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Abstract
Several authors have recently developed risk-sensitive policy gradient methods
that augment the standard expected cost minimization problem with a measure of
variability in cost. These studies have focused on specific risk-measures, such as
the variance or conditional value at risk (CVaR). In this work, we extend the pol-
icy gradient method to the whole class of coherent risk measures, which is widely
accepted in finance and operations research, among other fields. We consider
both static and time-consistent dynamic risk measures. For static risk measures,
our approach is in the spirit of policy gradient algorithms and combines a standard
sampling approach with convex programming. For dynamic risk measures, our ap-
proach is actor-critic style and involves explicit approximation of value function.
Most importantly, our contribution presents a unified approach to risk-sensitive
reinforcement learning that generalizes and extends previous results.

1 Introduction
Risk-sensitive optimization considers problems in which the objective involves a risk measure of
the random cost, in contrast to the typical expected cost objective. Such problems are important
when the decision-maker wishes to manage the variability of the cost, in addition to its expected
outcome, and are standard in various applications of finance and operations research. In reinforce-
ment learning (RL) [33], risk-sensitive objectives have gained popularity as a means to regularize
the variability of the total (discounted) cost/reward in a Markov decision process (MDP).

Many risk objectives have been investigated in the literature and applied to RL, such as the cele-
brated Markowitz mean-variance model [19], Value-at-Risk (VaR) and Conditional Value at Risk
(CVaR) [22, 35, 26, 12, 10, 36]. The view taken in this paper is that the preference of one risk
measure over another is problem-dependent and depends on factors such as the cost distribution,
sensitivity to rare events, ease of estimation from data, and computational tractability of the op-
timization problem. However, the highly influential paper of Artzner et al. [2] identified a set of
natural properties that are desirable for a risk measure to satisfy. Risk measures that satisfy these
properties are termed coherent and have obtained widespread acceptance in financial applications,
among others. We focus on such coherent measures of risk in this work.

For sequential decision problems, such as MDPs, another desirable property of a risk measure is
time consistency. A time-consistent risk measure satisfies a “dynamic programming” style property:
if a strategy is risk-optimal for an n-stage problem, then the component of the policy from the t-th
time until the end (where t < n) is also risk-optimal (see principle of optimality in [5]). The recently
proposed class of dynamic Markov coherent risk measures [30] satisfies both the coherence and time
consistency properties.

In this work, we present policy gradient algorithms for RL with a coherent risk objective. Our
approach applies to the whole class of coherent risk measures, thereby generalizing and unifying
previous approaches that have focused on individual risk measures. We consider both static coherent
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risk of the total discounted return from an MDP and time-consistent dynamic Markov coherent
risk. Our main contribution is formulating the risk-sensitive policy-gradient under the coherent-risk
framework. More specifically, we provide:

• A new formula for the gradient of static coherent risk that is convenient for approximation
using sampling.

• An algorithm for the gradient of general static coherent risk that involves sampling with
convex programming and a corresponding consistency result.

• A new policy gradient theorem for Markov coherent risk, relating the gradient to a suitable
value function and a corresponding actor-critic algorithm.

Several previous results are special cases of the results presented here; our approach allows to re-
derive them in greater generality and simplicity.

Related Work Risk-sensitive optimization in RL for specific risk functions has been studied re-
cently by several authors. [8] studied exponential utility functions, [22], [35], [26] studied mean-
variance models, [10], [36] studied CVaR in the static setting, and [25], [11] studied dynamic coher-
ent risk for systems with linear dynamics. Our paper presents a general method for the whole class
of coherent risk measures (both static and dynamic) and is not limited to a specific choice within
that class, nor to particular system dynamics.

Reference [24] showed that an MDP with a dynamic coherent risk objective is essentially a ro-
bust MDP. The planning for large scale MDPs was considered in [37], using an approximation of
the value function. For many problems, approximation in the policy space is more suitable (see,
e.g., [18]). Our sampling-based RL-style approach is suitable for approximations both in the policy
and value function, and scales-up to large or continuous MDPs. We do, however, make use of a
technique of [37] in a part of our method.

Optimization of coherent risk measures was thoroughly investigated by Ruszczynski and
Shapiro [31] (see also [32]) for the stochastic programming case in which the policy parameters
do not affect the distribution of the stochastic system (i.e., the MDP trajectory), but only the reward
function, and thus, this approach is not suitable for most RL problems. For the case of MDPs and
dynamic risk, [30] proposed a dynamic programming approach. This approach does not scale-up
to large MDPs, due to the “curse of dimensionality”. For further motivation of risk-sensitive policy
gradient methods, we refer the reader to [22, 35, 26, 10, 36].

2 Preliminaries
Consider a probability space (Ω,F , Pθ), where Ω is the set of outcomes (sample space), F is a
σ-algebra over Ω representing the set of events we are interested in, and Pθ ∈ B, where B :={
ξ :
∫
ω∈Ω

ξ(ω) = 1, ξ ≥ 0
}

is the set of probability distributions, is a probability measure over F
parameterized by some tunable parameter θ ∈ RK . In the following, we suppress the notation of θ
in θ-dependent quantities.

To ease the technical exposition, in this paper we restrict our attention to finite probability spaces,
i.e., Ω has a finite number of elements. Our results can be extended to the Lp-normed spaces without
loss of generality, but the details are omitted for brevity.

Denote by Z the space of random variables Z : Ω 7→ (−∞,∞) defined over the probability space
(Ω,F , Pθ). In this paper, a random variable Z ∈ Z is interpreted as a cost, i.e., the smaller the
realization of Z, the better. For Z,W ∈ Z , we denote by Z ≤ W the point-wise partial order,
i.e., Z(ω) ≤ W (ω) for all ω ∈ Ω. We denote by Eξ[Z]

.
=
∑
ω∈Ω Pθ(ω)ξ(ω)Z(ω) a ξ-weighted

expectation of Z.

An MDP is a tuple M = (X ,A, C, P, γ, x0), where X and A are the state and action spaces;
C(x) ∈ [−Cmax, Cmax] is a bounded, deterministic, and state-dependent cost; P (·|x, a) is the tran-
sition probability distribution; γ is a discount factor; and x0 is the initial state.1 Actions are chosen
according to a θ-parameterized stationary Markov2 policy µθ(·|x). We denote by x0, a0, . . . , xT , aT
a trajectory of length T drawn by following the policy µθ in the MDP.

1Our results may easily be extended to random costs, state-action dependent costs, and random initial states.
2For Markov coherent risk, the class of optimal policies is stationary Markov [30], while this is not nec-

essarily true for static risk. Our results can be extended to history-dependent policies or stationary Markov
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2.1 Coherent Risk Measures
A risk measure is a function ρ : Z → R that maps an uncertain outcome Z to the extended real line
R ∪ {+∞,−∞}, e.g., the expectation E [Z] or the conditional value-at-risk (CVaR) minν∈R

{
ν +

1
αE
[
(Z − ν)+

]}
. A risk measure is called coherent, if it satisfies the following conditions for all

Z,W ∈ Z [2]:

A1 Convexity: ∀λ ∈ [0, 1], ρ
(
λZ + (1− λ)W

)
≤ λρ(Z) + (1− λ)ρ(W );

A2 Monotonicity: if Z ≤W , then ρ(Z) ≤ ρ(W );

A3 Translation invariance: ∀a∈R, ρ(Z + a) = ρ(Z) + a;

A4 Positive homogeneity: if λ ≥ 0, then ρ(λZ) = λρ(Z).

Intuitively, these condition ensure the “rationality” of single-period risk assessments: A1 ensures
that diversifying an investment will reduce its risk; A2 guarantees that an asset with a higher cost
for every possible scenario is indeed riskier; A3, also known as ‘cash invariance’, means that the
deterministic part of an investment portfolio does not contribute to its risk; the intuition behind A4
is that doubling a position in an asset doubles its risk. We further refer the reader to [2] for a more
detailed motivation of coherent risk.

The following representation theorem [32] shows an important property of coherent risk measures
that is fundamental to our gradient-based approach.

Theorem 2.1. A risk measure ρ : Z → R is coherent if and only if there exists a convex bounded
and closed set U ⊂ B such that3

ρ(Z) = max
ξ : ξPθ∈U(Pθ)

Eξ[Z]. (1)

The result essentially states that any coherent risk measure is an expectation w.r.t. a worst-case
density function ξPθ, i.e., a re-weighting of Pθ by ξ, chosen adversarially from a suitable set of test
density functions U(Pθ), referred to as risk envelope. Moreover, a coherent risk measure is uniquely
represented by its risk envelope. In the sequel, we shall interchangeably refer to coherent risk
measures either by their explicit functional representation, or by their corresponding risk-envelope.

In this paper, we assume that the risk envelope U(Pθ) is given in a canonical convex programming
formulation, and satisfies the following conditions.

Assumption 2.2 (The General Form of Risk Envelope). For each given policy parameter θ ∈ RK ,
the risk envelope U of a coherent risk measure can be written as

U(Pθ) =

{
ξPθ : ge(ξ, Pθ) = 0, ∀e ∈ E , fi(ξ, Pθ) ≤ 0, ∀i ∈ I,

∑
ω∈Ω

ξ(ω)Pθ(ω) = 1, ξ(ω) ≥ 0

}
, (2)

where each constraint ge(ξ, Pθ) is an affine function in ξ, each constraint fi(ξ, Pθ) is a convex
function in ξ, and there exists a strictly feasible point ξ. E and I here denote the sets of equality
and inequality constraints, respectively. Furthermore, for any given ξ ∈ B, fi(ξ, p) and ge(ξ, p) are
twice differentiable in p, and there exists a M > 0 such that

max

{
max
i∈I

∣∣∣∣dfi(ξ, p)dp(ω)

∣∣∣∣ ,max
e∈E

∣∣∣∣dge(ξ, p)dp(ω)

∣∣∣∣} ≤M, ∀ω ∈ Ω.

Assumption 2.2 implies that the risk envelope U(Pθ) is known in an explicit form. From Theorem
6.6 of [32], in the case of a finite probability space, ρ is a coherent risk if and only if U(Pθ) is a
convex and compact set. This justifies the affine assumption of ge and the convex assumption of fi.
Moreover, the additional assumption on the smoothness of the constraints holds for many popular
coherent risk measures, such as the CVaR, the mean-semi-deviation, and spectral risk measures [1].

2.2 Dynamic Risk Measures
The risk measures defined above do not take into account any temporal structure that the random
variable might have, such as when it is associated with the return of a trajectory in the case of
MDPs. In this sense, such risk measures are called static. Dynamic risk measures, on the other hand,

policies on a state space augmented with accumulated cost. The latter has shown to be sufficient for optimizing
the CVaR risk [4].

3When we study risk in MDPs, the risk envelope U(Pθ) in Eq. 1 also depends on the state x.

3



explicitly take into account the temporal nature of the stochastic outcome. A primary motivation for
considering such measures is the issue of time consistency, usually defined as follows [30]: if a
certain outcome is considered less risky in all states of the world at stage t + 1, then it should also
be considered less risky at stage t. Example 2.1 in [16] shows the importance of time consistency
in the evaluation of risk in a dynamic setting. It illustrates that for multi-period decision-making,
optimizing a static measure can lead to “time-inconsistent” behavior. Similar paradoxical results
could be obtained with other risk metrics; we refer the readers to [30] and [16] for further insights.

Markov Coherent Risk Measures. Markov risk measures were introduced in [30] and constitute
a useful class of dynamic time-consistent risk measures that are important to our study of risk in
MDPs. For a T -length horizon and MDPM, the Markov coherent risk measure ρT (M) is

ρT (M) = C(x0) + γρ

(
C(x1) + . . .+ γρ

(
C(xT−1) + γρ

(
C(xT )

)))
, (3)

where ρ is a static coherent risk measure that satisfies Assumption 2.2 and x0, . . . , xT is a trajectory
drawn from the MDPM under policy µθ. It is important to note that in (3), each static coherent risk
ρ at state x ∈ X is induced by the transition probability Pθ(·|x) =

∑
a∈A P (x′|x, a)µθ(a|x). We

also define ρ∞(M)
.
= limT→∞ ρT (M), which is well-defined since γ < 1 and the cost is bounded.

We further assume that ρ in (3) is a Markov risk measure, i.e., the evaluation of each static coherent
risk measure ρ is not allowed to depend on the whole past.

3 Problem Formulation
In this paper, we are interested in solving two risk-sensitive optimization problems. Given a random
variable Z and a static coherent risk measure ρ as defined in Section 2, the static risk problem (SRP)
is given by

min
θ

ρ(Z). (4)

For example, in an RL setting, Z may correspond to the cumulative discounted cost Z = C(x0) +
γC(x1) + · · ·+ γTC(xT ) of a trajectory induced by an MDP with a policy parameterized by θ.

For an MDPM and a dynamic Markov coherent risk measure ρT as defined by Eq. 3, the dynamic
risk problem (DRP) is given by

min
θ

ρ∞(M). (5)

Except for very limited cases, there is no reason to hope that neither the SRP in (4) nor the DRP
in (5) should be tractable problems, since the dependence of the risk measure on θ may be complex
and non-convex. In this work, we aim towards a more modest goal and search for a locally optimal
θ. Thus, the main problem that we are trying to solve in this paper is how to calculate the gradients
of the SRP’s and DRP’s objective functions

∇θρ(Z) and ∇θρ∞(M).

We are interested in non-trivial cases in which the gradients cannot be calculated analytically. In
the static case, this would correspond to a non-trivial dependence of Z on θ. For dynamic risk, we
also consider cases where the state space is too large for a tractable computation. Our approach for
dealing with such difficult cases is through sampling. We assume that in the static case, we may
obtain i.i.d. samples of the random variable Z. For the dynamic case, we assume that for each state
and action (x, a) of the MDP, we may obtain i.i.d. samples of the next state x′ ∼ P (·|x, a). We
show that sampling may indeed be used in both cases to devise suitable estimators for the gradients.

To finally solve the SRP and DRP problems, a gradient estimate may be plugged into a standard
stochastic gradient descent (SGD) algorithm for learning a locally optimal solution to (4) and (5).
From the structure of the dynamic risk in Eq. 3, one may think that a gradient estimator for ρ(Z) may
help us to estimate the gradient ∇θρ∞(M). Indeed, we follow this idea and begin with estimating
the gradient in the static risk case.

4 Gradient Formula for Static Risk
In this section, we consider a static coherent risk measure ρ(Z) and propose sampling-based es-
timators for ∇θρ(Z). We make the following assumption on the policy parametrization, which is
standard in the policy gradient literature [18].
Assumption 4.1. The likelihood ratio∇θ logP (ω) is well-defined and bounded for all ω∈Ω.
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Moreover, our approach implicitly assumes that given some ω ∈ Ω, ∇θ logP (ω) may be easily
calculated. This is also a standard requirement for policy gradient algorithms [18] and is satisfied
in various applications such as queueing systems, inventory management, and financial engineering
(see, e.g., the survey by Fu [14]).

Using Theorem 2.1 and Assumption 2.2, for each θ, we have that ρ(Z) is the solution to the con-
vex optimization problem (1) (for that value of θ). The Lagrangian function of (1), denoted by
Lθ(ξ, λ

P , λE , λI), may be written as

Lθ(ξ, λ
P, λE, λI)=

∑
ω∈Ω

ξ(ω)Pθ(ω)Z(ω)−λP
(∑
ω∈Ω

ξ(ω)Pθ(ω)−1

)
−
∑
e∈E

λE(e)ge(ξ,Pθ)−
∑
i∈I

λI(i)fi(ξ,Pθ).

(6)
The convexity of (1) and its strict feasibility due to Assumption 2.2 implies that Lθ(ξ, λP , λE , λI)
has a non-empty set of saddle points S. The next theorem presents a formula for the gradient
∇θρ(Z). As we shall subsequently show, this formula is particularly convenient for devising sam-
pling based estimators for∇θρ(Z).

Theorem 4.2. Let Assumptions 2.2 and 4.1 hold. For any saddle point (ξ∗θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) ∈ S

of (6), we have

∇θρ(Z) = Eξ∗θ
[
∇θ logP (ω)(Z − λ∗,Pθ )

]
−
∑
e∈E

λ∗,Eθ (e)∇θge(ξ∗θ ;Pθ)−
∑
i∈I

λ∗,Iθ (i)∇θfi(ξ∗θ ;Pθ).

The proof of this theorem, given in the supplementary material, involves an application of the Enve-
lope theorem [21] and a standard ‘likelihood-ratio’ trick. We now demonstrate the utility of Theorem
4.2 with several examples in which we show that it generalizes previously known results, and also
enables deriving new useful gradient formulas.

4.1 Example 1: CVaR

The CVaR at level α ∈ [0, 1] of a random variable Z, denoted by ρCVaR(Z;α), is a very popular
coherent risk measure [28], defined as

ρCVaR(Z;α)
.
= inf
t∈R

{
t+ α−1E [(Z − t)+]

}
.

When Z is continuous, ρCVaR(Z;α) is well-known to be the mean of the α-tail distribution of Z,
E [Z|Z > qα], where qα is a (1− α)-quantile of Z. Thus, selecting a small α makes CVaR partic-
ularly sensitive to rare, but very high costs.

The risk envelope for CVaR is known to be [32] U =
{
ξPθ : ξ(ω) ∈

[0, α−1],
∑
ω∈Ω ξ(ω)Pθ(ω) = 1

}
. Furthermore, [32] show that the saddle points of (6) satisfy

ξ∗θ (ω) = α−1 when Z(ω) > λ∗,Pθ , and ξ∗θ (ω) = 0 when Z(ω) < λ∗,Pθ , where λ∗,Pθ is any (1− α)-
quantile of Z. Plugging this result into Theorem 4.2, we can easily show that

∇θρCVaR(Z;α) = E [∇θ logP (ω)(Z − qα)|Z(ω) > qα] .

This formula was recently proved in [36] for the case of continuous distributions by an explicit
calculation of the conditional expectation, and under several additional smoothness assumptions.
Here we show that it holds regardless of these assumptions and in the discrete case as well. Our
proof is also considerably simpler.

4.2 Example 2: Mean-Semideviation

The semi-deviation of a random variable Z is defined as SD[Z]
.
=
(
E
[
(Z − E [Z])2

+

])1/2
. The

semi-deviation captures the variation of the cost only above its mean, and is an appealing alternative
to the standard deviation, which does not distinguish between the variability of upside and downside
deviations. For some α ∈ [0, 1], the mean-semideviation risk measure is defined as ρMSD(Z;α)

.
=

E [Z] + αSD[Z], and is a coherent risk measure [32]. We have the following result:
Proposition 4.3. Under Assumption 4.1, with ∇θE [Z] = E [∇θ logP (ω)Z], we have

∇θρMSD(Z;α) = ∇θE [Z] +
αE [(Z−E [Z])+(∇θ logP (ω)(Z−E [Z])−∇θE [Z])]

SD(Z)
.

This proposition can be used to devise a sampling based estimator for ∇θρMSD(Z;α) by replacing
all the expectations with sample averages. The algorithm along with the proof of the proposition are
in the supplementary material. In Section 6 we provide a numerical illustration of optimization with
a mean-semideviation objective.
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4.3 General Gradient Estimation Algorithm

In the two previous examples, we obtained a gradient formula by analytically calculating the La-
grangian saddle point (6) and plugging it into the formula of Theorem 4.2. We now consider a
general coherent risk ρ(Z) for which, in contrast to the CVaR and mean-semideviation cases, the
Lagrangian saddle-point is not known analytically. We only assume that we know the structure of the
risk-envelope as given by (2). We show that in this case, ∇θρ(Z) may be estimated using a sample
average approximation (SAA; [32]) of the formula in Theorem 4.2.

Assume that we are given N i.i.d. samples ωi ∼ Pθ, i = 1, . . . , N , and let Pθ;N (ω)
.
=

1
N

∑N
i=1 I {ωi = ω} denote the corresponding empirical distribution. Also, let the sample risk en-

velope U(Pθ;N ) be defined according to Eq. 2 with Pθ replaced by Pθ;N . Consider the following
SAA version of the optimization in Eq. 1:

ρN (Z) = max
ξ:ξPθ;N∈U(Pθ;N )

∑
i∈1,...,N

Pθ;N (ωi)ξ(ωi)Z(ωi). (7)

Note that (7) defines a convex optimization problem with O(N) variables and constraints. In
the following, we assume that a solution to (7) may be computed efficiently using standard con-
vex programming tools such as interior point methods [9]. Let ξ∗θ;N denote a solution to (7) and
λ∗,Pθ;N , λ

∗,E
θ;N , λ

∗,I
θ;N denote the corresponding KKT multipliers, which can be obtained from the con-

vex programming algorithm [9]. We propose the following estimator for the gradient-based on
Theorem 4.2:

∇θ;Nρ(Z) =

N∑
i=1

Pθ;N (ωi)ξ
∗
θ;N (ωi)∇θ logP (ωi)(Z(ωi)− λ∗,Pθ;N ) (8)

−
∑
e∈E

λ∗,Eθ;N (e)∇θge(ξ∗θ;N ;Pθ;N )−
∑
i∈I

λ∗,Iθ;N (i)∇θfi(ξ∗θ;N ;Pθ;N ).

Thus, our gradient estimation algorithm is a two-step procedure involving both sampling and convex
programming. In the following, we show that under some conditions on the set U(Pθ), ∇θ;Nρ(Z)
is a consistent estimator of∇θρ(Z). The proof has been reported in the supplementary material.
Proposition 4.4. Let Assumptions 2.2 and 4.1 hold. Suppose there exists a compact setC = Cξ×Cλ
such that: (I) The set of Lagrangian saddle points S ⊂ C is non-empty and bounded. (II) The
functions fe(ξ, Pθ) for all e ∈ E and fi(ξ, Pθ) for all i ∈ I are finite-valued and continuous (in ξ)
on Cξ. (III) For N large enough, the set SN is non-empty and SN ⊂ C w.p. 1. Further assume that:
(IV) If ξNPθ;N ∈ U(Pθ;N ) and ξN converges w.p. 1 to a point ξ, then ξPθ ∈ U(Pθ). We then have
that limN→∞ ρN (Z) = ρ(Z) and limN→∞∇θ;Nρ(Z) = ∇θρ(Z) w.p. 1.

The set of assumptions for Proposition 4.4 is large, but rather mild. Note that (I) is implied by
the Slater condition of Assumption 2.2. For satisfying (III), we need that the risk be well-defined
for every empirical distribution, which is a natural requirement. Since Pθ;N always converges to Pθ
uniformly on Ω, (IV) essentially requires smoothness of the constraints. We remark that in particular,
constraints (I) to (IV) are satisfied for the popular CVaR, mean-semideviation, and spectral risk.

It is interesting to compare the performance of the SAA estimator (8) with the analytical-solution
based estimator, as in Sections 4.1 and 4.2. In the supplementary material, we report an empirical
comparison between the two approaches for the case of CVaR risk, which showed that the two
approaches performed very similarly. This is well-expected, since in general, both SAA and standard
likelihood-ratio based estimators obey a law-of-large-numbers variance bound of order 1/

√
N [32].

To summarize this section, we have seen that by exploiting the special structure of coherent risk
measures in Theorem 2.1 and by the envelope-theorem style result of Theorem 4.2, we are able to
derive sampling-based, likelihood-ratio style algorithms for estimating the policy gradient ∇θρ(Z)
of coherent static risk measures. The gradient estimation algorithms developed here for static risk
measures will be used as a sub-routine in our subsequent treatment of dynamic risk measures.

5 Gradient Formula for Dynamic Risk
In this section, we derive a new formula for the gradient of the Markov coherent dynamic risk mea-
sure, ∇θρ∞(M). Our approach is based on combining the static gradient formula of Theorem 4.2,
with a dynamic-programming decomposition of ρ∞(M).
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The risk-sensitive value-function for an MDP M under the policy θ is defined as Vθ(x) =
ρ∞(M|x0 = x), where with a slight abuse of notation, ρ∞(M|x0 = x) denotes the Markov-
coherent dynamic risk in (3) when the initial state x0 is x. It is shown in [30] that due to the structure
of the Markov dynamic risk ρ∞(M), the value function is the unique solution to the risk-sensitive
Bellman equation

Vθ(x) = C(x) + γ max
ξPθ(·|x)∈U(x,Pθ(·|x))

Eξ[Vθ(x′)], (9)

where the expectation is taken over the next state transition. Note that by definition, we have
ρ∞(M) = Vθ(x0), and thus,∇θρ∞(M) = ∇θVθ(x0).

We now develop a formula for ∇θVθ(x); this formula extends the well-known “policy gradient
theorem” [34, 17], developed for the expected return, to Markov-coherent dynamic risk measures.
We make a standard assumption, analogous to Assumption 4.1 of the static case.
Assumption 5.1. The likelihood ratio ∇θ logµθ(a|x) is well-defined and bounded for all x ∈ X
and a ∈ A.
For each state x ∈ X , let (ξ∗θ,x, λ

∗,P
θ,x , λ

∗,E
θ,x , λ

∗,I
θ,x) denote a saddle point of (6), corresponding to the

state x, with Pθ(·|x) replacing Pθ in (6) and Vθ replacing Z. The next theorem presents a formula
for ∇θVθ(x); the proof is in the supplementary material.
Theorem 5.2. Under Assumptions 2.2 and 5.1, we have

∇Vθ(x) = Eξ∗θ

[ ∞∑
t=0

γt∇θ logµθ(at|xt)hθ(xt, at)

∣∣∣∣∣x0 = x

]
,

where Eξ∗θ [·] denotes the expectation w.r.t. trajectories generated by the Markov chain with transition
probabilities Pθ(·|x)ξ∗θ,x(·), and the stage-wise cost function hθ(x, a) is defined as

hθ(x, a)=C(x)+
∑
x′∈X

P (x′|x, a)ξ∗θ,x(x′)

[
γVθ(x

′)−λ∗,Pθ,x −
∑
i∈I

λ∗,Iθ,x(i)
dfi(ξ

∗
θ,x, p)

dp(x′)
−
∑
e∈E

λ∗,Eθ,x(e)
dge(ξ

∗
θ,x, p)

dp(x′)

]
.

Theorem 5.2 may be used to develop an actor-critic style [34, 17] sampling-based algorithm for
solving the DRP problem (5), composed of two interleaved procedures:

Critic: For a given policy θ, calculate the risk-sensitive value function Vθ, and
Actor: Using the critic’s Vθ and Theorem 5.2, estimate ∇θρ∞(M) and update θ.

Space limitation restricts us from specifying the full details of our actor-critic algorithm and its
analysis. In the following, we highlight only the key ideas and results. For the full details, we refer
the reader to the full paper version, provided in the supplementary material.

For the critic, the main challenge is calculating the value function when the state space X is large
and dynamic programming cannot be applied due to the ‘curse of dimensionality’. To overcome
this, we exploit the fact that Vθ is equivalent to the value function in a robust MDP [24] and modify
a recent algorithm in [37] to estimate it using function approximation.

For the actor, the main challenge is that in order to estimate the gradient using Thm. 5.2, we need to
sample from an MDP with ξ∗θ -weighted transitions. Also, hθ(x, a) involves an expectation for each
s and a. Therefore, we propose a two-phase sampling procedure to estimate ∇Vθ in which we first
use the critic’s estimate of Vθ to derive ξ∗θ , and sample a trajectory from an MDP with ξ∗θ -weighted
transitions. For each state in the trajectory, we then sample several next states to estimate hθ(x, a).

The convergence analysis of the actor-critic algorithm and the gradient error incurred from function
approximation of Vθ are reported in the supplementary material. We remark that our actor-critic
algorithm requires a simulator for sampling multiple state-transitions from each state. Extending
our approach to work with a single trajectory roll-out is an interesting direction for future research.

6 Numerical Illustration
In this section, we illustrate our approach with a numerical example. The purpose of this illustration
is to emphasize the importance of flexibility in designing risk criteria for selecting an appropriate
risk-measure – such that suits both the user’s risk preference and the problem-specific properties.

We consider a trading agent that can invest in one of three assets (see Figure 1 for their distributions).
The returns of the first two assets, A1 and A2, are normally distributed: A1 ∼ N (1, 1) and A2 ∼

7



Figure 1: Numerical illustration - selection between 3 assets. A: Probability density of asset return.
B,C,D: Bar plots of the probability of selecting each asset vs. training iterations, for policies π1, π2,
and π3, respectively. At each iteration, 10,000 samples were used for gradient estimation.

N (4, 6). The return of the third asset A3 has a Pareto distribution: f(z) = α
zα+1 ∀z > 1, with α =

1.5. The mean of the return from A3 is 3 and its variance is infinite; such heavy-tailed distributions
are widely used in financial modeling [27]. The agent selects an action randomly, with probability
P (Ai) ∝ exp(θi), where θ ∈ R3 is the policy parameter. We trained three different policies π1, π2,
and π3. Policy π1 is risk-neutral, i.e., maxθ E [Z], and it was trained using standard policy gradient
[18]. Policy π2 is risk-averse and had a mean-semideviation objective maxθ E [Z] − SD[Z], and
was trained using the algorithm in Section 4. Policy π3 is also risk-averse, with a mean-standard-
deviation objective, as proposed in [35, 26], maxθ E [Z] −

√
Var[Z], and was trained using the

algorithm of [35]. For each of these policies, Figure 1 shows the probability of selecting each asset
vs. training iterations. Although A2 has the highest mean return, the risk-averse policy π2 chooses
A3, since it has a lower downside, as expected. However, because of the heavy upper-tail of A3,
policy π3 opted to chooseA1 instead. This is counter-intuitive as a rational investor should not avert
high returns. In fact, in this case A3 stochastically dominates A1 [15].

7 Conclusion
We presented algorithms for estimating the gradient of both static and dynamic coherent risk mea-
sures using two new policy gradient style formulas that combine sampling with convex program-
ming. Thereby, our approach extends risk-sensitive RL to the whole class of coherent risk measures,
and generalizes several recent studies that focused on specific risk measures.

On the technical side, an important future direction is to improve the convergence rate of gradient
estimates using importance sampling methods. This is especially important for risk criteria that are
sensitive to rare events, such as the CVaR [3].

From a more conceptual point of view, the coherent-risk framework explored in this work provides
the decision maker with flexibility in designing risk preference. As our numerical example shows,
such flexibility is important for selecting appropriate problem-specific risk measures for managing
the cost variability. However, we believe that our approach has much more potential than that.

In almost every real-world application, uncertainty emanates from stochastic dynamics, but also,
and perhaps more importantly, from modeling errors (model uncertainty). A prudent policy should
protect against both types of uncertainties. The representation duality of coherent-risk (Theorem
2.1), naturally relates the risk to model uncertainty. In [24], a similar connection was made between
model-uncertainty in MDPs and dynamic Markov coherent risk. We believe that by carefully shap-
ing the risk-criterion, the decision maker may be able to take uncertainty into account in a broad
sense. Designing a principled procedure for such risk-shaping is not trivial, and is beyond the scope
of this paper. However, we believe that there is much potential to risk shaping as it may be the key
for handling model misspecification in dynamic decision making.
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A Proof of Theorem 4.2

First note from Assumption 2.2 that

(i) Slater’s condition holds in the primal optimization problem (1),
(ii) Lθ(ξ, λP , λE , λI) is convex in ξ and concave in (λP , λE , λI).

Thus by the duality result in convex optimization [9], the above conditions imply
strong duality and we have ρ(Z) = maxξ≥0 minλP ,λI≥0,λE Lθ(ξ, λ

P , λE , λI) =

minλP ,λI≥0,λE maxξ≥0 Lθ(ξ, λ
P , λE , λI). From Assumption 2.2, one can also see that the

family of functions {Lθ(ξ, λP , λE , λI)}(ξ,λP ,λE ,λI)∈R|Ω|×R×R|E|×R|I| is equi-differentiable in
θ, Lθ(ξ, λP , λE , λI) is Lipschitz, as a result, an absolutely continuous function in θ, and thus,
∇θLθ(ξ, λP , λE , λI) is continuous and bounded at each (ξ, λP , λE , λI). Then for every selection
of saddle point (ξ∗θ , λ

∗,P
θ , λ∗,Eθ , λ∗,Iθ ) ∈ S of (6), using the Envelop theorem for saddle-point

problems (see Theorem 4 of [21]), we have

∇θ max
ξ≥0

min
λP ,λI≥0,λE

Lθ(ξ, λ
P , λE , λI) = ∇θLθ(ξ, λP , λE , λI)|(ξ∗θ ,λ∗,Pθ ,λ∗,Eθ ,λ∗,Iθ ) . (10)

The result follows by writing the gradient in (10) explicitly, and using the likelihood-ratio trick:∑
ω∈Ω

ξ(ω)∇θPθ(ω)Z(ω)−λP
∑
ω∈Ω

ξ(ω)∇θPθ(ω) =
∑
ω∈Ω

ξ(ω)P (ω)∇θ logP (ω)
(
Z(ω)−λP

)
,

where the last equality is justified by Assumption 4.1.

B Gradient Results for Static Mean-Semideviation

In this section we consider the mean-semideviation risk measure, defined as follows:

ρMSD(Z) = E [Z] + c
(
E
[
(Z − E [Z])2

+

])1/2
, (11)

Following the derivation in [32], note that
(
E
[
|Z|2

])1/2
= ‖Z‖2, where ‖ · ‖2 denotes the L2 norm

of the space L2(Ω,F , Pθ). The norm may also be written as:

‖Z‖2 = sup
‖ξ‖2≤1

〈ξ, Z〉,

and hence(
E
[
(Z − E [Z])2

+

])1/2
= sup
‖ξ‖2≤1

〈ξ, (Z − E [Z])+〉 = sup
‖ξ‖2≤1,ξ≥0

〈ξ, Z − E [Z]〉

= sup
‖ξ‖2≤1,ξ≥0

〈ξ − E [ξ], Z〉.

It follows that Eq. (1) holds with

U = {ξ′ ∈ Z∗ : ξ′ = 1 + cξ − cE [ξ] , ‖ξ‖q ≤ 1, ξ ≥ 0} .
For this case it will be more convenient to write Eq. (1) in the following form

ρMSD(Z) = sup
‖ξ‖q≤1,ξ≥0

〈1 + cξ − cE [ξ], Z〉. (12)

Let ξ̄ denote an optimal solution for (12). In [32] it is shown that ξ̄ is a contact point of (Z−E [Z])+,
that is

ξ̄ ∈ arg max {〈ξ, (Z − E [Z])+〉 : ‖ξ‖2 ≤ 1} ,
and we have that

ξ̄ =
(Z − E [Z])+

‖(Z − E [Z])+‖2
=

(Z − E [Z])+

SD(Z)
. (13)

Note that ξ̄ is not necessarily a probability distribution, but for c ∈ [0, 1], it can be shown [32] that
1 + cξ̄ − cE

[
ξ̄
]

always is.

In the following we show that ξ̄ may be used to write the gradient ∇θρMSD(Z) as an expectation,
which will lead to a sampling algorithm for the gradient.
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Proposition B.1. Under Assumption 4.1, we have that

∇θρMSD(Z) = ∇θE [Z] +
c

SD(Z)
E [(Z − E [Z])+ (∇θ logP (ω)(Z − E [Z])−∇θE [Z])] ,

and, according to the standard likelihood-ratio method,

∇θE [Z] = E [∇θ logP (ω)Z] .

Proof. Note that in Eq. (12) the constraints do not depend on θ. Therefore, using the envelope
theorem we obtain that

∇θρ(Z) = ∇θ〈1 + cξ̄ − cE
[
ξ̄
]
, Z〉

= ∇θ〈1, Z〉+ c∇θ〈ξ̄, Z〉 − c∇θ〈E
[
ξ̄
]
, Z〉.

(14)

We now write each of the terms in Eq. (14) as an expectation. We start with the following standard
likelihood-ratio result:

∇θ〈1, Z〉 = ∇θE [Z] = E [∇θ logP (ω)Z] .

Also, we have that
〈E
[
ξ̄
]
, Z〉 = E

[
ξ̄
]
E [Z] ,

therefore, by the derivative of a product rule:
∇θ〈E

[
ξ̄
]
, Z〉 = ∇θE

[
ξ̄
]
E [Z] + E

[
ξ̄
]
∇θE [Z].

By the likelihood-ratio trick and Eq. (13) we have that

∇θE
[
ξ̄
]

=
1

SD(Z)
E [∇θ logP (ω)(Z − E [Z])+] .

Also, by the likelihood-ratio trick
∇θE

[
ξ̄Z
]

= E
[
∇θ logP (ω)ξ̄Z

]
.

Plugging these terms back in Eq. (14), we have that

∇θρ(Z) = ∇θE [Z] + c∇θE
[
ξ̄Z
]
− c∇θE

[
ξ̄
]
E [Z]− cE

[
ξ̄
]
∇θE [Z]

= ∇θE [Z] + cE
[
ξ̄ (∇θ logP (ω)Z −∇θE [Z])

]
− c∇θE

[
ξ̄
]
E [Z]

= ∇θE [Z] +
c

SD(Z)
E [(Z − E [Z])+ (∇θ logP (ω)Z −∇θE [Z])]− c∇θE

[
ξ̄
]
E [Z]

= ∇θE [Z] +
c

SD(Z)
E [(Z − E [Z])+ (∇θ logP (ω)(Z − E [Z])−∇θE [Z])] .

Proposition 4.3 naturally leads to a sampling-based gradient estimation algortihm, which we term
GMSD (Gradient of Mean Semi-Deviation). The algorithm is described in Algorithm 1.

C Consistency Proof

Let (ΩSAA,FSAA, PSAA) denote the probability space of the SAA functions (i.e., the randomness
due to sampling).

Let Lθ;N (ξ, λP , λE , λI) denote the Lagrangian of the SAA problem

Lθ;N (ξ, λP , λE , λI) =
∑
ω∈Ω

ξ(ω)Pθ;N (ω)Z(ω)−λP
(∑
ω∈Ω

ξ(ω)Pθ;N (ω)−1

)
−
∑
e∈E

λE(e)fe(ξ, Pθ;N )−
∑
i∈I

λI(i)fi(ξ, Pθ;N ).

(15)

Recall that S ⊂ R|Ω| ×R×R|E| ×R|I|+ denotes the set of saddle points of the true Lagrangian (6).
Let SN ⊂ R|Ω| × R× R|E| × R|I|+ denote the set of SAA Lagrangian (15) saddle points.

Suppose that there exists a compact set C ≡ Cξ ×Cλ, where Cξ ⊂ R|Ω| and Cλ ⊂ R×R|E|×R|I|+
such that:
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Algorithm 1 GMSD
1: Given:

• Risk level c
• An i.i.d. sequence z1, . . . , zN ∼ Pθ.

2: Set

Ê [Z] =
1

N

N∑
i=1

zi.

3: Set

ŜD(Z) =

(
1

N

N∑
i=1

(zi − Ê [Z])2
+

)1/2

.

4: Set

∇̂θE [Z] =
1

N

N∑
i=1

∇θ logP (zi)zi.

5: Return:

ˆ∇θρ(Z) = ∇̂θE [Z] +
c

ŜD(Z)

1

N

N∑
i=1

(zi − Ê [Z])+

(
∇θ logP (zi)(zi − Ê [Z])− ∇̂θE [Z]

)
.

(i) The set of Lagrangian saddle points S ⊂ C is non-empty and bounded.

(ii) The functions fe(ξ, Pθ) for all e ∈ E and fi(ξ, Pθ) for all i ∈ I are finite valued and continuous
(in ξ) on Cξ.

(iii) For N large enough the set SN is non-empty and SN ⊂ C w.p. 1.

Recall from Assumption 2.2 that for each fixed ξ ∈ B, both fi(ξ, p) and ge(ξ, p) are continuous in
p. Furthermore, by the S.L.L.N. of Markov chains, for each policy parameter, we have Pθ,N → Pθ
w.p. 1. From the definition of the Lagrangian function and continuity of constraint functions, one
can easily see that for each (ξ, λP , λE , λI) ∈ R|Ω| × R × R|E| × R|I|+ , Lθ;N (ξ, λP , λE , λI) →
Lθ(ξ, λ

P , λE , λI) w.p. 1. Denote with D {A,B} the deviation of setA from setB, i.e., D {A,B} =
supx∈A infy∈B ‖x− y‖. Further assume that:

(iv) If ξN ∈ U(Pθ;N ) and ξN converges w.p. 1 to a point ξ, then ξ ∈ U(Pθ).

According to the discussion in Page 161 of [32], the Slater condition of Assumption 2.2 guarantees
the following condition:

(v) For some point ξ ∈ P there exists a sequence ξN ∈ U(Pθ;N ) such that ξN → ξ w.p. 1,

and from Theorem 6.6 in [32], we know that both sets U(Pθ;N ) and U(Pθ) are convex and compact.
Furthermore, note that we have

(vi) The objective function on (1) is linear, finite valued and continuous in ξ on Cξ (these conditions
obviously hold for almost all ω ∈ Ω in the integrand function ξ(ω)Z(ω)).

(vii) S.L.L.N. holds point-wise for any ξ.

From (i,iv,v,vi,vii), and under the same lines of proof as in Theorem 5.5 of [32], we have that

ρN (Z)→ ρ(Z) w.p. 1 as N →∞, (16)

D {PN ,P} → 0 w.p. 1 as N →∞, (17)

In part 1 and part 2 of the following proof, we show, by following similar derivations as
in Theorem 5.2, Theorem 5.3 and Theorem 5.4 of [32], that Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) →
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Lθ(ξ
∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) w.p. 1 and D {SN ,S} → 0 w.p. 1 as N → ∞. Based on the definition

of the deviation of sets, the limit point of any element in SN is also an element in S.

Assumptions (i) and (iii) imply that we can restrict our attention to the set C.

Part 1 We first show that Lθ;N (ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) converges to Lθ(ξ

∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ )

w.p. 1 as N →∞.

For each fixed (λP , λE , λI) ∈ Cλ, the function Lθ(ξ, λ
P , λE , λI) is convex and continu-

ous in ξ. Together with the point-wise S.L.L.N. property, Theorem 7.49 of [32] implies
that Lθ;N (ξ, λP , λE , λI) − Lθ(ξ, λ

P , λE , λI)
e→ 0, where e→ denotes epi-convergence. Fur-

thermore, since the objective and constraint functions are convex in ξ and are finite val-
ued on Cξ, the set domLθ(·, λP , λE , λI) has non-empty interior. It follows from Theorem
7.27 of [32] that epi-convergence of Lθ,N to Lθ implies uniform convergence on Cξ, i.e.,
supξ∈Cξ

∣∣Lθ;N (ξ, λP , λE , λI)− Lθ(ξ, λP , λE , λI)
∣∣ ≤ ε. On the other hand, for each fixed

ξ ∈ Cξ, the function Lθ(ξ, λ
P , λE , λI) is linear and thus continuous in (λP , λE , λI) and

domLθ(ξ, ·, ·, ·) = R×R|E|×R|I| has non-empty interior. It follows from analogous arguments that
sup(λP ,λE ,λI)∈Cλ

∣∣Lθ;N (ξ, λP , λE , λI)− Lθ(ξ, λP , λE , λI)
∣∣ ≤ ε. Combining these results implies

that for any ε > 0 and a.e. ωSAA ∈ ΩSAA there is a N∗(ε, ωSAA) such that

sup
(ξ,λP ,λE ,λI)∈C

∣∣Lθ;N (ξ, λP , λE , λI)− Lθ(ξ, λP , λE , λI)
∣∣ ≤ ε. (18)

Now, assume by contradiction that for some N > N∗(ε, ωSAA) we have
Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) − Lθ(ξ

∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) > ε. Then by definition of the sad-

dle points

Lθ;N (ξ∗θ;N , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) ≥ Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )

> Lθ(ξ
∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) + ε ≥ Lθ(ξ∗θ;N , λ

∗,P
θ , λ∗,Eθ , λ∗,Iθ ) + ε,

contradicting (18).

Similarly, assuming by contradiction that Lθ(ξ
∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ) −

Lθ;N (ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) > ε gives

Lθ(ξ
∗
θ , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) ≥ Lθ(ξ∗θ , λ

∗,P
θ , λ∗,Eθ , λ∗,Iθ )

> Lθ;N (ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) + ε ≥ Lθ;N (ξ∗θ , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) + ε,

also contradicting (18).

It follows that
∣∣∣Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )− Lθ(ξ∗θ , λ

∗,P
θ , λ∗,Eθ , λ∗,Iθ )

∣∣∣ ≤ ε for all N >

N∗(ε, ωSAA), and therefore

lim
N→∞

Lθ;N (ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) = Lθ(ξ

∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ), (19)

w.p. 1.

Part 2 Let us now show that D {SN ,S} → 0. We argue by a contradiction. Sup-
pose that D {SN ,S} 9 0. Since C is compact, we can assume that there exists a se-
quence (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) ∈ SN that converges to a point (ξ̄∗, λ̄∗,P , λ̄∗,E , λ̄∗,I) ∈ C and

(ξ̄∗, λ̄∗,P , λ̄∗,E , λ̄∗,I) 6∈ S. However, from (17) we must have that ξ̄∗ ∈ P . Therefore, we must have
that

Lθ(ξ̄
∗, λ̄∗,P , λ̄∗,E , λ̄∗,I) > Lθ(ξ̄

∗, λ∗,Pθ , λ∗,Eθ , λ∗,Iθ ),

by definition of the saddle point set.

Now,

Lθ;N (ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )− Lθ(ξ̄∗, λ̄∗,P , λ̄∗,E , λ̄∗,I)

=
[
Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )− Lθ(ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )

]
+

+
[
Lθ(ξ

∗
θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )− Lθ(ξ̄∗, λ̄∗,P , λ̄∗,E , λ̄∗,I)

]
.

(20)
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The first term in the r.h.s. of (20) tends to zero, using the argument from (18), and the second
by continuity of Lθ guaranteed by (ii). We thus obtain that Lθ;N (ξ∗θ;N , λ

∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N ) tends to

Lθ(ξ̄
∗, λ̄∗,P , λ̄∗,E , λ̄∗,I) > Lθ(ξ

∗
θ , λ
∗,P
θ , λ∗,Eθ , λ∗,Iθ ), which is a contradiction to (19).

Part 3 We now show the consistency of ∇θ;Nρ(Z).

Consider Eq. (8). Since ∇θ logP (·) is bounded by Assumption 4.1, and ∇θfi(·;Pθ) and
∇θge(·;Pθ) are bounded by Assumption 2.2, and using our previous result D {SN ,S} → 0, we
have that for a.e. ωSAA ∈ ΩSAA

lim
N→∞

∇θ;Nρ(Z) =
∑
ω∈Ω

Pθ(ω)ξ∗θ (ω)∇θ logP (ω)(Z(ω)− λ∗,Pθ )

−
∑
e∈E

λ∗,Eθ (e)∇θge(ξ∗θ ;Pθ)

−
∑
i∈I

λ∗,Iθ (i)∇θfi(ξ∗θ ;Pθ)

= ∇θρ(Z).

where the first equality is obtained from the Envelop theorem (see Theorem 4.2)
with (ξ∗θ , λ

∗,P
θ , λ∗,Eθ , λ∗,Iθ ) ∈ SN ∩ S is the limit point of the converging sequence

{(ξ∗θ;N , λ
∗,P
θ;N , λ

∗,E
θ;N , λ

∗,I
θ;N )}N∈N.

D Empirical Comparison of Analytic-Solution Based and SAA Based Policy
Gradient

We compare the CVaR policy gradient as obtained by the analytical result in Section 4.1:

∇θρCVaR(Z;α) = E [∇θ logP (ω)(Z − qα)|Z(ω) > qα] , (21)

with the general sampling based algorithm of Eq. (8) in Section 4.3.

For the analytical-solution based policy gradient, we use the GCVaR algorithm of [30], which is the
sampling-based version of Eq. (21). For the general sampling based algorithm, we used Matlab’s
’linprog’ to solve the linear program in Eq. (7), using the risk envelope for CVaR, as defined in
Section 4.1. The resulting numerical values for ξ∗θ;N and λ∗,Pθ;N were plugged into Eq. (8) for the
gradient estimate (the other terms in Eq. (8) cancel out by definition of the CVaR risk envelope).

We present empirical results for the asset selection domain of Section 6. We chose a CVaR level of
α = 0.05 (corresponding to the average of the worst 5% outcomes), and trained policies with either
the analytical-solution based policy gradient (labeled CVaR), and the general sampling based algo-
rithm (labeled CVaRS). In Figure 2 we plot the learning curves (the θ values vs. training episodes)
of both policies, for different values of N - the sampling budget.

As may be observed, both policies exhibit similar learning performance, and the differences diminish
as N grows large.

15



Figure 2: Learning curves (θ values vs. training episodes) of the analytical-solution based policy
gradient (labeled CVaR), and the general sampling based algorithm (labeled CVaRS), for different
values of N - the sampling budget.

E Proof of Theorem 5.2

Similar to the proof of Theorem 4.2, recall the saddle point definition of (ξ∗θ,x, λ
∗,P
θ,x , λ

∗,E
θ,x , λ

∗,I
θ,x) ∈ S

and strong duality result, i.e.,

max
ξ : ξPθ(·|x)∈U(x,Pθ(·|x))

∑
x′∈X

ξ(x′)Pθ(x
′|x)Vθ(x

′) = max
ξ≥0

min
λP ,λI≥0,λE

Lθ,x(ξ, λP , λE , λI)

= min
λP ,λI≥0,λE

max
ξ≥0

Lθ,x(ξ, λP , λE , λI).

the gradient formula in (10) can be written as

∇θVθ(x) = ∇θ
[
Cθ(x)+γ max

ξ : ξPθ(·|x)∈U(x,Pθ(·|x))
Eξ[Vθ]

]
= γ

∑
x′∈X

ξ∗θ,x(x′)Pθ(x
′|x)∇θVθ(x′) +

∑
a∈A

µθ(a|x)∇θ logµθ(a|x)hθ(x, a),

where the stage-wise cost function hθ(x, a) is defined in (27). By defining ĥθ(x) =∑
a∈A µθ(a|x)∇θ logµθ(a|x)hθ(x, a) and unfolding the recursion, the above expression implies

∇θVθ(x0) =ĥθ(x0) + γ
∑
x1∈X

Pθ(x1|x0)ξ∗θ (x1)

[
ĥθ(x1) + γ

∑
x2∈X

Pθ(x2|x1)ξ∗θ (x2)∇θVθ (x2)

]
.

Now since ∇θVθ is continuously differentiable with bounded derivatives, when t → ∞, one
obtains γt∇θVθ(x) → 0 for any x ∈ X . Therefore, by Bounded Convergence Theorem,
limt→∞ ρ(γtVθ(xt)) = 0, when x0 = x the above expression implies the result of this theorem.
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F Gradient Formula for Dynamic Risk - Full Results

In this section, we first derive a new formula for the gradient of a general Markov-coherent dynamic
risk measure∇θρ∞(M) that involves the value function of the risk objective ρ∞(M) (e.g., the value
function proposed by [30]). This formula extends the well-known “policy gradient theorem” [34, 17]
developed for the expected return to Markov-coherent dynamic risk measures. Using this formula,
we suggest the following actor-critic style algorithm for estimating∇θρ∞(M):

Critic: For a given policy θ, calculate the risk-sensitive value function of ρ∞(M) (see Section F.3),
and
Actor: Using the critic’s value function, estimate∇θρ∞(M) by sampling (see Section F.4).

The value function proposed by [30] assigns to each state a particular value that encodes the long-
term risk starting from that state. When the state space X is large, calculating the value function
by dynamic programming (as suggested by [30]) becomes intractable due to the “curse of dimen-
sionality”. For the risk-neutral case, a standard solution to this problem is to approximate the value
function by a set of state-dependent features, and use sampling to calculate the parameters of this
approximation [6]. In particular, temporal difference (TD) learning methods [33] are popular for
this purpose, which have been recently extended to robust MDPs by [37]. We use their (robust) TD
algorithm and show how our critic use it to approximates the risk-sensitive value function. We then
discuss how the error introduced by this approximation affects the gradient estimate of the actor.

F.1 Dynamic Risk

We provide a multi-period generalization of the concepts presented in Section 2.1. Here we closely
follow the discussion in [30].

Consider a probability space (Ω,F , Pθ), a filtration F0 ⊂ F1 ⊂ F2 · · · ⊂ FT ⊂ F , and an adapted
sequence of real-valued random variables Zt, t ∈ {0, . . . , T}. We assume that F0 = {Ω, ∅}, i.e., Z0

is deterministic. For each t ∈ {0, . . . , T}, we denote by Zt the space of random variables defined
over the probability space (Ω,Ft, Pθ), and also let Zt,T := Zt × · · · × ZT be a sequence of these
spaces. The sequence of random variables Zt can be interpreted as the stage-wise costs observed
along a trajectory generated by an MDP parameterized by a parameter θ, i.e., Z0,T

.
=
(
Z0 =

γ0C(x0, a0), . . . , ZT = γTC(xT , aT )
)
∈ Z0,T .

In particular, we are interested in the sequence of random variables induced by the trajectories from
a Markov decision process (MDP) parameterized by parameter θ.

Explicitly, for any t ≥ 0 and state dependent random variable Z(xt+1) ∈ Zt+1, the risk evaluation
is given by

ρ
(
Z(xt+1)

)
= max
ξ : ξPθ(·|xt)∈U(xt,Pθ(·|xt))

Eξ
[
Z(xt+1)

]
, (22)

where we let U(xt, Pθ(·|xt)) denote the risk-envelope (2) with Pθ replaced with Pθ(·|xt). The
Markovian assumption on the risk measure ρT (M) allows us to optimize it using dynamic pro-
gramming techniques.

F.2 Risk-Sensitive Bellman Equation

Our value-function estimation method is driven by a Bellman-style equation for Markov coher-
ent risks. Let B(X ) denote the space of real-valued bounded functions on X and Cθ(x) =∑
a∈A C(x, a)µθ(a|x) be the stage-wise cost function induced by policy µθ. We now define the

risk sensitive Bellman operator Tθ[V ] : B(X ) 7→ B(X ) as

Tθ[V ](x) := Cθ(x) + γ max
ξPθ(·|x)∈U(x,Pθ(·|x))

Eξ[V ]. (23)

According to Theorem 1 in [30], the operator Tθ has a unique fixed-point Vθ, i.e., Tθ[Vθ](x) =
Vθ(x), ∀x ∈ X , that is equal to the risk objective function induced by θ, i.e., Vθ(x0) = ρ∞(M).
However, when the state space X is large, exact enumeration of the Bellman equation is intractable
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due to “curse of dimensionality”. Next, we provide an iterative approach to approximate the risk
sensitive value function.

F.3 Value Function Approximation

Consider the linear approximation of the risk-sensitive value function Vθ(x) ≈ v>φ(x), where
φ(·) ∈ Rκ2 is the κ2-dimensional state-dependent feature vector. Thus, the approximate value
function belongs to the low dimensional sub-space V = {Φv|v ∈ Rκ2}, where Φ : X → Rκ2 is a
function mapping such that Φ(x) = φ(x). The goal of our critric is to find a good approximation of
Vθ from simulated trajectories of the MDP. In order to have a well-defined approximation scheme,
we first impose the following standard assumption [6].

Assumption F.1. The mapping Φ has full column rank.

For a function y : X → R, we define its weighted (by d) `2-norm as ‖y‖d =
√∑

x′ d(x′|x)y(x′)2,
where d is a distribution over X . Using this, we define Π : X → V , the orthogonal projection from
R to V , w.r.t. a norm weighted by the stationary distribution of the policy, dθ(x′|x).

Note that the TD methods approximate the value function Vθ with the fixed-point of the joint oper-
ator ΠTθ, i.e., Ṽθ(x) = v∗>θ φ(x), such that

∀x ∈ X , Ṽθ(x) = ΠTθ[Ṽθ](x). (24)

From Eq. 22 that has been derived from Theorem 2.1 for dynamic risks, it is easy to see that the risk-
sensitive Bellman equation (23) is a robust Bellman equation [23] with uncertainty set U(x, Pθ(·|x)).
Thus, we may use the TD approximation of the robust Bellman equation proposed by [37] to find an
approximation of Vθ. We will need the following assumption analogous to Assumption 2 in [37].

Assumption F.2. There exists κ ∈ (0, 1) such that ξ(x′) ≤ κ/γ, for all ξ(·)Pθ(·|x) ∈ U(x, Pθ(·|x))
and all x, x′ ∈ X .

Given Assumption F.2, Proposition 3 in [37] guarantees that the projected risk-sensitive Bellman
operator ΠTθ is a contraction w.r.t. dθ-norm. Therefore, Eq. 24 has a unique fixed-point solution
Ṽθ(x) = v∗>θ φ(x). This means that v∗θ ∈ Rκ2 satisfies v∗θ ∈ arg minv ‖Tθ[Φv] − Φv‖2dθ . By the
projection theorem on Hilbert spaces, the orthogonality condition for v∗θ becomes∑

x∈X
dθ(x|x0)φ(x)φ(x)>v∗θ =

∑
x∈X

dθ(x|x0)φ(x)Cθ(x)

+ γ
∑
x∈X

dθ(x|x0)φ(x) max
ξ : ξPθ(·|x)∈U(x,Pθ(·|x))

Eξ[Φv∗θ ].

As a result, given a long enough trajectory x0, a0, x1, a1, . . ., xN−1, aN−1 generated by policy θ, we
may estimate the fixed-point solution v∗θ using the projected risk sensitive value iteration (PRSVI)
algorithm with the update rule

vk+1 =

(
1

N

N−1∑
t=0

φ(xt)φ(xt)
>

)−1 [
1

N

N−1∑
t=0

φ(xt)Cθ(xt)

+ γ
1

N

N−1∑
t=0

φ(xt) max
ξPθ(·|xt)∈U(xt,Pθ(·|xt))

Eξ[Φvk]

]
. (25)

Note that using the law of large numbers, as both N and k tend to infinity, vk converges w.p. 1 to
v∗θ , the unique solution of the fixed point equation ΠTθ[Φv] = Φv.

In order to implement the iterative algorithm (25), one must repeatedly solve the inner optimiza-
tion problem maxξPθ(·|x)∈U(x,Pθ(·|x)) Eξ[Φv]. When the state space X is large, solving this opti-
mization problem is often computationally expensive or even intractable. Similar to Section 3.4
of [37], we propose the following SAA approach to solve this problem. For the trajectory,
x0, a0, x1, a1, . . ., xN−1, aN−1, we define the empirical transition probability PN (x′|x, a)

.
=
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∑N−1
t=0 1{xt=x, at=a, xt+1=x′}∑N−1

t=0 1{xt=x, at=a}
4 and Pθ;N (x′|x) =

∑
a∈A PN (x′|x, a)µθ(a|x). Consider the follow-

ing `2-regularized empirical robust optimization problem5

ρN (Φv) = max
ξ:ξPθ;N∈U(x,Pθ;N )

∑
x′∈X

Pθ;N (x′|x)ξ(x′)φ>(x′)v

+
1

2N

[
Pθ;N (x′|x)ξ(x′)

]2
. (26)

As in [20], the `2-regularization term in this optimization problem guarantees convergence of opti-
mizers ξ∗ and the corresponding KKT multipliers, whenN →∞. Convergence of these parameters
is crucial for the policy gradient analysis in the next sections. We denote by ξ∗θ,x;N , the solution of
the above empirical optimization problem, and by λ∗,Pθ,x;N , λ∗,Eθ,x;N , λ∗,Iθ,x;N , the corresponding KKT
multipliers.

We obtain the empirical PRSVI algorithm by replacing the inner optimization
maxξPθ(·|xt)∈U(xt,Pθ(·|xt)) Eξ[Φv∗θ ] in Eq. 25 with ρN (Φv) from Eq. 26. Similarly, as both
N and k tend to infinity, vk converges w.p. 1 to v∗θ . More details can be found in the supplementary
material.

F.4 Gradient Estimation

In Section F.3, we showed that we may effectively approximate the value function of a fixed policy
θ using the (empirical) PRSVI algorithm in Eq. 25. In this section, we first derive a formula for the
gradient of the Markov-coherent dynamic risk measure ρ∞(M), and then propose a SAA algorithm
for estimating this gradient, in which we use the SAA approximation of value function from Sec-
tion F.3. As described in Section F.2, ρ∞(M) = Vθ(x0), and thus, we shall first derive a formula
for ∇θVθ(x0).

Let (ξ∗θ,x, λ
∗,P
θ,x , λ

∗,E
θ,x , λ

∗,I
θ,x) be the saddle point of (6) corresponding to the state x ∈ X . In many

common coherent risk measures such as CVaR and mean semi-deviation, there are closed-form
formulas for ξ∗θ,x and KKT multipliers (λ∗,Pθ,x , λ

∗,E
θ,x , λ

∗,I
θ,x). We will briefly discuss the case when the

saddle point does not have an explicit solution later in this section. Before analyzing the gradient
estimation, we have the following standard assumption in analogous to Assumption 4.1 of the static
case.

Assumption F.3. The likelihood ratio ∇θ logµθ(a|x) is well-defined and bounded for all x ∈ X
and a ∈ A.

As in Theorem 4.2 for the static case, we may use the envelope theorem and the risk-sensitive Bell-
man equation, Vθ(x) = Cθ(x)+γmaxξPθ(·|x)∈U(x,Pθ(·|x)) Eξ[Vθ], to derive a formula for∇θVθ(x).
We report this result in Theorem F.4, which is analogous to the risk-neutral policy gradient theo-
rem [34, 17, 7]. The proof is in the supplementary material.

Theorem F.4. Under Assumptions 2.2, we have

∇Vθ(x)=Eξ∗θ

[ ∞∑
t=0

γt∇θ logµθ(at|xt)hθ(xt,at) |x0=x

]
,

where Eξ∗θ [·] denotes the expectation w.r.t. trajectories generated by a Markov chain with transition
probabilities Pθ(·|x)ξ∗θ,x(·), and the stage-wise cost function hθ(x, a) is defined as

hθ(x, a) = C(x, a) +
∑
x′∈X

P (x′|x, a)ξ∗θ,x(x′)
[
γVθ(x

′)−λ∗,Pθ,x

−
∑
i∈I

λ∗,Iθ,x(i)
dfi(ξ

∗
θ,x, p)

dp(x′)
−
∑
e∈E

λ∗,Eθ,x(e)
dge(ξ

∗
θ,x, p)

dp(x′)

]
. (27)

4In the case when the sizes of state and action spaces are huge or when these spaces are continuous, the
empirical transition probability can be found by kernel density estimation.

5In the SAA approach, we only sum over the elements for which Pθ;N (x′|x) > 0, thus, the sum has at most
N elements.

19



Theorem F.4 indicates that the policy gradient of the Markov-coherent dynamic risk measure
ρ∞(M), i.e., ∇θρ∞(M) = ∇θVθ, is equivalent to the risk-neutral value function of policy θ
in a MDP with the stage-wise cost function ∇θ logµθ(a|x)hθ(x, a) (which is well-defined and
bounded), and transition probability Pθ(·|x)ξ∗θ,x(·). Thus, when the saddle points are known and the
state space X is not too large, we can compute∇θVθ using a policy evaluation algorithm. However,
when the state space is large, exact calculation of ∇Vθ by policy evaluation becomes impossible,
and our goal would be to derive a sampling method to estimate ∇Vθ. Unfortunately, since the risk
envelop depends on the policy parameter θ, unlike the risk-neutral case, the risk sensitive (or robust)
Bellman equation Tθ[Vθ](x) in (23) is nonlinear in the stationary Markov policy µθ. Therefore hθ
cannot be considered using the action-value function (Q-function) of the robust MDP. Therefore,
even if the exact formulation of the value function Vθ is known, it is computationally intractable to
enumerate the summation over x′ to compute hθ(x, a). On top of that in many applications the value
function Vθ is not known in advance, which further complicates gradient estimation. To estimate the
policy gradient when the value function is unknown, we approximate it by the projected risk sen-
sitive value function Φv∗θ . To address the sampling issues, we propose the following two-phase
sampling procedure for estimating∇Vθ.

(1) Generate N trajectories {x(j)
0 , a

(j)
0 , x

(j)
1 , a

(j)
1 , . . .}Nj=1 from the Markov chain induced by policy

θ and transition probabilities P ξθ (·|x) := ξ∗θ,x(·)Pθ(·|x).

(2) For each state-action pair (x
(j)
t , a

(j)
t ) = (x, a), generate N samples {y(k)}Nk=1 using the transi-

tion probability P (·|x, a) and calculate the following empirical average estimate of hθ(x, a)

hθ,N (x,a) := C(x, a) +
1

N

N∑
k=1

ξ∗θ,x(y(k))

[
γv∗θ
>
φ(y(k))− λ∗,Pθ,x

−
∑
i∈I

λ∗,Iθ,x(i)
dfi(ξ

∗
θ,x, p)

dp(y(k))
−
∑
e∈E

λ∗,Eθ,x(e)
dge(ξ

∗
θ,x, p)

dp(y(k))

]

(3) Calculate an estimate of ∇Vθ using the following average over all the samples:
1
N

∑N
j=1

∑∞
t=0 γ

t∇θ logµθ(a
(j)
t |x

(j)
t )hθ,N (x

(j)
t , a

(j)
t ).

Indeed, by the definition of empirical transition probability PN (x′|x, a), hθ,N (x, a) can be re-
written as in the same structure of hθ(x, a), except by replacing the transition probability P (x′|x, a)
with PN (x′|x, a).

Furthermore, in the case that the saddle points (ξ∗θ,x, λ
∗,P
θ,x , λ

∗,E
θ,x , λ

∗,I
θ,x) do not have a closed-form

solution, we may follow the SAA procedure of Section F.3 and replace them and the transition prob-
abilities P (x′|x, a) with their sample estimates (ξ∗θ,x;N , λ

∗,P
θ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N ) and PN (x′|x, a) re-

spectively.

At the end, we show the convergence of the above two-phase sampling procedure. Let dP ξθ (x|x0)

and πP ξθ
(x, a|x0) be the state and state-action occupancy measure induced by the transition

probability function P ξθ (·|x), respectively. Similarly, let dP ξθ;N (x|x0) and πP ξθ;N
(x, a|x0) be the

state and state-action occupancy measure induced by the estimated transition probability function
P ξθ;N (·|x) := ξ∗θ,x;N (·)Pθ;N (·|x). From the two-phase sampling procedure for policy gradient es-
timation and by the strong law of large numbers, when N → ∞, with probability 1, we have
that 1

N

∑N
j=1

∑∞
t=0 γ

t1{x(j)
t = x, a

(j)
t = a} = πP ξθ;N

(x, a|x0). Based on the strongly convex

property of the `2-regularized objective function in the inner robust optimization problem ρN (Φv),
we can show that both the state-action occupancy measure πP ξθ;N (x, a|x0) and the stage-wise cost

hθ;N (x, a) converge to the their true values within a value function approximation error bound
∆ = ‖Φv∗θ − Vθ‖∞. We refer the readers to the supplementary materials for these technical results.
These results together with Theorem F.4 imply the consistency of the policy gradient estimation.

Theorem F.5. For any x0 ∈ X , the following expression holds with probability 1:
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∣∣∣∣ lim
N→∞

1

N

N∑
j=1

∞∑
t=0

γt ∇ logµθ(a
(j)
t |x

(j)
t ) hθ,N (x

(j)
t , a

(j)
t )

−∇Vθ(x0)

∣∣∣∣ = O(∆).

Thm. F.5 guarantees that as the value function approximation error decreases and the number of
samples increases, the sampled gradient converges to the true gradient.

G Convergence Analysis of Empirical PRSVI

Lemma G.1 (Technical Lemma). Let P (·|·) and P̃ (·|·) be two arbitrary transition probability ma-
trices. At state x ∈ X , for any ξ : ξP (·|x) ∈ U(x, P (·|x)), there exists a Mξ > 0 such that for
some ξ̃ : ξ̃P̃ (·|x) ∈ U(x, P̃ (·|x)),∑

x′∈X
|ξ(x′)− ξ̃(x′)| ≤Mξ

∑
x′∈X

∣∣∣P (x′|x)− P̃ (x′|x)
∣∣∣ .

Proof. From Theorem 2.1, we know that U(x, P (·|x)) is a closed, bounded, convex set of proba-
bility distribution functions. Since any conditional probability mass function P is in the interior of
dom(U) and the graph of U(x, P (·|x)) is closed, by Theorem 2.7 in [29], U(x, P (·|x)) is a Lip-
schitz set-valued mapping with respect to the Hausdorff distance. Thus, for any ξ : ξP (·|x) ∈
U(x, P (·|x)), the following expression holds for some Mξ > 0:

inf
ξ̂∈U(x,P̃ (·|x))

∑
x′∈X

|ξ(x′)− ξ̂(x′)| ≤Mξ

∑
x′∈X

∣∣∣P (x′|x)− P̃ (x′|x)
∣∣∣ .

Next, we want to show that the infimum of the left side is attained. Since the objective function is
convex, and U(x, P̃ (·|x)) is a convex compact set, there exists ξ̃ : ξ̃P̃ (·|x) ∈ U(x, P̃ (·|x)) such
that infimum is attained.

Lemma G.2 (Strong Law of Large Number). Consider the sampling based PRSVI algorithm with
update sequence {v̂k}. Then as both N and k tend to∞, v̂k converges with probability 1 to v∗θ , the
unique solution of projected risk sensitive fixed point equation ΠTµ[Φv] = Φv.

Proof. By the strong law of large number of Markov process, the empirical visiting distribution and
transition probability asymptotically converges to their statistical limits with probability 1, i.e.,∑N−1

t=0 1{xt = x}
N

→ dθ(x|x0), and P̂ (x′|x, a)→ P (x′|x, a), ∀x, x′ ∈ X , a ∈ A.

Therefore with probability 1,

1

N

N−1∑
t=0

φ(xt)φ(xt)
> →

∑
x

dθ(x|x0) · φ(x)φ>(x),

1

N

N−1∑
t=0

φ(xt)Cθ(xt)→
∑
x

dθ(x|x0) · φ(x)Cθ(x).

Now we show that following expression holds with probability 1:

max
ξ : ξPθ;N (·|xt)∈U(xt,Pθ;N (·|xt))

∑
x′∈X

ξ(x′)Pθ;N (x′|xt)v>φ (x′) +
1

2N
(ξ(x′)Pθ;N (x′|xt))2

→ max
ξ : ξPθ(·|xt)∈U(xt,Pθ(·|xt))

∑
x′∈X

ξ(x′)Pθ(x
′|xt)v>φ (x′) .

(28)
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Notice that for {ξ∗θ,xt;N (x′)}x′∈X ∈ arg maxξ : ξPθ;N (·|xt)∈U(xt,Pθ;N (·|xt))
∑
x′∈X ξ(x

′)Pθ;N (x′|xt)v>φ (x′),
Lemma G.1 implies

max
ξ : ξPθ;N (·|xt)∈U(xt,Pθ;N (·|xt))

∑
x′∈X

ξ(x′)Pθ;N (x′|xt)v>φ (x′) +
1

2N
(ξ(x′)Pθ;N (x′|xt))2

− max
ξ : ξPθ(·|xt)∈U(xt,Pθ(·|xt))

∑
x′∈X

ξ(x′)Pθ(x
′|xt)v>φ (x′)

≤‖Φv‖∞
(
Mξ∗θ,xt;N

+ max
x∈X
|ξ∗θ,xt;N (x)|

) ∑
x′∈X

|Pθ(x′|xt)− Pθ;N (x′|xt)|+
1

2N
.

The quantity maxx∈X |ξ∗θ,xt;N (x)| is bounded because U(xt, Pθ;N (·|xt)) is a closed and bounded
convex set from the definition of coherent risk measures. By repeating the above analysis by inter-
changing Pθ and Pθ;N and combining previous arguments, one obtains∣∣∣∣∣ max

ξ : ξPθ;N (·|xt)∈U(xt,Pθ;N (·|xt))

∑
x′∈X

ξ(x′)Pθ;N (x′|xt)v>φ (x′) +
1

2N
(ξ(x′)Pθ;N (x′|xt))2

− max
ξ : ξPθ(·|xt)∈U(xt,Pθ(·|xt))

∑
x′∈X

ξ(x′)Pθ(x
′|xt)v>φ (x′)

∣∣∣∣∣
≤‖Φv‖∞max

{(
Mξ∗ + max

x∈X
|ξ∗(x)|

)
,

(
Mξ∗θ,xt;N

+ max
x∈X
|ξ∗θ,xt;N (x)|

)} ∑
x′∈X

|Pθ(x′|xt)− Pθ;N (x′|xt)|+
1

2N
.

Therefore, the claim in expression (28) holds when N → ∞ and∑
x′∈X |Pθ(x′|xt)− Pθ;N (x′|xt)| → 0. On the other hand, the strong law of large numbers

also implies that with probability 1,

1

N

N−1∑
t=0

φ(xt)ρ(Φvt)→ dθ(x|x0)φ(x) max
ξ : ξPθ(·|x)∈U(x,Pθ(·|x))

∑
x′∈X

ξ(x′)Pθ(x
′|x)v∗θ

>φ (x′) .

Combining the above arguments implies

1

N

N−1∑
t=0

φ(xt)ρN (Φvt)→ dθ(x|x0)φ(x) max
ξ : ξPθ(·|x)∈U(x,Pθ(·|x))

∑
x′∈X

ξ(x′)Pθ(x
′|x)v∗θ

>φ (x′) .

As N → ∞, the above arguments imply that vk − v̂k → 0. On the other hand, Proposition 1 in
[37] implies that the projected risk sensitive Bellman operator ΠTθ[V ] is a contraction, it follows
that from the analysis in Section 6.3 in [5] that the sequence {Φv̂k} generated by projected value
iteration converges to the unique fixed point Φv∗θ . This in turns implies that the sequence {Φvk}
converges to Φv∗θ .

H Technical Results

Since by convention ξ∗θ,x;N (x′) = 0 whenever Pθ;N (x′|x) = 0. In this section, we simplify the
analysis by letting Pθ;N (x′|x) > 0 for any x′ ∈ X without loss of generality. Consider the following
empirical robust optimization problem:

max
ξ : ξPθ;N (·|x)∈U(x,Pθ;N (·|x))

∑
x′∈X

Pθ;N (x′|x)ξ(x′)Vθ(x
′), (29)

where the solution of the above empirical problem is ξ̄∗θ,x;N and the corresponding KKT multipliers
are (λ̄∗,Pθ,x;N , λ̄

∗,E
θ,x;N , λ̄

∗,I
θ,x;N ). Comparing to the optimization problem for ρN (Φv), i.e.,

ρN (Φv) = max
ξ : ξPθ;N (·|x)∈U(x,Pθ;N (·|x))

∑
x′∈X

Pθ;N (x′|x)ξ(x′)φ>(x′)v +
1

2N
(ξ(x′)Pθ;N (x′|x))2,

(30)

22



where the solution of the above empirical problem is ξ∗θ,x;N and the corresponding KKT multipliers
are (λ∗,Pθ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N ), the optimization problem in (29) can be viewed as having a skewed

objective function of the problem in (30), within the deviation of magnitude ∆ + 1/2N where
∆ = ‖Φv∗θ − Vθ‖∞. Before getting into the main analysis, we have the following observations.

(i) Without loss of generality, we can also assume (ξ∗θ,x;N , (λ
∗,P
θ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N )) follows the

strict complementary slackness condition6.
(ii) Recall from Assumption 2.2 that the functions fi(ξ, p) and ge(ξ, p) are twice differentiable in ξ

at p = Pθ,N (·|x) for any x ∈ X .
(iii) The Slater’s condition in Assumption 2.2 implies the linear independence constraint qualifica-

tion (LICQ).
(iv) Since optimization problem (30) has a convex objective function and convex/affine constraints

in ξ ∈ R|X |, equipped with the Slater’s condition we have that the first order KKT condi-
tion holds at ξ∗θ,x;N with the corresponding KKT multipliers are (λ∗,Pθ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N ).

Furthermore, define the Lagrangian function

L̂θ;N (ξ, λP , λE , λI)
.
=
∑
x′∈X

Pθ;N (x′|x)ξ(x′)φ>(x′)v +
1

2N
(Pθ;N (x′|x)ξ(x′))2

−λP
(∑
x′∈X

ξ(x′)Pθ;N (x′|x)−1

)
−
∑
e∈E

λE(e)fe(ξ, Pθ;N (·|x))−
∑
i∈I

λI(i)fi(ξ, Pθ;N (·|x)).

One can easily conclude that ∇2L̂θ;N (ξ, λP , λE , λI) = −Pθ;N (·|x)>Pθ;N (·|x)/N −∑
i∈I λ

I(i)∇2
ξfi(ξ, Pθ;N (·|x)) such that for any vector ν 6= 0,

ν>∇2L̂θ;N (ξ∗θ,x;N , λ
∗,P
θ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N )ν < 0,

which further implies that the second order sufficient condition (SOSC) holds at
(ξ∗θ,x;N , λ

∗,P
θ,x;N , λ

∗,E
θ,x;N , λ

∗,I
θ,x;N ).

Based on all the above analysis, we have the following sensitivity result from Corollary 3.2.4 in [13],
derived based on Implicit Function Theorem.
Proposition H.1 (Basic Sensitivity Theorem). Under the Assumption 2.2, for any x ∈ X there exists
a bounded non-singular matrix Kθ,x and a bounded vector Lθ,x, such that the difference between
the optimizers and KKT multipliers of optimization problem (29) and (30) are bounded as follows:

ξ̄∗θ,x;N

λ̄∗,Iθ,x;N

λ̄∗,Pθ,x;N

λ̄∗,Eθ,x;N

 =


ξ∗θ,x;N

λ∗,Iθ,x;N

λ∗,Pθ,x;N

λ∗,Eθ,x;N

+ Φ−1
θ,xΨθ,x

(
∆ +

1

2N

)
+ o

(
∆ +

1

2N

)
.

On the other hand, we know from Proposition 4.4 that ξ̄∗θ,x;N → ξ∗θ,x and (λ̄∗,Pθ,x;N , λ̄
∗,E
θ,x;N , λ̄

∗,I
θ,x;N )→

(λ∗,Pθ,x , λ
∗,E
θ,x , λ

∗,I
θ,x) with probability 1 as N → ∞. Also recall from the law of large numbers that

the sampled approximation error maxx∈X ,a∈A ‖P (·|x, a) − PN (·|x, a)‖1 → 0 almost surely as
N →∞. Then we have the following error bound in the stage-wise cost approximation ĥθ;N (x, a)
and γ−visiting distribution πN (x, a).
Lemma H.2. There exists a constant Mh > 0 such that maxx∈X ,a∈A |hθ(x, a) −
limN→∞ ĥθ;N (x, a)| ≤Mh∆.

6The existence of strict complementary slackness solution follows from the KKT theorem and one can easily
construct a strictly complementary pair using i.e. the Balinski-Tucker tableau with the linearized objective
function and constraints, in finite time.
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Proof. First we can easily see that for any state x ∈ X and action a ∈ A,

|ĥθ;N (x, a)− hθ(x, a)| ≤M
∑
i∈I

∣∣∣λ∗,Iθ,x;N (i)− λ∗,Iθ,x(i)
∣∣∣+M

∑
e∈E

∣∣∣λ∗,Eθ,x;N (e)− λ∗,Eθ,x(e)
∣∣∣+
∣∣∣λ∗,Pθ,x;N − λ

∗,P
θ,x

∣∣∣
+ γ‖Vθ‖∞‖ξ∗θ,x;N − ξ∗θ,x‖1 + γ‖Vθ − Φv∗θ‖∞
+ γ‖Vθ‖∞max{‖ξ∗θ,x;N‖∞, ‖ξ∗θ,x‖∞}‖P (·|x, a)− PN (·|x, a)‖1.

Note that at N → ∞, ‖P (·|x, a) − PN (·|x, a)‖1 → 0 with probability 1. Both ‖ξ∗θ;N‖∞ and
‖ξ∗θ,x‖∞ are finite valued because U(Pθ) and U(Pθ;N ) are convex compact sets of real vectors.
Therefore, by noting that ‖Vθ‖∞ ≤ Cmax/(1− γ) and applying Proposition 4.4 and H.1, the proof
of this Lemma is completed by letting N →∞ and defining

Mh(x) = max{1,M,
γCmax

1− γ
}

∥∥∥∥∥∥∥∥∥


ξ∗θ,x;N − ξ̄∗θ,x;N

λ∗,Iθ,x;N − λ̄
∗,I
θ,x;N

λ∗,Pθ,x;N − λ̄
∗,P
θ,x;N

λ∗,Eθ,x;N − λ̄
∗,E
θ,x;N

+


ξ̄∗θ,x;N − ξ∗θ,x
λ̄∗,Iθ,x;N − λ

∗,I
θ,x

λ̄∗,Pθ,x;N − λ
∗,P
θ,x

λ̄∗,Eθ,x;N − λ
∗,E
θ,x


∥∥∥∥∥∥∥∥∥

1

+ γ∆

≤
(

max{1,M,
γCmax

1− γ
}‖Φ−1

θ,xΨθ,x‖1 + γ

)
∆.

Lemma H.3. There exists a constant Mπ > 0 such that ‖π − limN→∞ πN‖1 ≤Mπ∆.

Proof. First, recall that the γ−visiting distribution satisfies the following identity:

γ
∑
x′∈X

dP ξθ
(x′|x)P ξθ (x|x′) = dP ξθ

(x)− (1− γ)1{x0 = x}, (31)

From here one easily notice this expression can be rewritten as follows:(
I − γP ξθ

)>
dP ξθ

(·|x) = 1{x0 = x}, ∀x ∈ X .

On the other hand, by repeating the analysis with Pθ;N (·|x), we can also write(
I − γP ξθ;N

)>
dP ξθ;N

= {1{x0 = z}}z∈X .

Combining the above expressions implies for any x ∈ X ,

dP ξθ
− dP ξθ;N − γ

((
P ξθ

)>
dP ξθ
− (P ξθ;N )>dP ξθ;N

)
= 0,

which further implies (
I − γP ξθ

)> (
dP ξθ
− dP ξθ;N

)
= γ

(
P ξθ − P

ξ
θ;N

)>
dP ξθ;N

⇐⇒
(
dP ξθ
− dP ξθ;N

)
=
(
I − γP ξθ

)−>
γ
(
P ξθ − P

ξ
θ;N

)>
dP ξθ;N

.

Notice that with transition probability matrix P ξθ (·|x), we have (I − γP ξθ )−1 =
∑∞
t=0

(
γP ξθ

)k
<

∞. The series is summable because by Perron-Frobenius theorem, the maximum eigenvalue of P ξθ
is less than or equal to 1 and I − γP ξθ is invertible. On the other hand, for every given x0 ∈ X ,{(

P ξθ − P
ξ
θ;N

)>
dP ξθ;N

}
(z′) =

∑
x∈X

∞∑
k=0

γk(1− γ)PP ξθ;N (xk = x|x0)
(
P ξθ (z′|x)− P ξθ;N (z′|x)

)
, ∀z′ ∈ X

=EP ξθ;N

( ∞∑
k=0

γk(1− γ)
(
P ξθ (z′|xk)− P ξθ;N (z′|xk)

)
|x0

)
, ∀z′ ∈ X

≤EP ξθ;N

( ∞∑
k=0

γk(1− γ)
∣∣∣P ξθ (z′|xk)− P ξθ;N (z′|xk)

∣∣∣ |x0

)
, ∀z′ ∈ X

.
=Q(z′), ∀z′ ∈ X .
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Note that every element in matrix (I − γP ξθ )−1 =
∑∞
t=0

(
γP ξθ

)k
is non-negative. This implies for

any z ∈ X ,∣∣∣{dP ξθ − dP ξθ;N} (z)
∣∣∣ =

∣∣∣∣{(I − γP ξθ )−> γ (P ξθ − P ξθ;N)> dP ξθ;N
}

(z)

∣∣∣∣ ,
≤
∣∣∣∣{(I − γP ξθ )−> γQ} (z)

∣∣∣∣ =

{(
I − γP ξθ

)−>
γQ
}

(z).

The last equality is due to the fact that every element in vector Q is non-negative. Combining the
above results with Proposition 4.4 and H.1, and noting that

(I − γP ξθ )−1e =

∞∑
t=0

(
γP ξθ

)k
e =

1

1− γ
e,

we further have that

‖π − πN‖1 =‖dP ξθ − dP ξθ;N ‖1

≤e>
(
I − γP ξθ

)−>
γQ

=
γ

1− γ
e>Q

≤ γ

1− γ
max
x∈X

∥∥∥P ξθ (·|x)− P ξθ;N (·|x)
∥∥∥

1

≤ γ

1− γ
max
x∈X

(
‖ξ∗θ,x(·)− ξ∗θ,x;N (·)‖1‖Pθ(·|x)‖∞ + max{‖ξ∗θ,x;N‖∞, ‖ξ∗θ,x‖∞}‖P (·|x, a)− PN (·|x, a)‖1

)
,

As in previous arguments, when N → ∞, one obtains ‖P (·|x, a)− PN (·|x, a)‖1 → 0 with proba-
bility 1 and ‖ξ∗θ,x(·)−ξ∗θ,x;N (·)‖1 → 0. We thus set the constantMπ as γ‖Φ−1

θ,xΨθ,x‖1/(1−γ).
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