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Abstract

Modern statistical estimation is often performed in a distributed setting where
each sample belongs to a single user who shares their data with a central server.
Users are typically concerned with preserving the privacy of their samples, and
also with minimizing the amount of data they must transmit to the server. We give
improved private and communication-efficient algorithms for estimating several
popular measures of the entropy of a distribution. All of our algorithms have
constant communication cost and satisfy local differential privacy. For a joint
distribution over several variables whose conditional independence given by a tree,
we describe algorithms for estimating the Shannon entropy that require a number
of samples that is linear in the number of variables, compared to the quadratic
sample complexity of prior work. We also describe an algorithm for estimating
the Gini entropy whose sample complexity has no dependence on the support size
of the distribution and can be implemented using a single round of concurrent
communication between the users and the server. In contrast, the previously best-
known algorithm has high communication cost and requires the server to facilitate
interaction between the users. Finally, we describe an algorithm for estimating the
collision entropy that matches the space and sample complexity of the best known
algorithm but generalizes it to the private and communication-efficient setting.

1 Introduction

Statistical estimation has traditionally focused on minimizing the number of samples needed to
estimate properties of a distribution. In the ‘big data’ era, statisticians and computer scientists have
also tried to minimize the space complexity of estimation algorithms, particularly in the streaming
setting. More recently, the increasing prevalence of mobile computing has led to a focus on the
privacy and communication costs of statistical estimation. In this paper, we focus on the following
setting: a set of users each draw one sample from a distribution each, and share information about
their sample with a central server. The central server then uses the collected data to estimate a
property of the distribution. Users are concerned with preserving the privacy of their sample, and
also with minimizing the amount of data that is transmitted to the server.

For example, consider the problem of detecting fingerprinting on the web [30]. Many websites track
users across the web without their consent by recording (enough) information about their devices
(e.g., installed fonts, operating system, timezone, etc.), a practice known as “browser fingerprinting”.
Entropy is the standard metric used to quantify the identifiability of the collected fingerprints. So a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



private and distributed method for estimating entropy can be used by a browser to warn users that this
covert tracking could occur, without ever storing the fingerprints themselves.

The study of entropies has an extensive and rich history in mathematics and sciences. Related
quantities called “entropy” appear in many contexts (thermodynamics, information theory, dynamic
systems [34], category theory [10, 6], etc.). These may be broadly thought as measures of information
of a system or process obeying certain properties, which, in turn, lead to natural measures of disorder,
randomness, outcome diversity, information content, uniformity, etc.

In this paper, we study private and communication-efficient algorithms for estimating certain entropies
of a distribution. Specifically, we give algorithms for estimating the following entropies, which are
widely-used in many scientific fields to quantify the uncertainty, diversity and spread of a discrete
distribution:

• Shannon entropy [32], a fundamental quantity in information theory.
• Gini entropy (also known as Tsallis entropy [37] of order 2, or (one minus the) second

frequency moment). Some of its applications include measuring ecological diversity [33, 27],
market competition among firms [22], effective size of political parties [26], and suitability
of features to split on during decision tree learning [29].

• Collision entropy (also known as Rényi entropy [31] of order 2). Some of its applications
include measuring the quality of random number generators [35], and determining the
number of reads needed to reconstruct a DNA sequence [28].

Our algorithms are implemented in either the non-interactive model (for the Gini and collision
entropies), in which all users simultaneously exchange information with the server during a single
round of communication, or the (stronger) sequentially interactive model (for the Shannon entropy),
in which the server queries users one at a time, possibly in an adaptive manner [23]. When analyzing
the communication complexity of an algorithm, we prove bounds on the number of bits that each
user transmits to the server. However, the server is allowed to broadcast an arbitrary amount of
information to the users (this is also called the blackboard model [17]), including shared random bits
(also known as the public coin model [1, 2, 24]). When analyzing the privacy of our algorithms, we
use the framework of local differential privacy [18] which ensures that the server learns very little
about each user’s data.

Our contributions:
• A sequentially interactive α-local differentially private algorithm for estimating the Shannon

entropy of a joint distribution on d variables within εd error using Õ(d/α2ε3) samples and O(1)
bits per sample. Our analysis assumes that each of the d variables has a constant support size and
that their conditional independence graph is a tree. We also describe algorithms that have better
dependence on 1/ε in certain special cases, such as when the tree has low diameter or is a chain.
Our algorithms achieve O(1) communication complexity by observing only two or three of the d
variables in any single sample; we call these pair and triplet observations. The only previously
known algorithm for estimating the Shannon entropy of a tree-structured distribution from pair
observations is a non-interactive algorithm due to Chow and Liu [13]. We also prove that any
non-interactive algorithm requires Ω(d2) pair observations to achieve O(d) error. We also prove
that, for any sequentially interactive algorithm, Ω(d/ε) pair observations are necessary to achieve
O(εd) error.

• A non-interactive α-local differentially private algorithm for estimating the Gini entropy of a
distribution within ε error using O(b2 max{1− g, 2−b}/(α2ε2)) samples, b bits per sample, and
Õ(b) space, where g ∈ [0, 1] is the Gini entropy of the distribution. The best previous algorithm
[11] has the same sample complexity, even when b = 1, but is sequentially interactive, and also
requires Ω(k) bits per sample and Ω(k) space, where k is the support size of the distribution. Also
our error bound also holds with high probability instead of only in expectation.

• A non-interactive α-local differentially private algorithm for estimating the collision entropy of
a distribution with support size k within ε error using Õ(b2k2/(α2ε2 min{k, 2b})) samples, b
bits per sample, and Õ(b) space. Setting b = log k and α = O(1) recovers the sample and
space complexity guarantees of the non-interactive algorithm from [35] up to logarithmic factors,
and thus, our algorithm generalizes the previously best known algorithm to the private and
communication-efficient setting.
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2 Related Work

There is a very extensive literature on distributed statistical estimation under communication con-
straints (see [39] for the paper that appears to have started this thread). Variations on the problem
include whether communication is allowed between users, whether communication happens in one
or multiple rounds, whether there is a shared source of randomness among the users, and whether
communication is limited per-user or only cumulatively across all users.

Many previous results in this area bound the sample and communication complexity of estimating
the parameters of a distribution Pθ, where θ ∈ Θ (see e.g. [21]). This problem class includes discrete
distribution estimation, where the guarantees are usually stated as bounds on the relative entropy or
total variation distance between the estimated and true distribution (see e.g. [5]). Other problems of
interest are mean estimation [36] and heavy hitter estimation [4].

There has also been significant interest in differentially private statistical estimation, and of particular
relevance is work by [3], who gave private algorithms for estimating certain functionals of a distribu-
tion, including the Shannon entropy. However, they used the central model of differential privacy,
while in this paper we prove guarantees using the (stronger) local model.

3 Entropy Measures

The Shannon, Tsallis, and Rényi entropy of a discrete random variable X are defined as

(Shannon) H(X) = −
∑
x

Pr[X = x] log Pr[X = x], (1)

(Tsallis) Tγ(X) =
1

γ − 1

(
1−

∑
x

Pr[X = x]γ
)
, (2)

(Rényi) Rγ(X) =
1

1− γ
log
(∑

x

(Pr[X = x])γ
)
, (3)

where γ in (2) and (3) is a free parameter satisfying γ > 0 and γ 6= 1. Both Tsallis and Rényi entropy
are generalizations of Shannon entropy in the sense that limγ→1 Tγ(X) = limγ→1Rγ(X) = H(X).

In this paper, we describe algorithms for estimating the Shannon entropy and special cases of the
Tsallis and the Rényi entropy that are widely used in many scientific fields: T2(X), also called the
Gini entropy, and R2(X), also called the collision entropy. Substituting γ = 2 into the definitions
above and using the abbreviations G(X) ≡ T2(X) and C(X) ≡ R2(X) we have

(Gini) G(X) ≡ T2(X) = 1−
∑
x

Pr[X = x]2,

(Collision) C(X) ≡ R2(X) = − log
(∑

x

Pr[X = x]2
)
.

Gini entropy is so-called because it is equivalent to Gini diversity index [20], a statistics proposed
by Corrado Gini in 1912 [20] to measure income and wealth inequality. Collision entropy takes
its name from the observation that if X and X ′ are independent and identically distributed then
C(X) = − log Pr[X = X ′].

For the problem of estimating the Shannon entropy, we specialize to a high-dimensional setting,
where we only observe a pair (or triplet) of the dimensions at a time. That is, X is a random-vector
of d discrete variables, where d is large, but each Xi has a constant support size (e.g., the are binary),
and we only observe two (or three) dimensions per sample. Without making any assumption about
this joint distribution, the problem is intractable. One of the most common assumptions, which we
also adopt in this work, is that the joint distribution is tree-structured. In this case, the distribution
can be estimated by the celebrated [13] (and optimal [8]) Chow-Liu algorithm. While the Chow-
Liu algorithm requires Ω(d2) pairs observations to estimate the Shannon entropy, our sequential
algorithm requires only O(d) pairs observations (see Section 5.2 for more details).

The joint Shannon entropy H(X1, . . . , Xd) of a set of random variables X1, . . . Xd is the Shannon
entropy H(X) of the random variable X = (X1, . . . , Xd). We write the abbreviated term joint
entropy when the use of Shannon entropy is obvious from context.
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The mutual information between two random variables X and Y and their conditional mutual
information given another random variable Z, which are defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (4)
I(X;Y | Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z). (5)

4 Estimation Algorithms and Evaluation Criteria

A set of n users and a central server cooperate according to the following protocol to estimate the
entropy of a random variable X:

1. Each user i ∈ [n] draws an independent sample xi according to the distribution of X .

2. For r rounds:

(a) The server sends information to a subset of the users.
(b) Those users send (partial) information about their sample back to the server.

3. The server outputs an estimate of the Shannon entropy (Algorithm 1,2 and 4) or the Gini or
collision (Algorithm 5) entropies of X .

An estimation algorithm specifies the steps that each user and the server perform to implement the
above protocol. The algorithm is non-interactive if the protocol consists of a single round in which
all users participate. In a non-interactive algorithm the server cannot adapt its queries to users based
on responses from other users, since the server communicates with all the users concurrently. An
algorithm is sequentially interactive if each round consists of communication with a single user, who
is never contacted again. Sequential interactivity enables the server to query users adaptively [23].

We evaluate estimation algorithms according to the following criteria:

• Sample complexity: The number of users from whom the server requests data.

• Space complexity: The space used by the server when executing the algorithm.

• Communication complexity: The maximum number of bits transmitted by any single user to the
server. Note that the amount of information sent by the server to the users is not counted when
determining communication complexity.

• Privacy: Let xi be the sample belonging to user i and oi be the data observed by the server from
user i. We say that an algorithm satisfies α-local differential privacy if

Pr[oi ∈ O | xi = x] ≤ eα Pr[oi ∈ O | xi = x′]

for any user i, measurable set O, and possible sample values x, x′.

• Error: The absolute difference between the true entropy of the distribution and the estimate output
by the server.

5 Estimating the Shannon Entropy of Tree-structured Distributions

In this section we assume that X = (X1, . . . , Xd) is a vector of d discrete variables, and that the
support size of each variable Xi is a constant (e.g., each variable is Boolean). We also assume
that X has a tree-structured distribution, which means that there exists a rooted tree T with d
nodes such that for any node i ∈ [d] we have Pr[Xi | X−i] = Pr[Xi | XpaT (i)], where X−i =
(X1, . . . Xi−1, Xi+1, . . . , Xd) and the node paT (i) is the parent of node i in tree T . If i is the root
node, then we define Pr[Xi | XpaT (i)] = Pr[Xi]. Equivalently, a tree-structured distribution is a
Markov random field with a tree as the underlying undirected graph. Essentially, the tree-structured
assumption implies that the only correlations among the Xi’s are pairwise correlations. If T is a
chain or a star we say that X is chain-structured and star-structured, respectively. We will treat these
two special cases at the end of this section (Algorithms 2 and 4, respectively).
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5.1 Breaking-up the problem: Entropy Estimation When the Support Size is Small

Before proceeding to describe algorithms for estimating the Shannon entropy of tree-structured
distributions, we use existing results for private distribution estimation to devise a local differentially
private estimator for the Shannon entropy that is sample and communication efficient when the
support size of the distribution is small (as is the case for the marginals). The server will repeatedly
invoke this algorithm as a subroutine in the sections below.

First we recall that the Shannon entropy can be upper bounded according to Theorem 17.3.3 of [14]
as

|H(Xp)−H(Xp′)| ≤ ‖p− p′‖1 log
c

‖p− p′‖1
where Xp and Xp′ are two discrete random variables with support size c and distributions p and
p′. Next, we apply a local differentially private learning algorithm for discrete distribution due to
[4] that learns the parameters of a discrete distribution with small L1 error. The following theorem
combines these two results by using the fact that x/ log(1/x) ≤ 1 whenever 0 < x ≤ 1/2.
Theorem 5.1. For any discrete distribution X with support size c and for any 1/2 ≥ ε > 0, there
exists an estimator satisfying α-local differential privacy that estimates H(X) within ε error using
n = O(c2 log 1

δ /(ε
2α2)) samples with probability 1− δ when α ∈ (0, 1).

This algorithm resulting from Theorem 5.1 can be used to privately estimate the entropy H(Xi),
mutual information I(Xi;Xj), and conditional mutual information I(Xi;Xj | Xk) of any variables

Xi, Xj and Xk by using O
(

log 1
δ

α2ε2

)
samples per estimate and O(1) bits per sample, since each

of these variables has constant support size, and both mutual information and conditional mutual
information can be expressed in terms of entropies ((4) and (5) in Section 3). We call such an estimate
(α, ε, δ)-good.

5.2 Algorithm for General Trees

Note that the support size of X can be exponential in d. In the worst case, estimating the entropy
of a distribution with support size k within constant error requires Θ̃(k) samples [19]. However the
tree-structure of X can be exploited to significantly reduce the sample complexity. In their seminal
paper, Chow and Liu [13] proved the identity

H(X) =

d∑
i=1

H(Xi)−max
T

d∑
i=1

I(Xi;XpaT (i)), (6)

for any tree-structured random variable X , where the maximization is taken over all possible trees
connecting the d variables.

Eq. (6) suggests a communication-efficient algorithm for estimating the entropy of X , which is
known as the Chow-Liu algorithm: First, estimate each marginal entropy H(Xi) and each mutual
information I(Xi;Xj). Next, compute a maximum spanning tree on the d variables, where the
weight of each edge (Xi, Xj) is the estimate of the mutual information I(Xi;Xj). Finally, plug all
of the H(Xi) estimates, the maximum spanning tree, and the corresponding I(Xi;Xj) estimates,
into Eq. (6).

The Chow-Liu algorithm requires Ω(d2) samples, since it computes the mutual information between
every pair of variables in order to compute a maximum spanning tree. However, estimating the
right-hand side of Eq. (6) only requires estimating the weight of the maximum spanning tree, which
is significantly easier than finding the tree itself. Algorithm 1 adapts a technique from [12] that
estimates the weight of the maximum spanning tree of a graph in time that is sublinear in the number
of edges in the graph. The basic idea is to select nodes of the graph at random and use breadth-first
search to determine the size of each of their connected components if we were to drop edges that
do not meet a weight threshold, short-circuiting the search when the size becomes too large. These
quantities are combined to estimate the weight of the maximum spanning tree. In our case, an edge
weight is a mutual information between a pair of variables, which we estimate from pair observations.
Theorem 5.2. Algorithm 1 is α-locally differentially private and hasO(1) communication complexity.

The number of samples requested by the server is O
(
d log( 1

δ )

α2ε3

)
. Let Ĥ be the output of the algorithm.

If X is tree-structured then |Ĥ −H(X)| ≤ εd with probability 1− δ.
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Algorithm 1 Shannon entropy estimation for tree-structured distribution

1: Let M =
⌈

2
ε

⌉
and R =

⌈
1
ε2

⌉
2: for m = 1, . . . ,M do
3: for r = 1, . . . , R do
4: Choose positive integer Z randomly according to Pr[Z ≥ z] = 1/z.
5: Choose i∗ uniformly at random from [d].
6: if Z ≥ 2

ε then γmr ← 0.
7: else . Breadth-first search
8: Initialize queue to contain i∗ and a set V = {i∗}.
9: while queue length is non-zero and shorter than Z do

10: Remove i from front of queue and V = V ∪ {i}.
11: for j = [d] \ V do
12: Server computes (α, ε, δ)-good estimate Îij of I(Xi;Xj).
13: if Îij ≥ εm then add j to back of queue.
14: if queue length is zero then γmr ← 0 else γmr ← 1.
15: ĉm ← d

R

∑R
r=1 γmr.

16: Ŵ ← εMd− ε
∑M
m=1 ĉm

17: Server computes (α, ε, δ)-good estimate of each entropy in the first sum in Eq. (6).
18: Let Ŝ be the sum of the entropy estimates.
19: Return Ĥ = Ŝ − Ŵ .

5.3 Algorithm for a Chain

Verma and Pearl [38] observed that if X is chain-structured with chain T then for any triplet (Xi,
Xj , Xk), if Xk is on the unique path in T between Xi and Xj , then I(Xi;Xj |Xk) = 0. This
observation alone does not help to recover the chain, since the conditional mutual information
I(Xi;Xj |Xk) can also be zero for Xi, Xj and Xk when Xk is not on the path between Xi and Xj in
the chain T . Nevertheless, under the mild assumption that the mutual information I(Xi, Xj) between
every pair of variables is distinct, we can recover the chain T by estimating the conditional mutual
information of triplets of variables.

The algorithm is similar to a sorting algorithm, such as “merge sort” which requires O(d log2 d)
pairwise comparisons over d items. While we cannot compare pairs explicitly like in a sorting
problem, for any triplets (Xi, Xj , Xk), we can decide locally which “item” is between the other
two: i.e., Xi ↔ Xj ↔ Xk, Xi ↔ Xk ↔ Xj or Xk ↔ Xi ↔ Xj in the chain T , by estimating
conditional mutual information. As the observation fro, Verma and Pearl implies that if X is chain-
structured then one of I(Xi;Xj |Xk) or I(Xi;Xk|Xj) or I(Xj ;Xk|Xi) has to be zero (due to the
observation from Verma and Pearl). This suggests our Algorithm 2, which inserts the variables in a
chain one by one in a sequential manner. Algorithm 3 is called by Algorithm 2 as a subroutine which
seeks to find the position where to insert.

Theorem 5.3. Algorithm 2 is α-locally differentially private and hasO(1) communication complexity.

The number of samples requested by the server is O
(
d log d

δ

α2ε2

)
. Let Ĥ be the output of the algorithm.

If X is chain-structured and |I(Xi;Xj)− I(Xj ;Xk)| ≥ ε then |Ĥ −H(X)| ≤ εd with probability
1− δ.

5.4 Algorithm for a Star

If X is star-structured then recovering the star T is a matter of identifying the center of the star,
which can be done by computing the mutual information between only Õ(d) pairs of variables. The
algorithm picks a random marginal Xi and takes a “Prim’s step”, i.e., choosing the neighboring node
(say Xk) that has the largest mutual information with Xi. The edge between Xi and Xk is in the
maximal spanning tree, when we assume that each edges weight is different. Next, the algorithm
estimates

∑
j 6=i I(Xi, Xj) and

∑
j 6=k I(Xk, Xj) to decide whether Xi or Xk is the center node of

the star. Algorithm 4 presents the procedure, and Theorem 5.4 gives its sample complexity.
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Algorithm 2 Shannon entropy estimation for chain-structured distribution

1: S = [d], C = ∅, pick an arbitrary i, j, k ∈ S and set S = S \ {i, j, k}.
2: Server computes (α, ε, δ)-good estimates Î(Xi;Xj |Xk), Î(Xi;Xk |Xj) and Î(Xk;Xj |Xi).
3: if Î(Xi;Xj |Xk) > ε then x1 = (i, k, j)

4: else if Î(Xi;Xk |Xj) > ε then x1 = (i, j, k)

5: else if Î(Xk;Xj |Xi) > ε then x1 = (j, i, k)

6: for i ∈ (1, . . . , d− 3) do
7: Pick item j from S and set S = S \ {j} and set r = xi,1 and p = xi,i+2

8: Server computes (α, ε, δ)-good estimates Î(Xj ;Xp |Xo), Î(Xr;Xj |Xp).
9: if Î(Xj ;Xp |Xr) > ε then xi+1 = (j,xi) . Attach Xj to the head of the chain

10: else if Î(Xo;Xj |Xp) > ε then xi+1 = (xi, j) . Attach Xj to the tail of the chain
11: else . Insert Xj into the chain defined by xi
12: ` = TERNARYSEARCH(xi, 1, i+ 2, j) . Defined in Algorithm 3
13: xi+1 = (xi[1, . . . , `], j,xi[`+ 1, . . . , i+ 2])

14: Create chain T according to the order defined by xd−2.
15: Server computes (α, ε, δ)-good estimate of each term in Eq. (6) using T and returns their sum Ĥ .

Algorithm 3 TERNARYSEARCH(x, `l, `h, j)

1: if `l = `h − 1 then return `l
2: Pick the median element k = d(`h + `l)e, and set i = x`l and o = x`h
3: Server computes (α, ε, δ)-good estimate Î(Xi;Xk |Xj).
4: if Î(Xi;Xk |Xj) > ε then return TERNARYSEARCH(x, i, k, j)
5: else return TERNARYSEARCH(x, k, o, j)

Theorem 5.4. Algorithm 4 is α-locally differentially private and hasO(1) communication complexity.

The number of samples requested by the server is O
(
d log d

δ

α2ε2

)
. Let Ĥ be the output of the algorithm.

If X is star-structured and |I(Xi;Xj)− I(Xj ;Xk)| ≥ ε then |Ĥ −H(X)| ≤ εd with probability
1− δ.

Algorithm 4 Shannon entropy estimation for star-structured distribution

1: Pick a i ∈ [d] uniformly at random.
2: Server computes (α, ε, δ)-good estimate Î(Xi, Xj) for all j ∈ [d] \ {i}.
3: Find k = arg maxj∈[d]\{i} Î(Xi, Xj)

4: Server computes (α, ε, δ)-good estimate Î(Xk, Xj).
5: if

∑
j Î(Xi, Xj) >

∑
j Î(Xk, Xj) then let T be a star with Xi as center

6: else let T be a star with Xk as the center.
7: Server computes (α, ε, δ)-good estimate of each term in Eq. (6) using T and returns their sum Ĥ .

5.5 Lower Bounds

We prove sample complexity lower bounds for estimating the Shannon entropy of a tree-structured
distribution from pair observations. Our first lower bound focuses on the non-interactive case, when
the algorithm must select all the pairs in advance. The second claim is more general, and holds for all
sequentially interactive algorithms.
Theorem 5.5. For any non-interactive algorithm that uses o(d2) pair observations to estimate
Shannon entropy, there exists a tree-structured distribution over {0, 1}d such that the error of the
algorithm is Ω(d) with constant probability.
Theorem 5.6. For any ε > 0 and for any sequentially interactive algorithm that uses o(d/ε) pair
observations to estimate the Shannon entropy, there exists a tree-structured distribution on {0, 1}d
such that the error of the algorithm is Ω(ε · d) with constant probability.
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The lower bound given in Theorem 5.5 is based on Turán’s theorem [9], which we use to show that
for any algorithm with sub-quadratic sample complexity and for any constant C ∈ (0, 1), there is
a graph with d nodes containing C · d-clique – when d is large enough – such that the algorithm
does not observe any edge of that clique. This implies that the additive error of the algorithm is
linear in d. The lower bound for sequentially interactive algorithms in Theorem 5.6 is based on a
information theoretical approach. Interestingly, our construction of problem instances for which we
applied Le Cam’s theorem is fairly simple, since it contains d independent random variables in every
case. Nevertheless, this lower bound shows that Algorithm 1 is optimal in d. Moreover, note that
Theorem 5.6 also holds for non-interactive algorithms.

5.6 Comparison to Prior Work

To the best of our knowledge, the Chow-Liu algorithm is the only published method for estimating
the entropy of a distribution that takes advantage of its tree structure. Since the algorithm is non-
interactive, the lower bound in Theorem 5.5 shows that our algorithms have provably better sample
complexity when the number of variables d is large (note that the dependence on d in each of
Theorems 5.2, 5.3 and 5.4 is sub-quadratic). The Chow-Liu algorithm can also be used to estimate
the distribution itself, not just its entropy, and it has recently been shown [8, 16] that the algorithm
has optimal sample complexity when given full observations (i.e., samples of the entire vector
(X1, . . . , Xd) and not just pairs or triplets of the variables). So the Chow-Liu algorithm is optimal for
estimating a tree-structured distribution, but suboptimal for estimating the entropy of a tree-structured
distribution. The root cause of this difference appears to be the fact that it is significantly easier to
estimate the weight of the maximum spanning tree than finding the tree itself.

6 Estimating Gini and Collision Entropy

Algorithm 5 below estimates both the Gini entropy and collision entropy of a random variable X
using samples from the distribution of X while observing only b bits per sample. Here, we do not
require extra restrictions on the discrete distribution of X . In the algorithm, the server first partitions
all users into pairs (we assume for simplicity that the number of users is even). The server then
distributes a b-bit hash function to each user, along with a distinct cryptographic salt to each user pair.
Each user then hashes their sample along with their salt, and returns the hash value to the server. The
server computes entropy estimates based on the number of observed hash collisions across all pairs.
In Algorithm 5 we let 〈x, y〉 denotes a binary string that encodes x, followed by a delimiter, and by y.

Algorithm 5 Gini and collision entropy estimation

1: Each user i ∈ [n] draws sample xi independently from the distribution of X .
2: Server partitions the n users into n

2 disjoint pairs.
3: Let qi ∈

[
n
2

]
be the index of the pair containing user i.

4: Server transmits qi and hash function h : {0, 1}∗ 7→ {0, 1}b to each user i.
5: Each user i generates a b-bit hash value hi = h(〈qi, xi〉) for their sample xi.
6: Each user i lets ĥi = hi with probability λ = eα

2b+eα
and otherwise draws ĥi uniformly from [2b].

7: Server receives ĥi from each user i.
8: If pair q contains users i and j then let cq = 1[ĥi = ĥj ] indicate whether a hash collision was

observed for pair q.
9: Server computes c̄ =

(
2

(1−λ)n

∑
q cq

)
− λ

2b
.

10: Server outputs Ĝ = 2b

2b−1
c̄− 1

2b−1
and Ĉ = − log

(
1− Ĝ

)
.

The analysis of Algorithm 5 is based on the observation that if X and X ′ are independent and
identically distributed then the Gini entropy is equal to 1− Pr[X = X ′] and the collision entropy
is equal to − log Pr[X = X ′]. If the server observed each sample directly then it could estimate
Pr[X = X ′] using the collision frequency, i.e., the fraction of sample pairs (xi, xj) such that xi = xj .
However, the server only observes a b-bit hash of each sample. Among sample pairs in which there is
a true collision, all of them also produce a hash collision. Among samples pairs in which there is not
a true collision, about a 1

2b
fraction of them produce a hash collision. Therefore the true collision
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frequency can be estimated using an appropriately bias-corrected hash collision frequency, and the
server uses this estimate to approximate the Gini entropy and collision entropy.

The analysis of Algorithm 5 is given in Theorem 6.1 below. As is customary, for the analysis we
assume that the hash function h is constructed by assigning each element of its domain to a uniform
random element of its range [7]. See the Appendix for the proof of the theorem.

Theorem 6.1. Algorithm 5 is α-locally differentially private and has Õ(b) communication complexity
and Õ(b) space complexity. Let Ĝ and Ĉ be the outputs of the algorithm. Let α, ε, δ ∈ (0, 1). If

n = Ω
(
b2 max{1−G(X),2−b} log 1

δ

α2ε2

)
then |Ĝ−G(X)| ≤ ε with probability at least 1− δ. Also, if X

has support size k and n = Ω
(

b2k2 log 1
δ

α2ε2 min{k,2b}

)
then |Ĉ −C(X)| ≤ ε with probability at least 1− δ.

6.1 Comparison to Prior Work

Recall that Gini entropy is one minus the second frequency moment (up to a constant). Local
differentially private algorithms for estimating frequency moments were recently studied in [11].
Letting b = 1 in Algorithm 5 yields a sample complexity of Õ(1/α2ε2), which matches the sample
complexity of the sequentially interactive algorithm for estimating the second frequency moment
from [11]. However our algorithm is non-interactive, which is a much weaker communication model.
Also it only uses 1 bit per sample and Õ(1) space, while the previous algorithm uses Ω(k) bits
per sample and Ω(k) space, where k is the support size of the distribution. The authors in [11]
asked whether there is a non-interactive algorithm for privately estimating frequency moments with
a sample complexity that is independent of the distribution’s support size. Here we affirmatively
answer this open question for the second frequency moment.

The best known algorithm for estimating collision entropy using Õ(1) space is due to [35]. The
sample complexity of their algorithm is Õ

(
k/ε2

)
and its communication complexity is O(log k)

communication per user, where k is the support size of the distribution. Letting b = log k and
α = O(1) in Algorithm 5 recovers these results (up to logarithmic factors), and using smaller values
for b or α generalizes the previous algorithm to the private and communication-efficient setting. Also,
it was shown in [15] that (conditioned on a plausible conjecture) any algorithm that estimates collision
entropy to within O(1) error using O(1) space requires Ω(k) samples. Therefore our algorithm is
likely to be Pareto optimal with respect to the sample complexity-space complexity trade-off.

7 Experiments

In this section we present two sets of experiments to support our theoretical findings. First, we justify
that Algorithm 1 is indeed amenable to estimate the Shannon entropy of tree-based distributions
with linear sample complexity in d. Thus it has a superior sample complexity comparing to the
state-of-the-art non-interactive method [13, 8] which has a quadratic sample complexity in d. The
sample complexity is defined here in terms of the number of observation from pairs of marginals.
In the second set of experiments, we test Algorithm 5 to estimate the collision entropy of discrete
distributions, and we compare its performance to the best known communication efficient, non-private
algorithm, to our best knowledge. We refer to this algorithm as Skorski’s algorithm [35].

Estimating Shannon entropy: To estimate the Shannon entropy as it is given in (6), the marginal
entropy values and the mutual information between certain or all pairs of marginals have to be
estimated. More concretely, Chow-Liu algorithm estimates the mutual information between all pairs
of marginals which results in quadratic sample complexity, whereas Algorithm 1 estimates the mutual
information only for linear fraction of pairs. What is common in these two algorithms is that they both
estimates the marginal entropy values by sampling the each marginals independently from the mutual
information estimations. In addition to this, both algorithm estimates the mutual information between
pairs of marginals with the same ε additive error and with the same privacy budget α. Therefore it
is fair to compare the performance of these two algorithms in terms of number pairs for which the
mutual information is estimated by them. For Chow-Liu algorithm this is d2 whereas Algorithm 1 is
a randomized algorithm, thus we evaluate it over 100 repetitions and report the average.

In this experiments, we used tree-structured multivariate distributions over {0, 1}d. The tree structure
is picked randomly by taking the maximum spanning tree in a full graph with edge weights that obey
standard normal distribution. Then we chose parameters for each marginals uniformly at random from
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[0, 1]. The tree structure is achieved by inducing dependence between marginal distribution while
preserving the marginals. More concretely, for two marginals Xi and Xj with parameters pi and pj ,
we set P ((Xi, Xj) = (0, 1)) = (1− pi) · pj + d, P ((Xi, Xj) = (0, 0)) = (1− pi) · (1− pj)− d,
P ((Xi, Xj) = (1, 0)) = pi · (1− pj)− d and P ((Xi, Xj) = (1, 1)) = pi · pj + d where selected d
uniformly at random so as each probability stays positive.

(a) Comparison of sample complexity
of Algorithm 1 and Chow-Liu for esti-
mating Shannon entropy as given in (6)
for tree structured distribution

(b) Comparison of error of Algorithm
5 and Skorski’s algorithm [35] for esti-
mating collision entropy for exponen-
tial distribution with domain size k =
1000.

The results are shown in Figure 1a. One can clearly seen that the sample size, i.e. number of mutual
information estimate, is close to linear however Chow-Liu algorithm requires a higher sample size.
Note that sample size means only the pairs of marginals for which the algorithms requires to estimate
the mutual information.

Estimating collision entropy: In this set of experiment, we focus on estimating collision entropy.
We drew samples from a discrete exponential distribution pi ∝ e−i with support size k = 1000.
We used the previously best-known algorithm [35], which requires O(log k) bits per sample and is
not private, to estimate the collision entropy of the distribution. We also used our algorithm, which
requires only 1 bit per sample and can be made differentially private. The results is viewed in Figure
1b. Our experiment shows that the previous algorithm has 5% estimation error after observing 10000
bits, while our algorithm has less than 3.5% estimation error. Thus our algorithm has lower error for
the same communication cost, and it is also (local) differentially private.

8 Conclusion and future work

Estimating entropy is of importance in many practical applications. In this paper, we studied three
widely used entropy measures: Shannon, Gini and collision entropy. We described estimation
algorithms for each entropy that require minimal communication and satisfy local differential privacy.
Our sequentially interactive algorithm for estimating the Shannon entropy of high-dimensional
tree-structured distributions observes only two of these dimensions per sample, and has a sample
complexityO(d/ε3). Our approach relies on the celebrated Chow-Liu approximation [13]. It provides
an improvement of the sample complexity of the original non-interactive Chow-Liu algorithm whose
sample complexity is Ω(d2). We also identified some special cases when the underlying graphical
model of the joint distribution is either a chain or star graph. In these cases, the proposed algorithms
have a sample complexity of Õ(d log d/ε2). Our algorithm for estimating the Gini and collision
entropy estimation also improved on the state-of-the-art, either by matching the sample complexity
of previous work but in a weaker communication model and with significantly better communication
complexity, or by generalizing the best known algorithm to the private and communication-efficient
setting. Lastly, we demonstrated the versatility of our methods on synthetic data, and showed that the
proposed methods for Shannon entropy and collision entropy are superior when comparing them to
the performance to the state-of-the-art methods.

A natural extension of our work on Shannon entropy estimation is to consider higher-order correlations
in the Chow-Liu decomposition [25]. In this case, discovering the underlying structure of the joint
distribution is already computationally challenging, unlike in the second order case when it reduces
to a maximum spanning tree problem. However, efficiently estimating the entropy of the resulting
distribution might still be possible.
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A Proof of Theorem 5.1

Proof. [4, 5] showed that any discrete distribution can be learnt in total variation distance based on
O(c2 log 1/δ/(ε2α2) when α < 1. This result can be plug-in into Theorem 17.3.3 of [14].

B Proof of Theorem 5.2

The result follows from simply combining the algorithm from [12] for estimating the weight of the
maximum spanning tree in sublinear time, which assumes that each edge weight can be computed in
O(1) time, with Theorem 5.1, which gives the number of samples needed to privately estimate an
edge weight (i.e., the mutual information between two variables). The main technical complication
we must overcome is that the result from [12] assumes that the edge weights are integers with a
bounded ratio, while we instead discretize the edge weights with resolution ε. To complete the proof,
we need the Lemma B.1 below, which concerns a graph G whose edge weights are multiples of
ε. The lemma relates the weight of the maximum spanning tree of G to the number of connected
components in various subgraphs of G. This lemma replaces Claim 5 from [12].

Let G be a connected graph with n vertices and edge weights belonging to the set

{ε, 2ε, . . . , wε},

where ε > 0 and w is a positive integer.

For each i ∈ {1, . . . , w} let Gi be the subgraph of G containing the same vertices as G and only
those edges of G whose weight is at least iε. Thus G1 = G. Let ci be the number of connected
components in Gi. Let M be the weight of a maximum spanning tree of G.

Lemma B.1. M = εwn− ε
∑w
i=1 ci.

Proof. For each i ∈ {1, . . . , w} let γi be the number of edges with weight iε in a maximum spanning
tree of G. We have ∑

i<`

γi = c` − 1

for any ` ∈ {1, . . . , w}, where the empty sum is defined to be zero. This equality can be established
by considering Kruskal’s greedy algorithm for constructing a maximum spanning tree, which adds
edges in decreasing order of weight as long as they do not induce a cycle. Since G` has c` connected
components, and all the edges in G` are heavier than all the edges not in G`, the greedy algorithm
must first connect the vertices within each component of G` and then use exactly c` − 1 edges not in
G` to connect the components to each other. Thus we have

M =

w∑
i=1

iεγi

= ε

∑
i≥1

γi +
∑
i≥2

γi + · · ·+
∑
i≥w

γi


= ε

(
n− 1−

∑
i<1

γi + n− 1−
∑
i<2

γi + · · ·+ n− 1−
∑
i<w

γi

)

= ε

(
w(n− 1)−

w∑
i=1

(ci − 1)

)

= εwn− ε
w∑
i=1

ci

C Proof of Theorem 5.3

We start by recalling a lemma that applies to tree-structured distributions.
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Lemma C.1. [38] Let X = (X1, . . . , Xd) be tree decomposable with tree T . Then for any triplets
i, j and k, if k is on the unique path in T between i and j, then

I(Xi;Xj |Xk) = 0 .

Next we show that the output Algorithm 2 is correct with high probability. We make use of the
Conditional Mutual Information Tester of [8]. This testing algorithm consists of estimating the
CMI using the plug-in estimator and then applying a ε threshold on the estimate, i.e. if the estimate
is smaller than ε then accept, otherwise reject. The sample complexity of Conditional Mutual
Information Tester is O

(
|Σ|3
ε log d|Σ|

δ log |Σ| log d/δ
ε

)
according to Theorem 1.3 of [8], thus if we

apply this tester adjusted confidence parameter, i.e. δ/d log3 d then the union bound implies that the
output of all test is correct with probability at least 1− δ.

Next, note that for any any triplet Xi, Xj , Xk such that Xi is between Xj and Xk in the chain, it
holds that

I(Xj ;Xi)− I(Xj ;Xk) = I(Xj ;Xi|Xk)︸ ︷︷ ︸
>ε

− I(Xj ;Xk|Xi)︸ ︷︷ ︸
=0 due to Lemma C.1

because of the edges are different with a margin of ε. Same argument implies that I(Xk;Xi|Xj) > ε.
Thus, Algorithm 2 divides the nodes correctly in Line 4-10 which along with the testers’ correctness
with high probability implies the correctness of the algorithm.

The sample complexity of Conditional Mutual Information Tester is O
(
|Σ|3
ε log d|Σ|

δ log |Σ| log d/δ
ε

)
according to Theorem 1.3 of [8], we only upper bound the number of tests for deciding whether
I(Xi;Xj |Xk) > ε that is carried out by Algorithm 2. It is indeed 3

∑d
i=3 log3 i ∈ O(d log3 d)

which concludes the proof.

D Proof of Theorem 5.4

First note that the Prim step in Line of Algorithm 4 indeed finds the edge that is in the maximum span-
ning tree due to the assumption |I(Xi;Xj)− I(Xj ;Xk)| ≥ ε. Say the edge which is found by Prim
step is between Xi and Xk. What remained is to decide whether Xi or Xk is the center of the graph
which can done by comparing

∑
j Î(Xi, Xj) >

∑
j Î(Xk, Xj). According to Theorem 5.1, entropy

can estimated with ε error with α-locally differential private guaranty using O(c2 log 1
δ /(ε

2α2))
samples. Note that Algorithm 4 estimates 2d mutual information which requires 4d marginal and 2d
pairwise marginal entropy estimation which justifies the scaling of the confidence parameter, thus the
algorithm is correct if the confidence parameter is set to δ/6d due to the union bound and sample
complexity is accordingly O( 6dc2

ε2α2 log 6d
δ ).

E Proof of Theorem 5.5

Assume a deterministic algorithmA which takes sub-quadratic samples from X and estimates H(X).
In addition, we assume that its sample complexity is o(d2). Thus ∀C(> 0) there exists d0 such that
for any d > d0 it holds the sample complexity of the algorithm is < Cd2 which implies that, if d is
large enough the algorithm needs ≤ d2−κ. In addition, we can pick d so as d−κ < κ which implies
d2−d2−κ > (1−κ)d2 thus any deterministic algorithm which takes sub-quadratic sample size never
observes (1− κ)d2 edges for ∀κ when d is large enough.

Let us recall that Turán’s theorem

Theorem E.1 ([9]). Let G(V,E) be a graph with graph vertices V and graph edges E on d graph
vertices without a (`+ 1)-clique. Then

t(d, `) ≤ (`− 1)d2

2`
,

where t(n, k) is the edge count.
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In addition, Turán’s graph GT (d, `) [9] is defined as the unique graph without a (`+ 1)-clique having
the maximum possible number of graph edges which is

t(d, `) =

⌊
(`− 1)d2

2`

⌋
Thus for any d > 0 there exists a graph G = (V,E) such that |V | = d and |E| > t(d, k) and contains
a (k + 1)-clique. This implies that for any algorithm A, if it does not observes at least t(d, k) edges,
then there exists a k + 1-clique of which any edges is never observed by algorithm A. Now apply
Turan’s result with ` = d/2 which implies that

t(d, d/2) =
⌊
(1/2− 1/d)d2

⌋
Thus for any κ ∈ (0, 1/2) and any algorithm with sample complexity o(d2), if d is large enough, then
there will be a Θ(d/2)-clique for which the algorithm does not observe any edge within this clique.

Finally we can easily construct two d/2-dimensional problem instances, denoted by S and S′ for
which the joint entropy differs by Ω(d): let us take d/2 Bernoulli with parameter 1/2 and take the
copy of the same Bernoulli d/2 times. The entropy is d/2 and 1 for these two joint distributions.
This also implies that for any deterministic algorithm we can construct two problem instances which
contains S and S′ so as they are independent from the rest of the marginals, and the algorithm does
not observe any sample from them, thus it cannot achieve o(d) additive error.

F Proof of Theorem 5.6

Let θ̂n = θ̂(x1, . . . , xn) such that θ̂n : (Σd)n 7→ R be an estimator using n samples.
Theorem F.1. [Le Cam’s theorem] Let P be a set of distributions. Then, for any pair of distributions
P0, P1 ∈ P , we have

inf
θ̂

max
P∈P

EP
[
d(θ̂n(P ), θ(P ))

]
≥ d(θ(P0), θ(P1))

8
e−ndKL(P0,P1),

where θ(P ) is a parameter taking values in a metric space with metric d, and θ̂n is the estimator of θ
based on n samples.

Let us consider two Bernoulli distributions P0 and P1 with parameters p0 = 1/2 and p1 = 1/2− ε,
where ε ∈ (0, 1/2). The entropy of random variables X0 and X1 distributed according to P0 and P1

are H(X0) = 1 and

H(X1) = −
(

1

2
− ε
)

log2

(
1

2
− ε
)
−
(

1

2
+ ε

)
log2

(
1

2
+ ε

)
.

Thus,

|H(X0)−H(X1)| = H(X0)−H(X1) =

(
ε+

1

2

)
log2(1 + 2ε)−

(
ε− 1

2

)
log2(1− 2ε)

≥
(
ε+

1

2

)
2ε

1 + 2ε
−
(

1

2
− ε
)

2ε

≥ 2ε2

where we used that log(1 − 2ε) ≤ −ε for 0 < ε < 1 and ε
1+ε ≤ log(1 + ε) for ε > −1. The KL

divergence can be upper bounded as

dKL(P0, P1) = −1

2
log2(1− 4ε2) ≤ 2ε2.

We can now apply the Le Cam’s theorem for the set of Bernoulli distributions with metric d being the
`1-norm as

inf
θ̂

max
P∈P

EP
[
|θ̂n(P )−H(P )|

]
≥ d(θ(P0), θ(P1))

8
e−ndKL(P0,P1) ≥ ε2

4
e−2nε2

Using this result with ε′ =
√
ε, the following sample complexity can be obtained for estimating

Shannon entropy.
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Corollary F.2. For any θ̂n such that n ∈ o(1/ε), there exists a Bernoulli distribution P for which

EP
[
|θ̂n(P )−H(P )|

]
≥ C · ε,

with C > 0 that does not depend on ε.

First of all, notice that some bound on error r(δ), either lower or upper, that holds with probability
1− δ, translates into the bound r(δ) + δ on the expected error in a straightforward manner. Thus the
lower bound presented in Corollary F.2 also implies that there is no high probability estimator for
entropy with o(1/ε) sample complexity for discrete distributions. This can be used to lower bound
of the entropy estimator for joint distribution as follows. Let B = {b = (b1, . . . , bd) : bj ∈ {0, 1}}
are the vertices of the d dimensional hypercube, and let us define a set of d-dimensional distribution
Pb indexed by the element of B. Each Pb ∈ P contains X0 ∼ Bern(1/2) if bi = 0 and X1 ∼
Bern(1/2− ε) if bi = 1, i.e.

Pb = Xb1 ⊕ · · · ⊕Xbd

and
P =

{
Pb : b ∈ {0, 1}d

}
.

It is clear that P is a subset of the tree-structured distributions and each distribution contains d
independent Bernoulli random variables, thus

H(Pb) =

d∑
i=1

H(Xbi)

Therefore any estimator that achieves at most ε · d additive error for H(Pb) has to estimate each
individual Bernoulli distribution with at most ε error. The sample complexity of any estimator of
H(Pb) with an additive error O(εd) is Ω(d/ε).

G Proof of Theorems 6.1

Algorithm 5 clearly has Õ(b) communication complexity and Õ(b) space complexity, since it only
has to maintain a counter of collisions between b-bit hashes. Each user replaces their hash with
a random hash with probability λ, and therefore the algorithm is α-local differentially private,
since log

(
λ

(1−λ)/2b

)
= log

(
λ2b

1−λ

)
= α where we used λ = eα

eα+2b
. Before proving the sample

complexity we will first prove the following result.

Lemma G.1. Let Ĝ be output by Algorithm 5. Let ε, δ ∈ (0, 1). If

n ≥
6b2 log 2

δ

α2ε2
((

1− 1
2b

)
G(X) + 1

2b

)
then |Ĝ−G(X)| ≤ ε

(
G(X) + 1

2b−1

)
with probability at least 1− δ.

Proof. Recall that if X and X ′ are independent and identically distributed then

G(X) = 1− Pr[X = X ′].

We will calculate the expected value of each cq. Suppose pair q contains samples xi and xj . If
xi = xj then cq = 1 with probability 1− λ+ λ

2b
, and otherwise cq = 1 with probability 1

2b
. Thus

E[cq] = Pr[cq = 1 | xi = xj ] Pr[xi = xj ] + Pr[cq = 1 | xi 6= xj ] Pr[xi 6= xj ]

=

(
1− λ+

λ

2b

)
Pr[xi = xj ] +

1

2b
Pr[xi 6= xj ]

=

(
1− λ+

λ

2b

)
Pr[xi = xj ] +

1

2b
(1− Pr[xi = xj ])

=

(
1− λ+

λ

2b
− 1

2b

)
Pr[xi = xj ] +

1

2b
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=

(
1− λ+

λ

2b
− 1

2b

)
(1−G(X)) +

1

2b

where the last line follows because xi and xj independent samples from the distribution of X .

Recall that by the Chernoff bound if z1, . . . , zm are independent random variables such that zi ∈
{0, 1} then for all ε ∈ (0, 1) the average z̄ = (z1 + · · · zm)/m satisfies

Pr [z̄ ≥ (1 + ε) E[z̄]] ≤ exp

(
−ε

2m

3
E[z̄]

)
, and

Pr [z̄ ≤ (1− ε) E[z̄]] ≤ exp

(
−ε

2m

3
E[z̄]

)
.

The cq’s are independent random variables because each cq is defined using a distinct pair of samples
and distinct pair index. Also, each cq ∈ {0, 1}. Note that we proved above that the average of the
cq’s is 2

n

∑
q E[cq] =

(
1− λ+ λ

2b
− 1

2b

)
(1−G(X)) + 1

2b
. Therefore

Pr

[
Ĝ ≥ G(X) + ε

(
G(X) +

1

2b − 1

)]
= Pr

[
2b

2b − 1
c̄− 1

2b − 1
≥ G(X) + ε

(
G(X) +

1

2b − 1

)]
= Pr

[
c̄ ≥ (1 + ε)

((
1− 1

2b

)
G(X) +

1

2b

)]
= Pr [c̄ ≥ (1 + ε) E[c̄]]

≤ exp

(
−ε

2n

6
E[c̄]

)
= exp

(
−α

2ε2n

6b2

((
1− 1

2b

)
(1−G(X)) +

1

2b

))
where the inequality follows from the Chernoff upper bound. By a very similar calculation

Pr

[
Ĝ ≤ G(X)− ε

(
G(X) +

1

2b − 1

)]
= Pr

[
2b

2b − 1
c̄− 1

2b − 1
≤ G(X)− ε

(
G(X) +

1

2b − 1

)]
= Pr

[
c̄ ≤ (1− ε)

((
1− 1

2b

)
G(X) +

1

2b

)]
= Pr [c̄ ≤ (1− ε) E[c̄]]

≤ exp

(
−ε

2n

6
E[c̄]

)
= exp

(
−α

2ε2n

6b2

((
1− 1

2b

)
(1−G(X)) +

1

2b

))
where the inequality follows from the Chernoff lower bound. Combining the above we have

Pr

[∣∣∣Ĝ−G(X)
∣∣∣ ≥ ε(1−G(X) +

1

2b − 1

)]
≤ 2 exp

(
−α

2ε2n

6b2

((
1− 1

2b

)
(1−G(X)) +

1

2b

))
and rearranging proves the lemma.

Now the first sample complexity bound in the theorem follows immediately from Lemma G.1. As for
the second sample complexity bound, since C(X) = − log(1−G(X)) we have∣∣∣C(X)− Ĉ

∣∣∣ =
∣∣∣log(1− Ĝ)− log(1−G(X))

∣∣∣ =

∣∣∣∣∣log
1− Ĝ

1−G(X)

∣∣∣∣∣
≤ log

1 +

∣∣∣Ĝ−G(X)
∣∣∣

1−G(X)

 ≤
∣∣∣Ĝ−G(X)

∣∣∣
1−G(X)

.

(7)
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Observe that G(X) ∈ [ 1
k , 1] for any random variable X with support size k. Now we consider two

cases. First, assume 2b > k. Since

n ≥
24k2b2 log 2

δ

α2ε2 min{k, 2b}
=

6b2 log 2
δ

α2( ε2 )2 1
k

≥
6b2 log 2

δ

α2( ε2 )2
((

1− 1
2b

)
1
k + 1

2b

) ≥ 6b2 log 2
δ

α2( ε2 )2
((

1− 1
2b

)
(1−G(X)) + 1

2b

)
we have by Lemma G.1 that∣∣∣Ĝ−G(X)

∣∣∣ ≤ ε

2

(
1−G(X) +

1

2b − 1

)
≤ ε(1−G(X)),

where the second inequality uses the fact that 2b > k implies 1
2b−1

≤ 1
k ≤ 1−G(X). Combining

with Eq.(7) we have |Ĉ − C(X)| ≤ |Ĝ−G(X)|
1−G(X) ≤ ε.

Next, assume 2b ≤ k. We have

n ≥
24b2k2 log 2

δ

α2ε2 min{k, 2b}
=

6b2 log 2
δ

α2( ε
2k )22b

≥
6b2 log 2

δ

α2( ε
2k )2

((
1− 1

2b

)
(1−G(X)) + 1

2b

) ,
where the second inequality uses 2b ≥ 1 and 1−G(X) ≤ 1. Thus by Lemma G.1∣∣∣Ĝ−G(X)

∣∣∣ ≤ ε

2k

(
1−G(X) +

1

2b − 1

)
≤ ε

k
.

Combining with Eq. (7) we have

|Ĉ − C(X)| ≤

∣∣∣Ĝ−G(X)
∣∣∣

1−G(X)
≤ k

∣∣∣Ĝ−G(X)
∣∣∣ ≤ ε.
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