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1 Introduction

The use of function approximator to represent the value function of Reinforcement Learning (RL)
and Dynamic Programming (DP) problems with large state spaces is inevitable. Although different
methods for value function approximation have been considered (such as generalized linear model
with predefined basis functions, regression trees, neural networks, etc.), the designer still needs to
make non-trivial design choices such as basis function selection or the stopping rule for growing the
tree. These choices, however, should ideally depend on the characteristics of problem in hand such
as the number of available samples, the smoothness, and the sparsity of the true value function. We
would like a learning method to automatically adapt to the actual difficulty of the problem based on
the training data.

Regularization technique is a powerful and flexible approach to design adaptive learning procedures.
The idea of regularization is that one starts from a large function space and controls the solution’s
complexity by a regularization (or penalization) term. This is a principled and flexible way to bal-
ance approximation and estimation errors. Here, the notion of complexity depends on the function
space and the form of regularizer, and may have smoothness, sparsity, or other well-defined inter-
pretations.

Even though regularization technique has been used in supervised learning, their use in RL/DP is
new. We develop regularized counterparts of standard Approximate Value Iteration and Approxi-
mate Policy Iteration algorithms. Our statistical analyses show that these methods have an almost
optimal finite-sample sample-complexity convergence rate for value function estimation. We
briefly review these methods in the following sections. Please refer to [1; 2] for more information.

2 Regularized Policy Iteration

The ability to evaluate a given policy is the core requirement to run policy iteration. We need a
policy evaluation procedure that estimates the action-value function of a given policy π as accurate
as possible. Regularization helps us develop flexible policy evaluation methods. In this section, we
present REG-LSTD and REG-BRM as regularized extensions of standard Least-Squares Temporal
Difference (LSTD) and Bellman Residual Minimization (BRM) algorithms.

The generic algorithm for approximate policy iteration is shown in Table 1. When
ApproxPolicyEval(·) function is an implementation of either REG-LSTD or REG-BRM, this al-
gorithm is called Regularized Policy Iteration. In the ith iteration, we use training samples
Di = {(Xt, At, Rt)}1≤t≤n (1 ≤ i ≤ K), generated by a policy π, thus, At = π(Xt) and
Rt ∼ R(·|Xt, At). Policy π, the behavior policy, should be exploratory enough. πi = π̂(·;Q(i−1))
is the greedy policy with respect to the most recent estimate of action-value function Q(i−1).

In REG-BRM, the estimated action-value function at iteration i for policy πi is computed by solving
the following coupled optimization problems:
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ApproxPolicyIteration(K,Q(−1),ApproxPolicyEval)
// K: number of iterations
// Q(−1): Initial action-value function
// ApproxPolicyEval: Approximate policy evaluation procedure (e.g. REG-
LSTD or REG-BRM)
for i = 0 to K − 1 do

πi(·)← π̂(·; Q(i−1)) // the greedy policy w.r.t. Q(i−1)

Generate training sample Di

Q(i) ← ApproxPolicyEval(πi, Di)
end for
return Q(K−1) or πK(·) = π̂(·; Q(K−1))

Table 1: Approximate Policy Iteration algorithm
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where (T̂πiQ)(Zt) = Rt + γQ(Z ′
t) represents the empirical Bellman operator, Zt = (Xt, At)

and Z ′
t =

(
Xt+1, πi(Xt+1)

)
represent state-action pairs, J(·) is the regularization (penalty) term,

λh,n, λQ,n > 0 are regularization coefficients, and ‖·‖2
n is the empirical norm.

In REG-LSTD, we must solve the following coupled optimization problem:

h∗(·; Q) = argmin
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The choice of FM is by the designer. It can be a finite dimensional parametric space with l2 norm of
weights as the regularizer or an infinite dimensional function space like a reproducing kernel Hilbert
space (RKHS) with the corresponding norm for regularization term, i.e. J(·) = ‖·‖2

H. In these
cases, the coupled optimization problem has a closed-form solution.

3 Regularized Fitted Q-Iteration

Regularized Fitted Q-Iteration is a regularized instance of the fitted Q-Iteration algorithm, an ap-
proximate value iteration method, that attempts to approximate the optimal action-value function
iteratively. The algorithm starts from an initial action-value function Q(0). At each iteration
k (k = 0, · · · ), it applies an approximate Bellman optimality operator and uses a regularized least-
squares algorithm to fit Q(k+1) as the new estimate of the action-value function.

Assuming that in the kth iteration we use mk samples with index nk ≤ i < nk + mk = nk+1 − 1,
the (k + 1)th iterate is obtained by

Q(k+1) = argmin
Q∈FM

1

mk

nk+mk−1X
i=nk

ˆ
Ri + γ max

a′∈A
Q(k)(X ′

i, a
′)−Q(Xi, Ai)

˜2
+ λJ(Q),

where J(Q) is the regularization term and λ > 0 is the regularization coefficient. As in REG-LSTD
and REG-BRM, FM can be a parametric space or an RKHS. In these cases, we have closed-form
solution. Another possibility is working with wavelets basis or an over-complete dictionary and
choose J(·) as l1 norm of the weights. This choice of function space and regularizer can be helpful
when the action-value function has spatially-varying smoothness.
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