mg

Here we used the simple fact that if 2\, ,, (JZ(h) + J4Q) + JA(T™Q)) < 21, then J?(h),
J2(Q), and J%(T™Q) are also less than A , 80 gh.Q1Q € G-

We study the behavior of the I*! term of the above summation by verifying the conditions
of Lemma 22—similar to what we did in the proof of Lemma 21.

It is easy to verify that (A1) and (A2) are satisfied with the choice of K1 = Ky = 4Q?
Condition (A3) is satisfied whenever

max*
1

t>— o4

>4, (54)

for some constant ¢; > 0 depending on Qmax (the constant can be set to ¢y = 2 ><46082Qmax)
To verify condition (A4), we first require an upper bound on Ns(u,G;, w1.,) for any
sequence wi.,. This can be done similar to the proof of Lemma 20: Denote F; = {f : f €

l
F,J3(f) < /\Zh—tn} For gn, .0, 7701 9hs,Qs. 770, € G1 and any sequence wy., we have

1o 9
9 Z ‘gh1,Q17T"Q1 (w;) — Ih2,Q2,T™ Q2 (wi)]
=1
n

<12(2+79)° maxi > [\hl(z,-) — ha(2)* + 492 |Qu (], m(2})) — Qa(af, m(x))|* +

=1
T7Q1(2i) — T”Q2(Zi)!2}
< 12(2—’_7 max ZZ |:‘h1 Ly, a hQ(x“ )’2_'_472‘@1(‘%;7@) —QQ(Z‘;,G)‘Q—F
i=1 a€A

T™Q1 (i, a) — T”Qz(xi,a)ﬁ]
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With the same covering set argument as in the proof of Lemma 20, we get that for any
u > 0,

No(18+/2| A|Quax t, Gi, wim) < Na(u, Fiy 1.0) A 5 No(u, Fi, 2, ) 5 No(u, Fry z1.0) A

Evoke Assumption A4 to get

2l \ @
log N (1, G, 1) < (1AL, Ormse) (Ah> w2,

Plugging this covering number result into condition (A4), one can verify that the con-

dition is satisfied if .
> 2

55
n)\g’n’ (55)

for a constant ¢y > 0, which is only a function of Quax and |A|. Therefore, Lemma 22
indicates that

S (2't)(1/4)(1/2)
P{l, >t} < 60lz(;exp <— 198 % 2302 > maX{16anax74Q?nax}> < czexp(—cant). (56)

for some constants cs, cqy > 0.
Combining (53), (54), (55), and (56), we find that there exist ¢5,cs > 0 such that for
any n € N and 0 < § < 1, we have

h ’ 1 In(1/6
‘ hn(Q) N TWQ < 4)‘hv”J2(TWQ) + 2)‘h,n=]2(Q) +cs5 n\% + ¢cg n(n/ )
Y h,n
Here, c5 is only a function of Qmax and |A|, and cg is a function of Qmax- m

Appendix D. Proof of Theorem 16 (Empirical Error and Smoothness of

To prove Theorem 16, which is a modification of Theorem 10.2 by van de Geer (2000), we
first need to modify and specialize Lemma 3.2 by van de Geer (2000) to be suitable to our
problem. The modification is required because @ in (33) is a random function in F4 as
opposed to being a fixed function as in Theorem 10.2 of van de Geer (2000).

Let us denote z = (z,a) € Z=XxAand Z' = (z,a,R, X') € Z/ = X x AXxR x X with
(R,X') ~ P(-,-|z,a). Let D,, denote the set {(z;,a;, R;, X!)}; of independent random
variables. We use z; to refer to (z;,a;) and Z! to refer to (x;,a;, R;, X]). Let P, be the
probability measure that puts mass 1/n on z1,...,2,, i.e., P, = %Z?:l dz,;, in which 9§, is
the Dirac’s delta function that puts a mass of 1 at z.

Denote G : Z — R and G’ : 2 — R3MI, which is defined as the set

g = { (Q,T7Q,1) : Q e FHA }

48



REGULARIZED PoOLICY ITERATION WITH NONPARAMETRIC FUNCTION SPACES

with 1 : X x A — RMI being a bounded constant function (and not necessarily equal
to 1). We use [|g]|,, to denote the supremum norm of functions in G. The supremum
norm of vector-valued functions in G’ is defined by taking the supremum norm over the
lso-norm of each vector. Similarly, the supremum norm of (g,¢') € G x G’ is defined by

19, 9 )l = max{llgll - 19"l 0 }
For g € G, we define |gl|, = (157 g%(2)]Y/2. To simplify the notation, we use

n
the following definition of the inner product: Fix n € N. Consider zi,...,2z, as a set of

points in Z, and a real-valued sequence w = (wi,...,wy,). For a function g € G, define
(w, g), = 5 i wig(zi).
For any ¢’ = (Q,T™Q, 1) € G', define the mapping W (¢')(z,a,7,2") : X x AXRx X — R

by W(g')(x,a,r,2") = r1+4Q(a',w(2')) —T™Q(z, a). For any fixed ¢’ € G'andi =1,...,n,
define the random variables W;(g') = W (¢')(Z!) and let W(g') denote the random vector
(Wi(g')...Wn(g)]". Notice that W;(g') can be re-written as W;(¢') = (R; — r(z)) +
QX' m(X")) — (P™Q)(z)), thus for any fixed ¢/, E[W;(¢')] = 0 (i = 1,...,n). For

notational simplification, we use a V b = max{a, b}.

Lemma 23 (Modified Lemma 3.2 of van de Geer 2000) Fiz the sequence (z;)}_, C
Z and let (Z))_, C Z' be the sequence of independent random variables defined as above.
Assume that for some constants 0 < R < L, it holds that sup,eg |9l p. < R, supyeg 19 [l 0o <

L, and |R;| < L (1 < i < n) almost surely. There exists a constant C' such that for all
0 < e < 9§ satisfying

R
Vn(§—e)>CL / log Noo(u, G x G)]V?du vV R| , (57)
®L
we have
1< n(d —e)?
P sup — Wi(gNg(z)| > 6 p < 4dexp <—>
{(g,g’)egxg’ n ; (9)9(z) 27 x 35(RL)?

The main difference between this lemma and Lemma 3.2 of van de Geer (2000) is that
the latter provides a maximal inequality for sup,cg % >, Wig(z), with W; being random
variables that satisfy a certain exponential probability inequality, while our result is a
maximal inequality for sup(, o/)egxgr LS Wilg)g(z), ie., the random variables W;(g')
are functions of an arbitrary ¢’ € G’. The current proof requires us to have a condition on
the metric entropy w.r.t. the supremum norm (cf. (57)) instead of w.r.t. the empirical Lo-
norm used in Lemma 3.2 of van de Geer (2000). The possibility of relaxing this requirement
is an interesting question. We now prove this result.
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Proof First, note that for any g1,92 € G, and ¢}, g5 € G’ (with the identification of ¢’ with
its corresponding @ and T7Q), we have

LS Wiz - Wil =
i=1

% Z(RZ — r(zi))(gl(zi) - 92(Zi)) +
i=1

%27 [(Qu(X}, m(X7)) — PTQ1(2:)) — (Q2(X{, m(X])) — P"Qa(2))] g1(z) +
i=1

S A QalXLw(XD) ~ PQa(z0)(91(21) — ga(z1)) <
=1

2L |91 — g2llp, + Y RIIQ1 — Q2llo + [|1PTQ1 = PT Q2] + 37vL [lg1 — g2llp, =
2+37)Lg1 = g2llp, T YR(Q1 = Q2o + RIIT7Q1 = T" Q2] » (58)

where we used the boundedness assumptions, the definition of the supremum norm, the
norm inequality + Y711 191(2i) — g2(2i)| < llg1 — g2/l p,» and the fact that |[yQ(X], 7(X])) —
YPTQ(z)| = |r(zi) +vQ(X[, m(X]))) = T™Q(z)| < (2+~)L < 3L for any L-bounded @ and
T7(@) to get the inequality. We used HP“QS - P“QS_IHOO =1 HT“QS —T7Qs ! HOO to get
the last equality.

Let {(g%,9;") ;-V:Sl with Ny = Nw(27°R,G x G’) be a minimal 27* R-covering of G x G’
w.r.t. the supremum norm. For any (g,¢") € G x G', there exists a (¢°, (Q°,T"Q*%,1)) =
(9°.9") € {(g5.95")}), such that [|(g,9") — (9%, 9*)ll.c < 27°R. This implies that both
1Q° = Qll,, and [|[T™Q* —T™Q|, are smaller than 27°R as well. Moreover, ||g° — g[|p <
lg° — gll.. <27°R. By (58) we get

% Y Wilg"®)g* (i) = Wilg)g(z)| < [(2+37)L + (1+7)R](27°R) < 3+ 47)L(2°R)
=1

<TRL27°.

Choose S = min{s > 1:27% < 71‘3L}, which entails that for any (g,¢') € G x G, the

covering set defined by {(ng , gé-s)}jyjl approximates the inner product of [g(z1)--- g(zn)]"
and W (g') with an error less than €. So it suffices to prove the exponential inequality for

25—5}.

n

1 s
~ > Wilg;")g; (1)
=1

P max
j=1,..,Ng
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We use the chaining technique (e.g., see van de Geer 2000) as follows (we choose ¢g° = 0,
so Wi(g")g%(z;) = 0 for all 1 < i < n):

n n S
LS W) ) = - 30D (Wilg ) () — Wilg ™" (=) =
=1 =1 s=1
S n
S5 SR = )@ ) — o ) +
s=1 i=1
L QXL (X)) — (P@) () — (@ (XL w(XD) — (PTQ ™) (=) 0°(21) +
=1

Because each of these summations consists of bounded random variables with expec-
tation zero, we may use Hoeffding’s inequality alongside the union bound to upper bound
them. To apply Hoeffding’s inequality, we require an upper bound on the sum of squared
values of random variables involved. To begin, we have |g°(2;) — ¢° ()| = |g°(2i) —
9(z) +9(z) —g° Nz)| <27°R+2-6"DR = 3x 27*R. Similarly, both Q% — QS_lHoo and
HT”QS —T7Q% ! HOO are smaller than 3 x 27°R. As a result, for the first term we get

S (B~ ()0 () — 9" (0] < 36(REY2
=1

For the second term we have

2

%Z v (@ (X, m(X7)) — (PTQ*)(2)) — (Q°TH(X}, m(X])) — (PTQ*1)(24))] 9°(2)]
=1

<29 [|Q - @+ T7Q - T2 | g3,
<2(1+~%3%(27°R)?R? < 36R*27%,

in which we used HP”QS — P”Qs_lHOO = HT”QS — T”Qs_lHOO. And finally,

1 g S— us S— S S— 2 —S
ﬁz V(@ THX m(X) — (PTQ () (9° () — 9" (24))]” < (BL)*3%(27°R)?
i=1
— 92(}{[/)227237
where we used the fact that |[yQ(X], 7(X])) — vP"Q(z)| < 3L for any L-bounded @ and
Q.

Let ns be a sequence of positive real-valued numbers satisfying 2;9:1 ns < 1. We continue
the chaining argument by the use of the union bound and the fact that NyNy 1 < N2 to
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get

( 2(8 — e)*nzn

B 2(8 — &)%nn n
4x 92(RL)22-%

S
<2 NeNerexp TIxPRIZ®

s=1

) + NsgNg_1 exp (

2(0 — E)Qngn
3 x 92(RL)22 25

NgNg_1exp <_

S
2(6 —e)’nn
< — .
< ;1 3exp (2 log Ny Tx 92(RL)205 (59)

Here the max(gs sy is over the corresponding covering set {(gj,g}s)};ygl, which has N;
elements (and the same for s — 1).
Choose
_ 32V6RL27%(log N,)Y/2  275/s
VR -9 8
Take C' in (57) sufficiently large such that

(60)

S
V(s —e) 22 x32V6RLY 2 °[log No(2°R, G x G')]'/? v 72,/6logd RL.  (61)
s=1

It can be shown that by this choice of 75 and the condition (61), we have Zle ns < 1.

82,2
From (60), we have log Ny < %,
follows

S
n(6 — e)*n?
P < — 5 .
L= Z?;exp ( 2 x 35(RL)22-2s

s=1

so P; in (59) can be upper bounded as

52



REGULARIZED PoOLICY ITERATION WITH NONPARAMETRIC FUNCTION SPACES

Since ns > 27%,/s/8 too, we have

S ( )22 2s ¢ — 5)23
P<3d o —or s ) < BZeXp W(RL)2
s=1

n(6—¢)?
< 3exp (_ 27X(3s(pr)2> n(§ —e)? )

n(6—e)2 27 x 35(RL)?2
1 —exp (—27X35(§%L)2> x 3°(RL)

where in the last inequality we used the assumption that /n(6 —e) > 72y/6log4 RL

(cf. (61)).
One can show that (61) is satisfied if

R
V(s —e) > 36\/6L/ llog Noo(u, G x G)]V2du v 72+/6log4 RL,

28L

so C can be chosen as C' = 724/6 log 4. |

The following lemma, which is built on Lemma 23, is a result on the behavior of the

modulus of continuity and will be used in the proof of Theorem 16. This lemma provides a

KW (g"):9)ml

high-probability upper bound on SUD(g,4)€G X G/ W

Here J(g,¢') is a regularizer

that is defined on G x G’ and is a pseudo-norm.
This result is similar in spirit to Lemma 8.4 of van de Geer (2000), with two main
differences: The first is that here we provide an upper bound on

(W (g),9),]
(@.9)e6xa gl J*(g.9)

whereas in Lemma 8.4 of van de Geer (2000), the upper bound is on

w
p LV 000
w5 lgll5,

The normalization by || gH};;a J%(g,¢’) instead of || gH};:a is important to get the right error
bound in Theorem 16. The other crucial difference is that here W are random variables
that are functions of ¢’ € G, while the result of van de Geer (2000) is for independent W.
The proof technique is inspired by Lemmas 5.13, 5.14, and 8.4 of van de Geer (2000).

Lemma 24 (Modulus of Continuity for Weighted Sums) Fix the sequence (z;)}_; C
Z and define P, = 230 6., Let (Z))’., C Z' be the sequence of independent ran-
dom wvariables defined as before. Assume that for some constant L > 0, it holds that
supyeg l9llp, < L, supgeg 9l < L, and |R;| < L (1 < i < n) almost surely. Fur-
thermore, suppose that there exist 0 < a < 1 and a finite constant A such that for all
u >0,
B 2a
log e (1. (0:6) €6 % 6"+ g < B <A ()

U
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Then there exists a constant ¢ > 0 such that for any 0 < § < 1, we have

(W), )yl prva, W)

— i

(9.9)€GxG’ HQHEQ J*(9,9") n

with probability at least 1 — 6.

Proof The proof uses double-peeling, i.e., we peel on both J(g,g’) and ||g||p . Without
loss of generality, we assume that L > 1. We use c¢1, ¢o, ... > 0 as constants. First, we start

by peeling on J(g,d’):
/
5ép{ s |uw9»gn|>t}

(9.9')€GXG’ ||9||}3;a J*(g,9")

< EOO:P sup W9 90l >1.2%, 2Ty < J(g,9') < 25+l (62)
— — — M ) S — ? *
= | wereoxa  lgllp” >

Let us denote each term in the RHS by d,. To upper bound ds, notice that by assumption
lgllp, < L. For each term, we peel again, this time on ||g||» , and apply Lemma 23:

Wi(g'). g
55 S ZP sup w Z 78728]1{57é0} S J(g,g,) < 23+1’
>0 (9:9")€G %G’ 9l 5,

o—(r+1), - lgllp, < 2—rL}

< ZP{ sup  [(W(d), ), >s (2‘(’"+1)L) " J(g.9) < 2 gl p, < 2‘TL}
>0 (9,9")€GXG’
n [7‘5 (2_(7”+1)L)17a}2

< dexp | —
g 27 x 35 (2-TL)* L2

92ro: m’f clm'S2
—§4exp <_27 x 35 x 22(1—a)L2(1+a)) = C26Xp <_L2(1+a)> ' (63)

The last inequality holds only if the covering number condition in Lemma 23 is satisfied,

which is the case whenever
2°"L 25+1 «
/ \/Z< ) du V2L
0 u

Substituting 7, = 2%t and solving the integral, we get that the condition is
\/ﬁt 2a3(27(r+1)L)17a > CL\/Z [(2s+1)a(2er)1fa V 277“L] ?

which would be satisfied for
CLVA2' e gl-egplte Lite
t> V =c3 .
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Plug (63) into (62) to get that
cin t? 228 cnt?
5 < E C2 eXp < L2(1+a) =C4 eXp —m .

Solving for 4, we have t < C5L1+a\/ (1/ 9 with probability at least 1 — §. This alongside
the condition (64) lead to the desired result [ |

Let us turn to the proof of Theorem 16. The proof is similar to the proof of Theorem 10.2
by van de Geer (2000), but with necessary modifications in order to get a high probability
upper bound that holds uniformly over ). We discuss the differences in more detail after
the proof.

Proof [Proof of Theorem 16] Recall that in the optimization problem, we use w; =

(X;, Ai, Ri, X!) (i = 1,...,n) to denote the i*® elements of the data set D,, = {(X;, 4;, R;, X))},

Also for a measurable function f: X Xx A x R x X — R, we denote ||f|]i =150 f(ws)
We also let (X, A) ~v, R~ R(:|X,A), and X’ ~ P(:|X, A) be random variables that are
independent of D,.

For any Q € Fl and the corresponding T77Q € FI, define the mapping W(Q,T"Q,1) :
XXxAXRXxX - Rby W(Q, T"Q,1)(X, A, R, X") = R1+4Q(X',n(X")) - T"Q(X, A), in
which 1 € FMI is the constant function defined on X x A with the value of one. For any fixed
Q and i = 1,...,n, define the random variables W;(Q) = W(Q,T™Q, 1)(X;, A;, R;, X!) and
let W(Q) denote the random vector [Wl(Q) - Wo(Q)]T. Notice that [Wi(Q)| < 3Qmax,
and we have E [W;(Q) | Q] =0 (i=1,...,n).

From the optimizer property of h, = h (-,Q), we have

[in(@) = [ + 5 QU m(X||” + M2 (@) <
[77Q ~ R+ 1Q(XL A (XD} + AT (T7Q).

After expanding and rearranging, we get

n(Q) —

—+Ath(Enum)f§2<IV(Q),Bn@w——TWQ>n—+Ath%TWQ) (65)

We evoke Lemma 24 to upper bound )< w(Q), ﬁn(Q) — T”Q> ‘ The function spaces
n
G and G in that lemma are set as G: X x A >R and G’ : X x A x R x X — R3 with

g:{h—T”Q : h,Qef'A|},
- { (Q,T7Q,1) : Q. T"Q e f|A|}.

All functions in FMI are Qmax-bounded, so the functions in G and G’ are bounded by

2Qmax and (Qmax, @max, 1), respectively. Moreover for any g € G, %Z?:l lg( X5, Ay)]? <
4Q2... So by setting L equal to 2Qmuax in that lemma, all boundedness conditions are
satisfied.
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Define J(g,¢') = J(h) + J(Q) + J(T™Q) and denote
GxG)={(9.9)€G*xG :J(g,9)<B}.

Lemma 24 requires an upper bound on log N (u, (G x G') ). We relate the metric entropy
of this space to that of Fg = { f € F : J(f) < B}, which is specified by Assumption A4.

Notice that if J(g,¢’) < B, each of J(h), J(Q), and J(T7Q) is also less than or equal
to B. So we have

(G xG)p = { (h—T7Q,Q,T7Q,1) : h,Q,T™Q € FMI, J(h) + J(Q) + J(I™Q) < B} c
{h—T”Q R, TTQ € FMIL J(h) + J(T™Q) < B} x {Q Qe FHA Q) < B x
{T”Q L T7Q e FMI J(17Q) < B} x {1}

Because J(-) is a pseudo-norm, we have J(h — T7Q) < J(h) + J(I™Q), so

{h—T“Q R, T™Q € FMIL J(h) + J(T™Q) gB} c {Q Qe FHA Q) gB}.

As aresult (G x G')p is a subset of the product space { Qe FA: JQ) <B }3. Therefore
by the usual covering argument, we get that

log Nao (1, (G X G') ) < 3log N <u { QeFA . Q) <B }) .

It is easy to see that for finite |A|, if logNoo(u, {f € F : J(f) < B}) < C(£)%, then
log Noo (u, {(f1,- -+ fla) € FHA J((fr.---5 fia)) < B}) < Ci(2)* (we benefit from
the condition J(Q(-,a)) < J(Q) in Assumption A3; the proof is similar to the proof of
Lemma 20 in Appendix E). Here the constant C; depends on |A|. This along with the
previous inequality show that for some constant A > 0, we have

B 2a
log Noo (u, (G x G')p) < A (u) )
We are ready to apply Lemma 24 to upper bound the inner product term in (65). Fix
§ > 0. To simplify the notation, denote Ly, = ||hn(Q) — T™Q||n, set to = %, and use

hu, to refer to ﬁn(Q) There exists a constant ¢ > 0 such that with probability at least 1 —4,
we have

L2 + Apnd?(hn) < 2eL1Fo L1 (J(i%n) Q) + J(T”Q))a to + A2 (T7Q).  (66)

FEither the first term in the RHS is larger than the second one or the second term is larger
than the first. We analyze each case separately.
Case 1. 2cL'TLL=2(J(h,) + J(Q) + J(T™Q))%0 > AppnJ?(T7Q). In this case we have
~ ~ [e3
L2 + Apnd?(hn) < dcLitopl—o (J(hn) +J(Q) + J(T”Q)) to. (67)

Again, two cases might happen:
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Case l.a. J(h,) > J(Q) + J(IT™Q): From (67) we have L2 < 22tecltepl-ajo(p io

o P
Solving for L,, we get that L, < Q%CﬁL[J(hn)]mtém. From (67) we also have
M d?(hy) < 22Tt pl=a Jo (b, )to. Plugging-in the recently obtained upper bound on

L,, and solving for J(hy), we get that

. 22+aCL1+at
I(hn) < ——— (68)

Ahn
Substituting this in the upper bound on L,,, we get that
22+acL1+at0

L, < =
2
)\h,n

(69)

Case 1.b. J(h,) < J(Q) + J(T™Q): The upper bound on J(h,,) is obvious. From (67) we
have L2 < 22FocLitepl=a(J(Q) + J(T™Q))" to. Solving for L,, we obtain

a a _1
Ly < 2TFacia L (J(Q) + J(T™Q))Ta 1= (70)

Case 2. 2cL'LLI=%(J(hy) + J(Q) + J(T™Q))%to < MnJ?(TTQ). In this case we have
L2 + Mond?(hn) < 2\, J*(T™Q), which implies that

Ln < /22 (TTQ), (71)
J(hy) < V2J(T™Q). (72)

~

By (69), (70), and (71) for L,, and (68), (72), and the condition J(h,) < J(Q)+J(T™Q)

~

in Case 1.b. for J(h,), we have that for any fixed 0 < § < 1, with probability at least 1 —d,
the following inequalities hold:

; 92+acpl+a, /In(l/9)
N e
' A
2He T L (J(Q) + J(T7Q)) T <ln(711/5)) 2T ’
VB0
“ 92+a .1 1+ In(1/6)
QNS Q)+ I(TTQ), VI (TQ)

2
Ah,n

Comparing this proof with that of Theorem 10.2 by van de Geer (2000), we see that
here we do not normalize the function space G x G’ to ensure that J(g,¢’) < 1 and then
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(W, g)nl
lgllp,
(W (g),9),l

oI5, 72 (.97 "

the (unnormalized) function space G x G'. If we went through the former approach, in which

the normalization is global, the first term in the RHS of (66) would be LL=%(J(hy)+J(Q)+

J(T™Q)) ¢ty instead of LL1=2(J(hy) + J(Q) + J(T™Q))q of here, which is obtained by

A~

local normalization. This extra J(h,) + J(Q) + J(T™Q) would prevent us from getting

proper upper bounds on L, and J(h,) in Case 1l.a above. The reason that the original
proof does not work is that here W (g’) is a function of ¢’ € G'.

use their Lemma 8.4, which provides a high-probability upper bound on sup,cg

Instead we directly apply Lemma 24, which upper bounds sup, snegxgr

Appendix E. Proof of Lemma 20 (Covering Number of G, ,,)

Here we prove Lemma 20, which relates the covering number of G,, 5, to the covering
number of F;, and Fy,.
Proof [Proof of Lemma 20] Let g9, h,, 9Qs.hs € Go1,0.- By the definition of G4, 4, (41), the

functions @)1 and h; corresponding to g, n, satisfy Q1 € ft‘f‘ and hy € ftl,’él (and similarly
for Q2 and hg). Set z; = (z;,a;). We have

1 n
=S 9@u (30) — gunal20)
i=1

= 7112 [(Q1(zi) — h1(2:))? — (Q2(2:) — hg(zi))z]2

n

< 16Qmr D [(@1(21) — Qaa0)) + (hn(=0) — o)
i=1
n |A|

< 32 SO0 (@) = Qag))? o (i) — o))
i=1 j=1

Assumption A3 implies that for Q1,Q2 € .7-}',’;”, the functions @1 j,Q2,; are in F,, and

for hi,he € .7-"),“;”, the functions hy j, ho ; are in F,,—for all j =1,---,|A|. Therefore the
previous inequality shows that u-covers on Q; € F5, and hj € F,, (forj =1,--- ,|A|) w.r.t.
the empirical norms |-, ~define an 8Qmax+/[A| u-cover on Gy, 5, w.r.t. |||, . Thus,

NQ (8Qmax V ‘A‘U, GU1,027 (15,(1)1:”) < NQ (u,f01,$1;n)|A| X NQ (uafagyxlzn)lAl .

Assumption A4 then implies that for a constant c¢;, independent of u, |A|, Qmax, and «,
and for all ((z1,a1),...,(zn,an)) € X X A we have

logNQ(U, G017027 (x7 a)lln) < cl‘A‘H_a 121?;;( (U? + 03) u72a'
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Appendix F. Convolutional MDPs and Assumption A7

In this appendix, we show that Assumption A7 holds for a certain class of MDPs. This
class is defined by one dimensional MDPs in which the increment of the next X’ compared
to the current state X is a function of chosen action only, i.e., X' — X ~ W (w(X)).

Proposition 25 Suppose that X = [—m, 7| is the unit circle and F is the Sobolev space
WHE(X) = WE2(X) and J(-) is defined as the correspondmg norm - Hwk 2. For a function
feF, let f( ) be the n'* Fourier coefficient, i.e., = f f(z)e="*dx. Consider

the MDPs that have the convolutional transition p'robabzlzty kernel that is, for any policy
mand V € F, there exists Kr(x,y) = Kz(x — y) such that

/ P(dy|z, m(x /K x—y)V(y)dy = K % V.
X

Moreover, assume that K.,V € Li(X). For a given policy w, let r™(x) = r(z,n(x)) (v €
X). Assumption A7 is then satisfied with the choice of Lr = sup, [[r"||yyre and Lp =
sup, maxy, |K.(n)|.

Proof By the convolution theorem, (K *V)(n =(n) V(n). It is also known that for
Ve F, we have V|22 =32 (1+n2)" |f/(n)y2. Thus,

n=—oo

(e 9] [e.9]

1K+ Ve = Y (L+ ) [Kx(n) PV (n)]? < maXIffn(n)lg} Y [PV ()

n=—oo n=—oo

max | K (n)[2] [V ez

Therefore, || T7V |\yr2 < |77 [ yr2 +7 {maxn ]f(}r(n)\] [V Il,yr.2. Taking supremum over all
policies finishes the proof. |

The interpretation of max, |[K,(n)| is the maximum gain of the linear filter K, that is
applied to a value function V. The gain here is explicitly written in the frequency domain.

Appendix G. The Metric Entropy and the Covering Number

Definition 26 (Definition 9.3 of Gyorfi et al. 2002) Let ¢ > 0, F be a set of real-
valued functions defined on X, and vy be a probability measure on X. Fvery finite collection
of Ne = {f1,...,fn.} defined on X with the property that for every f € F, there is a
function f" € N. such that ||f — f'|,,, < € is called an e-cover of F w.r.t. |-[|,,, - Let
N (e, Fillllp,) be the size of the smallest e-cover of F w.r.t. |||, .- If no finite e-cover
evists, take N'(e, F, |||, ,,,) = oo. Then N(e,F,||l,,,.) is called an e-covering number of
F andlog N (e, F, ||ll,,,) is called the metric entropy of F w.r.t. the same norm.

The e-covering of F w.r.t. the supremum norm ||-||  is denoted by N (e, F). For z1., =
(1,...,2,) € X™, one may also define the empirical measure vy ,(A) = 1 3", [{y,ecay for
A C X. This leads to the empirical covering number of F w.r.t. the empirical norm ||-||,, . -
and is denoted by N, (e, F,x1.p). If X1, = (X1, ..., X,,) is a sequence of random variables,
the covering number N, (e, F, X1.,) is a random variable too.
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