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1. Introduction
Actor-critic (AC) methods were among the earliest to
be investigated in reinforcement learning (RL). AC al-
gorithms are based on the simultaneous online esti-
mation of the parameters of two structures, called the
actor and the critic. The actor corresponds to a con-
ventional action-selection policy, mapping states to ac-
tions in a probabilistic manner. The critic corresponds
to a conventional value function, mapping states to
expected cumulative future reward. Thus, the critic
addresses a problem of prediction, whereas the actor
is concerned with control. These problems are separa-
ble, but are solved simultaneously to find an optimal
policy, as in policy iteration.

In this work,1 we present a Bayesian take on the AC ar-
chitecture. The proposed Bayesian actor-critic (BAC)
model uses a Bayesian class of non-parametric crit-
ics based on the Gaussian process temporal-difference
(GPTD) learning (Engel et al., 2005). Such critics
model the action-value function as a GP, allowing
Bayes’ rule to be used in computing a posterior distri-
bution over action-value functions, conditioned on the
observed data. The Bayesian actor in BAC is based
on the Bayesian policy gradient (BPG) approach pro-
posed in Ghavamzadeh and Engel (2007b). The ac-
tor uses the posterior distribution over action-value
functions computed by the critic, and derives a pos-
terior distribution for the gradient of the average dis-
counted return with respect to the policy parameters.
Appropriate choices of prior covariance (kernel) be-
tween state-action values that make action-value func-
tion compatible with the parametric family of policies,
allow us to obtain closed-form expressions for the pos-
terior distribution of the policy gradient. The poste-
rior mean serves as our estimate of the gradient and is
used to update the policy, while the posterior covari-
ance allows us to gauge the reliability of the update.

2. Bayesian Actor-Critic
In AC methods, one defines a class of smoothly param-
eterized stochastic policies {µ(·|x;θ),x ∈ X ,θ ∈ Θ}.

1This extended abstract is a summary of the work in
Ghavamzadeh and Engel (2007a).

Algorithms typically estimate the gradient of the ex-
pected return, η(θ) = E

[∑T
t=0 γ

tR(xt,at)
]
, w.r.t. the

policy parameters θ from observed system trajectories,
and then improve the policy by adjusting its parame-
ters in the direction of the gradient. The policy gra-
dient theorem (Marbach, 1998, Konda & Tsitsiklis,
2000, Sutton et al., 2000) states that the gradient of
the expected return is given by

∇θη(θ) =

Z
Z
dz π(z;θ)∇θ log

`
µ(a|x;θ)

´
Q(z), (1)

where z = (x,a), and π(z;θ) is a discounted weight-
ing of state-action pairs under policy µ(θ). Moreover,
by the compatibility assumption (Konda & Tsitsiklis,
2000, Sutton et al., 2000) we may replace the exact
(but unknown) action-value function Q(z) in (1) by
an approximate action-value function Q̂(z).

Assumption 1 (Compatibility). Suppose that Q̂(z) is
parametrized by a vector w of n parameters, Q̂(z) =
Q̂(z;w), then ∇wQ̂(z;w) = ∇θ log(µ(a|x;θ)).

The BAC model consists of a non-parametric Bayesian
critic and a parametric Bayesian actor. First the critic
computes a posterior distribution over action-value
functions using the data generated by the current pol-
icy. Then, the actor uses the posterior moments cal-
culated by the critic and the observed data, and com-
putes a posterior distribution over policy gradients.
The posterior mean serves as the estimate of the pol-
icy gradient and is used to update the policy, while the
posterior covariance serves as a measure for the relia-
bility of this update. In the following, we first describe
how each component of BAC is formulated, and then
finish the paper by a sketch of the BAC algorithm.

Bayesian Actor is responsible for computing a pos-
terior distribution for the policy gradient given the
sequence of individual observed transitions Dt. We
start with the expression for the policy gradient given
in (1). We place a GP prior over action-value func-
tions using a prior covariance kernel defined on state-
action pairs k(z, z′) = Cov[Q(z), Q(z′)]. Making use
of the linearity of (1) in Q, and denoting g(z;θ) =
π(z;θ)∇θ log

(
µ(a|x;θ)

)
, we obtain the posterior mo-
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ments of the policy gradient given the observed data

E[∇θη|Dt] =

Z
Z
dzg(z;θ)E

ˆ
Q(z)|Dt

˜
, (2)

Cov[∇θη|Dt] =

Z
Z2
dzdz′g(z;θ)Cov

ˆ
Q(z), Q(z′)|Dt

˜
g(z′;θ)>.

Bayesian Critic is responsible for providing the ac-
tor with the posterior moments of Q(z). Fortunately,
GPTD (Engel et al., 2005) provides a well-developed
machinery for this procedure. The GPTD model is a
direct application of GP regression in TD learning. It
is based on a statistical generative model relating the
observed reward signal to the unobserved action-value
function. Under certain assumptions on the distribu-
tion of the discounted return random process (Engel
et al., 2005), we can obtain the posterior moments of
Q as

E
ˆ
Q(z)|Dt

˜
= kt(z)>αt, (3)

Cov
ˆ
Q(z), Q(z′)|Dt

˜
= k(z,z′)− kt(z)>Ctkt(z

′).

Now we return to the actor and substitute the ex-
pressions for the posterior moments of the action-value
function in (2) with the critic’s results of (3), we get

E[∇θη|Dt] =

Z
Z
dzg(z;θ)kt(z)>αt,

Cov[∇θη|Dt] =Z
Z2
dzdz′g(z;θ)

`
k(z,z′)− kt(z)>Ctkt(z

′)
´
g(z′;θ)>.

The equations above provide us with the general form
of the posterior policy gradient moments. We are now
left with a computational issue; namely, how to com-
pute the integrals in these expressions? It can be
shown (Ghavamzadeh & Engel, 2007a) that by choos-
ing the prior covariance to be the sum of an arbitrary
state-kernel and the Fisher kernel over state-action
pairs, the integrals can be computed analytically.

Proposition 1. Let k(z, z′) = kx(x,x′) + kF (z, z′)
for all (z, z′) ∈ Z2, where kx : X 2 → R is an arbi-
trary positive definite kernel function, and kF (z, z′) =
u(z)>G−1u(z′) is the Fisher kernel in which u(z) =
∇θ log

(
µ(a|x;θ)

)
and G = E

[
u(z)u(z)>

]
are the

score vector and the Fisher information matrix cor-
responding to policy µ(θ), respectively. Then

E[∇θη|Dt] = U tαt , U t =
ˆ
u(z0),u(z1), . . . ,u(zt)

˜
,

Cov [∇θη|Dt] = G−U tCtU
>
t .

An immediate consequence of Proposition 1 is that, in
order to compute the posterior moments of the pol-
icy gradient, we only need to be able to evaluate (or
estimate) the score vectors u(zi) and the Fisher in-
formation matrix G of the policy. Algorithm 1 is a
pseudocode sketch of the BAC algorithm, using either
the regular or the natural gradient in the policy up-
date, and with G estimated using Ĝt.

Algorithm 1 Bayesian Actor-Critic
1: BAC(θ,M, ε)
• θ initial policy parameters
• M > 0 trajectories for gradient evaluation
• ε > 0 termination threshold

2: done = false
3: while not done do
4: Run GPTD for M episodes. GPTD

returns αt,Ct,U t, Ĝt

5: ∆θ = U tαt (regular gradient) or
∆θ = Ĝ

−1

t U tαt (natural gradient)
6: θ := θ + β∆θ
7: if |∆θ| < ε then done = true
8: end while
9: return θ

3. Discussion
The BAC algorithms discussed in this paper present a
Bayesian framework for reasoning about value function
and policy in RL. The strengths of this approach lie
primarily in its ability to provide 1) a non-parametric
representation for value functions, and 2) confidence
measure on value function predictions and policy gra-
dient estimates. These properties are quite unique
and have many potential uses in large MDPs such as
dealing with high-dimensional state and action spaces,
balancing exploration and exploitation, and determin-
ing the size and direction of the policy update. The
GPTD approach has been successfully applied to high-
dimensional control problems (Engel et al., 2006). We
believe its combination with policy learning provides
a more powerful tool to tackle high-dimensional prob-
lems, specifically those with large and continuous ac-
tion spaces.
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