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Abstract
In many real-world reinforcement learning (RL) problems, besides optimizing the
main objective function, an agent must concurrently avoid violating a number of
constraints. In particular, besides optimizing performance, it is crucial to guar-
antee the safety of an agent during training as well as deployment (e.g., a robot
should avoid taking actions - exploratory or not - which irrevocably harm its hard-
ware). To incorporate safety in RL, we derive algorithms under the framework
of constrained Markov decision processes (CMDPs), an extension of the standard
Markov decision processes (MDPs) augmented with constraints on expected cu-
mulative costs. Our approach hinges on a novel Lyapunov method. We define
and present a method for constructing Lyapunov functions, which provide an ef-
fective way to guarantee the global safety of a behavior policy during training
via a set of local linear constraints. Leveraging these theoretical underpinnings,
we show how to use the Lyapunov approach to systematically transform dynamic
programming (DP) and RL algorithms into their safe counterparts. To illustrate
their effectiveness, we evaluate these algorithms in several CMDP planning and
decision-making tasks on a safety benchmark domain. Our results show that our
proposed method significantly outperforms existing baselines in balancing con-
straint satisfaction and performance.

1 Introduction
Reinforcement learning (RL) has shown exceptional successes in a variety of domains such as video
games [25] and recommender systems [40], where the main goal is to optimize a single return.
However, in many real-world problems, besides optimizing the main objective (the return), there
can exist several conflicting constraints that make RL challenging. In particular, besides optimizing
performance it is crucial to guarantee the safety of an agent in deployment [5, 32, 33], as well as
during training [2]. For example, a robot should avoid taking actions which irrevocably harm its
hardware; a recommender system must avoid presenting harmful or offending items to users.

Sequential decision-making in non-deterministic environments has been extensively studied in the
literature under the framework of Markov decision processes (MDPs). To incorporate safety into the
RL process, we are particularly interested in deriving algorithms under the context of constrained
Markov decision processes (CMDPs), which is an extension of MDPs with expected cumulative
constraint costs. The additional constraint component of CMDPs increases flexibility in modeling
problems with trajectory-based constraints, when compared with other approaches that customize
immediate costs in MDPs to handle constraints [34]. As shown in numerous applications from robot
motion planning [30, 26, 11], resource allocation [24, 18], and financial engineering [1, 41], it is
more natural to define safety over the whole trajectory, instead of over particular state and action
pairs. Under this framework, we denote an agent’s behavior policy to be safe if it satisfies the
cumulative cost constraints of the CMDP.
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Despite the capabilities of CMDPs, they have not been very popular in RL. One main reason is that,
although optimal policies of finite CMDPs are Markov and stationary, and with known models the
CMDP can be solved using linear programming (LP) [3], it is unclear how to extend this algorithm
to handle cases when the model is unknown, or when the state and action spaces are large or contin-
uous. A well-known approach to solve CMDPs is the Lagrangian method [4, 15], which augments
the standard expected reward objective with a penalty on constraint violation. With a fixed Lagrange
multiplier, one can use standard dynamic programming (DP) or RL algorithms to solve for an opti-
mal policy. With a learnable Lagrange multiplier, one must solve the resulting saddle point problem.
However, several studies [21] showed that iteratively solving the saddle point is apt to run into nu-
merical stability issues. More importantly, the Lagrangian policy is only safe asymptotically and
makes little guarantee with regards to safety of the behavior policy during each training iteration.

Motivated by these observations, several recent works have derived surrogate algorithms for solving
CMDPs, which transform the original constraint to a more conservative one that yields an easier
problem to solve. A straight-forward approach is to replace the cumulative constraint cost with
a conservative stepwise surrogate constraint [9] that only depends on the current state-action pair.
Since this surrogate constraint can be easily embedded into the admissible control set, this formu-
lation can be modeled by an MDP that has a restricted set of admissible actions. Another surrogate
algorithm was proposed by [14] in which the algorithm first computes a uniform super-martingale
constraint value function surrogate w.r.t. all policies, and then finds a CMDP feasible policy by op-
timizing the surrogate problem using the lexicographical ordering method [39]. These methods are
advantageous in the sense that (i) there are RL algorithms available to handle the surrogate problems
(for example see [12] for the step-wise surrogate and [27] for the super-martingale surrogate), (ii)
the policy returned by this method is safe, even during training. However, the main drawback of
these approaches is their conservativeness. Characterizing sub-optimality performance of the cor-
responding solution policy also remains a challenging task. On the other hand, recently in policy
gradient, [2] proposed the constrained policy optimization (CPO) method that extends trust-region
policy optimization (TRPO) to handle the CMDP constraints. While this algorithm is scalable and
its policy is safe during training, applying this methodology to more general RL algorithms (that are
not in the family of proximal PG algorithms) is quite non-trivial.

Lyapunov functions have been extensively used in control theory to analyze the stability of dynamic
systems [20, 28]. A Lyapunov function is a type of scalar potential function that keeps track of the
energy that a system continually dissipates. Besides modeling physical energy, Lyapunov functions
can also represent abstract quantities, such as the steady-state performance of a Markov process [16].
In many fields, Lyapunov functions provide a powerful paradigm to translate global properties of
a system to local ones and vice-versa. Using Lyapunov functions in RL was first studied by [31],
where Lyapunov functions were used to guarantee closed-loop stability of an agent. Recently [6]
used Lyapunov functions to guarantee a model-based RL agent’s ability to re-enter an “attraction
region” during exploration. However, no previous works have used Lyapunov approaches to explic-
itly model constraints in a CMDP. Furthermore, one major drawback of these approaches is that the
Lyapunov functions are hand-crafted, and there are no principled guidelines on designing Lyapunov
functions that can guarantee the agent’s performance.

The contribution of this paper is four-fold. First, we formulate the problem of safe RL as a CMDP
and propose a novel Lyapunov approach to solve it. While the main challenge of other Lyapunov-
based methods is to design a Lyapunov function candidate, we propose an LP-based algorithm to
construct Lyapunov functions w.r.t. generic CMDP constraints. We also show that our method is
guaranteed to always return a feasible policy, and under certain technical assumptions, it achieves
optimality. Second, leveraging the theoretical underpinnings of the Lyapunov approach, we present
two safe DP algorithms – safe policy iteration (SPI) and safe value iteration (SVI) – and analyze the
feasibility and performance of these algorithms. Third, to handle unknown environments and large
state/action spaces, we develop two scalable safe RL algorithms – (i) safe DQN, an off-policy fitted
Q-iteration method, and (ii) safe DPI, an approximate policy iteration method. Fourth, to illustrate
the effectiveness of these algorithms, we evaluate them in several tasks on a benchmark 2D planning
problem and show that they outperform common baselines in terms of balancing performance and
constraint satisfaction.

2 Preliminaries
We consider RL problems in which the agent’s interaction with the system is modeled as a
Markov decision process (MDP). A MDP is a tuple (X ,A, c, P, x0), where X = X ′ ∪ {xTerm}
is the state space, with transient state space X ′ and terminal state xTerm; A is the action space;
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c(x, a) ∈ [0, Cmax] is the immediate cost function (negative reward); P (·|x, a) is the transition
probability distribution; and x0 ∈ X ′ is the initial state. Our results easily generalize to random ini-
tial states and random costs, but for simplicity we will focus on the case of deterministic initial state
and immediate cost. In a more general setting where cumulative constraints are taken into account,
we define a constrained Markov decision process (CMDP), which extends the MDP model by in-
troducing additional costs and associated constraints. A CMDP is defined by (X ,A, c, d, P, x0, d0),
where the components X ,A, c, P, x0 are the same for the unconstrained MDP; d(x) ∈ [0, Dmax] is
the immediate constraint cost; and d0 ∈ R≥0 is an upper-bound on the expected cumulative (through
time) constraint cost. To formalize the optimization problem associated with CMDPs, let ∆ be the
set of Markov stationary policies, i.e., ∆(x) = {π(·|x) : X → R≥0s :

∑
a π(a|x) = 1}, for any

state x ∈ X . Also let T∗ be a random variable corresponding to the first-hitting time of the terminal
state xTerm induced by policy π. In this paper, we follow the standard notion of transient MDPs and
assume that the first-hitting time is uniformly bounded by an upper bound T for any stationary poli-
cies [10]. This assumption implies that every stationary policy is proper [7], whose induced Markov
chain has an absorbing property (see [13] for an example). While this assumption may seem restric-
tive, it is a standard one in stochastic shortest path problems for showing that the Bellman operator
is a contraction. Its justification follows from the fact that sample trajectories collected in most RL
algorithms consist of a finite stopping time (also known as a time-out); In general this assumption
may also be relaxed in cases where a discount factor γ < 1 is applied on future costs. For notational
convenience, at each state x ∈ X ′, we define the generic Bellman operator w.r.t. policy π ∈ ∆ and
generic cost function h: Tπ,h[V ](x) =

∑
a π(a|x)

[
h(x, a)+

∑
x′∈X ′P (x′|x, a)V (x′)

]
.

Given a policy π ∈ ∆, an initial state x0, the cost function is defined as Cπ(x0) :=

E
[∑T∗−1

t=0 c(xt, at) | x0, π
]
, and the safety constraint is defined as Dπ(x0) ≤ d0, where the safety

constraint function is given by Dπ(x0) := E
[∑T∗−1

t=0 d(xt) | x0, π
]
. In general the CMDP problem

we wish to solve is given as follows:

Problem OPT : Given an initial state x0 and a threshold d0, solve
minπ∈∆

{
Cπ(x0) : Dπ(x0) ≤ d0

}
. If there is a non-empty solution, the optimal

policy is denoted by π∗.

Under the transient CMDP assumption, Theorem 8.1 in [3] shows that if the feasibility set is non-
empty, then there exists an optimal policy in the class of stationary Markovian policies ∆. To
motivate the CMDP formulation studied in this paper, in Appendix A, we include two real-world
examples in modeling safety using (i) the reachability constraint, and (ii) the constraint that limits
the agent’s visits to undesirable states. Recently there has been a number of works on CMDP
algorithms; their details can be found in Appendix B.

3 A Lyapunov Approach to Solve CMDPs
In this section, we develop a novel methodology for solving CMDPs using the Lyapunov approach.
To start with, without loss of generality we assume to have access to a baseline feasible policy of
the OPT problem, namely πB ∈ ∆.1 We define a non-empty2 set of Lyapunov functions w.r.t. the
initial state x0 ∈ X and constraint threshold d0 as

LπB (x0, d0)=
{
L : X →R≥0 :TπB ,d[L](x)≤L(x),∀x ∈ X ′; L(x) = 0, ∀x ∈ X\X ′; L(x0) ≤ d0

}
.

(1)
For any arbitrary Lyapunov function L ∈ LπB (x0, d0), we denote by FL(x) ={
π(·|x) ∈ ∆ : Tπ,d[L](x) ≤L(x)

}
the set of L−induced Markov stationary policies. Since Tπ,d

is a contraction mapping [7], any L−induced policy π has the following property: Dπ(x) =
limk→∞ T kπ,d[L](x) ≤ L(x), ∀x ∈ X ′. Together with the property of L(x0) ≤ d0, this further
implies any L−induced policy is a feasible policy of the OPT problem. However, in general the
set FL(x) does not necessarily contain any optimal policies of the OPT problem , and our main
contribution is to design a Lyapunov function (w.r.t. a baseline policy) that provides this guarantee.
In other words, our main goal is to construct a Lyapunov function L ∈ LπB (x0, d0) such that

L(x) ≥ Tπ∗,d[L](x), L(x0) ≤ d0. (2)
1One example of πB is a policy that minimizes the constraint, i.e., πB(·|x) ∈ arg minπ∈∆(x)Dπ(x).
2To see this, the constraint cost function DπB (x) is a valid Lyapunov function, i.e., DπB (x0) ≤ d0,

DπB (x) = 0, ∀x ∈ X \ X ′, and DπB (x) = TπB ,d[DπB ](x) = E
[∑T∗−1

t=0 d(xt) | πB , x
]
, ∀x ∈ X ′.
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Before getting into the main results, we consider the following important technical lemma, which
states that with appropriate cost-shaping, one can always transform the constraint value function
Dπ∗(x) w.r.t. optimal policy π∗ into a Lyapunov function that is induced by πB , i.e., Lε(x) ∈
LπB (x0, d0). The proof of this lemma can be found in Appendix C.1.
Lemma 1. There exists an auxiliary constraint cost ε : X ′ → R such that a Lyapunov function is
given by Lε(x) = E

[∑T∗−1
t=0 d(xt) + ε(xt) | πB , x

]
, ∀x ∈ X ′, and Lε(x) = 0, ∀x ∈ X \ X ′.

Moreover, Lε is equal to the constraint value function w.r.t. π∗, i.e., Lε(x) = Dπ∗(x).

From the structure of Lε, one can see that the auxiliary constraint cost function ε is uniformly
bounded by ε∗(x) := 2TDmaxDTV (π∗||πB)(x),3 i.e., ε(x) ∈ [−ε∗(x), ε∗(x)], for any x ∈ X ′.
However, in general it is unclear how to construct such a cost-shaping term ε without explicitly
knowing π∗ a-priori. Rather, inspired by this result, we consider the bound ε∗ to propose a Lyapunov
function candidate Lε∗ . Immediately from its definition, this function has the following properties:

Lε∗(x) ≥ TπB ,d[Lε∗ ](x), Lε∗(x) ≥ max
{
Dπ∗(x),DπB (x)

}
≥ 0, ∀x ∈ X ′. (3)

The first property is due to the facts that: (i) ε∗ is a non-negative cost function; (ii) TπB ,d+ε∗ is a
contraction mapping, which by the fixed point theorem [7] implies Lε∗(x) = TπB ,d+ε∗ [Lε∗ ](x) ≥
TπB ,d[Lε∗ ](x), ∀x ∈ X ′. For the second property, from the above inequality one concludes that
the Lyapunov function Lε∗ is a uniform upper-bound to the constraint cost, i.e., Lε∗(x) ≥ DπB (x),
because the constraint costDπB (x) w.r.t. policy πB is the unique solution to the fixed-point equation
TπB ,d[V ](x) = V (x), x ∈ X ′. On the other hand, by construction, ε∗(x) is an upper-bound of the
cost-shaping term ε(x). Therefore, Lemma 1 implies that the Lyapunov function Lε∗ is a uniform
upper-bound to the constraint cost w.r.t. optimal policy π∗, i.e., Lε∗(x) ≥ Dπ∗(x).

To show that Lε∗ is a Lyapunov function that satisfies (2), we propose the following condition that
enforces a baseline policy πB to be sufficiently close to an optimal policy π∗.
Assumption 1. The feasible baseline policy πB satisfies the condition maxx∈X ′ ε

∗(x) ≤ Dmax ·
min

{
d0−DπB (x0)

TDmax
, TDmax−D

TDmax+D

}
, where D = maxx∈X ′ maxπ Dπ(x).

This condition characterizes the maximum allowable distance between πB and π∗, such that the set
of Lε∗−induced policies contains an optimal policy. To formalize this claim, we have the following
main result showing that Lε∗ ∈ LπB (x0, d0), and the set of policiesFLε∗ contains an optimal policy.
Theorem 1. Suppose the baseline policy πB satisfies Assumption 1, then on top of the properties in
(3), the Lyapunov function candidate Lε∗ also satisfies the properties in (2), and thus, its induced
feasible set of policies FLε∗ contains an optimal policy.

The proof of this theorem is given in Appendix C.2. Suppose the distance between the baseline and
optimal policies can be estimated effectively. Using the above result, one can immediately determine
if the set of Lε∗−induced policies contain an optimal policy. Equipped with the set of Lε∗−induced
feasible policies, consider the following safe Bellman operator:

T [V ](x) =

{
minπ∈FLε∗ (x) Tπ,c[V ](x) if x ∈ X ′

0 otherwise . (4)

Using standard analysis of Bellman operators, one can show that T is a monotonic and contraction
operator (see Appendix C.3 for the proof). This further implies that the solution of the fixed-point
equation T [V ](x) = V (x), ∀x ∈ X is unique. Let V ∗ be such a value function. The following
theorem shows that under Assumption 1, V ∗(x0) is a solution to the OPT problem.
Theorem 2. Suppose that the baseline policy πB satisfies Assumption 1. Then, the fixed-point
solution at x = x0, i.e., V ∗(x0), is equal to the solution of the OPT problem. Furthermore, an
optimal policy can be constructed by π∗(·|x)∈arg minπ∈FLε∗ (x) Tπ,c[V

∗](x), ∀x∈X ′.

The proof of this theorem can be found in Appendix C.4. This shows that under Assumption 1,
an optimal policy of the OPT problem can be found using standard DP algorithms. Note that
verifying whether πB satisfies this assumption is still challenging, because one requires a good
estimate of DTV (π∗||πB). Yet to the best of our knowledge, this is the first result that connects
the optimality of CMDP to Bellman’s principle of optimality. Another key observation is that in

3The definition of total variation distance is given by DTV (π∗||πB)(x) = 1
2

∑
a∈A |πB(a|x)− π∗(a|x)|.
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practice, we will explore ways of approximating ε∗ via bootstrapping and empirically show that this
approach achieves good performance, while guaranteeing safety at each iteration. In particular, in
the next section, we will illustrate how to systematically construct a Lyapunov function using an
LP in both planning and RL (when the model is unknown and/or we use function approximation)
scenarios in order to guarantee safety during learning.

4 Safe Reinforcement Learning Using Lyapunov Functions
Motivated by the challenge of computing a Lyapunov function Lε∗ such that its induced set of
policies contains π∗, in this section, we approximate ε∗ with an auxiliary constraint cost ε̃, which is
the largest auxiliary cost that satisfies the Lyapunov condition: Lε̃(x) ≥ TπB ,d[Lε̃](x), ∀x ∈ X ′,
and the safety condition Lε̃(x0) ≤ d0. The larger the ε̃, the larger the set of policies FLε̃ . Thus, by
choosing the largest such auxiliary cost, we hope to have a better chance of including the optimal
policy π∗ in the set of feasible policies. So, we consider the following LP problem:

ε̃ ∈arg max
ε:X ′→R≥0

{∑
x∈X ′

ε(x) : d0 −DπB (x0) ≥ 1(x0)>(I − {P (x′|x, πB)}x,x′∈X ′)−1ε
}
. (5)

Here 1(x0) represents a one-hot vector in which the non-zero element is located at x = x0.

On the other hand, whenever πB is a feasible policy, the problem in (5) always has a non-empty
solution.4 Furthermore, note that 1(x0)>(I − {P (x′|x, πB)}x,x′∈X ′)−11(x) represents the total
visiting probability E[

∑T∗−1
t=0 1{xt = x} | x0, πB ] from the initial state x0 to any state x ∈ X ′,

which is a non-negative quantity. Therefore, using the extreme point argument in LP [23], one
can simply conclude that the maximizer of problem (5) is an indicator function whose non-zero
element locates at state x that corresponds to the minimum total visiting probability from x0,
i.e., ε̃(x) = (d0 −DπB (x0)) · 1{x = x}/E[

∑T∗−1
t=0 1{xt = x} | x0, πB ] ≥ 0, ∀x ∈ X ′, where

x ∈ arg minx∈X ′ E[
∑T∗−1
t=0 1{xt = x} | x0, πB ]. On the other hand, suppose that we further

restrict the structure of ε̃(x) to be a constant function, i.e., ε̃(x) = ε̃, ∀x ∈ X ′. Then, one can
show that the maximizer is given by ε̃(x) = (d0 −DπB (x0))/E[T∗ | x0, πB ], ∀x ∈ X ′, where
1(x0)>(I − {P (x′|x, πB)}x,x′∈X ′)−1[1, . . . , 1]> = E[T∗ | x0, πB ] is the expected stopping time
of the transient MDP. In cases where computing the expected stopping time is expensive, one rea-
sonable approximation is to replace the denominator of ε̃ with the upper-bound T.

Using this Lyapunov functionLε̃, we propose the safe policy iteration (SPI) in Algorithm 1, in which
the Lyapunov function is updated via bootstrapping, i.e., at each iterationLε̃ is recomputed using (5),
w.r.t. the current baseline policy. Properties of SPI are summarized in the following proposition.

Algorithm 1 Safe Policy Iteration (SPI)
Input: Initial feasible policy π0;
for k = 0, 1, 2, . . . do

Step 0: With πb = πk, evaluate the Lyapunov function Lεk , where εk is a solution of (5)
Step 1: Evaluate the cost value function Vπk (x) = Cπk (x)
Step 2: Update the policy by solving the problem πk+1(·|x) ∈ argminπ∈FLεk (x) Tπ,c[Vπk ](x), ∀x ∈ X ′

end for
Return Final policy πk∗

Proposition 1. Algorithm 1 has the following properties: (i) Consistent Feasibility, i.e., suppose that
the current policy πk is feasible, then the updated policy πk+1 is also feasible, i.e., Dπk(x0) ≤ d0

implies Dπk+1
(x0) ≤ d0; (ii) Monotonic Policy Improvement, i.e., the cumulative cost induced by

πk+1 is lower than or equal to that by πk, i.e., Cπk+1
(x) ≤ Cπk(x), ∀x ∈ X ′; (iii) Convergence,

i.e., if we add a strictly concave regularizer to the optimization problem (5) and a strictly convex
regularizer to the policy optimization step, then the policy sequence asymptotically converges.5

The proof of this proposition is given in Appendix C.5, and the sub-optimality performance bound
of SPI can be found in Appendix C.6. Analogous to SPI, we also propose a safe value iteration
(SVI), in which the Lyapunov function estimate is updated at every iteration via bootstrapping,
using the current optimal value estimate. Details of SVI is given in Algorithm 2 and its properties
are summarized in the following proposition, whose proof is given in Appendix C.7.

4This is due to the fact that d0 −DπB (x0) ≥ 0, and thus, ε̃(x) = 0 is a feasible solution.
5The strict concavity property in the objective function is mainly for the purpose of tie-breaking. One

standard example is the entropy regularizer with a small regularization term.
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Proposition 2. Algorithm 2 has: (i) Consistent Feasibility and (ii) Convergence.

To justify the notion of bootstrapping in both SVI and SPI, the Lyapunov function is updated based
on the best baseline policy (the policy that is feasible and by far has the lowest cumulative cost).
Once the current baseline policy πk is sufficiently close to an optimal policy π∗, then by Theorem 1,
one may conclude that the Lε̃−induced set of policies contains an optimal policy. Although these
algorithms do not have optimality guarantees, empirically, they often return a near-optimal policy.

At each iteration, the policy optimization step in SPI and SVI requires solving |X ′| LP sub-problems,
where each of them has |A| + 2 constraints and has a |A|−dimensional decision-variable. Collec-
tively, at each iteration its complexity is O(|X ′||A|2(|A| + 2)). While in the worst case SVI con-
verges in K = O(T) steps [7] and SPI converges in K = O(|X ′||A|T log T) steps [38], in practice,
K is much smaller than |X ′||A|. Therefore, even with the additional complexity of policy evaluation
in SPI that isO(T|X ′|2), or the complexity of updatingQ−function in SVI that isO(|A|2|X ′|2), the
complexity of these methods is O(K|X ′||A|3 +K|X ′|2|A|2), which in practice is much lower than
that of the dual LP method, whose complexity is O(|X ′|3|A|3) (see Appendix B for more details).

Algorithm 2 Safe Value Iteration (SVI)
Input: Initial Q-function Q0; Initial Lyapunov function Lε0 w.r.t. auxiliary cost function ε0(x)=0;
for k = 0, 1, 2, . . . do

Step 0: Compute Q-function Qk+1(x, a) = c(x, a) +
∑
x′P (x′|x, a) minπ∈FLεk (x′) π(·|x′)>Qk(x′, ·)

and policy πk(·|x) ∈ arg minπ∈FLεk (x) π(·|x)>Qk(x, ·)
Step 1: With πB = πk, construct the Lyapunov function Lεk+1 , where εk+1 is a solution to (5);

end for
Return Final policy πk∗

4.1 Lyapunov-based Safe RL Algorithms
In order to improve scalability of SVI and SPI, we develop two off-policy safe RL algorithms, namely
safe DQN and safe DPI, which replace the value and policy updates in safe DP with function ap-
proximations. Their pseudo-codes can be found in Appendix D. Before going into their details, we
first introduce the policy distillation method, which will be later used in the safe RL algorithms.

Policy Distillation: Consider the following LP problem for policy optimization in SVI and SPI:

π′(·|x) ∈ arg min
π∈∆

{
π(·|x)>Q(x, ·) : (π(·|x)− πB(·|x))>QL(x, ·) ≤ ε̃′(x)

}
, (6)

where QL(x, a) = d(x) + ε̃′(x) +
∑
x′ P (x′|x, a)Lε̃′(x

′) is the state-action Lyapunov function.
When the state-space is large (or continuous), we shall use function approximation. Consider a
parameterized policy πφ with weights φ. Utilizing the distillation concept [36], after comput-
ing the optimal action probabilities w.r.t. a batch of states, the policy πφ is updated by solving

φ∗ ∈ arg minφ
1
m

∑M
m=1

∑T−1
t=0 DJSD(πφ(·|xt,m) ‖ π′(·|xt,m)), where DJSD is the Jensen-Shannon

divergence. Pseudo-code of distillation is given in Algorithm 3 in Appendix D.

Safe Q−learning (SDQN): Here we sample an off-policy mini-batch of state, action, cost, and
next-state from the replay buffer, and use it to update the value function estimates that minimize
the MSE losses of the Bellman residuals. We first construct the state-action Lyapunov function
estimate Q̂L(x, a; θD, θT ) = Q̂D(x, a; θD) + ε̃′ · Q̂T (x, a; θT ) by learning the constraint value net-
work Q̂D and stopping time value network Q̂T . With a current baseline policy πk, one can use
function approximation to approximate the auxiliary constraint cost (which is the solution to (5))
by ε̃′(x) = ε̃′ = (d0 − πk(·|x0)>Q̂D(x0, ·; θD))/πk(·|x0)>Q̂T (x0, ·; θT ). Equipped with the Lya-
punov function, at each iteration, one can do a standard DQN update, except that the optimal action
probabilities are computed by solving (6). Details of SDQN is given in Algorithm 4 in Appendix D.

Safe Policy Improvement (SDPI): Similar to SDQN, in this algorithm, we first sample an off-
policy mini-batch from the replay buffer and use it to update the value function estimates (w.r.t. ob-
jective, constraint, and stopping-time estimate) that minimize MSE losses. Different from SDQN,
in SDPI the value estimation is done using policy evaluation, which means that the objective
Q−function is trained to minimize the Bellman residual w.r.t. actions generated by the current pol-
icy πk, instead of the greedy actions. Using the same construction as in SDQN for auxiliary cost ε̃′

and state-action Lyapunov function Q̂L, we then perform a policy improvement step by computing
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Figure 1: Results of various planning algorithms on the grid-world environment with obstacles,
with x-axis showing the obstacle density. From the leftmost column, the first figure illustrates the
2D planning domain example (ρ = 0.25). The second and the third figures show the average return
and the average cumulative constraint cost of the CMDP methods, respectively. The fourth figure
displays all the methods used in the experiment. The shaded regions indicate the 80% confidence
intervals. Clearly the safe DP algorithms compute policies that are safe and have good performance.

a set of greedy action probabilities from (6) and constructing an updated policy πk+1 using pol-
icy distillation. Assuming both value and policy approximations have low error, SDPI resembles
several interesting properties of SPI, such as maintaining safety during training and monotonically
improving the policy. To improve learning stability, instead of the full policy update, one can further
consider a partial update πk+1 = (1−α)πk+απ′, where α ∈ (0, 1) is a mixing constant that controls
safety and exploration [2, 19]. Details of SDPI is summarized in Algorithm 5 in Appendix D.

5 Experiments
Motivated by the safety issues of RL in [22], we validate our safe RL algorithms using a stochastic
2D grid-world motion planning problem. In this domain, an agent (e.g., a robotic vehicle) starts
in a safe region and its objective is to travel to a given destination. At each time step, the agent
can move to any of its four neighboring states. Due to sensing and control noise, however, with
probability δ a move to a random neighboring state occurs. To account for fuel usage, the stage-wise
cost of each move until reaching the destination is 1, while the reward achieved for reaching the
destination is 1000. Thus, we would like the agent to reach the destination in the shortest possible
number of moves. In between the starting and destination points, there are number of obstacles
that the agent may pass through but should avoid for safety; each time the agent hits an obstacle it
incurs a constraint cost of 1. Thus, in the CMDP setting, the agent’s goal is to reach the destination
in the shortest possible number of moves, while hitting the obstacles at most d0 times or less. For
demonstration purposes, we choose a 25 × 25 grid-world (see Figure 1) with a total of 625 states.
We also have a density ratio ρ ∈ (0, 1) that sets the obstacle-to-terrain ratio. When ρ is close to 0,
the problem is obstacle-free, and if ρ is close to 1, then the problem becomes more challenging. In
the normal problem setting, we choose a density ρ = 0.3, an error probability δ = 0.05, a constraint
threshold d0 = 5, and a maximum horizon of 200 steps. The initial state is located in (24, 24) and
the goal is placed in (0, α), where α ∈ [0, 24] is a uniform random variable. To account for statistical
significance, the results of each experiment are averaged over 20 trials.

CMDP Planning: In this task, we have explicit knowledge of the reward function and transition
probability. The main goal is to compare our safe DP algorithms (SPI and SVI) with the following
common CMDP baseline methods: (i) Step-wise Surrogate, (ii) Super-martingale Surrogate, (iii)
Lagrangian, and (iv) Dual LP. Since the methods in (i) and (ii) are surrogate algorithms, we will
also evaluate these methods with both value iteration and policy iteration. To illustrate the level of
sub-optimality, we will also compare the returns and constraint costs of these methods with baselines
that are generated by maximizing return or minimizing constraint cost of two separate MDPs. The
main objective here is to illustrate that safe DP algorithms are less conservative than other surrogate
methods, are more numerically stable than the Lagrangian method, and are more computationally
efficient than the Dual LP method (see Appendix F), without using function approximations.

Figure 1 presents the results on returns and cumulative constraint costs of the aforementioned CMDP
methods over a spectrum of ρ values, ranging from 0 to 0.5. In each method, the initial policy is a
conservative baseline policy πB that minimizes the constraint cost. The empirical results indicate
that although the polices generated by the four surrogate algorithms are feasible, they do not have
significant policy improvement, i.e., return values are close to that of the initial baseline policy.
Over all density settings, the SPI algorithm consistently computes a solution that is feasible and has
good performance. The policy returned by SVI is always feasible and has near-optimal performance
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Figure 2: Results of various RL algorithms on the grid-world environment with obstacles, with x-
axis in thousands of episodes. We include runs using discrete observations (a one-hot encoding of
the agent’s position) and image observations (showing the entire RGB 2D map of the world). We
discover that the Lyapunov-based approaches can perform safe learning, despite the fact that the
model of the environment is not known and that deep function approximation is necessary.

when the obstacle density is low. However, due to numerical instability, its performance degrades as
ρ grows. Similarly, the Lagrangian methods return a near-optimal solution over most settings, but
due to numerical issues their solutions start to violate constraint as ρ grows.

Safe Reinforcement Learning: Here we present the results of RL algorithms on this safety task.
We evaluate their learning performance on two variants: one in which the observation is a one-hot
encoding of the agent’s location, and the other in which the observation is the 2D image represen-
tation of the grid map. In each of these, we evaluate performance when d0 = 1 and d0 = 5. We
compare our proposed safe RL algorithms, SDPI and SDQN, with their unconstrained counterparts,
DPI and DQN, as well as the Lagrangian approach to safe RL, in which the Lagrange multiplier is
optimized via extensive grid search. Details of the experimental setup are given in Appendix F. To
make the tasks more challenging, we initialize the RL algorithms with a randomized baseline policy.

Figure 2 shows the results of these methods across all task variants. We observe that SDPI and
SDQN can adequately solve the tasks and compute good return performance (similar to that of
DQN and DPI in some cases), while guaranteeing safety. Another interesting observation in the
SDQN and SDPI algorithms is that, once the algorithm finds a safe policy, then all updated policies
remain safe throughout training. On the contrary, the Lagrangian approach often achieves worse
rewards and is more apt to violate the constraints during training, 6, and the performance is very
sensitive to the initial conditions. Furthermore, in some cases (in experiment with d0 = 5 and with
discrete observations) the Lagrangian method cannot guarantee safety throughout training.

6 Conclusion
In this paper, we formulated the problem of safe RL as a CMDP and proposed a novel Lyapunov
approach to solve CMDPs. We also derived an effective LP-based method to generate Lyapunov
functions, such that the corresponding algorithm guarantees feasibility and optimality under certain
conditions. Leveraging these theoretical underpinnings, we showed how Lyapunov approaches can
be used to transform DP (and RL) algorithms into their safe counterparts that only require straight-
forward modifications in the algorithm implementations. We empirically validated our theoretical
findings in using the Lyapunov approach to guarantee safety and robust learning in RL. In general,
our work represents a step forward in deploying RL to real-world problems in which guaranteeing
safety is of paramount importance. Future research will focus on two directions. On the algorithmic
perspective, one major extension is to apply the Lyapunov approach to policy gradient algorithms
and compare its performance with CPO in continuous action problems. On the practical aspect,
future work includes evaluating the Lyapunov-based RL algorithms on several real-world testbeds.

6In Appendix F, we also report the results from the Lagrangian method in which the Lagrange multiplier is
learned using gradient ascent method [10] and we observe similar (or even worse) behaviors.
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A Safety Constraints in Planning Problems

To motivate the CMDP formulation studied in this paper, in this section we include two real-life
examples of modeling safety using the reachability constraint, and the constraint that limits the
agent’s visits to undesirable states.

A.1 Reachability Constraint

Reachability is a common concept in motion-planning and engineering applications, where for any
given policy π and initial state x0, the following the constraint function is considered:

P(∃t ∈ {0, 1, . . . ,T∗ − 1}, xt ∈ SH | x0, π).

Here SH represents the real subset of hazardous regions for the states and actions. Therefore, the
constraint cost represents the probability of reaching an unsafe region at any time before the state
reaches the terminal state. To further analyze this constraint function, one notices that

P(∃t ∈ {0, 1, . . . ,T∗ − 1}, xt ∈ SH | x0, π) =P

T∗−1⋃
t=0

t−1⋂
j=0

{xj 6∈ SH} ∩ {xt ∈ SH} | x0, π


=E

T∗−1∑
t=0

t−1∏
j=0

1{xj 6∈ SH} · 1{xt ∈ SH} | x0, π

 .
In this case, a policy π is deemed safe if the reachability probability to the unsafe region is bounded
by threshold d0 ∈ (0, 1), i.e.,

P(∃t ∈ {0, 1, . . . ,T∗ − 1}, xt ∈ SH | x0, π) ≤ d0. (7)

To transform the reachability constraint into a standard CMDP constraint, we define an additional
state s ∈ {0, 1} that keeps track of the reachability status at time t. Here st = 1 indicates the system
has never visited a hazardous region up till time t, and otherwise st = 0. Let s0 = 1, we can easily
see that by defining the following deterministic transition

st = st−1 · 1{xt 6∈ SH}, ∀t ≥ 1,

st has the following formulation: st =
∏t−1
j=0 1{xj 6∈ SH}.

Collectively, with the state augmentation x̂ = (x, s), one defines the augmented CMDP
(X̂ ,A, C, D̂, P̂ , x̂0, d0), where X̂ = X × {0, 1} is the augmented state space, d̂(x̂) = s · d(x) is
the augmented constraint cost, P̂ (x̂′|x̂, a) = P (x′|x, a) · 1{s′ = s · 1{x 6∈ SH}} is the augmented
transition probability, and x̂0 = (x0, 1) is the initial (augmented) state. By using this augmented
CMDP, immediately the reachability constraint is equivalent to E

[∑T∗−1
t=0 d̂(x̂t) | x0, π

]
≤ d0.

A.2 Constraint w.r.t. Undesirable Regions of States

Consider the notion of safety where one restricts the total visiting frequency of an agent to an un-
desirable region (of states). This notion of safety appears in applications such as system mainte-
nance, in which the system can only tolerate its state to visit (in expectation) a hazardous region,
namely SH , for a fixed number of times. Specifically, for given initial state x0, consider the fol-
lowing constraint that bounds the total frequency of visiting SH with a pre-defined threshold d0,
i.e., E

[∑T∗−1
t=0 d(xt) | x0, π

]
≤ d0, where d(xt) = 1{xt ∈ SH}. To model this notion of

safety using a CMDP, one can rewrite the above constraint using the constraint immediate cost
d(x) = 1{x ∈ SH}, and the constraint threshold d0. To study the connection between the reacha-
bility constraint, and the above constraint w.r.t. undesirable region, notice that

E

T∗−1∑
t=0

t−1∏
j=0

1{xj 6∈ SH} · 1{xt ∈ SH} | x0, π

 ≤ E

T∗−1∑
t=0

1{xt ∈ SH} | x0, π

 .
This clearly indicates that any policies which satisfies the constraint w.r.t. undesirable region, also
satisfies the reachability constraint.
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B Existing Approaches for Solving CMDPs

Before going to the main result, we first revisit several existing CMDP algorithms in the literature,
which later serve as the baselines for comparing with our safe CMDP algorithms. For the sake
of brevity, we will only provide an overview of these approaches here and defer their details to
Appendix B.1.

The Lagrangian Based Algorithm: The standard way of solving problem OPT is by ap-
plying the Lagrangian method. To start with, consider the following minimax problem:
minπ∈∆ maxλ≥0 Cπ(x0) + λ(Dπ(x0) − d0), where λ is the Lagrange multiplier w.r.t. the CMDP
constraint. According to Theorem 9.9 and Theorem 9.10 in [3], the optimal policy π∗ of problem
OPT can be calculated by solving the following Lagrangian function π∗ ∈ arg minπ∈∆ Cπ(x0) +
λ∗d0Dπ(x0), where λ∗d0 is the optimal Lagrange multiplier. Utilizing this result, one can compute
the saddle point pair (π∗, λ∗) using primal-dual iteration. Specifically, for a given λ ≥ 0, solve
the policy minimization problem using standard dynamic programming with λ−parametrized Bell-
man operator Tλ[V ](x) = minπ∈∆(x) Tπ,c+λd[V ](x) if x ∈ X ; For a given policy π, solve for the
following linear optimization problem: maxλ≥0 Cπ(x0) + λ(Dπ(x0) − d0). Based on Theorem
9.10 in [3], this procedure will asymptotically converge to the saddle point solution. However, this
algorithm presents several major challenges. (i) In general there is no known convergence rate guar-
antees, several studies [21] also showed that using primal-dual first-order iterative method to find
saddle point may run into numerical instability issues; (ii) Choosing a good initial estimate of the
Lagrange multiplier is not intuitive; (iii) Following the same arguments from [2], during iteration
the policy may be infeasible w.r.t. problem OPT , and feasibility is guaranteed after the algorithm
converges. This is hazardous in RL when one needs to execute the intermediate policy (which may
be unsafe) during training.

The Dual LP Based Algorithm: Another method of solving problem OPT is based on
computing its occupation measures w.r.t. the optimal policy. In transient MDPs, for
any given policy π and initial state x0, the state-action occupation measure is ρπ(x, a) =

E
[∑T∗−1

t=0 1{xt = x, at = a} | x0, π
]
, which characterizes the total visiting probability of state-

action pair (x, a) ∈ X ×A, induced by policy π and initial state x0. Utilizing this quantity, Theorem
9.13 in [3], has shown that problem OPT can be reformulated as a linear programming (LP) prob-
lem (see Equation (8) to (9) in Appendix B.1), whose decision variable is of dimension |X ′||A|, and
it has 2|X ′||A|+1 constraints. Let ρ∗ be the solution of this LP, the optimal Markov stationary policy
is given by π∗(a|x) = ρ∗(x, a)/

∑
a∈A ρ

∗(x, a). To solve this problem, one can apply the standard
algorithm such as interior point method, which is a strong polynomial time algorithm with com-
plexity O(|X ′|2|A|2(2|X ′||A| + 1)) [8]. While this is a straight-forward methodology, it can only
handle CMDPs with finite state and action spaces. Furthermore, this approach is computationally
expensive when the size of these spaces are large. To the best of our knowledge, it is also unclear
how to extend this approach to RL, when transition probability and immediate reward/constraint
reward functions are unknown.

Step-wise Constraint Surrogate Approach: This approach transforms the multi-stage CMDP
constraint into a sequence of step-wise constraints, where each step-wise constraint can be di-
rectly embedded into set of admissible actions in the Bellman operator. To start with, for any
state x ∈ X ′, consider the following feasible set of policies: FSW(d0, x) =

{
π ∈ ∆ :∑

a∈A
∑
x′∈X ′ π(a|x)P (x′|x, a)d(x′) ≤ d0

T

}
, where T is the upper-bound of the MDP stopping

time. Based on (10) in Appendix B.1, one deduces that every policy π in
⋂
x∈X ′ FSW(d0, x) is a fea-

sible policy w.r.t. problem OPT . Motivated by this observation, a solution policy can be solved by
minπ∈

⋂
x∈X′ FSW(d0,x) E

[∑T∗−1
t=0 c(xt, at) | x0, π

]
. One benefit of studying this surrogate problem

is that its solution satisfies the Bellman optimality condition w.r.t. the step-wise Bellman operator
as T SW[V ](x) = minπ∈FSW(d0,x)

∑
a π(a|x)

[
c(x, a) +

∑
x′∈X ′ P (x′|x, a)V (x′)

]
for any x ∈ X ′.

In particular T SW is a contraction operator, which implies that there exists a unique solution V ∗,SW

to fixed point equation T SW[V ](x) = V (x) for x ∈ X ′ such that V ∗,SW(x0) is a solution to the
surrogate problem. Therefore this problem can be solved by standard DP methods such as value it-
eration or policy iteration. Furthermore, based on the structure of FSW(d0, x), any surrogate policy
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is feasible w.r.t. problem OPT . However, the major drawback is that the step-wise constraint in
FSW(d0, x) can be much more stringent than the original safety constraint in problem OPT .

Super-martingale Constraint Surrogate Approach: This surrogate algorithm is originally pro-
posed by [14], where the CMDP constraint is reformulated as the surrogate value function
DSπ(x) = max

{
d0,Dπ(x)

}
at initial state x ∈ X ′. It has been shown that an arbitrary policy π is

a feasible policy of the CMDP if and only if DSπ(x0) = d0. Notice that DSπ is known as a super-
martingale surrogate, due to the inequalityDSπ(x) ≤ TDSπ [DSπ](x) with respect to the contraction
Bellman operator TDSπ [V ](x) =

∑
a∈A π(a|x) max

{
d0, d(x) +

∑
x′∈X ′ P (x′|x, a)V (x′)

}
of the

constraint value function. However, for arbitrary policy π, in general it is non-trivial to compute the
value functionDSπ(x), and instead one can easily compute its upper-bound value functionDSπ(x)
which is the solution of the fixed-point equation V (x) = TDSπ [V ](x), ∀x ∈ X ′, using standard
dynamic programming techniques. To better understand how this surrogate value function guar-
antees feasibility in problem OPT , at each state x ∈ X ′ consider the optimal value function of
the minimization problem DS(x) = minπ∈∆DSπ(x). Then whenever DS(x0) ≤ d0, the corre-
sponding solution policy π is a feasible policy of problem OPT , i.e., Dπ(x0) ≤ DSπ(x0) = d0.
Now define FDS(x) :=

{
π ∈ ∆ : TDSπ [DS](x) = DS(x)

}
as the set of refined feasible policies

induced by DS. If the condition DS(x0) ≤ d0 holds, then all the policies in FDS(x) are feasible
w.r.t. problem OPT . Utilizing this observation, a surrogate solution policy of problem OPT can
be found by computing the solution policy of the fixed-point equation TFDS [V ](x) = V (x), for
x ∈ X ′, where TFDS [V ](x) = minπ∈FDS(d0,x) Tπ,c[V ](x). Notice that TFDS is a contraction opera-
tor, this procedure can also be solved using standard DP methods. The major benefit of this 2-step
approach is that the computation of the feasibility set is decoupled from solving the optimization
problem. This allows us to apply approaches such as the lexicographical ordering method from
multi-objective stochastic optimal control methods [35] to solve the CMDP, for which the constraint
value function has a higher lexicographical order than the objective value function. However, since
the refined set of feasible policies is constructed prior to policy optimization, it might still be overly
conservative. Furthermore, even if there exists a non-trivial solution policy to the surrogate problem,
characterizing its sub-optimality performance bound remains a challenging task.

B.1 Details of Existing Solution Algorithms

In this section, we provide the details of the existing algorithms for solving CMDPs.

The Lagrangian Based Algorithm: The standard way of solving problem OPT is by applying
the Lagrangian method. To start with, consider the following minimax problem:

min
π∈∆

max
λ≥0

Cπ(x0) + λ(Dπ(x0)− d0),

where λ is the Lagrange multiplier of the CMDP constraint, and the Lagrangian function is given by

Lx0,d0(π, λ) = Cπ(x0) + λ(Dπ(x0)− d0) = E

T∗−1∑
t=0

c(xt, at) + λd(xt) | π, x0

− λd0.

A solution pair (π∗, λ∗) is considered as a saddle point of Lagrangian function Lx0,d0(π, λ) if the
following condition holds:

Lx0,d0(π∗, λ) ≤ Lx0,d0(π, λ) ≤ Lx0,d0(π, λ∗), ∀π, λ ≥ 0.

According to Theorem 9.10 in [3], suppose the interior set of feasible set of problem OPT is non-
empty, then there exists a solution pair (π∗, λ∗) to the minimax problem that is a saddle point of
Lagrangian function Lx0,d0(π, λ). Furthermore, Theorem 9.9 in [3] shows that strong duality holds:

min
π∈∆

max
λ≥0

Lx0,d0(π, λ) = max
λ≥0

min
π∈∆

Lx0,d0(π, λ).

This implies that the optimal policy π∗ ∈ ∆ can be calculated by solving the following Lagrangian
function π∗ ∈ arg minπ∈∆ Lx0,d0(π, λ∗), with optimal Lagrange multiplier λ∗.
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Utilizing the structure of the Lagrangian function Lx0,d0(π, λ), for any fixed Lagrange multiplier
λ ≥ 0, consider the λ−Bellman operator Tλ[V ], where

Tλ[V ](x) =

{
minπ∈∆(x) Tπ,c+λd[V ](x) if x ∈ X ′,

0 otherwise.

Since Tλ[V ] is a γ−contraction operator, by the Bellman principle of optimality, there is a unique
solution V ∗ to the fixed point equation Tλ[V ](x) = V (x) for x ∈ X , which can be solved by
dynamic programming algorithms, such as value iteration or policy iteration. Furthermore, the
λ−optimal policy π∗λ has the form of

π∗λ(·|x) ∈ arg min
π∈∆(x)

Tπ,c+λd[V
∗](x) if x ∈ X ′,

and π∗λ(·|x) is an arbitrary probability distribution function if x 6∈ X ′.

The Dual LP Based Algorithm: The other commonly-used method for solving problemOPT is
based on computing its occupation measures w.r.t. the optimal policy. In a transient MDP, for any
given policy π and initial state x0 ∈ X ′ the state-action occupation measure is defined as

ρπ,x0(x, a) = E

T∗−1∑
t=0

1{xt = x, at = a} | x0, π

 , ∀x ∈ X , ∀a ∈ A,
and the occupation measure at state x ∈ X is defined as ρπ,x0(x) =

∑
a∈A ρπ,x0(x, a). Clearly

these two occupation measures are related by the following property: ρπ,x0(x, a) = ρπ,x0(x) ·
π(a|x). Furthermore, using the fact that a occupation measure ρπ,x0

(x, a) is indeed the sum of
visiting distribution of the transient MDP induced by policy π, one clearly sees that it satisfies the
following set of constraints:

Q(x0)=

{
ρ : X ′ ×A → R :ρ(x, a) ≥ 0,∀x ∈ X ′, a ∈ A,∑

xp∈X ′,a∈A
ρ(xp, a)(1{xp = x}−P (x|xp, a))=1{x = x0}

}
.

Therefore, by Theorem 9.13 in [3], equivalently problemOPT can be solved by the LP optimization
problem with 2|X ′||A|+ 1 constraints:

min
ρ∈Q(x0)

∑
x∈X ′,a∈A

ρ(x, a)c(x, a) (8)

subject to
∑

x∈X ′,a∈A
ρ(x, a)d(x) ≤ d0, (9)

and equipped with the minimizer minimizer ρ∗ ∈ Q(x0), the (non-uniform) optimal Markovian
stationary policy is given by the following form:

π∗(a|x) =
ρ∗(x, a)∑
a∈A ρ

∗(x, a)
, ∀x ∈ X ′, ∀a ∈ A.

Step-wise Constraint Surrogate Approach: To start with, without loss of generality assume that
the agent is safe at the initial phase, i.e., d(x0) ≤ 0. For any state x ∈ X ′, consider the following
feasible set of policies:

FSW(d0, x) =

π ∈ ∆(x) :
∑
a∈A

∑
x′∈X ′

π(a|x)P (x′|x, a)d(x′) ≤ d0

T

 ,

where T is the uniform upper-bound of the random stopping time in the transient MDP. Immediately,
for any policy π ∈

⋂
x∈X ′ FSW(d0, x), one has the following inequality:

E

T∗−1∑
t=0

d(xt) | π, x0

 =d(x0) +
∑

x∈X ′,a∈A
ρπ,x0

(x, a)
∑
x′∈X ′

P (x′|x, a)d(x′)

≤E

T∗−1∑
t=0

d0

T
| π, x0

 ≤ d0,

(10)
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where ρπ,x0
(x, a) = E

[∑T∗−1
t=0 1{xt = x}|π, x0

]
is the state-action occupation measure with ini-

tial state x0 and policy π, which implies that the policy π is safe, i.e., Dπ(x0) ≤ d0. Equipped with
this property, we propose the following surrogate problem for problem OPT , whose solution (if
exists) is guaranteed to be safe:

Problem OPT SW: Given an initial state x0, a threshold d0, solve
minπ∈

⋂
x∈X′ FSW(d0,x) E

[∑T∗−1
t=0 c(xt, at) | x0, π

]
.

To solve problem OPT SW, for each state x ∈ X ′ define the step-wise Bellman operator as

T SW[V ](x) = min
π∈FSW(d0,x)

Tπ,c[V ](x).

Based on the standard arguments in [7], the Bellman operator T SW is a contraction operator, which
implies that there exists a unique solution V ∗,SW to the fixed-point equation T SW[V ](x) = V (x),
for any x ∈ X ′, such that V ∗,SW(x0) is a solution to problem OPT SW.

Super-martingale Constraint Surrogate Approach: The following surrogate algorithm is pro-
posed by [14]. Before going to the main algorithm, first consider the following surrogate constraint
value function w.r.t. policy π ∈ ∆ and state x ∈ X ′:

DSπ(x) = max
{
d0,Dπ(x)

}
= max

d0, d(x) +
∑
a∈A

π(a|x)
∑
x′∈X ′

P (x′|x, a)Dπ(x′)


≤
∑
a∈A

π(a|x)max

d0, d(x) +
∑
x′∈X ′

P (x′|x, a)Dπ(x′)

 .

The last inequality is due to the fact that the max operator is convex. Clearly, by definition one has

DSπ(x) ≥ Dπ(x) for each x ∈ X ′.

On the other hand, one also has the following property: DSπ(x0) = d0 if and only if the constraint
of problem OPT is satisfied, i.e., Dπ(x0) ≤ d0. Now, by utilizing the contraction operator

TDSπ [V ](x) =
∑
a∈A

π(a|x) max

d0, d(x) +
∑
x′∈X ′

P (x′|x, a)V (x′)

 ,

w.r.t. policy π, and by utilizing the definition of the constraint value functionDSπ , one immediately
has the chain of inequalities:

DSπ(x) ≤ TDSπ [Dπ](x) ≤ TDSπ [DSπ](x),

which implies that the value function {DSπ(x)}x∈X ′ is a super-martingale, i.e., DSπ(x) ≤
TDSπ [DSπ](x), for x ∈ X ′.
However in general the constraint value function of interest, i.e., DSπ , cannot be directly obtained
as the solution of fixed point equation. Thus in what follows, we will work with its approximation
DSπ(x), which is the fixed-point solution of

V (x) = TDSπ [V ](x), ∀x ∈ X ′.

By definition, the following properties always hold:

DSπ(x) ≥ d0, DSπ(x) ≥ DSπ(x) ≥ Dπ(x), for any x ∈ X ′.

To understand how this surrogate value function guarantees feasibility in problem OPT , consider
the optimal value function

DS(x) = min
π∈∆(x)

DSπ(x), ∀x ∈ X ′,
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which is also the unique solution w.r.t. the fixed-point equation minπ∈∆(x) T
DS
π [V ](x) = V (x).

Now suppose at state x0, the following condition holds: DS(x0) ≤ d0. Then there exists a policy π
that is is safe w.r.t. problem OPT , i.e., Dπ(x0) ≤ DSπ(x0) = d0.

Motivated by the above observation, we first check if the following condition holds:

DS(x0) ≤ d0.

If that is the case, define the set of feasible policies that is induced by the super-martingale DS as

FDS(x) :=
{
π ∈ ∆ : TDSπ [DS](x) =DS(x)

}
,

and solve the following problem, whose solution (if exists) is guaranteed to be safe.

Problem OPT DS: Assume DS(x0) ≤ d0. Then given an initial state x0 ∈ X ′,
and a threshold d0 ∈ R≥0, solve minπ∈

⋃
x∈X′ FDS(x) E

[∑T∗−1
t=0 c(xt, at) | x0, π

]
.

Similar to the step-wise approach, clearly the DS-induced Bellman operator

TFDS [V ](x) = min
π∈FDS(d0,x)

Tπ,c[V ](x)

is a contraction operator. This implies that there exists a unique solution V ∗FDS to the fixed-point
equation TFDS [V ](x) = V (x), for x ∈ X ′, such that V ∗FDS(x0) is a solution to problem OPT DS.
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C Proofs of the Technical Results in Section 3

C.1 Proof of Lemma 1

In the following part of the analysis we will use shorthand notation P ∗ to denote the transition
probability for x ∈ X ′ induced by the optimal policy, and PB to denote the transition probability
for x ∈ X ′ induced by the baseline policy. These matrices are sub-stochastic because we exclude
the terms in the recurrent states. This means that both spectral radii ρ(P ∗) and ρ(PB) are less than
1, and thus both (I − P ∗) and (I − PB) are invertible. By the Newmann series expansion, one can
also show that

(I − P ∗)−1 =


T∗−1∑
t=0

P(xt = x′|x0 = x, π∗)


x,x′∈X ′

,

and

(I − PB)−1 =


T∗−1∑
t=0

P(xt = x′|x0 = x, πB)


x,x′∈X ′

.

We also define ∆(a|x) = πB(a|x) − π∗(a|x) for any x ∈ X ′ and a ∈ A, and P∆ =
{
∑
a∈A P (x′|x, a)∆(a|x)}x,x′∈X ′ . Therefore, one can easily see that

(I − P ∗)(I − PB + P∆)−1 = I|X ′|×|X ′|.

Therefore, by the Woodbury Sherman Morrison identity, we have that

(I − P ∗)−1 = (I − PB)−1(I|X ′|×|X ′| + P∆(I − P ∗)−1). (11)

By multiplying the constraint cost function vector d(x) on both sides of the above equality, This
further implies that for each x ∈ X ′, one has

Dπ∗(x) = E

T∗−1∑
t=0

d(xt) + ε(xt) | πB , x

 = Lε(x), (12)

such that
Tπ∗ [Lε](x) = Lε(x), ∀x ∈ X ′.

Here, the auxiliary constraint cost is given by

ε(x) =
∑
a∈A

∆(a|x)
∑
x′∈X ′

P (x′|x, a)Dπ∗(x′). (13)

By construction, equation (11) immediately implies that Lε is a fixed point solution of Tπ∗ [V ](x) =
V (x) for x ∈ X ′. Furthermore, equation (13) further implies that the upper bound of the constraint
cost ε is given by:

−2TDmaxDTV (π∗||πB)(x) ≤ ε(x) ≤ 2TDmaxDTV (π∗||πB)(x), x ∈ X ′,

where T is the uniform upper-bound of the MDP stopping time.

Since π∗ is also a feasible policy of problem OPT , this further implies that Lε(x0) ≤ d0.

C.2 Proof of Theorem 1

First, under Assumption 1 the following inequality holds:

DTV (π∗||πB)(x) ≤ d0 −DπB (x0)

2T
2
Dmax

, ∀x ∈ X ′.

Recall that ε∗(x) = 2TDmaxDTV (π∗||πB)(x). The above expression implies that

E

T∗−1∑
t=0

ε∗(xt)|πB , x0

 ≤ 2T
2
Dmax max

x∈X ′
DTV (π∗||πB)(x) ≤ d0 −DπB (x0),
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which further implies

Lε∗(x0) = E

T∗−1∑
t=0

ε∗(xt)|πB , x0

+DπB (x0) ≤ d0,

i.e., the second property in (2) holds.

Second, recall the following equality from (12):

(I − P ∗)(I − PB)−1({d(x)}x∈X ′ + {ε(x)}x∈X ′) = {d(x)}x∈X ′

with the definition of the auxiliary constraint cost ε given by (13). We want to show that the first
condition in (2) holds. By adding the term (I−P ∗)(I−PB)−1ε∗ to both sides of the above equality,
it implies that:

(I − P ∗)(I − PB)−1(D + ε∗) = D + (I − P ∗)(I − PB)−1(ε∗ − ε),

where ε∗(x)− ε(x) ≥ 0, for x ∈ X ′. Therefore, the proof is completed if we can show that for any
x ∈ X ′:

{(I − P ∗)(I − PB)−1(ε∗ − ε)}(x) ≥ 0. (14)

Now consider the following inequalities derived from Assumption 1:

max
x

DTV (π∗||πB)(x) ≤ 1

2T

TDmax −D
TDmax +D

≤ 1

2T

TDmax −D
∗

TDmax +D∗
,

the last inequality is due to the fact thatD ≥ D∗, whereD∗ = maxxDπ∗(x) is the constraint upper-
bound w.r.t. optimal policy π∗. Multiplying the ratio DTV (π∗||πB)(x)/maxxDTV (π∗||πB)(x) ≥
0 on both sides of the above inequality, for each x ∈ X ′ one obtains the following inequality:

DTV (π∗||πB)(x) ≤ (TDmax −D
∗
)DTV (π∗||πB)(x)

2T(TDmax +D∗) maxxDTV (π∗||πB)(x)

≤ ε∗(x)− ε(x)

2T maxx{ε∗(x)− ε(x)}
,

the last inequality holds due to the fact that for any x ∈ X ′,

2(TDmax −D
∗
)DTV (π∗||πB)(x) ≤ ε∗(x)− ε(x) ≤ 2(TDmax +D∗)DTV (π∗||πB)(x).

Multiplying 2T maxx{ε∗(x)− ε(x)} on both sides, it further implies that for each x ∈ X ′, one has
the following inequality:

(ε∗(x)− ε(x))− 2T max
x′
{ε∗(x′)− ε(x′)}DTV (π∗||πB)(x) ≥ 0.

Now recall that P ∗ = PB − P∆, where ∆ is equal to the matrix that characterizes the difference
between the baseline and the optimal policy for each state in X ′ and action in A, i.e., ∆(a|x) =
πB(a|x) − π∗(a|x), ∀x ∈ X ′, ∀a ∈ A and P∆ = {

∑
a∈A P (x′|x, a)∆(a|x)}x,x′∈X ′ , the above

condition guarantees that

{(I − PB + P∆)(I − PB)−1(ε∗ − ε)}(x) ≥ 0, ∀x ∈ X ′.

This finally comes to the conclusion that under Condition 1, the inequality in (14) holds, which
further implies that

(I − P ∗)(I − PB)−1(d(x) + ε∗(x)) ≥ d(x), ∀x ∈ X ,

i.e., the first property in (2) holds with Lε∗(x) = E
[∑T∗−1

t=0 d(x) + ε∗(x)|πB , x
]
.

By combining the above results, one shows that Lε∗ is a Lyapunov function that satisfies the prop-
erties in (2) and (3), which concludes the proof.
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C.3 Properties of Safe Bellman Operator

Proposition 3. The safe Bellman operator has the following properties.

• Contraction: There exists a vector with positive components, i.e., ρ : X → R≥0, and a
discounting factor 0 < γ < 1 such that

‖T [V ]− T [W ]‖ρ ≤ γ‖V −W‖ρ,

where the weighted norm is defined as ‖V ‖ρ = maxx∈X
V (x)
ρ(x) .

• Monotonicity: For any value functions V, W : X → R such that V (x) ≤ W (x), one has
the following inequality: T [V ](x) ≤ T [W ](x), for any state x ∈ X .

Proof. First, we show the monotonicity property. For the case of x ∈ X \ X ′, the property trivially
holds. For the case of x ∈ X ′, given value functions W, V : X ′ → R such that V (x) ≤ W (x) for
any x ∈ X ′, by the definition of Bellman operator T , one can show that for any x ∈ X ′ and any
a ∈ A,

c(x, a) +
∑
x′∈X ′

P (x′|x, a)V (x′) ≤ c(x, a) +
∑
x′∈X ′

P (x′|x, a)W (x′).

Therefore, by multiplying π(a|x) on both sides, summing the above expression over a ∈ A, and
taking the minimum of π over the feasible set FLε∗ (x), one can show that T [V ](x) ≤ T [W ](x) for
any x ∈ X ′.
Second we show that the contraction property holds. For the case of x ∈ X \ X ′, the property
trivially holds. For the case of x ∈ X ′, following the construction in Proposition 3.3.1 of [7],
consider a stochastic shortest path problem where the transition probabilities and the constraint cost
function are the same as the one in problem OPT , but the cost are all equal to −1. Then, there
exists a fixed point value function V̂ , such that

V̂ (x) = −1 + min
π∈FLε∗ (x)

∑
a

π(a|x)
∑
x′∈X ′

P (x′|x, a)V̂ (x′), ∀x ∈ X ′,

such that the following inequality holds for given feasible Markovian policy π′:

V̂ (x) ≤ −1 +
∑
a

π′(a|x)
∑
x′∈X ′

P (x′|x, a)V̂ (x′), ∀x ∈ X ′.

Notice that V̂ (x) ≤ −1 for all x ∈ X ′. By defining ρ(x) = −V̂ (x), and by constructing γ =
maxx∈X ′(ρ(x)− 1)/ρ(x), one immediately has 0 < γ < 1, and∑

a

π′(a|x)
∑
x′∈X ′

P (x′|x, a)ρ(x′) ≤ ρ(x)− 1 ≤ γρ(x), ∀x ∈ X ′.

Then by using Proposition 1.5.2 of [7], one can show that T is a contraction operator.

C.4 Proof of Theorem 2

Let VOPT (x0) be the optimal value function of problemOPT , and let V ∗ be a fixed point solution:
V (x) = T [V ](x), for any x ∈ X . For the case when x0 ∈ X \ X ′, the following result trivially
holds: VOPT (x0) = T [VOPT ](x0) = V ∗(x0) = 0. Below, we show the equality for the case of
x0 ∈ X ′.
First, we want to show that VOPT (x0) ≤ V ∗(x0). Consider the greedy policy π∗ constructed from
the fixed point equation. Immediately, one has that π∗(·|x) ∈ FLε∗ (x). This implies

Tπ∗,d[Lε∗ ](x)≤Lε∗(x), ∀x ∈ X ′. (15)

Thus by recursively applying Tπ∗,d on both sides of the above inequality, the contraction property
of Bellman operator Tπ∗,d implies that one has the following expression:

lim
n→∞

Tnπ∗,d[Lε∗ ](x0) = E

T∗−1∑
t=0

d(xt) + Lε∗(xT∗) | x0, π
∗

 ≤ Lε∗(x0) ≤ d0.
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Since the state enters the terminal set at time t = T∗, we have that Lε∗(xT∗) = 0 almost surely.
Then the above inequality implies E

[∑T∗−1
t=0 d(xt) | x0, π

∗
]
≤ d0, which further shows that π∗ is

a feasible policy to problem OPT . On the other hand, recall that V ∗(x) is a fixed point solution to
V (x) = T [V ](x), for any x ∈ X ′. Then for any bounded initial value function V0, the contraction
property of Bellman operator Tπ∗,c implies that

V ∗(x) = lim
n→∞

Tnπ∗,c[V0](x) = lim
n→∞

E

n−1∑
t=0

c(xt, at) + V0(xn) | x0 = x, π∗

 ,
for which the transient assumption of stopping MDPs further implies that

V ∗(x) = E

T∗−1∑
t=0

c(xt, at) | x0 = x, π∗

 .
Since π∗ is a feasible solution to problem OPT . This further implies that VOPT (x0) ≤ V ∗(x0).

Second, we want to show that VOPT (x0) ≥ V ∗(x0). Consider the optimal policy π∗ of problem
OPT that is used to construct Lyapunov function Lε∗ . Since the Lyapunov function satisfies the
following Bellman inequality:

Tπ∗,d[Lε∗ ](x) ≤ Lε∗(x), ∀x ∈ X ′,
it implies that the optimal policy π∗ is a feasible solution to the optimization problem in Bellman
operator T [V ∗](x). Note that V ∗ is a fixed point solution to equation: V ∗(x) = T [V ∗](x), for any
x ∈ X ′. Immediately the above result yields the following inequality:

V ∗(x) = Tπ∗,c[V
∗](x) ≤ Tπ∗,c[V ∗](x), ∀x ∈ X ′,

the first equality holds because π∗(·|x) is the minimizer of the optimization problem in T [V ∗](x),
x ∈ X ′. By recursively applying Bellman operator Tπ∗,c to this inequality, one has the following
result:

V ∗(x) ≤ lim
n→∞

Tnπ∗,c[V
∗](x) = Cπ∗(x) = VOPT (x), ∀x ∈ X ′.

One thus concludes that VOPT (x0) ≥ V ∗(x0).

Combining the above analysis, we prove the claim of VOPT (x0) = V ∗(x0), and the greedy policy
of the fixed-point equation, i.e., π∗, is an optimal policy to problem OPT .

C.5 Proof of Proposition 1

For the derivations of consistent feasibility and policy improvement, without loss of generality we
only consider the case of k = 0.

To show the property of consistent feasibility, consider an arbitrary feasible policy π0 of problem
OPT . By definition, one hasDπ0

(x0) ≤ d0, and the value functionDπ0
has the following property:

∑
a

π0(a|x)

d(x) +
∑
x′

P (x′|x, a)Dπ0(x′)

 = Dπ0(x), ∀x ∈ X ′.

Immediately, since Dπ0
satisfies the constraint in (5), one can treat it as a Lyapunov function,

this shows that the set of Lyapunov functions Lπ0(x0, d0) is non-empty. Therefore, there exists
a bounded Lyapunov function {Lε0(x)}x∈X as the solution of the optimization problem in Step 0.
Now consider the policy optimization problem in Step 1. Based on the construction of {Lε0(x)}x∈X ,
the current policy π0 is a feasible solution to this problem, therefore the feasibility set is non-empty.
Furthermore, by recursively applying the inequality constraint on the updated policy π1 for T∗ − 1
times, one has the following inequality:

E

T∗−1∑
t=0

d(xt) + Lε0(xT∗)|x0, π1

 ≤ Lε0(x0) ≤ d0.

This shows that π1 is a feasible policy to problem OPT .
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To show the property of policy improvement, consider the policy optimization in Step 1. Notice that
the current policy π0 is a feasible solution of this problem (with Lyapunov function L0), and the
updated policy π1 is a minimizer of this problem. Then, one immediately has the following chain of
inequalities:

Tπ1,c[V0](x) =
∑
a∈A

π1(a|x)

c(x, a)+
∑
x′∈X ′

P (x′|x, a)V0(x′)


≤
∑
a∈A

π0(a|x)

c(x, a)+
∑
x′∈X ′

P (x′|x, a)V0(x′)

 = V0(x), ∀x ∈ X ′,

where the last equality is due to the fact that V0(x) = Cπ0
(x), for any x ∈ X . By the contraction

property of Bellman operator Tπ1
, the above condition further implies

Cπ1
(x) = lim

n→∞
Tnπ1,c[V0](x) ≤ V0(x) = Cπ0

(x), ∀x ∈ X ′,

which proves the claim about policy improvement.

To show the property of asymptotic convergence, notice that the value function sequence
{Cπk(·)}k≥0 is uniformly monotonic, and each element is uniformly lower bounded by the
unique solution of fixed point equation: V (x) = mina∈A c(x, a) +

∑
x′∈X ′ P (x′|x, a)V (x′),

∀x ∈ X ′. Therefore, this sequence of value function converges (point-wise) as soon as in the
limit the policy improvement stops. Whenever this happens, i.e., there exists K ≥ 0 such that
maxx∈X ′ |CπK+1

(x) − CπK (x)| ≤ ε for any ε > 0, then this value function is the fixed point of
minπ∈FLK (x) Tπ,c[V ](x) = V (x), ∀x ∈ X ′, whose solution policy is unique (due to the strict
convexity of the objective function in the policy optimization problem after adding a convex regu-
larizer). Furthermore, due to the strict concavity of the objective function in problem in (5) (after
adding a concave regularizer), the solution pair of this problem is unique, which means the update
of {(Lεk , εk)} stops at step K. Together, this also means that policy update {πk} converges.

C.6 Analysis on Performance Improvement in Safe Policy Iteration

Similar to the analysis in [2], the following lemma provides a bound in policy improvement.
Lemma 2. For any policies π′ and π, define the following error function:

Λ(π, π′) =E


T∗−1∑
t=0

(
π′(at|xt)
π(at|xt)

− 1

)(
C(xt, at) + V π(xt+1)− V π(xt)

)︸ ︷︷ ︸
δπ(xt,at,xt+1)

| x0, π


=E

T∗−1∑
t=0

Ea∼π′(·|x)[Q
π(xt, a)]− V π(xt) | x0, π


and ∆π′ = maxx∈X ′ |Ea∼π′(·|x)[Q

π(x, a)] − V π(x)|. Then, the following error bound on the
performance difference between π and π′ holds:

Λ(π, π′)− Eπ,π
′

TV ≤ Cπ′(x0)− Cπ(x0) ≤ Λ(π, π′) + Eπ,π
′

TV .

where Eπ,π
′

TV = 2∆π′ ·
(
maxx0∈X ′ E[T∗|x0, π

′]
)
· E
[∑T∗−1

t=0 DTV (π′||π)(xt) | x0, π
]
.

Proof. First, it is clear from the property of telescopic sum that

Cπ′(x0)− Cπ(x0) = E

T∗−1∑
t=0

δπ
′
(xt, at, xt+1) | x0, π

′

− E

T∗−1∑
t=0

δπ(xt, at, xt+1) | x0, π


≤E

T∗−1∑
t=0

δπ
′
(xt, at, xt+1)− δπ(xt, at, xt+1) | x0, π

+ ∆π′ ·
∑
y∈X ′

∣∣∣∣∣∣
T∗−1∑
t=0

P(xt = y|x0, π
′)−

T∗−1∑
t=0

P(xt = y|x0, π)

∣∣∣∣∣∣ ,
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where the inequality is based on the Holder inequality E[|xy|] ≤
(
E[|x|p]

)1/p (
E[|y|q]

)1/q
with

p = 1 and q =∞.

Immediately, the first part of the above expression is re-written as:
E
[∑T∗−1

t=0 δπ
′
(xt, at, xt+1)− δπ(xt, at, xt+1) | x0, π

]
= Λ(π, π′). Recall that shorthand

notation Pπ to denote the transition probability for x ∈ X ′ induced by the policy π. For the second
part of the above expression, notice that the following chain of inequalities holds:

∑
y∈X ′

∣∣∣∣∣∣
T∗−1∑
t=0

P(xt = y|x0, π)−
T∗−1∑
t=0

P(xt = y|x0, π
′)

∣∣∣∣∣∣
=
∑
y∈X ′

∣∣∣∣1(x0)>
(

(I − Pπ)−1 − (I − Pπ′)−1
)
1(y)

∣∣∣∣
=
∑
y∈X ′

∣∣∣1(x0)>(I − Pπ)−1(Pπ − Pπ′)(I − Pπ′)−11(y)
∣∣∣

≤‖(1(x0)>(I − Pπ)−1(Pπ − Pπ′)‖1 ·
∑
y∈X ′

max
x0∈X ′

1(x0)(I − Pπ′)−11(y)

≤
∑
y∈X ′

T · 1(y) · E

T∗−1∑
t=0

∑
x′∈X ′

P (x′|xt, at)
∑
a∈A

∣∣π(at|xt)− π′(at|xt)
∣∣ | x0, π


=2T · E

T∗−1∑
t=0

DTV (π′||π)(xt) | x0, π

 ,
the first, is based on the Holder inequality with p = 1 and q = ∞ and on the fact that all entries in
(I − Pπ′)−1 is non-negative, the second inequality is due to the fact that starting at any initial state
x0, it almost takes T steps to the set of recurrent states X \X ′. In other words, one has the following
inequality:

1(x0)(I − Pπ′)−11(y) = E

T∗−1∑
t=0

1{xt = y} | x0, π
′

 ≤ T, ∀x0, y ∈ X ′.

Therefore, combining with these properties the proof of the above error bound is completed.

Using this result, the sub-optimality performance bound of policy πk∗ from SPI is TCmax −(∑k∗−1
k=0 max{0,Λπk,πk+1 − Eπk,πk+1

TV }+ Cπ0
(x0)

)
.

C.7 Proof of Proposition 2

For the derivations of consistent feasibility and monotonic improvement on value estimation, with-
out loss of generality we only consider the case of t = 0.

To show the property of consistent feasibility, notice that with the definitions of the initial
Q−function Q0, the initial Lyapunov function Lε0 w.r.t. the initial auxiliary cost ε0, the correspond-
ing induced policy π0 is feasible to problem OPT , i.e., Dπ0(x0) ≤ d0. Consider the optimization
problem in Step 1. Immediately, since Dπ0 satisfies the constraint in (5), one can treat it as a Lya-
punov function, and the set of Lyapunov functions Lπ0

(x0, d0) is non-empty. Therefore, there exists
a bounded Lyapunov function {Lε1(x)}x∈X and auxiliary cost {ε1(x)}x∈X as the solution of this
optimization problem. Now consider the policy update in Step 0. Since π1(·|·) belongs to the set of
feasible policies FLε1 (·), by recursively applying the inequality constraint on the updated policy π1

for T∗ − 1 times, one has the following inequality:

E

T∗−1∑
t=0

d(xt) + Lε1(xT∗)|x0, π1

 ≤ Lε1(x0) ≤ d0.
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This shows that π1 is a feasible policy to problem OPT .

To show the asymptotic convergence property, for every initial state x0 and any time step K, with
the policy π = {π0, . . . , πK−1} generated by the value iteration procedure, the cumulative cost can
be broken down into the following two portions, which consists of the cost over the first K stages
and the remaining cost. Specifically,

V (x0) = E

T∗−1∑
t=0

c(xt, at) | x0, π

 = E

K−1∑
t=0

c(xt, at) | x0, π

+ E

T∗−1∑
t=K

c(xt, at) | x0, π

 ,
where the second term is bounded E[T∗ −K|π, x0]Cmax, which is bounded by

∑∞
t=K P(xt ∈ X ′ |

x0, π)·Cmax > 0. Since the value function V0(x) = minπ∈FLε0 (x) π(·|x)>Q0(x, ·) is also bounded,
one can further show the following inequality:

−P(xK ∈ X ′ | x0, π) · ‖V0‖∞ ≤TK−1[· · · [T0[V0]] · · · ](x0)− E

K−1∑
t=0

c(xt, at) | x0, π


≤P(xK ∈ X ′ | x0, π) · ‖V0‖∞.

Recall from our problem setting that all policies are proper (see Assumption 3.1.1 and Assumption
3.1.2 in [7]). Then by the property of a transient MDP (see Definition 7.1 in [3]), the sum of
probabilities of the state trajectory after step K that is in the transient set X ′, i.e.,

∑∞
t=K P(xt ∈

X ′ | x0, π), is bounded by Mπ · ε. Therefore, as K goes to∞, ε approaches 0. Using the result that∑∞
t=K P(xt ∈ X ′ | x0, π) vanishes as K goes to∞, one concludes that

lim
K→∞

TK−1[· · · [T0[V0]] · · · ](x0) = V (x0), ∀x0 ∈ X ′,

which completes the proof of this property.
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D Pseudo-code of Safe Reinforcement Learning Algorithms

Algorithm 3 Policy Distillation
Input: Policy parameterization πφ with parameter φ; A batch of state trajectories
{x0,m, . . . , xT−1,m}Mm=1 generated by following the baseline policy πB
Compute the action probabilities {π′(·|x0,m), . . . , π′(·|xT−1,m)}Mm=1 by solving problem in (16).
Compute the policy parameter by supervised learning:

φ∗ ∈ arg min
φ

1

m

M∑
m=1

T−1∑
t=0

DJSD(πφ(·|xt,m) ‖ π′(·|xt,m))

where DJSD(P ||Q) = 1
2D(P ‖ 1

2 (P + Q)) + 1
2D(Q ‖ 1

2 (P + Q)) is the Jensen-Shannon
divergence
Return Distilled policy πφ∗

Algorithm 4 Safe DQN
Input: Initial prioritized replay buffer M = {∅}; Initial importance weights w0 = 1, wD,0 = 1
wT,0 = 1; Mini-batch size |B|; Network parameters θ−, θ−D, θ−T ; Initial feasible policy π0;
for k ∈ {0, 1, . . . , } do

for t = 0 to T− 1 do
Sample action at ∼ πk(·|xt), execute at and observe next state xt+1, and costs (ct, dt)
Add experiences to replay buffer, i.e., M ← (xt, at, ct, dt, xt+1, w0, wD,0, wT,0) ∪M
From the buffer M , sample a mini-batch B = {(xj , aj , cj , dj , x′j , wj , wD,j , wT,j)}

|B|
j=1 and

set the targets yD,j , yT,j , and yj
Update the θ parameters as follows:

θD ← θ−D − κj · wD,j · (yD,j − Q̂D(xj , aj ; θ
−
D)) · ∇θQ̂D(xj , aj ; θ)|θ=θ−

D
,

θT ← θ−T − κj · wT,j · (yT,j − Q̂T (xj , aj ; θ
−
T )) · ∇θQ̂T (xj , aj ; θ)|θ=θ−

T
,

θ ← θ− − ηj · wj · (yj − Q̂(xj , aj ; θ
−)) · ∇θQ̂(xj , aj ; θ)|θ=θ−

where the target values are respectively yD,j = d(xj) + πk(·|x′j)>Q̂D(x′j , ·; θD), yT,j =

1{xj ∈ X ′} + πk(·|x′j)>Q̂T (x′j , ·; θT ), and yj = c(xj , aj) + π′(·|x′j)>Q̂(x′j , ·; θ), and
π′(·|x′j) is the greedy action probability w.r.t. x′j , which is a solution to (6)
Prioritized Sweep: Update importance weights wj , wD,j , and wT,j of the samples in mini-
batch B, based on TD errors |yj − Q̂(xj , aj ; θ)|, |yD,j − Q̂D(xj , aj ; θD)| and |yT,j −
Q̂T (xj , aj ; θT )|
Distillation: Update the policy to πk+1 using Algorithm 3 w.r.t. data {x′0,j , . . . , x′T−1,j

}|B|j=1

and {π′(·|x′0,j), . . . , π′(·|x′T−1,j)
}|B|j=1

end for
Double Q−learning: Update θ− = θ, θ−D = θD and θ−T = θT after c iterations

end for
Return
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Algorithm 5 Safe DPI
Input: Initial prioritized replay buffer M = {∅}; Initial importance weights w0 = 1, wD,0 = 1
wT,0 = 1; Mini-batch size |B|; Initial feasible policy π0;
for k ∈ {0, 1, . . . , } do

Sample action at ∼ πk(·|xt), execute at and observe next state xt+1, and costs (ct, dt)
Add experiences to replay buffer, i.e., M ← (xt, at, ct, dt, xt+1, w0, wD,0, wT,0) ∪M
From the buffer M , sample a mini-batch B = {(xj , aj , cj , dj , x′j , wj , wD,j , wT,j)}

|B|
j=1 and set

the targets yD,j , yT,j , and yj
Update the θ parameters as follows:

θ∗πk ∈ arg min
θ

∑
t,j

(
ct,j − Q̂(xt,j , at,j ; θ) + πk(·|xt+1,j)

>Q̂(xt+1,j , ·; θ)
)2
,

θ∗D,πk ∈ arg min
θD

∑
t,j

(
dt,j − Q̂D(xt,j , at,j ; θD) + πk(·|xt+1,j)

>Q̂D(xt+1,j , ·; θD)
)2
,

θ∗T,πk ∈ argmin
θT

∑
t,j

(
1{xt,j∈X ′}−QT (xt,j, at,j ; θT ) + πk(·|xt+1,j)

>QT (xt+1,j , ·; θT )
)2

and construct the Q−functions Q̂(x, a; θ∗πk) and Q̂L(x, a; θ∗D,πk , θ
∗
T,πk

) = Q̂D(x, a; θD) + ε̃′ ·
Q̂T (x, a; θT )

Calculate greedy action probabilities {π′(·|x0,j), . . . , π
′(·|xT−1,j)}

|B|
j=1 by solving problem (6),

with respect to batch of states drawn from the replay buffer {x0,j , . . . , xT−1,j}
|B|
j=1

Distillation: Update the policy to πk+1 using Algorithm 3 w.r.t. data {x0,j , . . . , xT−1,j}
|B|
j=1

and {π′(·|x0,j), . . . , π
′(·|xT−1,j)}

|B|
j=1

end for
Return Final policy πk∗

E Practical Implementations

There are several techniques that improve training and scalability of the safe RL algorithms. To
improve stability in training Q networks, one may apply double Q−learning [42] to separate the
target values and the value function parameters and to slowly update the target Q values at every
predetermined iterations. On the other hand, to incentivize learning at state-action pairs that have
high temporal difference (TD) errors, one can use a prioritized sweep in replay buffers [37] to add
an importance weight to relevant experience. To extend the safe RL algorithms to handle continu-
ous actions, one may adopt the normalized advantage functions (NAFs) [17] parameterization for
Q−functions. Finally, instead of exactly solving the LP problem for policy optimization in (6), one
may approximate this solution by solving its entropy regularized counterpart [29]. This approxima-
tion has an elegant closed-form solution that is parameterized by a Lagrange multiplier, which can
be effectively computed by binary search methods (see Appendix E.1 and Appendix E.2 for details).

E.1 Case 1: Discrete Action Space

In this case, problem (6) is cast as finite dimensional linear programming (LP). In order to effectively
approximate the solution policy especially when the action space becomes large, instead of exactly
solving this inner optimization problem, one considers its Shannon entropy-regularized variant:

min
π∈∆

π(·|x)>(Q(x, ·) + τ log π(·|x)) (16)

s.t. (π(·|x)− πB(·|x))>QL(x, ·) ≤ ε̃′(x)

where τ > 0 is the regularization constant. When τ → 0, then π∗τ converges to the original solution
policy π∗.

We will hereby illustrate how to effectively solve π∗τ for any given τ > 0 without explicitly solving
the LP. Consider the Lagrangian problem for entropy-regularized optimization:

min
π∈∆

max
λ≥0

Γx(π, λ),
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where Γx(π, λ) = π(·|x)>(Q(x,·) + λQL(x,·) + τ log π(·|x)) − λ(πB(·|x)>QL(x, ·) + ε̃′(x)) is
the Lagrangian function. Notice that the set of stationary Markovian policies ∆ is a convex set, and
the objective function is a convex function in π and concave in λ. By strong duality, there exists a
saddle-point to the Lagrangian problem where solution policy is equal to π∗τ , and it can be solved by
the maximin problem:

max
λ≥0

min
π∈∆

Γx(π, λ).

For the inner minimization problem, it has been shown that the λ−solution policy has the following
closed form:

π∗τ,λ(·|x) ∝ exp

(
−Q(x,·) + λQL(x,·)

τ

)
.

Equipped with this formulation, we now solve the problem for the optimal Lagrange multiplier
λ∗(x) at state x ∈ X ′:

max
λ≥0
−τ · logsumexp

(
−Q(x, ·) + λQL(x, ·)

τ

)
− λ(πB(·|x)>QL(x, ·) + ε̃′(x)),

where logsumexp(y) = log
∑
a exp(ya) is a strictly convex function in y, and the objective function

is a concave function of λ. Notice that this problem has a unique optimal Lagrange multiplier that
is the solution of the following KKT condition:

πB(·|x)>QL(x, ·) + ε̃′(x) +

∑
aQL(x, a) exp

(
−Q(x,a)+λQL(x,a)

τ

)
∑
a exp

(
−Q(x,a)+λQL(x,a)

τ

) = 0.

Using the parameterization z = exp(−λ), this condition can be written as the following polynomial
equation in z:∑

a

(
QL(x, a) + πB(·|x)>QL(x, ·) + ε̃′(x)

)
· exp

(
−Q(x, a)

τ

)
· z

QL(x,a)

τ = 0. (17)

Therefore, the solution 0 ≤ z∗(x) ≤ 1 can be solved by computing the root solution of the above
polynomial and the optimal Lagrange multiplier is given by λ∗(x) = − log(z∗(x)) ≥ 0.

Combining the above results, the optimal policy of the entropy-regularized problem is therefore
given by

π∗τ (·|x) ∝ exp

(
−Q(x,·) + λ∗(x) ·QL(x,·)

τ

)
. (18)

E.2 Case 2: Continuous Action Space

In order to effectively solve the inner optimization problem in (6) when the action space is contin-
uous, on top of the using the entropy-regularized inner optimization problem in (16), we adopt the
idea from the normalized advantage functions (NAF) approach for function approximation, where
we express the Q−function and the state-action Lyapunov function with their second order Taylor-
series expansions at an arbitrary action µ(x) as follows:

Q(x, a) ≈Q(x, µ(x)) +∇aQ(x, a)|a=µ(x) · (a− µ(x))

+
1

2
(a− µ(x))>∇2

aQ(x, a)|a=µ(x)(a− µ(x)) + o(‖a− µ(x)‖3),

QL(x, a) ≈QL(x, µ(x)) +∇aQL(x, a)|a=µ(x) · (a− µ(x))

+
1

2
(a− µ(x))>∇2

aQL(x, a)|a=µ(x)(a− µ(x)) + o(‖a− µ(x)‖3).

While these representations are more restrictive than the general function approximations, they pro-
vide a receipe to determine the policy, which is a minimizer of problem (6) analytically for the
updates in the safe AVI and safe DQN algorithms. In particular, using the above parameterizations,
notice that

logsumexp
(
−Q(x,·) + λ∗(x) ·QL(x,·)

τ

)
=− 1

2
log
∣∣Aλ∗(x)

∣∣− 1

2
ψλ∗(x)>A−1

λ∗ (x)ψλ∗(x) +Kλ∗(x) +
n

2
log(2π),
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where n is the dimension of actions,

Aλ∗(x) =
1

τ

(
∇2
aQ(x, a)|a=µ(x) + λ∗(x)∇2

aQL(x, a)|a=µ(x)

)
,

ψλ∗(x) =− 1

τ

(
∇aQ(x, a)|a=µ(x) + λ∗(x)∇aQL(x, a)|a=µ(x)

)
−Aλ∗(x)µ(x),

and

Kλ∗(x) =− Q(x, µ(x)) + λ∗(x)QL(x, µ(x))

τ

+

(
1

τ

(
∇aQ(x, a)|a=µ(x) + λ∗(x)∇aQL(x, a)|a=µ(x)

)>
− 1

2
µ(x)>Aλ∗(x)

)
µ(x)

is a normalizing constant (that is independent of a). Therefore, according to the closed-form solution
of the policy in (18), the optimal policy of problem (16) follows a Gaussian distribution, which is
given by

π∗τ (·|x) ∼ N (Aλ∗(x)−1ψλ∗(x), Aλ∗(x)−1).

In order to completely characterize the solution policy, it is still required to compute the Lagrange
multiplier λ∗(x), which is a polynomial root solution of (17). Since the action space is continuous,
one can only approximate the integral (over actions) in this expression with numerical integration
techniques, such as Gaussian quadrature, Simpson’s method, or Trapezoidal rule etc. (Notice that if
πB is a Gaussian policy, there is a tractable closed form expression for πB(·|x)>QL(x, ·).)
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F Experimental Setup

In the CMDP planning experiment, in order to demonstrate the numerical efficiency of the safe DP
algorithms, we run a larger example that has a grid size of 60 × 60. To compute the LP policy
optimization step, we use the open-source SciPy linprog solver. In terms of the computation time,
on average every policy optimization iteration (over all states) in SPI and SVI takes approximately
25.0 seconds, and for this problem SVI takes around 200 iterations to converge, while SPI takes 60
iterations. On the other hand the Dual LP method computes an optimal solution, its computation
time is over 9500 seconds.

In the RL experiments, we use the Adam optimizer with learning rate 0.0001. At each iteration, we
collect an episode of experience (100 steps) and perform 10 training steps on batches of size 128
sampled uniformly from the replay buffer. We update the target Q networks every 10 iterations and
the baseline policy every 50 iterations.

For discrete observations, we use a feed-forward neural network with hidden layers of size 16, 64,
32, and relu activations.

For image observations, we use a convolutional neural network with filters of size 3 × 3 × 3 × 32,
32× 3× 3× 64, and 64× 3× 3× 128, with 2× 2 max-pooling and relu activations after each. We
then pass the result through a 2-hidden layer network with sizes 512 and 128.

Figure 3: Results of various planning algorithms on the grid-world environment with obstacles
(zoomed), with x-axis showing the obstacle density. From the leftmost column, the first figure
illustrates the 2D planning domain example. The second and the third figure show the average return
and the average cumulative constraint cost of the CMDP methods respectively. The fourth figure
displays all the methods used in the experiment. The shaded regions indicate the 80% confidence
intervals. Clearly the safe DP algorithms compute policies that are safe and have good performance.
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Figure 4: Results of using a saddle-point Lagrangian optimization for solving the grid-world envi-
ronment with obstacles, with x-axis in thousands of episodes.
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