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Variance-Constrained Actor-Critic Algorithms for Discounted
and Average Reward MDPs

Prashanth L.A.† · Mohammad Ghavamzadeh]

Abstract In many sequential decision-making problems we may want to manage risk by
minimizing some measure of variability in rewards in addition to maximizing a standard
criterion. Variance related risk measures are among the most common risk-sensitive criteria
in finance and operations research. However, optimizing many such criteria is known to be
a hard problem. In this paper, we consider both discounted and average reward Markov de-
cision processes. For each formulation, we first define a measure of variability for a policy,
which in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria,
we derive a formula for computing its gradient. We then devise actor-critic algorithms that
operate on three timescales - a TD critic on the fastest timescale, a policy gradient (actor)
on the intermediate timescale, and a dual ascent for Lagrange multipliers on the slowest
timescale. In the discounted setting, we point out the difficulty in estimating the gradient of
the variance of the return and incorporate simultaneous perturbation approaches to alleviate
this. The average setting, on the other hand, allows for an actor update using compatible
features to estimate the gradient of the variance. We establish the convergence of our algo-
rithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of
our algorithms in a traffic signal control application.

Keywords Markov decision process (MDP) · reinforcement learning (RL) · risk sensitive
RL · actor-critic algorithms · multi-time-scale stochastic approximation · simultaneous
perturbation stochastic approximation (SPSA) · smoothed functional (SF).

1 Introduction

The usual optimization criteria for an infinite horizon Markov decision process (MDP) are
the expected sum of discounted rewards and the average reward [50, 5]. Many algorithms
have been developed to maximize these criteria both when the model of the system is known
(planning) and unknown (learning) [7, 64]. These algorithms can be categorized to value
function-based methods that are mainly based on the two celebrated dynamic program-
ming algorithms value iteration and policy iteration; and policy gradient methods that are
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based on updating the policy parameters in the direction of the gradient of a performance
measure, i.e., the value function of the initial state or the average reward. Policy gradient
methods estimate the gradient of the performance measure either without using an explicit
representation of the value function (e.g., [73, 39, 4]) or using such a representation in which
case they are referred to as actor-critic algorithms (e.g., [65, 33, 44, 13, 14]). Using an ex-
plicit representation for value function (e.g., linear function approximation) by actor-critic
algorithms reduces the variance of the gradient estimate with the cost of adding it a bias.

Actor-critic methods were among the earliest to be investigated in RL [2, 62]. They com-
prise a family of reinforcement learning (RL) methods that maintain two distinct algorithmic
components: An Actor, whose role is to maintain and update an action-selection policy; and
a Critic, whose role is to estimate the value function associated with the actor’s policy. Thus,
the critic addresses a problem of prediction, whereas the actor is concerned with control. A
common practice is to update the policy parameters using stochastic gradient ascent, and to
estimate the value-function using some form of temporal difference (TD) learning [63].

However in many applications, we may prefer to minimize some measure of risk as well
as maximizing a usual optimization criterion. In such cases, we would like to use a criterion
that incorporates a penalty for the variability induced by a given policy. This variability can
be due to two types of uncertainties: (i) uncertainties in the model parameters, which is
the topic of robust MDPs (e.g., [43, 25, 74]), and (ii) the inherent uncertainty related to the
stochastic nature of the system, which is the topic of risk-sensitive MDPs (e.g., [31, 57, 28]).

In risk-sensitive sequential decision-making, the objective is to maximize a risk-sensitive
criterion such as the expected exponential utility [31], a variance related measure [57, 28],
the percentile performance [29], or conditional value-at-risk (CVaR) [52, 55]. Unfortunately,
when we include a measure of risk in our optimality criteria, the corresponding optimal pol-
icy is usually no longer Markovian stationary (e.g., [28]) and/or computing it is not tractable
(e.g., [28, 37]). In particular, (i) In [57], the author analyzed variance constraints in the
context of a discounted reward MDP and showed the existence of a Bellman equation for
the variance of the return. However, it was established there that the operator underlying
the aforementioned Bellman equation is not necessarily monotone. The latter is a crucial
requirement for employing popular dynamic programming procedures for solving MDPs.
(ii) In [38], the authors provide hardness results for variance constrained MDPs and in par-
ticular show that finding a globally mean-variance optimal policy in a discounted MDP is
NP-hard, even when the underlying transition dynamics are known. (iii) In [28], the authors
established hardness results for average reward MDP, with a variance constraint that differs
significantly from its counterpart in the discounted setting. Nevertheless, the variance con-
straint is well motivated considering the objective is to optimize a long-run average reward.
However, the mathematical difficulties in finding a globally mean variance optimal policy
remains, even with this altered variance constraint.

Although risk-sensitive sequential decision-making has a long history in operations re-
search and finance, it has only recently grabbed attention in the machine learning com-
munity. Most of the work on this topic (including those mentioned above) has been in
the context of MDPs (when the model of the system is known) and much less work has
been done within the reinforcement learning (RL) framework (when the model is unknown
and all the information about the system is obtained from the samples resulted from the
agent’s interaction with the environment). In risk-sensitive RL, we can mention the work by
Borkar [18, 19, 22] and Basu et al. [3] who considered the expected exponential utility, the
one by Mihatsch and Neuneier [41] that formulated a new risk-sensitive control framework
based on transforming the temporal difference errors that occur during learning, and the one
by Tamar et al. [68] on several variance related measures. Tamar et al. [68] study stochastic
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shortest path problems, and in this context, propose a policy gradient algorithm (and in a
more recent work [67] an actor-critic algorithm) for maximizing several risk-sensitive crite-
ria that involve both the expectation and variance of the return random variable (defined as
the sum of the rewards that the agent obtains in an episode).

In this paper,1 we develop actor-critic algorithms for optimizing variance-related risk
measures in both discounted and average reward MDPs. In the following, we first summarize
our contributions in the discounted reward setting and follow it with those in average reward
setting.

Discounted reward setting. Here we define the measure of variability as the variance of the
return (similar to [68]). We formulate the following constrained optimization problem with
the aim of maximizing the mean of the return subject to its variance being bounded from
above: For a given α > 0,

max
θ

V θ(x0) subject to Λθ(x0) ≤ α.

In the above, V θ(x0) is the mean of the return, starting in state x0 for a policy identified
by its parameter θ, while Λθ(x0) is the variance of the return (see Section 3 for precise
definitions). A standard approach to solve the above problem is to employ the Lagrangian
relaxation procedure [6] and solve the following unconstrained problem:

max
λ

min
θ

(
L(θ, λ)

4
= −V θ(x0) + λ

(
Λθ(x0)− α

))
,

where λ is the Lagrange multiplier. For solving the above problem, it is required to derive a
formula for the gradient of the Lagrangian L(θ, λ), both w.r.t. θ and λ. While the gradient
w.r.t. λ is particularly simple since it is the constraint value, the other gradient, i.e., w.r.t. θ
is complicated. We derive this formula in Lemma 1 and show that ∇θL(θ, λ) requires the
gradient of the value function at every state of the MDP (see the discussion in Sections 3
and 4).

Note that we operate in a simulation optimization setting, i.e., we have access to reward
samples from the underlying MDP. Thus, it is required to estimate the mean and variance
of the return (we use a TD-critic for this purpose) and then use these estimates to compute
gradient of the Lagrangian. The latter is used then used to descend in the policy parameter.
We estimate the gradient of the Lagrangian using two simultaneous perturbation methods:
simultaneous perturbation stochastic approximation (SPSA) [58] and smoothed functional
(SF) [32], resulting in two separate discounted reward actor-critic algorithms. In addition,
we also propose second-order algorithms with a Newton step, using both SPSA and SF.

Simultaneous perturbation methods have been popular in the field of stochastic opti-
mization and the reader is referred to [17] for a textbook introduction. First introduced
in [58], the idea of SPSA is to perturb each coordinate of a parameter vector uniformly
using a Rademacher random variable, in the quest for finding the minimum of a function
that is only observable via simulation. Traditional gradient schemes require 2κ1 evaluations
of the function, where κ1 is the parameter dimension. On the other hand, SPSA requires only
two evaluations irrespective of the parameter dimension and hence is an efficient scheme,
especially useful in high-dimensional settings. While a one-simulation variant of SPSA was
proposed in [59], the original two-simulation SPSA algorithm is preferred as it is more ef-
ficient and also seen to work better than its one-simulation variant. Later enhancements to

1 This paper is an extension of an earlier work by the authors [48] and includes novel second order methods
in the discounted setting, detailed proofs of all proposed algorithms, and additional experimental results.
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the original SPSA scheme include using deterministic perturbation using certain Hadamard
matrices [12] and second-order methods that estimate Hessian using SPSA [60, 8]. The SF
schemes are another class of simultaneous perturbation methods, which again perturb each
coordinate of the parameter vector uniformly. However, unlike SPSA, Gaussian random
variables are used here for the perturbation. Originally proposed in [32], the SF schemes
have been studied and enhanced in later works such as [61, 9]. Further, [16] proposes both
SPSA and SF like schemes for constrained optimization.

Average reward setting. Here we first define the measure of variability as the long-run
variance of a policy as follows:

Λ(θ) = lim
T→∞

1

T
E

[
T−1∑
n=0

(
Rn − ρ(µ)

)2∣∣∣∣∣ θ
]
,

where ρ(θ) is the average reward under policy identified by its parameter θ (see Section
5 for precise definitions). The aim here is to solve the following constrained optimization
problem:

max
θ

ρ(θ) subject to Λ(θ) ≤ α.

As in the discounted setting. we derive an expression for the gradient of the Lagrangian
(see Lemma 3). Unlike the discounted setting, we do not require sophisticated simulation
optimizations schemes, as the gradient expressions in Lemma 3 suggest a simpler alternative
that employs compatible features [65, 44]. Compatible features for linearly approximating
the action-value function of policy θ are of the form∇ logµ(a|x). These features are well-
defined if the policy is differentiable w.r.t. its parameters θ. Sutton et al [65] showed the
advantages of using these features in approximating the action-value function in actor-critic
algorithms. In [14], the authors use compatible features to develop actor-critic algorithms
for a risk-neutral setting. We extend this to variance-constrained setting and establish that
the square value function itself serves as a good baseline level when calculating the gradient
of the average square reward (see the discussion surrounding Lemma 4). This facilitates the
usage of compatible features for obtaining unbiased estimates of both average reward as well
as square reward. We then develop an actor-critic algorithm that employ these compatible
features in order to descend in the policy parameter θ and also identify the bias that arises
due to function approximation (see Lemma 5).

Proof of convergence. Using the ordinary differential equations (ODE) approach, we estab-
lish the asymptotic convergence of our algorithms to locally risk-sensitive optimal policies
and in the light of hardness results from [38], this is the best one can hope to achieve. Our
algorithms employ multi-timescale stochastic approximation, in both settings. The conver-
gence proof proceeds by analysing each timescale separately. In essence, the iterates on a
faster timescale view those on a slower timescale as quasi-static, while the slower timescale
iterate views that on a faster timescale as equilibrated. Using this principle, we show that TD
critic (on the fastest timescale in all the algorithms) converge to fixed points of the Bellman
operator, for any fixed policy θ and Lagrange multiplier λ. Next, for any given λ, the policy
update tracks in the asymptotic limit and converges to the equilibria of the corresponding
ODE. Finally, λ updates on slowest timescale converge and the overall convergence is to a
local saddle point of the Lagrangian. Moreover, the limiting point is feasible for the con-
strained optimization problem mentioned above, i.e., the policy obtained upon convergence
satisfies the constraint that the variance is upper-bounded by α.
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Simulation experiments. We demonstrate the usefulness of our discounted and average
reward risk-sensitive actor-critic algorithms in a traffic signal control application. On this
high-dimensional system with state space ≈ 1032, the objective in our formulation is to
minimize the total number of vehicles in the system, which indirectly minimizes the delay
experienced by the system. The motivation behind using a risk-sensitive control strategy is
to reduce the variations in the delay experienced by road users. From the results, we observe
that the risk-sensitive algorithms proposed in this paper result in a long-term (discounted
or average) cost that is higher than their risk-neutral variants. However, from the empirical
variance of the cost (both discounted as well as average) perspective, the risk-sensitive algo-
rithms outperform their risk-neutral variants. Moreover, the experiments in the discounted
setting also show that our SPSA based actor-critic scheme outperforms the policy gradient
algorithm proposed in [68], both from a mean-variance as well as gradient estimation stand-
points. This observation justifies using the actor-critic approach for solving risk-sensitive
MDPs, as it reduces the variance of the gradient estimated by the policy gradient approach
with the cost of introducing a bias induced by the value function representation.

Remark 1 It is important to note that both our discounted and average reward algorithms
can be easily extended to other variance related risk criteria such as the Sharpe ratio, which
is popular in financial decision-making [54] (see Remarks 3 and 7 for more details).

Remark 2 Another important point is that the expected exponential utility risk measure can
be also considered as an approximation of the mean-variance tradeoff due to the following
Taylor expansion (see e.g., Eq. 11 in [41])

− 1

β
logE[e−βX ] = E[X]− β

2
Var[X] +O(β2),

and we know that it is much easier to design actor-critic or other reinforcement learning
algorithms [18, 19, 3, 22] for this risk measure than those that will be presented in this
paper. However, this formulation is limited in the sense that it requires knowing the ideal
tradeoff between the mean and variance, since it takes β as an input. On the other hand, the
mean-variance formulations considered in this paper are more general because
(i) we optimize for the Lagrange multiplier λ, which plays a similar role to β, as a tradeoff
between the mean and variance, and
(ii) it is usually more natural to know an upper-bound on the variance (as in the mean-
variance formulations considered in this paper) than knowing the ideal tradeoff between the
mean and variance (as considered in the expected exponential utility formulation).
Despite all these, we should not consider these formulations as replacement for each other
or try to find a formulation that is the best for all problems, but instead should consider them
as different formulations that each might be the right fit for a specific problem.

Closely related works. In comparison to [68] and [67], which are the most closely related
contributions, we would like to point out the following:
(i) The authors develop policy gradient and actor-critic methods for stochastic shortest path
problems in [68] and [67], respectively. On the other hand, we devise actor-critic algorithms
for both discounted and average reward MDP settings; and
(ii) More importantly, we note the difficulty in the discounted formulation that requires to
estimate the gradient of the value function at every state of the MDP and also sample from
two different distributions. This precludes us from using compatible features - a method that
has been employed successfully in actor-critic algorithms in a risk-neutral setting (cf. [14])
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as well as more recently in [67] for a risk-sensitive stochastic shortest path setting. We alle-
viate the above mentioned problems for the discounted setting by employing simultaneous
perturbation based schemes for estimating the gradient in the first order methods and Hes-
sian in the second order methods, that we propose.
(iii) Unlike [68, 67] who consider a fixed λ in their constrained formulations, we perform
dual ascent using sample variance constrants and optimize the Lagrange multiplier λ. In rig-
orous terms, λn in our algorithms is shown to converge to a local maxima of ∇λL(θλ, λ)
(here θλ is the limit of the θ recursion for a given value of λ) and the limit λ∗ is such that
the variance constraint is satisfied for the corresponding policy θλ

∗
.

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we
describe the RL setting. In Section 3, we describe the risk-sensitive MDP in the discounted
setting and propose actor-critic algorithms for this setting in Section 4. In Section 5, we
present the risk measure for the average setting and propose an actor-critic algorithm that
optimizes this risk measure in Section 6. In Sections 7–8, we present the convergence proofs
for the algorithms in discounted and average reward settings, respectively. In Section 9, we
describe the experimental setup and present the results in both average and discounted cost
settings. Finally, in Section 10, we provide the concluding remarks and outline a few future
research directions.

2 Preliminaries

We consider sequential decision-making tasks that can be formulated as a reinforcement
learning (RL) problem. In RL, an agent interacts with a dynamic, stochastic, and incom-
pletely known environment, with the goal of optimizing some measure of its long-term per-
formance. This interaction is often modeled as a Markov decision process (MDP). A MDP
is a tuple (X ,A, R, P, x0) where X and A are the state and action spaces; R(x, a), x ∈
X , a ∈ A is the reward random variable whose expectation is denoted by r(x, a) =
E
[
R(x, a)

]
; P (·|x, a) is the transition probability distribution; and x0 ∈ X is the initial

state2. We assume that both state and action spaces are finite.
The rule according to which the agent acts in its environment (selects action at each

state) is called a policy. A Markovian stationary policy µ(·|x) is a probability distribution
over actions, conditioned on the current state x. The goal in a RL problem is to find a policy
that optimizes the long-term performance measure of interest, e.g., maximizes the expected
discounted sum of rewards or the average reward.

In policy gradient and actor-critic methods, we define a class of parameterized stochas-
tic policies

{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ1

}
, estimate the gradient of the performance

measure w.r.t. the policy parameters θ from the observed system trajectories, and then im-
prove the policy by adjusting its parameters in the direction of the gradient. Here Θ denotes
a compact and convex subset of Rκ1 . Our algorithms projects the iterates onto Θ, which en-
sures stability - a crucial requirement necessary for establishing convergence. Since in this
setting a policy µ is represented by its κ1-dimensional parameter vector θ, policy dependent
functions can be written as a function of θ in place of µ. So, we use µ and θ interchangeably
in the paper.

We make the following assumptions on the policy, parameterized by θ:

2 Our algorithms can be easily extended to a setting where the initial state is determined by a distribution.
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(A1) For any state-action pair (x, a) ∈ X ×A, the policy µ(a|x; θ) is continuously differ-
entiable in the parameter θ.
(A2) The Markov chain induced by any policy θ is irreducible.

The above assumptions are standard requirements in policy gradient and actor-critic
methods.

Finally, we denote by dµ(x) and πµ(x, a) = dµ(x)µ(a|x), the stationary distribution
of state x and state-action pair (x, a) under policy µ, respectively. The stationary distri-
butions can be seen to exist because we consider a finite state-action space setting and ir-
reducibility here implies positive recurrence. Similarly in the discounted formulation, we
define the γ-discounted visiting distribution of state x and state-action pair (x, a) under
policy µ as dµγ (x|x0) = (1 − γ)

∑∞
n=0 γ

n Pr(xn = x|x0 = x0;µ) and πµγ (x, a|x0) =
dµγ (x|x0)µ(a|x).

3 Discounted Reward Setting

For a given policy µ, we define the return of a state x (state-action pair (x, a)) as the sum
of discounted rewards encountered by the agent when it starts at state x (state-action pair
(x, a)) and then follows policy µ, i.e.,

Dµ(x) =
∞∑
n=0

γnR(xn, an) | x0 = x, µ,

Dµ(x, a) =
∞∑
n=0

γnR(xn, an) | x0 = x, a0 = a, µ.

The expected value of these two random variables are the value and action-value functions
of policy µ, i.e.,

V µ(x) = E
[
Dµ(x)

]
and Qµ(x, a) = E

[
Dµ(x, a)

]
.

The goal in the standard (risk-neutral) discounted reward formulation is to find an optimal
policy µ∗ = arg maxµ V

µ(x0), where x0 is the initial state of the system.
The most common measure of the variability in the stream of rewards is the variance of

the return, defined by

Λµ(x)
4
= E

[
Dµ(x)2]− V µ(x)2 = Uµ(x)− V µ(x)2. (1)

The above measure was first introduced by Sobel [57]. Note that

Uµ(x)
4
= E

[
Dµ(x)2

]
is the square reward value function of state x under policy µ. On similar lines, we define the
square reward action-value function of state-action pair (x, a) under policy µ as

Wµ(x, a)
4
= E

[
Dµ(x, a)2

]
.
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From the Bellman equation of Λµ(x), proposed by Sobel [57], it is straightforward to derive
the following Bellman equations for Uµ(x) and Wµ(x, a):

Uµ(x) =
∑
a

µ(a|x)r(x, a)2 + γ2
∑
a,x′

µ(a|x)P (x′|x, a)Uµ(x′)

+ 2γ
∑
a,x′

µ(a|x)P (x′|x, a)r(x, a)V µ(x′), (2)

Wµ(x, a) = r(x, a)2 + γ2
∑
x′

P (x′|x, a)Uµ(x′) + 2γr(x, a)
∑
x′

P (x′|x, a)V µ(x′).

Although Λµ of (1) satisfies a Bellman equation, unfortunately, it lacks the monotonicity
property of dynamic programming (DP), and thus, it is not clear how the related risk mea-
sures can be optimized by standard DP algorithms [57]. Policy gradient and actor-critic
algorithms are good candidates to deal with this risk measure.

We consider the following risk-sensitive measure for discounted MDPs: For a given
α > 0,

max
θ

V θ(x0) subject to Λθ(x0) ≤ α. (3)

Assuming that there is at least one policy (in the class of parameterized policies that we
consider) that satisfies the variance constraint above, it can be inferred from Theorem 3.8 of
[1] that there exists an optimal policy that uses at most one randomization.

It is important to note that the algorithms proposed in this paper can be used for any
risk-sensitive measure that is based on the variance of the return such as

1. minθ Λ
θ(x0) subject to V θ(x0) ≥ α,

2. maxθ V
θ(x0)− α

√
Λθ(x0),

3. Maximizing the Sharpe Ratio, i.e., maxθ V
θ(x0)/

√
Λθ(x0). Sharpe Ratio (SR) is a

popular risk measure in financial decision-making [54]. Section 3 presents extensions of
our proposed discounted reward algorithms to optimize the Sharpe ration.

To solve (3), we employ the Lagrangian relaxation procedure [6] to convert it to the follow-
ing unconstrained problem:

max
λ

min
θ

(
L(θ, λ)

4
= −V θ(x0) + λ

(
Λθ(x0)− α

))
, (4)

where λ is the Lagrange multiplier. The goal here is to find the saddle point of L(θ, λ), i.e., a
point (θ∗, λ∗) that satisfies

L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ),∀θ ∈ Θ, ∀λ > 0.

For a standard convex optimization problem where the objective L(θ, λ) is convex in θ and
concave in λ, one can ensure the existence of a unique saddle point under mild regularity
conditions (cf. [56]). Further, convergence to this point can be achieved by descending in θ
and ascending in λ using∇θL(θ, λ) and∇λL(θ, λ), respectively.

However, in our setting, the Lagrangian L(θ, λ) is not necessarily convex in θ, which
implies there may not be an unique saddle point. The problem is further complicated by the
fact that we operate in a simulation optimization setting, i.e., only sample estimates of the
Lagrangian are obtained. Hence, performing primal descent and dual ascent, one can only
get to a local saddle point, i.e., a tuple (θ∗, λ∗) which is a local minima w.r.t. θ and local
maxima w.r.t λ of the Lagrangian. As an aside, global mean-variance optimization of MDPs
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have been shown to be NP-hard in [38] and the best one can hope is to find a approximately
optimal policy.

In our setting, the necessary gradients of the Lagrangian are as follows:

∇θL(θ, λ) = −∇θV θ(x0) + λ∇θΛθ(x0) and ∇λL(θ, λ) = Λθ(x0)− α.

Since ∇θΛθ(x0) = ∇θUθ(x0) − 2V θ(x0)∇θV θ(x0), in order to compute ∇θΛθ(x0) it
would be enough to calculate ∇θV θ(x0) and ∇θUθ(x0). Using the above definitions, we
are now ready to derive the expressions for the gradient of V θ(x0) and Uθ(x0), which in
turn constitute the main ingredients in calculating∇θL(θ, λ)3.

Lemma 1 Under (A1) and (A2), we have

(1− γ)∇V θ(x0) =
∑
x,a

πθγ(x, a|x0)∇ logµ(a|x; θ)Qθ(x, a),

(1− γ2)∇Uθ(x0) =
∑
x,a

π̃θγ(x, a|x0)∇ logµ(a|x; θ)W θ(x, a)

+ 2γ
∑
x,a,x′

π̃θγ(x, a|x0)P (x′|x, a)r(x, a)∇V θ(x′),

where d̃θγ(x|x0) and π̃θγ(x, a|x0) are the γ2-discounted visiting distributions of state x and
state-action pair (x, a) under policy µ, respectively, and are defined as

d̃θγ(x|x0) = (1− γ2)
∞∑
n=0

γ2n Pr(xn = x|x0 = x0; θ),

π̃θγ(x, a|x0) = d̃θγ(x|x0)µ(a|x).

Proof The proof of ∇V θ(x0) is standard and can be found, for instance, in [44]. To prove
∇Uθ(x0), we start by the fact that from (2) we have U(x) =

∑
a µ(x|a)W (x, a). If we

take the derivative w.r.t. θ from both sides of this equation and obtain

3 Henceforth, we shall drop the subscript θ and use∇L(θ, λ) to denote the derivative w.r.t. θ.
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∇U(x0) =
∑
a

∇µ(a|x0)W (x0, a) +
∑
a

µ(a|x0)∇W (x0, a)

=
∑
a

∇µ(a|x0)W (x0, a) +
∑
a

µ(a|x0)∇
[
r(x0, a)2 + γ2

∑
x′

P (x′|x0, a)U(x′)

+ 2γr(x0, a)
∑
x′

P (x′|x0, a)V (x′)
]

=
∑
a

∇µ(a|x0)W (x0, a) + 2γ
∑
a,x′

µ(a|x0)r(x0, a)P (x′|x0, a)∇V (x′)

︸ ︷︷ ︸
h(x0)

+ γ2
∑
a,x′

µ(a|x0)P (x′|x0, a)∇U(x′)

= h(x0) + γ2
∑
a,x′

µ(a|x0)P (x′|x0, a)∇U(x′) (5)

= h(x0) + γ2
∑
a,x′

µ(a|x0)P (x′|x0, a)∇
[
h(x′)

+ γ2
∑
a′,x′′

µ(a′|x′)P (x′′|x′, a′)∇U(x′′)
]
.

By unrolling the last equation using the definition of∇U(x) from (5), we obtain

∇U(x0) =
∞∑
n=0

γ2n
∑
x

Pr(xn = x|x0 = x0)h(x) =
1

1− γ2

∑
x

d̃γ(x|x0)h(x)

=
1

1− γ2

[∑
x,a

d̃γ(x|x0)µ(a|x)∇ logµ(a|x)W (x, a)

+ 2γ
∑
x,a,x′

d̃γ(x|x0)µ(a|x)r(x, a)P (x′|x, a)∇V (x′)
]

=
1

1− γ2

[∑
x,a

π̃γ(x, a|x0)∇ logµ(a|x)W (x, a)

+ 2γ
∑
x,a,x′

π̃γ(x, a|x0)r(x, a)P (x′|x, a)∇V (x′)
]
.

�

In [66], a policy gradient result analogous to Lemma 1 is provided for the value function
in the case of full-state representations. In the average reward setting, a similar result helps
in extension to incorporate function approximation - see the actor-critic algorithms in [14]4.
However, a similar approach is not viable for discounted setting and this motivates the use
of stochastic optimization techniques like SPSA/SF (cf. [10]). The problem is further com-
plicated in the variance-constrained setting that we consider because:

1. two different sampling distributions, πθγ and π̃θγ , are used for ∇V θ(x0) and ∇Uθ(x0),
and

4 We extend this to the case of variance-constrained MDP in Section 6.
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2. ∇V θ(x′) appears in the second sum of∇Uθ(x0) equation, which implies that we need
to estimate the gradient of the value function V θ at every state of the MDP, and not just
at the initial state x0.

To alleviate the above mentioned problems, we borrow the principle of simultaneous per-
turbation for estimating the gradient ∇L(θ, λ) and develop novel risk-sensitive actor-critic
algorithms in the following section.

4 Discounted Reward Risk-Sensitive Actor-Critic Algorithms

In this section, we present actor-critic algorithms for optimizing the risk-sensitive mea-
sure (3). These algorithms are based on two simultaneous perturbation methods: simulta-
neous perturbation stochastic approximation (SPSA) and smoothed functional (SF).

4.1 Algorithm Structure

For the purpose of finding an optimal risk-sensitive policy, a standard procedure would up-
date the policy parameter θ and Lagrange multiplier λ in two nested loops as follows:

• An inner loop that descends in θ using the gradient of the Lagrangian L(θ, λ) w.r.t. θ, and
• An outer loop that ascends in λ using the gradient of the Lagrangian L(θ, λ) w.r.t. λ.

Using two-timescale stochastic approximation [21, Chapter 6], the two loops above can
run in parallel, as follows:

θn+1 = Γ
[
θn − ζ2(n)A−1

n ∇L(θn, λn)
]
, (6)

λn+1 = Γλ
[
λn + ζ1(n)∇λL(θn, λn)

]
, (7)

In the above,

– An is a positive definite matrix that fixes the order of the algorithm. For the first order
methods, An = I (I is the identity matrix), while for the second order methods An →
∇2
θL(θn, λn) as n→∞.

– Γ is a projection operator that keeps the iterate θn stable by projecting onto a com-
pact and convex set Θ :=

∏κ1

i=1[θ
(i)
min, θ

(i)
max]. In particular, for any θ ∈ Rκ1 , Γ (θ) =

(Γ (1)(θ(1)), . . . , Γ (κ1)(θ(κ1)))T , with Γ (i)(θ(i)) := min(max(θ
(i)
min, θ

(i)), θ
(i)
max).

– Γλ is a projection operator that keeps the Lagrange multiplier λn within the interval
[0, λmax], for some large positive constant λmax < ∞ and can be defined in an analo-
gous fashion as Γ .

– ζ1(n), ζ2(n) are step-sizes selected such that θ update is on the faster and λ update is
on the slower timescale. Note that another timescale ζ3(n) that is the fastest is used for
the TD-critic, which provides the estimate of the Lagrangian for a given (θ, λ).

Simulation optimization. We operate in a setting where we only observe simulated rewards
of the underlying MDP. Thus, it is required to estimate the mean and variance of the return
(we use a TD-critic for this purpose) and then use these estimates to compute gradient of
the Lagrangian. The gradient ∇λL(θ, λ) has a particularly simple form of (Λθ(x0) − α),
suggesting the usage of sample variance constraints to perform the dual ascent for Lagrange
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Fig. 1 The overall flow of our simultaneous perturbation based actor-critic algorithms.

multiplier λ. On the other hand, the expression for gradient of L(θ, λ) w.r.t. θ is compli-
cated (see Lemma 1) and warrants the usage of a simulation optimization that can provide
gradient estimates from sample observation. We employ simultaneous perturbation schemes
for estimating the gradient (and in the case of second order methods, the Hessian) of the
Lagrangian L(θ, λ). The idea in these methods is to estimate the gradients ∇V θ(x0) and
∇Uθ(x0) (needed for estimating the gradient∇L(θ, λ)) using two simulated trajectories of
the system corresponding to policies with parameters θn and θ+

n = θn + pn. Here pn is a
perturbation vector that is specific to the algorithm.

Based on the order, our algorithms can be classified as:

1. First order: This corresponds to An = I in (6). The proposed algorithms here include
RS-SPSA-G and RS-SF-G, where the former estimates the gradient using SPSA, while
the latter uses SF. These algorithms use the following choice for the perturbation vector:
pn = βn∆n. Here βn > 0 is a positive constant and ∆n is a perturbation random
variable, i.e., a κ1-vector of independent Rademacher (for SPSA) and GaussianN (0, 1)
(for SF) random variables.

2. Second order: This corresponds to An which converges to ∇2L(θn, λn) as n → ∞.
The proposed algorithms here include RS-SPSA-N and RS-SF-N, where the former
uses SPSA for gradient/Hessian estimates and the latter employs SF for the same. These
algorithms use the following choice for perturbation vector: For RS-SPSA-N, pn =
βn∆n+βn∆̂n, βn > 0 is a positive constant and∆n and ∆̂n are perturbation parame-
ters that are κ1-vectors of independent Rademacher random variables, respectively. For
RS-SF-N, pn = βn∆n, where∆n is a κ1 vector of GaussianN (0, 1) random variables.

The overall flow of our proposed actor-critic algorithms is illustrated in Figure 1 and Algo-
rithm 1. The overall operation involves the following two loops: At each time instant n,

Inner Loop (Critic Update): For a fixed policy (given as θn), simulate two system trajec-
tories, each of length mn, as follows:
1) Unperturbed Simulation: For m = 0, 1, . . . ,mn, take action am ∼ µ(·|xm; θn),
observe the reward R(xm, am), and the next state xm+1 in the first trajectory.
2) Perturbed Simulation: For m = 0, 1, . . . ,mn, take action a+

m ∼ µ(·|x+
m; θ+

n ), ob-
serve the reward R(x+

m, a
+
m), and the next state x+

m+1 in the second trajectory.
Using the method of temporal differences (TD) [62], estimate the value functions
V̂ θn(x0) and V̂ θ

+
n (x0), and square value functions Ûθn(x0) and Ûθ

+
n (x0), correspond-

ing to the policy parameter θn and θ+
n .
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Algorithm 1 Template of the Risk-Sensitive Discounted Reward Actor-Critic Algorithms
Input: parameterized policy µ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameter θ = θ0; value function weight vectors v = v0 and v+ = v+

0 ; square
value function weight vectors u = u0 and u+ = u+

0 ; initial state x0 ∼ P0(x)
for n = 0, 1, 2, . . . do

for m = 0, 1, 2, . . . ,mn do
Draw action am ∼ µ(·|xm; θn), observe next state xm+1 and reward R(xm, am)

Draw action a+
m ∼ µ(·|x+

m; θ+
n ), observe next state x+

m+1 and reward R(x+
m, a

+
m)

Critic Update: see (13) and (15) in the text
end for
Actor Update: Algorithm-Specific
Lagrange Multiplier Update: see (21) in the text

end for
return policy and value function parameters θ, λ, v, u

Outer Loop (Actor Update): Estimate the gradient/Hessian of V̂ θ(x0) and Ûθ(x0), and
hence the gradient/Hessian of Lagrangian L(θ, λ), using either SPSA (17) or SF (18)
methods. Using these estimates, update the policy parameter θ in the descent direction
using either a gradient or a Newton decrement, and the Lagrange multiplier λ in the
ascent direction.

In the next section, we describe the TD-critic and subsequently, in Sections 4.3–4.4,
present the first and second order actor critic algorithms, respectively.

4.2 TD-Critic

In our actor-critic algorithms, the critic uses linear approximation for the value and square
value functions, i.e., V̂ (x) ≈ vTφv(x) and Û(x) ≈ uTφu(x), where the features φv(·)
and φu(·) are from low-dimensional spaces Rκ2 and Rκ3 , respectively. Let Φv and Φu
denote |X | × κ2 and |X | × κ3 dimensional matrices, whose ith columns are φ(i)

v =(
φ

(i)
v (x), x ∈ X

)T
, i = 1, . . . , κ2 and φ(i)

u =
(
φ

(i)
u (x), x ∈ X

)T
, i = 1, . . . , κ3.

Let Sv := {Φvv | v ∈ Rκ2} and Su := {Φuu | u ∈ Rκ3}, denote the subspaces within
which we approximate the value and square value functions. We make the following stan-
dard assumption as in [14]:

(A3) The basis functions {φ(i)
v }κ2

i=1 and {φ(i)
u }κ3

i=1 are linearly independent. In particular,
κ2, κ3 � n and Φv and Φu are full rank. Moreover, for every v ∈ Rκ2 and u ∈ Rκ3 ,
Φvv 6= e and Φuu 6= e, where e is the n-dimensional vector with all entries equal to one.

Let Πu and Πv be operators that project onto Sv and Su, respectively and as a conse-
quence of the above assumption, can be defined as follows:

Πv = Φv(ΦT

vD
θΦv)−1ΦT

vD
θ and Πu = Φu(ΦT

uD
θΦu)−1ΦT

uD
θ, (8)

where Dθ is a diagonal |X | × |X | matrix with entries dθ(x), for each x ∈ X . Recall that
dθ(·) denotes the stationary distribution of the Markov chain underlying policy θ.

Let T θ = [T θv ;T θu ], where T θv and T θu denote the Bellman operators for value and
square value functions of the policy governed by parameter θ, respectively. These operators
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are defined as: For any y ∈ R2|X|, let yv and yu denote the first and last |X | entries,
respectively. Then

T θy = [T θv y;T θuy], where (9)

T θv y = rθ + γP θyv, (10)

T θuy = Rθrθ + 2γRθP θyv + γ2P θyu, (11)

where rθ and P θ are the reward vector and the transition probability matrix of policy θ, and
Rθ = diag(rθ).

Let Π =

(
Πv 0
0 Πu

)
. Also, for any y ∈ R2|X|, define its ν-weighted norm as

‖y‖ν = ν‖yv‖Dθ + (1− ν)‖yu‖Dθ ,

where ‖z‖Dθ =

√∑|X|
i=1 d

θ(i)z2
i for any z ∈ R|X|.

We now claim that the projected Bellman operator ΠT is a contraction mapping w.r.t
ν-weighted norm, for any policy θ.

Lemma 2 Under (A2) and (A3), there exists a ν ∈ (0, 1) and γ̄ < 1 such that

‖ΠTy −ΠTȳ‖ν ≤ γ̄ ‖y − ȳ‖ν ,∀y, ȳ ∈ R2|X|.

Proof See Section 7.1. �

Let [Φv v̄;Φuū] denote the unique fixed-point of the projected Bellman operator ΠT ,
i.e.,

Φv v̄ = Πv
(
Tv(Φv v̄)

)
, and Φuū = Πu

(
Tu(Φuū)

)
, (12)

where Πv and Πu project into the linear spaces spanned by the columns of Φv and Φu,
respectively.

We now describe the TD algorithm that updates the critic parameters corresponding to
the value and square value functions (Note that we require critic estimates for both the un-
perturbed as well as the perturbed policy parameters). This algorithm is an extension of the
algorithm proposed by [70] to the discounted setting. Recall from Algorithm 1 that, at any
instant n, the TD-critic runs two mn length trajectories corresponding to policy parameters
θn and θn + δ∆n.
Critic Update: Calculate the temporal difference (TD)-errors δm, δ+

m for the value and
εm, ε

+
m for the square value functions using (15), and update the critic parameters vm, v+

m

for the value and um, u+
m for the square value functions as follows:

Unperturbed:
vm+1 =vm + ζ3(m)δmφv(xm), um+1 = um + ζ3(m)εmφu(xm), (13)

Perturbed:

v+
m+1 =v+

m + ζ3(m)δ+
mφv(x+

m), u+
m+1 = u+

m + ζ3(m)ε+mφu(x+
m), (14)
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where the TD-errors δm, δ+
m, εm, ε

+
m in (13) are computed as

Unperturbed:
δm = R(xm, am) + γvT

mφv(xm+1)− vT

mφv(xm), (15)

εm = R(xm, am)2 + 2γR(xm, am)vT

mφv(xm+1) + γ2uT

mφu(xm+1)− uT

mφu(xm),

Perturbed:

δ+
m = R(x+

m, a
+
m) + γv+>

m φv(x+
m+1)− v+>

m φv(x+
m), (16)

ε+m = R(x+
m, a

+
m)2 + 2γR(x+

m, a
+
m)v+>

m φv(x+
m+1) + γ2u+>

m φu(x+
m+1)

− u+>
m φu(x+

m).

Note that the TD-error ε for the square value function U comes directly from its Bellman
equation (2). Theorem 2 in Section 7 establishes that the critic parameters (vn, un) governed
by (13) converge to the solutions (v̄, ū) of the fixed point equation (12).

Convergence rate

Let νmin = min(νv, νu), where νv and νu are minimum eigenvalues of ΦT
vD

θΦv and
ΦT
uD

θΦu, respectively. Recall that Dθ denotes the stationary distribution of the underlying
policy θ. From (A2), (A3) and the fact that we consider finite state-spaces, we have that
νmin > 0.

From recent results in [35] that provide non-asymptotic bounds for TD(0) with function
approximation, we know that the canonical O(m−1/2) rate can be achieved under the ap-
propriate choice of the step-size ζ3(m). The following rate result is crucial in setting the
trajectory lengths mn and relating them to perturbation constants βn (see (A4) in the next
section):

Theorem 1 Under (A2)-(A3), choosing ζ3(m) = c0c
(c+m) , with c0 < νmin(1 − γ)/(2(1 +

γ)2) and c such that νmin(1− γ)c0c > 1, we have,

E ‖vm − v̄‖2 ≤
K1(m)√
m+ c

and E ‖um − ū‖2 ≤
K2(m)√
m+ c

,

where K1(m) and K2(m) are O(1).

Proof The first claim follows directly from Theorem 1 in [35], while the second claim can
be proven in an analogous manner as the first.

The above rate result holds only if the step-size is set using νmin and the latter quantity
is unknown in a typical RL setting. However, a standard trick to overcome this dependence
while obtaining the same convergence rate is to employ iterate averaging, proposed indepen-
dently by Polyak [45] and Ruppert [51]. The latter approach involves using a larger step-size
Θ(1/nς1) with ς1 ∈ (1/2, 1) and couple this with averaging of iterates. An iterate averaged
variant of Theorem 1 can be claimed and we refer the reader to Theorem 2 of [35] for further
details.
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4.3 First-Order Algorithms: RS-SPSA-G and RS-SF-G

SPSA-based estimate for∇V θ(x0), and similarly for∇Uθ(x0), is given by

∇iV̂ θn(x0) ≈ V̂ θn+βn∆n(x0)− V̂ θn(x0)

βn∆(i)
, i = 1, . . . , κ1, (17)

where βn are perturbation constants that vanish asymptotically (see (A4) at the end of
this section) and ∆n is a vector of independent Rademacher random variables, for all
n = 1, 2, . . .. The advantage of this estimator is that it perturbs all directions at the same
time (the numerator is identical in all κ1 components). So, the number of function measure-
ments needed for this estimator is always two, independent of the dimension κ1. However,
unlike the SPSA estimates in [58] that use two-sided balanced estimates (simulations with
parameters θn−βn∆n and θ+β∆), our gradient estimates are one-sided (simulations with
parameters θn and θn + βn∆n) and resemble those in [24]. The use of one-sided estimates
is primarily because the updates of the Lagrangian parameter require a simulation with the
running parameter θn. Using a balanced gradient estimate would therefore come at the cost
of an additional simulation (the resulting procedure would then require three simulations),
which we avoid by using one-sided gradient estimates.

SF-based method estimates not the gradient of a function H(θn) itself, but rather the con-
volution of∇H(θn) with the Gaussian density functionN (0, β2

nI), i.e.,

CβnH(θn) =

∫
Gβn(θn − z)∇zH(z)dz =

∫
∇zGβn(z)H(θn − z)dz

=
1

βn

∫
−z′G1(z′)H(θn − βnz′)dz′,

where Gβn is the κ1-dimensional Gaussian p.d.f. The first equality above follows by using
integration by parts and the second one by using the fact that ∇zGβn(z) = −z

β2
n
Gβn(z)

and by substituting z′ = z/βn. As βn → 0, it can be seen that CβnH(θn) converges to
∇H(θn) (see Chapter 6 of [17]). Thus, a one-sided SF estimate of∇V θn(x0) is given by

∇iV̂ θn(x0) ≈ ∆
(i)
n

βn

(
V̂ θn+βn∆n(x0)− V̂ θn(x0)

)
, i = 1, . . . , κ1, (18)

where ∆n is a vector of independent Gaussian N (0, 1) random variables. The reasons for
using the one-sided estimate in (18) are as follows: (i) the estimate in (18) has lower bias
when compared to a one simulation estimate that does not use V̂ θn(x0) and (ii) for updating
the Lagrange multiplier λ, we require a trajectory of the MDP corresponding to policy θn
and this trajectory can be used to estimate V̂ θn(x0).
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Actor Update: Estimate the gradients∇V θ(x0) and∇Uθ(x0) using SPSA (17) or SF (18)
and update the policy parameter θ as follows5: For i = 1, . . . , κ1,

RS-SPSA-G:

θ
(i)
n+1 = Γi

[
θ(i)
n +

ζ2(n)

βn∆
(i)
n

((
1 + 2λnv

T

nφv(x0)
)
(v+
n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
, (19)

RS-SF-G:

θ
(i)
n+1 = Γi

[
θ(i)
n +

ζ2(n)∆
(i)
n

βn

((
1 + 2λnv

T

nφv(x0)
)
(v+
n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
. (20)

For both SPSA and SF variants, the Lagrange multiplier λ is updated as follows:

λn+1 = Γλ

[
λn + ζ1(n)

(
uT

nφu(x0)−
(
vT

nφv(x0)
)2 − α)]. (21)

In the above, note the following:

(i) βn ≥ 0 and vanish asymptotically (see (A4) below for the precise condition);
(ii) ∆(i)

n ’s are independent Rademacher and GaussianN (0, 1) random variables in SPSA
and SF updates, respectively;

(iii) Γ and Γλ are projection operators that keep the iterates (θn, λn) stable and were
defined in Section 4.1. These projection operators are necessary to keep the iterates
stable and hence, ensure convergence of the algorithms.

Choosing trajectory lengthmn, perturbation constants βn and step-sizes ζ3(n), ζ2(n), ζ1(n)

We make the following assumption on the step-size schedules:

(A4) The step size schedules {ζ2(n)}, and {ζ1(n)} satisfy

ζ2(n), βn → 0,
1√
mnβn

→ 0, (22)∑
n

ζ1(n) =
∑
n

ζ2(n) =∞, (23)

∑
n

ζ1(n)2,
∑
n

ζ2(n)2

β2
n

, <∞, (24)

ζ1(n) = o
(
ζ2(n)

)
. (25)

Equations 23 and 24 are standard step-size conditions in stochastic approximation algo-
rithms, and Equation 25 ensures that the policy parameter update is on the faster time-scale
{ζ2(n)}, and the Lagrange multiplier update is on the slower time-scale {ζ1(n)}.

5 By an abuse of notation, we use vn (resp. v+
n , un, u

+
n ) to denote the critic parameter vmn (resp.

v+
mn , umn , u

+
mn ) obtained at the end of a mn length trajectory.
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Equation 22 is motivated by a similar condition in [49] and ensures that the bias from a
finite length (mn) trajectory run of TD-critic can be ignored. A simple setting that ensures
(22) is to have mn = C1n

ς2 and βn = C2n
−ς3 , where C1, C2 are constants and ς2, ς3 > 0

with ς3 > ς2/2. This ensures that the trajectories increase in length as a function of outer
loop index n, at a rate that is sufficient to cancel the bias induced by the TD-critic. See
Lemma 6 in Section 7 makes this claim precise, in particular justifying the need for (22) in
(A4).

We provide a proof of convergence of the first-order SPSA and SF algorithms to a tuple

(θλ
∗
, λ∗), which is a (local) saddle point of the risk-sensitive objective function L̂(θ, λ)

4
=

−V̂ θ(x0) + λ(Λ̂θ(x0) − α), where V̂ θ(x0) = v̄Tφv(x0) and Λ̂θ(x0) = ūTφu(x0) −
(v̄Tφv(x0))2 with v̄ and ū defined by (12). Further, the limit θλ

∗
satisfies the variance

constraint, i.e., Λ̂θ
λ∗

(x0) ≤ α. See Theorems 3–5 and Proposition 1 in Section 7 for details.

Remark 3 (Extension to Sharpe Ratio Optimization)
The gradient of Sharpe ratio (SR), S(θ), in the discounted setting is given by

∇S(θ) =
1√

Λθ(x0)

(
∇V θ(x0)− V θ(x0)

2Λθ(x0)
∇Λθ(x0)

)
.

The actor recursions for the variants of the RS-SPSA-G and RS-SF-G algorithms that opti-
mize the SR objective are as follows:

RS-SPSA-G

θ
(i)
n+1 = Γi

(
θ(i)
n +

ζ2(n)√
uT
nφu(x0)−

(
vT
nφv(x0)

)2
βn∆

(i)
n

(
(v+
n − vn)Tφv(x0) (26)

−
vT
nφv(x0)

(
(u+
n − un)Tφu(x0)− 2vT

nφv(x0)(v+
n − vn)Tφv(x0)

)
2
(
uT
nφu(x0)−

(
vT
nφv(x0)

)2)
))

.

RS-SF-G

θ
(i)
n+1 = Γi

(
θ(i)
n +

ζ2(n)∆
(i)
n

βn

√
uT
nφu(x0)−

(
vT
nφv(x0)

)2
(

(v+
n − vn)Tφv(x0) (27)

−
vT
nφv(x0)

(
(u+
n − un)Tφu(x0)− 2vT

nφv(x0)(v+
n − vn)Tφv(x0)

)
2
(
uT
nφu(x0)−

(
vT
nφv(x0)

)2)
))

.

Note that only the actor recursion changes for SR optimization, while the rest of the
updates that include the critic recursions for nominal and perturbed parameters remain the
same as before in the SPSA and SF based algorithms. Further, SR optimization does not
involve the Lagrange parameter λ, and thus, the proposed actor-critic algorithms are two
time-scale (instead of three time-scale as in the described algorithms) stochastic approxima-
tion algorithms in this case.

Remark 4 (One-simulation SR variant.) For the SR objective, the proposed algorithms
can be modified to work with only one simulated trajectory of the system. This is because in
the SR case, we do not require the Lagrange multiplier λ, and thus, the simulated trajectory
corresponding to the nominal policy parameter θ is not necessary. In this implementation,
the gradient is estimated as ∇iS(θ) ≈ S(θ + β∆)/β∆(i) for SPSA and as ∇iS(θ) ≈
(∆(i)/β)S(θ + β∆) for SF.
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Remark 5 (Monte-Carlo Critic) In the above algorithms, the critic uses a TD method to
evaluate the policies. These algorithms can be implemented with a Monte-Carlo critic that
at each time instant n computes a sample average of the total discounted rewards corre-
sponding to the nominal θn and perturbed θn+β∆n policy parameter. This implementation
would be similar to that in [68], except here we use simultaneous perturbation methods to
estimate the gradient.

4.4 Second-Order Algorithms: RS-SPSA-N and RS-SF-N

Recall from Section 4.1 that a second-order scheme updates the policy parameter in the
following manner:

θn+1 = Γ
[
θn − ζ2(n)∇2

θL(θ, λ)−1∇L(θ, λ)
]
. (28)

From the above, it is evident that for any second-order method, an estimate of the Hes-
sian ∇2

θL(θ, λ) of the Lagrangian is necessary, in addition to an estimate of the gradient
∇L(θ, λ). As in the case of the gradient based schemes outlined earlier, we employ the
simultaneous perturbation technique to develop these estimates. The first algorithm, hence-
forth referred to as RS-SPSA-N, uses SPSA for the gradient/Hessian estimates. On the other
hand, the second algorithm, henceforth referred to as RS-SF-N, uses a smoothed functional
(SF) approach for the gradient/Hessian estimates. As confirmed by our numerical experi-
ments, second order methods are in general more accurate, though at the cost of inverting
the Hessian matrix in each step.

4.4.1 RS-SPSA-N Algorithm

The Hessian w.r.t. θ of L(θ, λ) can be written as follows:

∇2
θL(θ, λ) = −∇2

θV
θ(x0) + λ∇2

θΛ
θ(x0) (29)

= −∇2V θ(x0) + λ
(
∇2Uθ(x0)− 2V θ(x0)∇2V θ(x0)− 2∇V θ(x0)∇V θ(x0)T

)
.

Critic Update: As in the case of the gradient based schemes, we run two simulations. How-
ever, perturbed simulation here corresponds to the policy parameter θn + βn(∆n + ∆̂n),
where ∆n and ∆̂n represent vectors of independent κ1-dimensional Rademacher random
variables. The critic parameters vn, un from unperturbed simulation and v+

n , u
+
n from per-

turbed simulation are updated as described earlier in Section 4.2.

Gradient and Hessian Estimates: Using an SPSA-based estimation technique (see Chapter
7 of [17]), the gradient and Hessian of the value function V , and similarly of the square value
function U , are estimated as follows: For i = 1, . . . , κ1,

∇iV̂ θ(x0) ≈ V̂ θ+βn(∆+∆̂)(x0)− V̂ θ(x0)

βn∆(i)
=

(v+
n − vn)Tφv(x0)

βn∆(i)
,

∇2
i,j V̂

θ(x0) ≈ V̂ θ+βn(∆+∆̂)(x0)− V̂ θ(x0)

β2
n∆(i)∆̂(j)

=
(v+
n − vn)Tφv(x0)

β2
n∆(i)∆̂(j)

.
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As in the case of the first order algorithms, the TD-critic trajectory lengths are chosen such
that there is no bias in the value estimates, when viewed from the actor-recursion. Next,
using suitable Taylor expansions and observe that the bias terms vanish as ∆n, ∆̂n, being
Rademacher, are zero-mean - see Lemma 7 in Section 7 for details. As in the case of RS-
SPSA, this is an one-sided estimate with the unperturbed simulation required for updating
the Lagrange multiplier.
Hessian Update: Using the critic values from the two simulations, we estimate the Hessian
∇2
θL(θ, λ) as follows: Let H(i,j)

n denote the nth estimate of the (i, j)th element of the
Hessian. Then, for i, j = 1, . . . , κ1, with i ≤ j, the update is

H
(i,j)
n+1 = H(i,j)

n + ζ′2(n)

[(
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

β2
n∆

(i)
n ∆̂

(j)
n

+
λn(u+

n − un)Tφu(x0)

β2
n∆

(i)
n ∆̂

(j)
n

−H(i,j)
n

]
, (30)

and for i > j, we simply set H(i,j)
n+1 = H

(j,i)
n+1 . In the above, the step-size ζ′2(n) satisfies∑

n

ζ′2(n) =∞;
∑
n

ζ′2
2
(n) <∞, ζ2(n)

ζ′2(n)
→ 0 as n→∞.

The last condition above ensures that the Hessian update proceeds on a faster timescale in
comparison to the θ-recursion (see (31) below). Finally, we set Hn+1 = Υ

(
[H

(i,j)
n+1 ]

|κ1|
i,j=1

)
,

where Υ (·) denotes an operator that projects a square matrix onto the set of symmetric and
positive definite matrices. This projection is a standard requirement to ensure convergence
of Hn to the Hessian ∇2

θL(θ, λ) and we state the following standard assumption (cf. [17,
Chapter 7]) on this operator:

(A5) For any sequence of matrices {An} and {Bn} inRκ1×κ1 such that lim
n→∞

‖ An −Bn ‖
= 0, the Υ operator satisfies lim

n→∞
‖ Υ (An)− Υ (Bn) ‖ = 0. Further, for any sequence of

matrices {Cn} inRκ1×κ1 , we have

sup
n
‖ Cn ‖ <∞ ⇒ sup

n
‖ Υ (Cn) ‖<∞ and sup

n
‖ {Υ (Cn)}−1 ‖<∞.

As suggested in [30], a possible definition of Υ is to perform an eigen-decomposition of
Hn and then make all eigenvalues positive. This avoids singularity of Hn and also satisfies
the above assumption. In our experiments, we use this scheme for projecting Hn.

Actor Update: Let Mn
4
= H−1

n denote the inverse of the the Hessian estimate Hn. We
incorporate a Newton decrement to update the policy parameter θ as follows:

θ
(i)
n+1 = Γi

[
θ(i)
n + ζ2(n)

κ1∑
j=1

M (i,j)
n

((1 + 2λnv
T
nφv(x0)

)
(v+
n − vn)Tφv(x0)

βn∆
(j)
n

− λn(u+
n − un)Tφu(x0)

βn∆
(j)
n

)]
. (31)

In the long run, Mn converges to ∇2
θL(θ, λ)−1, while the last term in the brackets in (31)

converges to ∇L(θ, λ) and hence, the update (31) can be seen to descend in θ using a
Newton decrement. Note that the Lagrange multiplier update here is the same as that in
RS-SPSA-G.
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4.4.2 RS-SF-N Algorithm

Gradient and Hessian Estimates: While the gradient estimate here is the same as that in the
RS-SF-G algorithm, the Hessian is estimated as follows: Recall that∆n =

(
∆

(1)
n , . . . ,∆

(κ1)
n

)T
is a vector of mutually independent N (0, 1) random variables. Let H̄(∆n) be a κ1 × κ1

matrix defined as

H̄(∆n)
4
=


(
∆

(1)2

n − 1
)
∆

(1)
n ∆

(2)
n · · · ∆

(1)
n ∆

(κ1)
n

∆
(2)
n ∆

(1)
n

(
∆

(2)2

n − 1
)
· · · ∆

(2)
n ∆

(κ1)
n

· · · · · · · · · · · ·
∆

(κ1)
n ∆

(1)
n ∆

(κ1)
n ∆

(2)
n · · ·

(
∆

(κ1)2

n − 1
)
 . (32)

Then, the Hessian∇2
θL(θ, λ) is approximated as

∇2
θL(θ, λ) ≈ 1

β2
n

[
H̄(∆)

(
L(θ + β∆, λ)− L(θ, λ)

)]
. (33)

The correctness of the above estimate in the limit as βn → 0 can be seen from Lemma 8
in the Appendix. The main idea involves convolving the Hessian with a Gaussian density
function (similar to RS-SF) and then performing integration by parts twice.

Critic Update: As in the case of the RS-SF-G algorithm, we run two simulations with
unperturbed and perturbed policy parameters, respectively. Recall that the perturbed sim-
ulation corresponds to the policy parameter θn + βn∆n, where ∆n represent a vector of
independent κ1-dimensional Gaussian N (0, 1) random variables. The critic parameters for
both these simulations are updated as described earlier in Section 4.2.

Hessian Update: As in RS-SPSA-N, let H(i,j)
n denote the (i, j)th element of the Hessian

estimate Hn at time step t. Using (33), we devise the following update rule for the Hessian
estimate Hn: For i, j, k = 1, . . . , κ1, j < k, the update is

H
(i,i)
t+1 = H(i,i)

n + ζ′2(n)

[(
∆

(i)2

n − 1
)

β2
n

((
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

+ λn(u+
n − un)Tφu(x0)

)
−H(i,i)

n

]
, (34)

H
(j,k)
t+1 = H(j,k)

n + ζ′2(n)

[
∆

(j)
n ∆

(k)
n

β2
n

((
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

+ λn(u+
n − un)Tφu(x0)

)
−H(j,k)

n

]
, (35)

and for j > k, we set H(j,k)
n+1 = H

(k,j)
n+1 . The step-size ζ′2(n) is as in RS-SPSA-N. Further,

as in the latter algorithm, we set Hn+1 = Υ
(
[H

(i,j)
n+1 ]

|κ1|
i,j=1

)
and let Mn+1

4
= H−1

n+1 denote
its inverse.
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Actor Update: Using the gradient and Hessian estimates from the above, we update the
policy parameter θ as follows:

θ
(i)
n+1 = Γi

[
θ(i)
n + ζ2(n)

κ1∑
j=1

M (i,j)
n

∆
(j)
n

βn

((
1 + 2λnv

T

nφv(x0)
)
(v+
n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
. (36)

As in the case of RS-SPSA-N, it can be seen that the above update rule is equivalent to
descent with a Newton decrement, since Mn converges to ∇2

θL(θ, λ)−1, and the last term
in the brackets in (36) converges to∇L(θ, λ). The Lagrange multiplier λ update here is the
same as that in RS-SF-G.

Remark 6 The second-order variants of the algorithms for SR optimization can be worked
out along similar lines as outlined in Section 4.4 and the details are omitted here.

5 Average Reward Setting

The average reward under policy µ is defined as

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑
n=0

Rn | µ

]
=
∑
x,a

dµ(x)µ(a|x)r(x, a) =
∑
x,a

πµ(x, a)r(x, a),

where dµ and πµ are the stationary distributions of policy µ over states and state-action
pairs, respectively (see Section 2). The goal in the standard (risk-neutral) average reward
formulation is to find an average optimal policy, i.e., µ∗ = arg maxµ ρ(µ). For all states
x ∈ X and actions a ∈ A, the differential action-value and value functions of policy µ are
defined respectively as

Qµ(x, a) =
∞∑
n=0

E
[
Rn − ρ(µ) | x0 = x, a0 = a, µ

]
,

V µ(x) =
∑
a

µ(a|x)Qµ(x, a).

These functions satisfy the following Poisson equations [50]

ρ(µ) + V µ(x) =
∑
a

µ(a|x)
[
r(x, a) +

∑
x′

P (x′|x, a)V µ(x′)
]
, (37)

ρ(µ) +Qµ(x, a) = r(x, a) +
∑
x′

P (x′|x, a)V µ(x′). (38)

In the context of risk-sensitive MDPs, different criteria have been proposed to define a mea-
sure of variability in the average reward setting, among which we consider the long-run
variance of µ [28] defined as

Λ(µ) =
∑
x,a

πµ(x, a)
[
r(x, a)− ρ(µ)

]2
= lim

T→∞

1

T
E

[
T−1∑
n=0

(
Rn − ρ(µ)

)2∣∣∣µ] . (39)
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This notion of variability is based on the observation that it is the frequency of occurrence
of state-action pairs that determine the variability in the average reward. It is easy to show
that

Λ(µ) = η(µ)− ρ(µ)2, where η(µ) =
∑
x,a

πµ(x, a)r(x, a)2.

We consider the following risk-sensitive measure for average reward MDPs in this paper:

max
θ

ρ(θ) subject to Λ(θ) ≤ α, (40)

for a given α > 0.6 As in the discounted setting, we employ the Lagrangian relaxation
procedure to convert (40) to the unconstrained problem

max
λ

min
θ

(
L(θ, λ)

4
= −ρ(θ) + λ

(
Λ(θ)− α

))
.

As in the discounted setting, we descend in θ using ∇L(θ, λ) = −∇ρ(θ) + λ∇Λ(θ)
and ascend in λ using ∇λL(θ, λ) = Λ(θ) − α, to find the saddle point of L(θ, λ). Since
∇Λ(θ) = ∇η(θ)−2ρ(θ)∇ρ(θ), in order to compute∇Λ(θ) it would be enough to calculate
∇ρ(θ) and∇η(θ). Let Uµ and Wµ denote the differential value and action-value functions
associated with the square reward under policy µ, respectively. These two quantities satisfy
the following Poisson equations:

η(µ) + Uµ(x) =
∑
a

µ(a|x)
[
r(x, a)2 +

∑
x′

P (x′|x, a)Uµ(x′)
]
,

η(µ) +Wµ(x, a) = r(x, a)2 +
∑
x′

P (x′|x, a)Uµ(x′). (41)

The gradients of ρ(θ) and η(θ) are given by the following lemma:

Lemma 3 Under (A1) and (A2), we have

∇ρ(θ) =
∑
x,a

πθ(x, a)∇ logµ(a|x; θ)Q(x, a; θ), (42)

∇η(θ) =
∑
x,a

πθ(x, a)∇ logµ(a|x; θ)W (x, a; θ). (43)

Proof The proof of ∇ρ(θ) can be found in the literature (e.g., [65, 33]). To prove ∇η(θ),
we start by the fact that from (41), we have U(x) =

∑
a µ(x|a)W (x, a). If we take the

derivative w.r.t. θ from both sides of this equation, we obtain

∇U(x) =
∑
a

∇µ(x|a)W (x, a) +
∑
a

µ(x|a)∇W (x, a)

=
∑
a

∇µ(x|a)W (x, a) +
∑
a

µ(x|a)∇
(
r(x, a)2 − η +

∑
x′

P (x′|x, a)U(x′)
)

=
∑
a

∇µ(x|a)W (x, a)−∇η +
∑
a,x′

µ(a|x)P (x′|x, a)∇U(x′). (44)

6 Similar to the discounted setting, the risk-sensitive average reward algorithm proposed in this paper can
be easily extended to other risk measures based on the long-term variance of µ, including the Sharpe Ratio
(SR), i.e., maxθ ρ(θ)/

√
Λ(θ). The extension to SR will be described in more details in Section 7.
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The second equality is by replacing W (x, a) from (41). Now if we take the weighted sum,
weighted by dµ(x) = Dθ(x), from both sides of (44), we have∑

x

dµ(x)∇U(x) =
∑
x,a

dµ(x)∇µ(a|x)W (x, a)−∇η

+
∑
x,a,x′

dµ(x)µ(a|x)P (x′|x, a)∇U(x′). (45)

The claim follows from the fact that the last sum on the RHS of (45) is equal to∑
x d

µ(x)∇U(x). �

Note that (43) for calculating∇η(θ) has close resemblance to (42) for∇ρ(θ), and thus,
similar to what we have for (42), any function b : X → R can be added or subtracted to
W (x, a; θ) on the RHS of (43) without changing the result of the integral (see e.g., [14]).
So, we can replace W (x, a; θ) with the square reward advantage function B(x, a; θ) =
W (x, a; θ)− U(x; θ) on the RHS of (43) in the same manner as we can replace Q(x, a; θ)
with the advantage function A(x, a; θ) = Q(x, a; θ)− V (x; θ) on the RHS of (42) without
changing the result of the integral. We define the temporal difference (TD) errors δn and εn
for the differential value and square value functions as

δn = R(xn, an)− ρ̂n+1 + V̂ (xn+1)− V̂ (xn),

εn = R(xn, an)2 − η̂n+1 + Û(xn+1)− Û(xn).

If V̂ , Û , ρ̂, and η̂ are unbiased estimators of V µ, Uµ, ρ(µ), and η(µ), respectively, then we
show in Lemma 4 that δn and εn are unbiased estimates of the advantage functions Aµ and
Bµ, i.e., E[δn|xn, an, µ] = Aµ(xn, an) and E[ εn|xn, an, µ] = Bµ(xn, an).

Lemma 4 For any given policy µ, we have

E[δn|xn, an, µ] = Aµ(xn, an), E[ εn|xn, an, µ] = Bµ(xn, an).

Proof The first statement E[δn|xn, an, µ] = Aµ(xn, an) has been proved in Lemma 3
of [14], so here we only prove the second statement E[ εn|xn, an, µ] = Bµ(xn, an). we
may write

E[ εn|xn, an, µ] = E
[
R(xn, an)2 − η̂n+1 + Û(xn+1)− Û(xn) | xn, an, µ

]
= r(xn, an)2 − η(µ) + E

[
Û(xn+1) | xn, an, µ

]
− Uµ(xn)

= r(xn, an)2 − η(µ) + E
[
E
[
Û(xn+1) | xn+1, µ

]
| xn, an

]
− Uµ(xn)

= r(xn, an)2 − η(µ) + E
[
Û(xn+1) | xn, an

]
− Uµ(xn)

= r(xn, an)2 − η(µ) +
∑

xn+1∈X
P (xn+1|xn, an)Uµ(xn+1)

︸ ︷︷ ︸
Wµ(x,a)

−Uµ(xn)

= Bµ(x, a).

�

From Lemma 4, we notice that δnψn and εnψn are unbiased estimates of ∇ρ(µ) and
∇η(µ), respectively, where ψn = ψ(xn, an) = ∇ logµ(an|xn) is the compatible fea-
ture (see e.g., [65, 44]).
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6 Average Reward Risk-Sensitive Actor-Critic Algorithm

We now present our risk-sensitive actor-critic algorithm for average reward MDPs. Algo-
rithm 2 presents the complete structure of the algorithm along with the update rules for the
average rewards ρ̂n, η̂n; TD errors δn, εn; critic vn, un; and actor θn, λn parameters. The
projection operators Γ and Γλ are as defined in Section 4, and similar to the discounted set-
ting, are necessary for the convergence proof of the algorithm. The step-size schedules sat-
isfy (A3) defined in Section 4, plus the step size schedule {ζ4(n)} satisfies ζ4(n) = kζ3(n),
for some positive constant k. This is to ensure that the average and critic updates are on the
(same) fastest time-scale {ζ4(n)} and {ζ3(n)}, the policy parameter update is on the inter-
mediate time-scale {ζ2(n)}, and the Lagrange multiplier update is on the slowest time-scale
{ζ1(n)}. This results in a three time-scale stochastic approximation algorithm.

Algorithm 2 Template of the Average Reward Risk-Sensitive Actor-Critic Algorithm
Input: parameterized policy µ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameters θ = θ0; value function weight vectors v = v0 and u = u0; initial state
x0 ∼ P0(x)
for t = 0, 1, 2, . . . do

Draw action an ∼ µ(·|xn; θn) and observe the next state xn+1 ∼ P (·|xn, an) and the reward
R(xn, an)

Average Updates: ρ̂n+1 =
(
1− ζ4(n)

)
ρ̂n + ζ4(n)R(xn, an),

η̂n+1 =
(
1− ζ4(n)

)
η̂n + ζ4(n)R(xn, an)2

TD Errors: δn = R(xn, an)− ρ̂n+1 + vTnφv(xn+1)− vTnφv(xn)

εn = R(xn, an)2 − η̂n+1 + uT
nφu(xn+1)− uT

nφu(xn)

Critic Update: vn+1 = vn + ζ3(n)δnφv(xn), un+1 = un + ζ3(n)εnφu(xn)
(46)

Actor Update: θn+1 = Γ
(
θn − ζ2(n)

(
− δnψn + λn(εnψn − 2ρ̂n+1δnψn)

))
(47)

λn+1 = Γλ

(
λn + ζ1(n)(η̂n+1 − ρ̂2

n+1 − α)
)

(48)

end for
return policy and value function parameters θ, λ, v, u

As in the discounted setting, the critic uses linear approximation for the differential value
and square value functions, i.e., V̂ (x) = vTφv(x) and Û(x) = uTφu(x), where φv(·) and
φu(·) are feature vectors of size κ2 and κ3, respectively. Although our estimates of ρ(θ) and
η(θ) are unbiased, since we use biased estimates for V θ and Uθ (linear approximations in
the critic), our gradient estimates ∇ρ(θ) and ∇η(θ), and as a result ∇L(θ, λ), are biased.
The following lemma shows the bias in our estimate of∇L(θ, λ).

Lemma 5 The bias of our actor-critic algorithm in estimating ∇L(θ, λ) for fixed θ and λ
is

B(θ, λ) =
∑
x

Dθ(x)
(
−
(
1 + 2λρ(θ)

)[
∇V̄ θ(x)−∇vθ>φv(x)

]
+ λ

[
∇Ūθ(x)−∇uθ>φu(x)

])
,
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where vθ>φv(·) and uθ>φu(·) are estimates of V θ(·) and Uθ(·) upon convergence of the
TD recursion, and

V̄ θ(x) =
∑
a

µ(a|x)
[
r(x, a)− ρ(θ) +

∑
x′

P (x′|x, a)vθ>φv(x′)
]
,

Ūθ(x) =
∑
a

µ(a|x)
[
r(x, a)2 − η(θ) +

∑
x′

P (x′|x, a)uθ>φu(x′)
]
.

Proof The bias in estimating∇L(θ, λ) consists of the bias in estimating∇ρ(θ) and∇η(θ).
Lemma 4 in Bhatnagar et al [14] shows the bias in estimating∇ρ(θ) as

E[δθnψn|θ] = ∇ρ(θ) +
∑
x∈X

Dθ(x)
[
∇V̄ θ(x)−∇vθ>φv(x)

]
,

where δθn = R(xn, an) − ρ̂n+1 + vθ>φv(xn+1) − vθ>φv(xn). Similarly we can prove
that the bias in estimating∇η(θ) is

E[εθnψn|θ] = ∇η(θ) +
∑
x∈X

Dθ(x)
[
∇Ūθ(x)−∇uθ>φu(x)

]
,

where εθn = R(xn, an) − η̂n+1 + uθ>φu(xn+1) − uθ>φu(xn). The claim follows by
putting these two results together and given the fact that ∇Λ(θ) = ∇η(θ) − 2ρ(θ)∇ρ(θ)
and ∇L(θ, λ) = −∇ρ(θ) + λ∇Λ(θ). Note that the following fact holds for the bias in
estimating∇ρ(θ) and∇η(θ):∑
x

Dθ(x)
[
V̄ θ(x)− vθ>φv(x)

]
= 0,

∑
x

Dθ(x)
[
Ūθ(x)− uθ>φu(x)

]
= 0.

�

Remark 7 (Extension to Sharpe Ratio Optimization)
The gradient of the Sharpe Ratio (SR) in the average setting is given by

∇S(θ) =
1√
Λ(θ)

(
∇ρ(θ)− ρ(θ)

2Λ(θ)
∇Λ(θ)

)
,

and thus, the actor recursion for the SR-variant of our average reward risk-sensitive actor-
critic algorithm is as follows:

θn+1 = Γ
(
θn +

ζ2(n)√
η̂n+1 − ρ̂2

n+1

(
δnψn −

ρ̂n+1(εnψn − 2ρ̂n+1δnψn)

2(η̂n+1 − ρ̂2
n+1)

))
. (49)

Note that the rest of the updates, including the average reward, TD errors, and critic re-
cursions are as in the risk-sensitive actor-critic algorithm presented in Algorithm 2. Similar
to the discounted setting, since there is no Lagrange multiplier in the SR optimization, the
resulting actor-critic algorithm is a two time-scale stochastic approximation algorithm.

Remark 8 In the discounted setting, another popular variability measure is the discounted
normalized variance [28]

Λ(µ) = E

[ ∞∑
n=0

γn
(
Rn − ργ(µ)

)2]
, (50)
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where ργ(µ) =
∑
x,a d

µ
γ (x|x0)µ(a|x)r(x, a) and dµγ (x|x0) is the γ-discounted visiting

distribution of state x under policy µ, defined in Section 2. The variability measure (50) has
close resemblance to the average reward variability measure (39), and thus, any (discounted)
risk measure based on (50) can be optimized similar to the corresponding average reward
risk measure (39).

Remark 9 (Simultaneous perturbation analogues) In the average reward setting, a simul-
taneous perturbation algorithm would estimate the average reward ρ and the square reward
η on the faster timescale and use these to estimate the gradient of the performance objective.
However, a drawback with this approach, compared to the algorithm proposed above is the
necessity for having two simulated trajectories (instead of one) for each policy update.

In the following section, we establish the convergence of our average reward actor-critic
algorithm to a (local) saddle point of the risk-sensitive objective function L(θ, λ).

7 Convergence Analysis of the Discounted Reward Risk-Sensitive Actor-Critic
Algorithms

Our proposed actor-critic algorithms use multi-timescale stochastic approximation and we
use the ordinary differential equation (ODE) approach (see Chapter 6 of [21]) to analyze
their convergence. We first provide the analysis for the SPSA based first-order algorithm
RS-SPSA-G in Section 7.1 and later provide the necessary modifications to the proof of SF
based first-order algorithm and SPSA/SF based second-order algorithms.

7.1 Convergence of the First-Order Algorithm: RS-SPSA-G

Recall that RS-SPSA-G is a two-loop scheme where the inner loop is a TD critic that eval-
uates the value/square value functions for both unperturbed as well as perturbed policy pa-
rameter. On the other hand, the outer loop is a two-timescale stochastic approximation algo-
rithm, where the faster timescale updates policy parameter θ in the descent direction using
SPSA estimates of the gradient of the Lagrangian and the slower timescale performs dual
ascent for the Lagrange multiplier λ using sample constraint values. The faster timescale
θ-recursion sees the λ-updates on the slower timescales as quasi-static, while the slower
timescale λ-recursion sees the θ-updates as equilibrated.

The proof of convergence of the RS-SPSA-G algorithm to a (local) saddle point of the

risk-sensitive objective function L̂(θ, λ)
4
= −V̂ θ(x0) + λ(Λ̂θ(x0) − α)= − V̂ θ(x0) +

λ
(
Ûθ(x0)− V̂ θ(x0)2 − α

)
contains the following three main steps:

Step 1: Critic’s Convergence. We establish that, for any given values of θ and λ that are
updated on slower timescales, the TD critic converges to a fixed point of the projected
Bellman operator for value and square value functions.

Step 2: Convergence of θ-recursion. We utilize the fact that owing to projection, the θ
parameter is stable. Using a Lyapunov argument, we show that the θ-recursion tracks
the ODE (55) in the asymptotic limit, for any given value of λ on the slowest timescale.

Step 3: Convergence of λ-recursion. This step is similar to earlier analysis for constrained
MDPs . In particular, we show that λ-recursion in (19) converges and the overall con-
vergence of (θn, λn) is to a local saddle point (θλ

∗
, λ∗) of L̂(θ, λ), with θλ

∗
satisfying

the variance constraint in (3).
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Step 1: (Critic’s Convergence) Since the critic’s update is in the inner loop, we can assume
in this analysis that θ and λ are time-invariant quantities. The following theorem shows that
the TD critic estimates for the value and square value function converge to the fixed point
given by (12), for any given policy θ.

Theorem 2 Under (A1)-(A4), for any given policy parameter θ and Lagrange multiplier λ,
the critic parameters {vm} and {um} governed by the recursions of (13) converge almost
surely, i.e.,

As m→∞, vm → v̄ and um → ū a.s.
In the above v̄ and ū are the solutions to the TD fixed point equations for policy θ (see (12)
in Section 4.2.

Remark 10 It is easy to conclude from the above theorem that the TD critic parameters for
the perturbed policy parameter also converge almost surely, i.e., v+

m → v̄+ and u+
m → ū+

a.s., where v̄+ and ū+ are the unique solutions to TD fixed point relations for perturbed
policy θn + βn∆n, where θn, βn and ∆n correspond to the policy parameter, perturbation
constant and perturbation random variable. The latter quantities are updated in the outer loop
- see Algorithm 1.

We first provide a proof of Lemma 2 (see Section 4.2), which claimed that the operator
ΠT for the value/square value functions is a contraction mapping. The result in Lemma 2
is essential in establishing the convergence result in Theorem 2.

Proof (Lemma 2) We employ the technique from [69] to prove this result. First, it is well-
known that ΠvT θv is a contraction mapping (cf. Lemma 6 in [71]). This can be inferred as
follows: For any y, ȳ ∈ R2|X|,

‖T θv y − T θv ȳ‖Dθ = γ‖yv − ȳv‖Dθ .

We have used the fact that ‖P θv‖Dθ ≤ ‖v‖Dθ for any v ∈ R|X| (For a proof, see Lemma
1 in [71]). The claim that ΠvT θv is a contraction mapping now follows from the fact that the
projection operator Πv is non-expansive under ‖ · ‖Dθ norm.

Now, for any y, ȳ ∈ R2|X|, we have

‖ΠuT θuy −ΠuT θu ȳ‖Dθ

=‖2γΠuRθP θyv − 2γΠuR
θP θȳv + γ2ΠuP

θyu − γ2ΠuP
θȳu‖Dθ

≤2γ‖ΠuRθP θyv −ΠuRθP θȳv‖Dθ + γ2‖yu − ȳu‖Dθ

≤γC1‖yv − ȳv‖Dθ + γ2‖yu − ȳu‖Dθ , (51)

for someC1 <∞. The first inequality above follows from the aforementioned facts that P θ

and Πu are non-expansive. The second inequality follows by using equivalence of norms
(cf. the justification for Eq. (7) in the proof of Lemma 7 in [70]).

Setting ν =
γC1

ε+ γC1
, where ε is such that γ + ε < 1 and plugging in (51), we obtain

‖ΠT θy −ΠT θȳ‖ν
=ν‖T θv y − T θv ȳ‖Dθ + (1− ν)‖ΠuT θuy −ΠuT θu ȳ‖Dθ

≤νγ‖yv − ȳv‖Dθ + (1− ν)γC1‖yv − ȳv‖Dθ + (1− ν)γ2‖yu − ȳu‖Dθ

≤ν(γ + ε)‖yv − ȳv‖Dθ + (1− ν)γ‖yu − ȳu‖Dθ

≤(γ + ε)‖y − ȳ‖ν .

The claim follows by setting γ̄ = γ + ε. �
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Proof (Theorem 2) The v-recursion in (13) is performing TD) with function approximation
for the value function, while the u-recursion is doing the same for the square value function.
The convergence of v-recursion to the fixed point in (12) can be inferred from [71].

Using an approach similar to [69], we club both v and u recursions and establish con-
vergence using a stability argument in the following: Let wm = (vm, um)T. Then, (13) can
be seen to be equivalent to

wm+1 =wm + ζ3(m)(Mwm + ξ +∆Mm+1), where (52)

M =

(
ΦT
vD

θ(γP θ − I)Φv 0

2γΦT
uD

θRθP θΦv ΦT
uD

θ(γ2P θ − I)Φu

)
and

ξ =

(
ΦT
vD

θrθ

ΦT
uD

θRθrθ

)
.

Further, ∆Mm+1 is a martingale difference, i.e., E[∆Mm+1 | Fm] = 0, where Fm is the
sigma field generated by wl,∆Ml, l ≤ m.

Let h(w) = Mw + ξ. Then, the ODE associated with (52) is

ẇt = h(wt). (53)

The above ODE has a unique globally asymptotically stable equilibrium, since M is a neg-
ative definite. To see the latter fact, observe that M is block triangular and hence its eigen-
values are that of ΦT

vD
θ(γP θ − I)Φv and ΦT

uD
θ(γ2P θ − I)Φu. It can be inferred from

Theorem 2 of [71] that the aforementioned matrices are negative definite. For the sake of
completeness, we provide a brief sketch in the following: For any V ∈ R|X|, it can be
shown that

∥∥P θV ∥∥
Dθ ≤ ‖V ‖Dθ (see Lemma 1 in [71] for a proof). Now,

V TDθγP θV ≤γ
∥∥∥(Dθ)1/2V

∥∥∥ ∥∥∥(Dθ)1/2PV
∥∥∥

=γ ‖V ‖Dθ ‖PV ‖Dθ

≤γ ‖V ‖2Dθ .

Hence, V TDθ(γP θ − I)V ≤ (γ − 1) ‖V ‖2Dθ < 0. By (A3), we know that Φv is full
rank implying the negative definiteness of ΦT

vD
θ(γP θ−I)Φv . Using the same argument as

above and replacingΦv with Φu and γ with γ2, one can conclude that ΦT
uD

θ(γ2P θ−I)Φu.
The final claim now follows by applying Theorems 2.1-2.2(i) of [23], provided we verify

assumptions (A1)-(A2) there. The latter assumptions are given as follows:
(A1) The function h is Lipschitz. For any c, define hc(w) = h(cw)/c. Then, there exists a
continuous function h∞ such that hc → h∞ as c → ∞ uniformly on compacts. Further-
more, origin is an asymptotically stable equilibrium for the ODE

ẇt = h∞(wt). (54)

(A2) The martingale difference {∆Mm,m ≥ 1} is square-integrable with

E[‖∆Mm+1‖2 | Fm] ≤ C0(1 + ‖wm‖2),m ≥ 0,

where C0 <∞.
It is straightforward to verify (A1), as hc(w) = Mw+ξ/c converges to h∞(w) = Mw

as c→∞. Given that M is negative definite, it is easy to see that origin is a asymptotically
stable equilibrium for the ODE (54). (A2) can also be verified by using the same arguments
that were used to show that the martingale difference associated with the regular TD algo-
rithm with function approximation satisfies a bound on the second moment (cf. [71]). �
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Step 2: (Analysis of θ-recursion) Due to timescale separation, the value of λ (updated on
a slower timescale) is assumed to be constant for the analysis of the θ-update. To see this in
rigorous terms, first rewrite the λ-recursion as

λn+1 = Γλ

[
λn + ζ2(n)Ĥ(n)

]
.

where Ĥ(n) = ζ1(n)
ζ2(n)

(
uT
nφu(x0)−

(
vT
nφv(x0)

)2−α). Since the critic recursions converge,

it is easy to see that supn Ĥ(n) is finite. Combining with the observation that ζ1(n)
ζ2(n) = o(1)

due to the assumption (A3) on step-sizes, we see that the λ-recursion above tracks the ODE
λ̇ = 0.

In the following, we show that the update of θ is equivalent to gradient descent for the
function L̂(θ, λ) and converges to a limiting set that depends on λ.

Consider the following ODE

θ̇t = Γ̌
(
∇L̂(θt, λ)

)
, (55)

with the limiting set Zλ =
{
θ ∈ C : Γ̌

(
∇L̂(θt, λ)

)
= 0

}
. In the above, Γ̌ (·) is a

projection operator that ensures the evolution of θ via the ODE (55) stays within the set
Θ :=

∏κ1

i=1[θ
(i)
min, θ

(i)
max] and is defined as follows: For any bounded continuous function

f(·),

Γ̌
(
f(θ)

)
= lim
τ→0

Γ
(
θ + τf(θ)

)
− θ

τ
. (56)

Notice that the limit above may not exist and in that case, as pointed out on pp. 191 of [36],
one can define Γ̌ (f(θ)) to be the set of all possible limit points. From the definition above, it
can be inferred that for θ in the interior of Θ, Γ̌ (f(θ)) = f(θ), while for θ on the boundary
of Θ, Γ̌ (f(θ)) is the projection of f(θ) onto the tangent space of the boundary of Θ at θ.

The main result regarding the convergence of the policy parameter θ for both the RS-
SPSA-G and RS-SF-G algorithms is as follows:

Theorem 3 Under (A1)-(A4), for any given Lagrange multiplier λ, θn updated according
to (19) converges almost surely to θ∗ ∈ Zλ.

The proof of the above theorem requires the following lemma which shows that the
conditions mn, βn in (A4) ensure that the TD-critic does not introduce any bias from a
finite sample run length of mn.

Lemma 6 Let

T (i)
n
4
=

((
1 + 2λvT

nφv(x0)
) (v+

n − vn)Tφv(x0)

βn∆
(i)
n

− λ (u+
n − un)Tφu(x0)

βn∆
(i)
n

)
,

L̂(θ, λ)
4
=− V̂ θ(x0) + λ

(
Ûθ(x0)− V̂ θ(x0)2 − α

)
,

where V̂ (θ) = φv̄(x0)Tv̄ and Û(θ) = φū(x0)Tū denote the approximate value and square
value functions for policy θ7.

Then, we have that∣∣∣E(T (i)
n | θn

)
−∇L̂(θn, λ)

∣∣∣ = O(β2
n), for i = 1, . . . , κ1.

7 For notational convenience, we drop the dependence of v̄ and ū on the underlying policy parameter θ
and this dependence should be clear from the context.
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Proof Let

ξ1,n :=

(
T (i)
n −

((
1 + 2λv̄Tφv(x0)

) (v̄+ − v̄)Tφv(x0)

βn∆
(i)
n

− λ (ū+ − ū)Tφu(x0)

βn∆
(i)
n

)
.

From Theorem 1, we know that the critic parameters vn, un converge to their limits v̄, ū at
the rate O(m−1/2) and hence, after mn steps of the TD-critic, ξ1,n = O( 1√

mnβn
). Now,

from (A4), we have that 1√
mnβn

→ 0 and hence ξ1,n vanishes asymptotically. Hence, we
have

T (i)
n →

((
1 + 2λv̄Tφv(x0)

) (v̄+ − v̄)Tφv(x0)

β∆
(i)
n

− λ (ū+ − ū)Tφu(x0)

β∆
(i)
n

))
. (57)

We next show that the RHS above is an orderO(β2
n) term away from the gradient of the

Lagrangian L(θn, λ). Using a Taylor’s expansion of V̂ (·) around θn, we obtain:

V̂ (θn + βn∆n) = V̂ (θn) + βn∆n
T∇V̂ (θn) +

βn
2

2
∆n

T∇2V̂ (θn)∆n +O(β3
n).

Taking expectations and rearranging terms, we obtain

E

[(
V̂ (θn + βn∆n)− V̂ (θn)

βn∆
(i)
n

)∣∣∣∣∣ θn
]

=E

[
∆T
n∇V̂ (θn)

∆
(i)
n

| θn

]
+ E

[
∆T
n∇2

θn V̂ (θn)∆n

∆
(i)
n

| θn

]
+O(β2

n)

=∇iV̂ (θn) + E

∑
j 6=i

∆
(j)
n

∆
(i)
n

∇j V̂ (θn) | θn

+O(β2
n)

=∇iV̂ (θn) +O(β2
n). (58)

In the above, we have used the fact that ∆n is i.i.d. Rademacher and independent of θn.
In a similar manner, defining Û(θn) = φū(x0)Tū and Û(θn+βn∆n) = φū+(x0)Tū+,

we can conclude that

E

[(
Û(θn + βn∆n)− Û(θn)

βn∆n
(i)

)∣∣∣∣∣ θn
]

=∇iÛ(θn) +O(β2
n). (59)

The claim now follows by plugging in (58)–(59) into (57).
�

In order to the prove Theorem 3, we require the well-known Kushner-Clark lemma (see
[36, pp. 191-196]). For the sake of completeness, we recall this result below.
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Kushner-Clark lemma. Consider the following recursion in κ1-dimensions:

xn+1 = Γ (xn + a(n)(h(xn) + ξ1,n + ξ2,n)), (60)

where Γ projects the iterate xn onto a compact and convex set, say C ∈ RN . The ODE
associated with (60) is given by

ẋ(t) = Γ̄ (h(x(t))), (61)

where Γ̄ is a projection operator that keeps the ODE evolution within the set C and is
defined as in (56).

We make the following assumptions:

(B1) h is a continuous Rκ1 -valued function.
(B2) The sequence ξ1,n, n ≥ 0 is a bounded random sequence with ξ1,n → 0 almost surely

as n→∞.
(B3) The step-sizes a(n), n ≥ 0 satisfy a(n)→ 0 as n→∞ and

∑
n a(n) =∞.

(B4) {ξ2,n, n ≥ 0} is a sequence such that for any ε > 0,

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

aiξ1,i

∥∥∥∥∥ ≥ ε
)

= 0.

(B5) The ODE (61) has a compact subset K of Rκ1 as its set of asymptotically stable
equilibrium points.

The main result (see [36, pp. 191-196]) is as follows:

Theorem 4 Assume (B1)–(B5). Then, xn converges almost surely to the set K.

Proof (Theorem 3) We first rewrite the recursion (19) as follows:

θ
(i)
n+1 =Γi

(
θ(i)
n + ζ2(n)

(
∇L̂(θn, λ) + ξ1,n + ξ2,n

))
, (62)

where

ξ1,n =E
(
T (i)
n | θn

)
−∇L̂(θn, λ),

ξ2,n =T (i)
n − E

(
T (i)
n | θn

)
,

with T (i)
n defined as in Lemma 6.

We now verify (B1)- (B5) for the above recursion:

– From (A1) together with the facts that the state space is finite and the projection Γ is
onto a compact set, we have from Theorem 2 of [53] that the stationary distributions
Dθ
γ(x|x0) and d̃θγ(x|x0) are continuously differentiable. This in turn implies continuity

of∇V̂ (θn) and∇Û(θn). Thus, (B1) follows for∇L̂(θn, λ).
– In light of Lemma 6 and (A4), we have that ξ1,n → 0 as n→∞.
– (A4) implies (B3).
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– A simple calculation shows that E(ξ2,n)2 ≤ E(T (i)
n )2 ≤ C3/β

2
n for some C3 < ∞.

Applying Doob’s inequality, we obtain

P

(
sup
l≥k

∥∥∥∥∥
l∑

n=k

ζ2(n)ξ2,n

∥∥∥∥∥ ≥ ε
)
≤ 1

ε2

∞∑
n=k

ζ2(n)2E ‖ξ2,n‖2 . (63)

≤C3

ε2

∞∑
n=k

ζ2(n)2

β2
n

= 0. (64)

Thus, (B4) is satisfied.
– Zλ is an asymptotically stable attractor for the ODE (55), with L̂(θ, λ) itself serving as

a strict Lyapunov function. This can be inferred as follows:

dL̂(θ, λ)

dt
= ∇L̂(θ, λ)θ̇ = ∇L̂(θ, λ)Γ̌

(
−∇L̂(θ, λ)

)
< 0.

The claim now follows from Kushner-Clark lemma. �

Step 3: (Analysis of λ-recursion and Convergence to a Local Saddle Point) We first show
that the λ-recursion converges and then prove that the whole algorithm converges to a local
saddle point of L̂(θ, λ).

We define the following ODE governing the evolution of λ:

λ̇t = Γ̌λ
[
Λ̂θ

λt

(x0)− α
]

= Γ̌λ
[
Ûθ

λt

(x0)− V̂ θ
λt

(x0)2 − α
]
, (65)

where θλt is the limiting point of the θ-recursion corresponding to λt. Further, Γ̌λ is an
operator similar to the operator Γ̌ defined in (56) and is defined as follows: For any bounded
continuous function f(·),

Γ̌λ
(
f(λ)

)
= lim
τ→0

Γλ
(
λ+ τf(λ)

)
− λ

τ
. (66)

Theorem 5 λn → F almost surely as n→∞, whereF 4=
{
λ | λ ∈ [0, λmax], Γ̌λ

[
Λ̂θ

λ

(x0)−
α
]

= 0, θλ ∈ Zλ
}

.

Proof The proof follows using standard stochastic approximation arguments. The first step
is to rewrite the λ-recursion as follows:

λn+1 = Γλ

[
λn + ζ1(n)

(
ūTφu(x0)−

(
v̄Tφv(x0)

)2 − α+ ξ2,n
)]
,

where ξ2,n :=
(
uT
nφu(x0) −

(
vT
nφv(x0)

)2) − (ūTφu(x0) −
(
v̄Tφv(x0)

)2). Note that

the converged critic parameters v̄ and ū are for the policy θλn . The latter is a limiting point
of the θ-recursion, with the Lagrange multiplier λn. Owing to convergence of θ-recursion
and also TD-critic in the inner loop, we can conclude that ξ2,n = o(1). Thus, ξ2,n adds an
asymptotically vanishing bias term to the λ-recursion above. The claim follows by apply-
ing the standard result in Theorem 2 of [21] for convergence of stochastic approximation
schemes. �
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Recall that L̂(θ, λ)
4
= −V̂ θ(x0)+λ(Λ̂θ(x0)−α) and hence∇λL̂(θ, λ) = Λ̂θ(x0)−α.

Thus,
Γ̌λ
[
Λ̂θ

λ

(x0)− α
]

= 0,

is the same as
Γ̌λ∇λL̂(θλ, λ) = 0.

As in [20], we invoke the envelope theorem of mathematical economics [40] to conclude
that the ODE (65) is equivalent to the following

λ̇t = Γ̌λ
[
∇λL̂(θλt , λt)

]
. (67)

Note that the above has to interpreted in the Cartheodory sense, i.e., as the following integral
equation

λt = λ0 +

∫ t

0

Γ̌λ
[
∇λL̂(θλs , λs)

]
ds.

As noted in Lemma 4.3 of [20], using the generalized envelope theorem from [42] it can
be shown that the RHS of (67) coincides with that of (65) at differentiable points, while the
ODE spends zero time at non-differentiable points (except at the points of maxima).

We next claim that the limit θλ
∗

corresponding to λ∗ satisfies the variance constraint in
(3), i.e.,

Proposition 1 For any λ∗ in F̂ 4=
{
λ | λ ∈ [0, λmax), Γ̌λ

[
Λ̂θ

λ

(x0) − α
]

= 0, θλ ∈
Zλ
}

, the corresponding limiting point θλ
∗

satisfies the variance constraint Λ̂θ
λ∗

(x0) ≤ α.

Proof Follows in a similar manner as Proposition 10.6 in [17].

From Theorems 3–5 and Proposition 1, it is evident that the actor recursion (19) con-
verges to a tuple (θλ

∗
, λ∗) that is a local minimum w.r.t. θ and a local maximum w.r.t. λ

of L̂(θ, λ). In other words, overall convergence is to a (local) saddle point of L̂(θ, λ). Fur-
ther, the limit is also feasible for the constrained problem in (3) as θλ

∗
satisfies the variance

constraint there.

7.2 Convergence of the First-Order Algorithm: RS-SF-G

Note that since RS-SPSA-G and RS-SF-G use different methods to estimate the gradient,
their proofs only differ in the second step, i.e., the convergence of the policy parameter θ.

Proof of Theorem 3 for SF

Proof As in the case of the SPSA algorithm, we rewrite the θ-update in (20) using the
converged TD-parameters and constant λ as

θ
(i)
n+1 = Γi

(
θ(i)
n − ζ2(n)

(−∆(i)
n

(
1 + 2λv̄Tφv(x0)

)
β

(v̄+ − v̄)Tφv(x0)

+
λ∆

(i)
n

β
(ū+ − ū)Tφu(x0) + ξ1,n

))
,
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where ξ1,n → 0 by using arguments analogous to those in the proof of Lemma 6. Next, we
establish that

E

[
∆(i)

βn
(v̄+ − v̄)Tφv(x0) | θ, λ

]
is an asymptotically correct estimate of the gradient of

V̂ (θ) in the following:

E

[
∆

(i)
n

βn
(v̄+ − v̄)Tφv(x0) | θn, λ

]
−→ ∇iv̄Tφv(x0) a.s. as n→∞.

The above follows in a similar manner as Proposition 10.2 of Bhatnagar et al [17]. On
similar lines, one can see that

E

[
∆

(i)
n

βn
(ū+ − ū)Tφu(x0) | θn, λ

]
−→ ∇iūTφu(x0) a.s. as n→∞.

Thus, (20) can be seen to be a discretization of the ODE (55) and the rest of the analysis
follows in a similar manner as in the SPSA proof. �

7.2.1 Convergence of the Second-Order Algorithms: RS-SPSA-N and RS-SF-N

Convergence analysis of the second-order algorithms involves the same steps as that of the
first-order algorithms. In particular, the first step involving the TD-critic and the third step in-
volving the analysis of λ-recursion follow along similar lines as earlier, whereas θ-recursion
analysis in the second step differs significantly.

Step 2: (Analysis of θ-recursion for RS-SPSA-N and RS-SF-N) Since the policy param-
eter is updated in the descent direction with a Newton decrement, the limiting ODE of the
θ-recursion for the second order algorithms is given by

θ̇t = Γ̌
(
Υ
(
∇2L(θt, λ)

)−1∇L(θt, λ)
)
, (68)

where Γ̌ is as before (see (56)). Let

Zλ =
{
θ ∈ Θ : −∇L(θt, λ)TΥ

(
∇2
θL(θt, λ)

)−1∇L(θt, λ) = 0
}
.

denote the set of asymptotically stable equilibrium points of the ODE (68) and Zελ its ε-
neighborhood. Then, we have the following analogue of Theorem 3 for the RS-SPSA-N and
RS-SF-N algorithms:

Theorem 6 Under (A1)-(A5), for any given Lagrange multiplier λ and ε > 0, there exists
β0 > 0 such that for all β ∈ (0, β0), θn → θ∗ ∈ Zελ almost surely.

Proof of Theorem 6 for RS-SPSA-N

Before we prove Theorem 6, we establish that the Hessian estimate Hn in (30) converges
almost surely to the true Hessian∇2

θL(θn, λ) in the following lemma.

Lemma 7 For all i, j ∈ {1, . . . , κ1}, we have the following claims with probability one:
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(i)

∥∥∥∥∥L(θn + βn∆n + βn∆̂n, λ)− L(θn, λ)

β2
n∆

(i)
n ∆̂

(j)
n

−∇2

θ
(i,j)
n

L(θn, λ)

∥∥∥∥∥→ 0,

(ii)

∥∥∥∥∥L(θn + βn∆n + βn∆̂n, λ)− L(θn, λ)

βn∆̂
(i)
n

−∇
θ
(i)
n
L(θn, λ)

∥∥∥∥∥→ 0,

(iii)
∥∥∥H(i,j) −∇2

θ
(i,j)
n

L(θn, λ)
∥∥∥→ 0,

(iv)
∥∥M − Υ (∇2

θnL(θn, λ))−1
∥∥→ 0.

Proof The proofs of the above claims follow from Propositions 10.10, 10.11 and Lemmas
7.10 and 7.11 of [17], respectively. �

Proof (Theorem 6 for RS-SPSA-N) As in the case of the first order methods, due to
timescale separation, we can treat λn ≡ λ, a constant and use the converged TD-parameters
to arrive at the following equivalent update rules for the Hessian recursion (30) and θ-
recursion (31):

H
(i,j)
n+1 = H(i,j)

n + ζ′2(n)

[(
1 + λn(v̄n + v̄+

n )Tφv(x0)
)
(v̄n − v̄+

n )Tφv(x0)

β2
n∆

(i)
n ∆̂

(j)
n

+
λ(ū+

n − ūn)Tφu(x0)

β2
n∆

(i)
n ∆̂

(j)
n

−H(i,j)
n

]
,

θ
(i)
n+1 = Γi

[
θ(i)
n + ζ2(n)

κ1∑
j=1

M (i,j)
n

((1 + 2λv̄T
nφv(x0)

)
(v̄+
n − v̄n)Tφv(x0)

βn∆
(j)
n

− λ(ū+
n − ūn)Tφu(x0)

βn∆
(j)
n

)]
.

By a completely parallel argument to the proof of Lemma 6 in conjunction with Lemma 7,
the θ-recursion above is equivalent to the following:

θ
(i)
n+1 = Γ̄i

(
θ(i)
n + ζ2(n)

(
∇2L(θn, λ)

)−1∇L(θn, λ)

)
. (69)

The above can be seen as a discretization of the ODE (68), with Zλ serving as its asymp-
totically stable attractor. The rest of the claim follows in a similar manner as Theorem 3.
�

Proof of Theorem 6 for RS-SF-N

Proof We first establish the following result for the gradient and Hessian estimators em-
ployed in RS-SF-N:

Lemma 8 We have the following claims with probability one:

(i)

∥∥∥∥∥E [ 1
β2
n
H̄(∆n)(L(θn + βn∆n, λ)− L(θn, λ)) | θn, λ

]
−∇2

θL(θn, λ)

∥∥∥∥∥→ 0.
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(ii) ‖E
[

1

βn
∆n(L(θn + βn∆n, λ)− L(θn, λ)) | θn, λ

]
−∇L(θn, λ)‖ → 0.

Proof The proofs of the above claims follow from Propositions 10.1 and 10.2 of [17], re-
spectively. �

The rest of the analysis is identical to that of RS-SPSA-N. �

Remark 11 (On Convergence Rate.) In the above, we established asymptotic limits for
all our algorithms using the ODE approach. To the best of our knowledge, there are no
convergence rate results available for multi-timescale stochastic approximation schemes,
and hence, for actor-critic algorithms. This is true even for the actor-critic algorithms that
do not incorporate any risk criterion. In [34], the authors provide asymptotic convergence
rate results for linear two-timescale recursions. It would be an interesting direction for future
research to obtain concentration bounds for general (non-linear) two-timescale schemes.

While a rigorous analysis on convergence rate of our proposed schemes is difficult, one
could make a few concessions and use the following argument to see that the SPSA-based
algorithms converge quickly: In order to analyse the rate of convergence of θ-recursion, as-
sume (for sufficiently large n) that the TD-critic has converged in the inner-loop. This is
because, the trajectory lengths mn → ∞ as n → ∞ and under appropriate step-size set-
tings (or with iterate averaging) one can obtain convergence rate of the order O (1/

√
m) on

the root mean square error of TD (see Theorem 1). Now, if one holds λ fixed, then invoking
asymptotic normality results for SPSA (see Proposition 2 in [58]) it can be shown that
n1/3(θn − θλ) is asymptotically normal, where θλ is a limit point in the set Zλ. Sim-
ilar results also hold for second-order SPSA variants (cf. Theorem 3a in [60]). Both the
aforementioned claims are proved using a well-known result on asymptotic normality of
stochastic approximation schemes due to Fabian [27].

The second-order schemes such as RS-SPSA-N score over their first order counterpart
RS-SPSA-G from a asymptotic normality results perspective. This is because obtaining the
optimal convergence rate for RS-SPSA-G requires that the step-size ζ2(n) is set to ζ2(0)/n
where ζ2(0) > 1/λmin(∇2

θL(θλ, λ)), whereas there is no such constraint for the second-
order algorithm RS-SPSA-N. Here λmin(A) denotes the minimum eigenvalue of the ma-
trix A. The reader is referred to [26] for a detailed discussion on convergence rate of (one
timescale) SPSA-based schemes using asymptotic mean-square error.

Remark 12 (Unstable Equilibria.) The limit setZλ contains both stable and unstable equi-
libria and the θ-recursion can possibly end up in a unstable equilibrium point. One may
avoid this situation by including additional noise in the randomized policy that drives the
θ-recursion. For instance, define a η-offset policy as

µ̂(a | x) =
µ(a | x) + η∑

a′∈A(x)

(µ(a′ | x) + η)
.

The above policy can be used in place of the regular µ(· | x), so that the algorithm is pulled
away from an unstable equilibria. Providing theoretical guarantees for such a scheme is
non-trivial and we have left it for future work.

8 Convergence Analysis of the Average Reward Risk-Sensitive Actor-Critic Algorithm

As in the discounted setting, we use the ODE approach [21] to analyze the convergence of
our average reward risk-sensitive actor-critic algorithm. The proof involves three main steps:
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1. The first step is the convergence of ρ, η, V , and U , for any fixed policy θ and Lagrange
multiplier λ. This corresponds to a TD(0) (with extension to η and U ) proof. Using
arguments similar to that in Step 2 of the proof of RS-SPSA-G, one can show that the θ
and λ recursions track θ̇t = 0 and λ̇t = 0, when viewed from the TD critic timescale
{ζ3(t)}. Thus, the policy θ and Lagrange multiplier λ are assumed to be constant in the
analysis of the critic recursion.

2. The second step is to show the convergence of θn to an ε-neighborhood Zελ of the set of
asymptotically stable equilibria Zλ of ODE

θ̇t = Γ̌
(
∇L(θt, λ)

)
, (70)

where the projection operator Γ̌ ensures that the evolution of θ via the ODE (70) stays
within the compact and convex set Θ ⊂ Rκ1 and is defined in (56). Again here it is
assumed that λ is fixed because θ-recursion is on a faster time-scale than λ’s.

3. The final step is the convergence of λ and showing that the whole algorithm converges to
a local saddle point ofL(θ, λ). where the limit is shown to satisfy the variance constraint
in (40).

Step 1: Critic’s Convergence

Lemma 9 For any given policy µ, {ρ̂n}, {η̂n}, {vn}, and {un}, defined in Algorithm 2
and by the critic recursion (46) converge to ρ(µ), η(µ), vµ, and uµ almost surely, where vµ

and uµ are the unique solutions to

ΦT

vD
µΦvv

µ = ΦT

vD
µTµv (Φvv

µ), ΦT

uD
µΦuu

µ = ΦT

uD
µTµu (Φuu

µ), (71)

respectively. In (71), Dµ denotes the diagonal matrix with entries dµ(x) for all x ∈ X , and
Tµv and Tµu are the Bellman operators for the differential value and square value functions
of policy µ, defined as

Tµv J = rµ − ρ(µ)e + P µJ, Tµu J = Rµrµ − η(µ)e + P µJ, (72)

where rµ and P µ are the reward vector and transition probability matrix of policy µ, Rµ =
diag(rµ), and e is a vector of size n (the size of the state space X ) with elements all equal
to one.

Proof The proof for the average reward ρ(µ) and differential value function vµ follows
in a similar manner as Lemma 5 in [14]. It is based on verifying the Assumptions (A1)-
(A2) of Borkar and Meyn [23], and uses the second part of Assumption (A3) of our paper,
i.e., v ∈ Rκ2 , for every v ∈ Rκ2 . The proof for ρ(µ) and vµ can be easily extended to the
square average reward η(µ) and square differential value function uµ. �

Step 2: Actor’s Convergence
Let Zλ =

{
θ ∈ Θ : Γ̌

(
− ∇L(θ, λ)

)
= 0

}
denote the set of asymptotically stable

equilibrium points of the ODE (70) and Zελ =
{
θ ∈ Θ : ||θ − θ0|| < ε, θ0 ∈ Zλ

}
denote

the set of points in the ε-neighborhood of Zλ. The main result regarding the convergence of
the policy parameter in (47) is as follows:

Theorem 7 Assume (A1)-(A4). Then, given ε > 0, ∃β > 0 such that for θn, n ≥ 0
obtained by the algorithm, if supθn ‖B(θn, λ)‖ < β, then θn governed by (47) converges
almost surely to Zελ as n→∞.
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Proof Let F(n) = σ(θm,m ≤ n) denote a sequence of σ-fields. We have

θn+1 = Γ
(
θn − ζ2(n)

(
− δnψn + λ(εnψn − 2ρ̂n+1δnψn)

))
= Γ

(
θn + ζ2(n)(1 + 2λρ̂n+1)δnψn − ζ2(n)λεnψn

)
= Γ

(
θn − ζ2(n)

[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)]
E
[
δθnψn|F(n)

]
− ζ2(n)

[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)](
δnψn − E

[
δnψn|F(n)

])
− ζ2(n)

[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)]
E
[
(δn − δθn)ψn|F(n)

]
+ ζ2(n)λE

[
εθnψn|F(n)

]
+ ζ2(n)λ

(
εnψn − E

[
εnψn|F(n)

])
+ ζ2(n)λE

[
(εn − εθn)ψn|F(n)

])
.

By setting ξn = ρ̂n+1 − ρ(θn), we may write the above equation as

θn+1 = Γ

(
θn − ζ2(n)

[
1 + 2λ

(
ξn + ρ(θn)

)]
E
[
δθnψn|F(n)

]
(73)

− ζ2(n)
[
1 + 2λ

(
ξn + ρ(θn)

)] (
δnψn − E

[
δnψn|F(n)

])
︸ ︷︷ ︸

∗

− ζ2(n)
[
1 + 2λ

(
ξn + ρ(θn)

)]
E
[
(δn − δθn)ψn|F(n)

]︸ ︷︷ ︸
+

+ ζ2(n)λE
[
εθnψn|F(n)

]
+ ζ2(n)λ

(
εnψn − E

[
εnψn|F(n)

])
︸ ︷︷ ︸

∗

(74)

+ ζ2(n)λE
[
(εn − εθn)ψn|F(n)

]︸ ︷︷ ︸
+

)
.

Since Algorithm 2 uses an unbiased estimator for ρ, we have ρ̂n+1 → ρ(θn), and thus,
ξn → 0. The terms (+) asymptotically vanish in light of Lemma 9 (Critic convergence).
Finally the terms (∗) can be seen to vanish using standard martingale arguments (cf. Theo-
rem 2 in [14]). Thus, (73) can be seen to be equivalent in an asymptotic sense to

θn+1 = Γ
(
θn− ζ2(n)

[
1 + 2λρ(θn)

]
E
[
δθnψn|F(n)

]
+ ζ2(n)λE

[
εθnψn|F(n)

])
. (75)

From the foregoing, it can be seen that the actor recursion in (47) asymptotically tracks the
stable fixed points of the ODE

θ̇t = Γ̌
(
∇L(θt, λ) + B(θt, λ)

)
. (76)

Note that the bias of Algorithm 2 in estimating∇L(θ, λ) is (see Lemma 5)

B(θ, λ) =
∑
x

Dθ(x)
{
−
(
1 + 2λρ(θ)

)[
∇V̄ θ(x)−∇vθ>φv(x)

]
+ λ

[
∇Ūθ(x)−∇uθ>φu(x)

]}
.



40 Prashanth L.A. and Mohammad Ghavamzadeh

Since the bias supθ ‖B(θ, λ)‖ → 0 by assumption, the trajectories (76) converge to
those of (55) uniformly on compacts for the same initial condition and the claim follows. �

Remark 13 (Bias in Estimating Gradient.) We do not always expect that supθ ‖B(θ, λ)‖ →
0. However, if there is no bias or negligibly small bias in the actor-critic algorithm, which is
directly related to the choice of the critic’s function space, then we will definitely gain from
using actor-critic instead of policy gradient. Note that the choice between actor-critic and
policy gradient is a bias-variance tradeoff, and similar to any other bias-variance tradeoff,
if the variance reduction is more significant (given the number of samples used to estimate
each gradient) than the introduced bias, then it would be advantageous to use actor-critic
instead of policy gradient. Also note that this tradeoff exists even in the original form (risk
neutral) of actor-critic and policy gradient and has nothing to do with the risk-sensitive
objective function studied in this paper. For more details on this, we refer the reader to
Theorem 2 and Remark 2 in Bhatnagar et al [15].

Step 3: λ Convergence and Overall Convergence of the Algorithm

As in the discounted setting, we first show that the λ-recursion converges and then prove
convergence to a local saddle point of L(θ, λ). Consider the ODE

λ̇t = Γ̌λ
(
Λ(θλt)− α

)
, (77)

where Γ̌λ is a projection operator that forces the evolution of λ via (65) is within [0, λmax]
and is defined in (66).

Theorem 8 λn → F almost surely as t→∞, whereF 4=
{
λ | λ ∈ [0, λmax], Γ̌λ

(
Λ(θλ)−

α
)

= 0, θλ ∈ Zλ
}

.

Proof The proof follows in a similar manner as that of Theorem 3 in [11]. �

As in the discounted setting, the following proposition claims that the limit θλ
∗

corre-
sponding to λ∗ satisfies the variance constraint in (40), i.e.,

Proposition 2 For any λ∗ in F̂ 4=
{
λ | λ ∈ [0, λmax), Γ̌λ

[
Λθ

λ

(x0) − α
]

= 0, θλ ∈
Zλ
}

, the corresponding limiting point θλ
∗

satisfies the variance constraint Λθ
λ∗

(x0) ≤ α.

Using arguments similar to that used to prove convergence of RS-SPSA-G, it can be
shown that that the ODE (77) is equivalent to λ̇t = Γ̌λ

[
∇λL(θλt , λt)

]
and thus, the actor

parameters (θn, λn) updated according to (47) converge to a (local) saddle point (θλ
∗
, λ∗)

of L(θ, λ). Morever, the limiting point θλ
∗

satisfies the variance constraint in (40).

9 Experimental Results

We evaluate our algorithms in the context of a traffic signal control application. The ob-
jective in our formulation is to minimize the total number of vehicles in the system, which
indirectly minimizes the delay experienced by the system. The motivation behind using a
risk-sensitive control strategy is to reduce the variations in the delay experienced by road
users.
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Fig. 2 The 2x2-grid network used in our traffic signal control experiments.

9.1 Implementation

We consider both infinite horizon discounted and average settings for the traffic signal
control MDP, formulated as in [46]. We briefly recall their formulation here: The state at
each time t, xn, is the vector of queue lengths and elapsed times and is given by xn =
(q1(n), . . . , qN (n), t1(n), . . . , tN (n)), where N is the number of signalled lanes in the
road network considered. Here qi and ti denote the queue length and elapsed time since the
signal turned to red on lane i. The actions an belong to the set of feasible sign configurations.
The single-stage cost function h(xn) is defined as follows:

h(xn) =r1 ∗
[ ∑
i∈Ip

r2 ∗ qi(n) +
∑
i/∈Ip

s2 ∗ qi(n)
]

(78)

+ s1 ∗
[ ∑
i∈Ip

r2 ∗ ti(n) +
∑
i/∈Ip

s2 ∗ ti(n)
]
,

where ri, si ≥ 0 such that ri + si = 1 for i = 1, 2 and r2 > s2. The set Ip is the set
of prioritized lanes in the road network considered. While the weights r1, s1 are used to
differentiate between the queue length and elapsed time factors, the weights r2, s2 help in
prioritization of traffic.

Given the above traffic control setting, we aim to minimize both the long run discounted
and average sum of the cost function h(xn) in (78). The underlying policy that guides the
selection of the sign configuration in each of the algorithms we implemented (see below for
the complete list) is a parameterized Boltzmann family and has the form

µθ(x, a) =
eθ
>φx,a∑

a′∈A(x) e
θ>φx,a′

, ∀x ∈ X , ∀a ∈ A. (79)

The experiments for each algorithm that we implement is comprised of the following
two phases:

Policy Search Phase: Here each iteration involved the simulation run with the nominal
policy parameter θ as well as the perturbed policy parameter θ+ (algorithm-specific).
We run each algorithm for 500 iterations, where the run length for a particular policy
parameter is 150 steps.
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Policy Test Phase: After the completion of the policy search phase, we freeze the policy
parameter and run 50 independent simulations with this (converged) choice of the pa-
rameter. The results presented subsequently are averages over these 50 runs.

We implement the following algorithms using the Green Light District (GLD) simula-
tor [72]8:

Discounted Setting

1. SPSA-G: This is a first-order risk-neutral algorithm with SPSA-based gradient estimates
that updates the parameter θ as follows:

θ
(i)
n+1 = Γi

(
θ(i)
n +

ζ2(n)

β∆
(i)
n

(v+
n − vn)Tφv(x0)

)
,

where the critic parameters vn, v+
n are updated according to (13). Note that this is a two-

timescale algorithm with a TD critic on the faster timescale and the actor on the slower
timescale. Unlike RS-SPSA-G, this algorithm, being risk-neutral, does not involve the
Lagrange multiplier recursion.

2. SF-G: This is a first-order risk-neutral algorithm that is similar to SPSA-G, except that
the gradient estimation scheme used here is based on the smoothed functional (SF) tech-
nique. The update of the policy parameter in this algorithm is given by

θ
(i)
n+1 = Γi

(
θ(i)
n + ζ2(n)

(∆(i)
n

β
(v+
n − vn)Tφv(x0)

))
.

3. SPSA-N: This is a risk-neutral algorithm and is the second-order counterpart of SPSA-
G. The Hessian update in this algorithm is as follows: For i, j = 1, . . . , κ1, i < j, the
update is

H
(i,j)
n+1 = H(i,j)

n + ζ′2(n)

[
(vn − v+

n )Tφv(x0)

β2∆
(i)
n ∆̂

(j)
n

−H(i,j)
n

]
, (80)

and for i > j, we set H(i,j)
n+1 = H

(j,i)
n+1 . As in RS-SPSA-N, let Mn

4
= H−1

n , where

Hn = Υ
(
[H

(i,j)
n ]

|κ1|
i,j=1

)
. The actor updates the parameter θ as follows:

θ
(i)
n+1 = Γi

[
θ(i)
n + ζ2(n)

κ1∑
j=1

M (i,j)
n

( (v+
n − vn)Tφv(x0)

β∆
(j)
n

)]
. (81)

The rest of the symbols, including the critic parameters, are as in RS-SPSA-N.
4. SF-N: This is a risk-neutral algorithm and is the second-order counterpart of SF-G. It

updates the Hessian and the actor as follows: For i, j, k = 1, . . . , κ1, j < k, the Hessian
update is

Hessian: H
(i,i)
n+1 = H(i,i)

n + ζ′2(n)

[(
∆

(i)2

n − 1
)

β2
(vn − v+

n )Tφv(x0)−H(i,i)
n

]
,

H
(j,k)
n+1 = H(j,k)

n + ζ′2(n)

[
∆

(j)
n ∆

(k)
n

β2
(vn − v+

n )Tφv(x0)−H(j,k)
n

]
,

8 We would like to point out that the experimental setting involves ’costs’ and not ’rewards’ and the
algorithms implemented should be understood as optimizing a negative reward.
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and for j > k, we set H(j,k)
n+1 = H

(k,j)
n+1 . As before, let Mn

4
= H−1

n , with Hn formed as
in SPSA-N. Then, the actor update for the parameter θ is as follows:

Actor: θ
(i)
n+1 = Γi

[
θ(i)
n + ζ2(n)

κ1∑
j=1

M (i,j)
n

∆
(j)
n

β
(v+
n − vn)Tφv(x0)

]
.

The rest of the symbols, including the critic parameters, are as in RS-SPSA-N.
5. RS-SPSA-G: This is the first-order risk-sensitive actor-critic algorithm that attempts to

solve (40) and updates according to (19).
6. RS-SF-G: This is a first-order algorithm and the risk-sensitive variant of SF-G that up-

dates the actor according to (20).
7. RS-SPSA-N: This is a second-order risk-sensitive algorithm that estimates gradient and

Hessian using SPSA and updates them according to (31).
8. RS-SF-N: This second-order risk-sensitive algorithm is the SF counterpart of RS-SPSA-

N, and updates according to (36).
9. TAMAR: This is a straightforward adaptation of the algorithm proposed in [68]. The

main difference between this and our algorithms is that TAMAR uses a Monte Carlo
critic, while our algorithms employ a TD critic. Moreover, TAMAR incorporates the λ-
recursion that is identical to that of our algorithms (see Eq. 21). In contrast, the algorithm
proposed in [68] is for a fixed λ that may not be optimal. Note that even though TAMAR is
an algorithm proposed for a stochastic shortest path (SSP) setting, it can be implemented
in the traffic signal control problem since we truncate the simulation after 150 steps.
Let Dn denote the sum of rewards obtained from a single simulation run in the policy
search phase. Further, let zn :=

∑150
m=0∇ lnµθ(xm, am) denote the likelihood deriva-

tive. Then, the update rule is given by

Ṽn+1 =Ṽn + ζ3(n)
(
Dn − Ṽn

)
Λ̃n+1 =Λ̃n + ζ3(n)

(
D2
n − Ṽ 2

n − Λ̃n
)

θ
(i)
n+1 =Γi

(
θn + ζ2(n)

(
Dn − λn(D2

n − 2DnṼn)
)
z(i)
n

)
, i = 1, . . . , κ1,

λn+1 =Γλ

[
λn + ζ1(n)

(
Λn − α

)]
.

Note that the θ-recursion above corrects an error (we believe it is a typo) in the corre-
sponding update rule (i.e., Eq. 13 in [68]). Unlike the above, Eq. 13 in [68] is missing the
multiplier Dn in the last term in the θ-recursion. The latter multiplier originates from
the gradient of the value function (see Lemma 4.2 in [68]).

Average Setting

1. AC: This is an actor-critic algorithm that minimizes the long-run average sum of the
single-stage cost function h(xn), without considering any risk criteria. This is similar
to Algorithm 1 in Bhatnagar et al [14].

2. RS-AC: This is the risk-sensitive actor-critic algorithm that attempts to solve (40) and is
described in Section 6.

All our algorithms incorporate function approximation owing to the curse of dimen-
sionality associated with larger road networks. For instance, assuming only 20 vehicles per
lane of a 2x2-grid network, the cardinality of the state space is approximately of the order
1032 and the situation is aggravated as the size of the road network increases. We employ
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the feature selection scheme from [47] in each of our algorithms. The features are obtained
with coarse congestion estimates along the lanes of the road network as input. For instance,
instead of the exact queue length on a lane, the coarse congestion information specifies
whether the queue length was between 0 to L1 units, between L1 and L2 units or greater
than L2 units. By placing magnetic sensor loops on the lane at distances L1 and L2 from the
junction, it is possible to obtain coarse congestion information. Assume another threshold T1

for the elapsed time. Using the aforementioned coarse inputs on queue lengths and elapsed
times for each lane in the road network considered, the feature selection is performed in a
graded fashion as follows: queue length less than L1 and elapsed time less than T1 leading
a to feature value that recommends red light, queue length more than L2 and elapsed time
more than T1 leading to a feature value that recommends green light, with the feature values
for the intermediate scenarios graded appropriately. For a detailed description of the feature
selection scheme, the reader is referred to Section V-B of [47]. The values L1, L2 and T1

are set to 6, 14 and 130, as recommended in [47].
Figure 2 shows a snapshot of the road network used for conducting the experiments

from GLD simulator. Traffic is added to the network at each time step from the edge nodes.
The spawn frequencies specify the rate at which traffic is generated at each edge node and
follow a Poisson distribution. The spawn frequencies are set such that the proportion of the
number of vehicles on the main roads (the horizontal ones in Fig. 2) to those on the side
roads is in the ratio of 100 : 5. This setting is close to what is observed in practice and has
also been used for instance in [46, 47]. In all our experiments, we set the weights in the
single stage cost function (78) as follows: r1 = r2 = 0.5 and r2 = 0.6, s2 = 0.4. For the
SPSA and SF-based algorithms in the discounted setting, we set the parameter δ = 0.2 and
the discount factor γ = 0.9. The parameter α in the formulations (40) and (3) was set to 20.
The step-size sequences are chosen as follows:

ζ1(n) =
1

n
, ζ2(n) =

1

n0.75
, ζ′2(n) =

1

n0.7
, ζ3(n) =

1

n0.66
, n ≥ 1. (82)

Further, the constant k related to ζ4(n) in the risk-sensitive average reward algorithm is
set to 1. It is easy to see that the choice of step-sizes above satisfies (A4). The projection
operator Γi was set to project the iterate θ(i) onto the set [0, 10], for all i = 1, . . . , κ1,
while the projection operator for the Lagrange multiplier used the set [0, 1000]. The initial
policy parameter θ0 was set to the κ1-dimensional vector of ones. All the experiments were
performed on a 2.53GHz Intel quad core machine with 3.8GB RAM.

9.2 Results

Figure 3 shows the distribution of the discounted cumulative costDθ(x0) for the algorithms
in the discounted setting. Figure 4 shows the total arrived road users (TAR) obtained for all
the algorithms in the discounted setting, whereas Figure 5 presents the average junction
waiting time (AJWT) for the first-order SF-based algorithm RS-SF-G.9 TAR is a throughput
metric that measures the number of road users who have reached their destination, whereas
AJWT is a delay metric that quantifies the average delay experienced by the road users.

The performance of the algorithms in the average setting is presented in Figure 6. In
particular, Figure 6(a) shows the distribution of the average reward ρ, while Figure 6(b)
presents the average junction waiting time (AJWT) for the average cost algorithms.

9 The AJWT performance of the other algorithms in the discounted setting is similar and the corresponding
plots are omitted here.
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Fig. 3 Performance comparison in the discounted setting using the distribution of Dθ(x0).

Table 1 Throughput (TAR) for algorithms in the discounted setting: standard deviation from 50 independent
simulations shown after ±

Algorithm Risk-neutral Risk-sensitive

SPSA-G 754.84± 317.06 622.38± 28.36

SF-G 832.34± 82.24 810.82± 36.56

SPSA-N 1077.2.66± 250.42 942.3± 65.77

SF-N 1013.62± 152.22 870.5± 61.61

Observation 1: Risk-sensitive algorithms that we propose result in a long-term (dis-
counted or average) cost that is higher than their risk-neutral variants, but with a signif-
icantly lower empirical variance of the cost in both discounted as well as average cost
settings.

The above observation is apparent from Figures 3 and 6(a), which present results for
discounted and average cost settings respectively.
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Fig. 4 Performance comparison of the algorithms in the discounted setting using the total arrived road users
(TAR).

0 1,000 2,000 3,000 4,000 5,000

0

50

100

150

200

250

time

A
JW

T

SF-G
RS-SF-G

Fig. 5 Performance comparison of the first-order SF-based algorithms, SF-G and RS-SF-G, using the average
junction waiting time (AJWT).
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Fig. 6 Performance comparison of the risk-neutral (AC) and risk-sensitive (RS-AC) average reward actor-
critic algorithms using two different metrics.
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Fig. 7 Convergence of SPSA based algorithms in the discounted setting – illustration using two (arbitrarily
chosen) coordinates of the parameter θ.

Observation 2: From a traffic signal control application standpoint, the risk-sensitive
algorithms exhibit a mean throughput/delay that is close to that of the corresponding risk-
neutral algorithms, but with a lower empirical variance in throughput/delay.

Figures 4, 5, and 6(b) validate the first part of the observation above, while the results for
the discounted risk-sensitive algorithms in Table 1 substantiate the second part in the above
observation. In particular, Table 1 presents the mean and standard deviation of the final TAR
value (i.e., the TAR value observed at the end of the policy test phase) for both first-order
and second-order algorithms in the discounted setting and it is evident that the risk-sensitive
algorithms exhibit a lower empirical variance in TAR when compared to their risk-neutral
counterparts.

From the results in Figures 3–4 and Table 1, it is apparent that the second-order schemes
(RS-SPSA-N and RS-SF-N) in the discounted setting exhibit better results in comparison to
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Fig. 8 Performance comparison of RS-SPSA and TAMAR [68] algorithms using two different metrics.

Table 2 `2 distance between gradient estimated using either RS-SPSA or TAMAR and a likelihood ratio
benchmark: mean and standard error from 100 replications shown before and after ±, respectively

Policy TAMAR RS-SPSA

θ(i) = 0.5, ∀i 655.77± 18.65 142.1± 9.56

θ(i) = 1, ∀i 694.99± 16.67 149.82± 10.25

θ(i) = 2, ∀i 720.99± 14.85 146.67± 9.31

θ(i) = 5, ∀i 941.53± 25.39 200.08± 13.25

θ(i) = 7, ∀i 1167.78± 37.14 210.73± 12.97

θ(i) = 10, ∀i 1489.32± 43.43 277.15± 11.93

first-order methods (RS-SPSA-G and RS-SF-G), from the mean and variance of the long-
term discounted cost as well as the throughput (TAR) performance.

Observation 3: The policy parameter θ converges for the risk-sensitive algorithms.
The above observation is validated for SPSA based algorithms in the discounted setting

in Figures 7(a) and 7(b). Note that we established theoretical convergence of our algorithms
earlier (see Sections 7 and 8) and these plots confirm the same. Further, these plots also show
that the transient period, i.e., the initial phase when θ has not converged, is short. Similar
observations hold for the other algorithms as well. The results of this section indicate the
rapid empirical convergence of our proposed algorithms. This observation coupled with the
fact that they guarantee low variance of return, make them attractive for implementation in
risk-constrained systems.

Observation 4: RS-SPSA, which is based on an actor-critic architecture, outperforms
TAMAR, which employs a policy gradient approach.

Figure 8 shows the distribution of the cumulative cost Dθ(x0) and the total arrived
road users (TAR) obtained for TAMAR and RS-SPSA algorithms. It is evident that RS-SPSA
performs better than TAMAR in terms of mean as well as variance of the cumulative cost
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and also in terms of the throughput (TAR) observed. These results illustrate the benefits
of using an actor-critic architecture. Note that both algorithms use the same parameterized
Boltzmann policy (see Eq. 79) and the results have been obtained with the same number
of updates, i.e., 500 SPSA updates, which is equivalent to 1000 policy gradient updates, as
each iteration of SPSA uses two trajectories to estimate the gradient. While the results in
Figure 8 implicitly indicate that RS-SPSA gives a better estimate of the gradient in compar-
ison to TAMAR, we make this observation explicit in Table 2, which plots the results from
the following experiment:

Step 1 (True gradient estimation): Estimate ∇θΛ(x0) using the likelihood ratio method,
along the lines of Lemma 4.2 in [68]. For this purpose, simulate a large number, say
>1 = 1000, of trajectories of the underlying MDP (as before, we truncate the trajec-
tories to 150 steps). This estimate can be safely assumed to be very close to the true
gradient and hence, we shall use it as the benchmark for comparing our SPSA based
actor-critic scheme vs. the policy gradient approach of TAMAR.

Step 2 (Policy gradient approach of TAMAR):
– Fix a policy parameter.
– Run two simulations for the policy above.
– Estimate∇θΛ(x0) using the scheme in TAMAR.
– Calculate the distance (in `2 norm) between the estimate above and the benchmark

defined in Step 1.
Repeat the above steps 100 times and collect the mean and standard errors of the `2
distance in the last step above.

Step 3 (Actor-critic approach of RS-SPSA):
– Fix a policy parameter.
– Run two simulations - one for the unperturbed parameter and the another for the per-

turbed parameter, where perturbation is performed as in RS-SPSA (see Section 4.3).
– Estimate∇θΛ(x0) using the scheme in RS-SPSA.
– Calculate the distance (in `2 norm) between the estimate above and the benchmark

defined in Step 1.
Repeat the above steps 100 times and collect the mean and standard errors of the relevant
`2 distance as in Step 2.

From the mean and standard errors presented in Table 2 for six different policies, it is evident
that RS-SPSA produces more accurate estimates of the policy gradients than TAMAR, which
explains its faster convergence (compared to TAMAR) in the experiments of Figure 8. The
trend did not change by having the true gradient estimated from a larger number of trajecto-
ries. In particular, with >1 = 5000 (see Step 1 above), the relevant `2 distances for TAMAR
and RS-SPSA were observed to be (683.06 ± 26.75) and (143.02 ± 14.44), respectively
for the policy θ(i) = 1, ∀i.

10 Conclusions and Future Work

We proposed novel actor-critic algorithms for control in risk-sensitive discounted and av-
erage reward MDPs. All our algorithms involve a TD critic on the fast timescale, a policy
gradient (actor) on the intermediate timescale, and a dual ascent for Lagrange multipliers on
the slowest timescale. In the discounted setting, we pointed out the difficulty in estimating
the gradient of the variance of the return and incorporated simultaneous perturbation based
SPSA and SF approaches for gradient estimation in our algorithms. The average setting, on
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the other hand, allowed for an actor to employ compatible features to estimate the gradi-
ent of the variance. We provided proofs of convergence to locally (risk-sensitive) optimal
policies for all the proposed algorithms. Further, using a traffic signal control application,
we observed that our algorithms resulted in lower variance empirically as compared to their
risk-neutral counterparts.

As future work, it would be interesting to develop a risk-sensitive algorithm that uses a
single trajectory in the discounted setting. An orthogonal direction of future research is to
obtain finite-time bounds on the quality of the solution obtained by our algorithms. As men-
tioned earlier, this is challenging as, to the best of our knowledge, there are no convergence
rate results available for multi-timescale stochastic approximation schemes, and hence, for
actor-critic algorithms.
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