
Hierarchical Hybrid Reinforcement Learning Algorithms

Mohammad Ghavamzadeh mohammad.ghavamzadeh@inria.fr

INRIA Lille - Nord Europe, Team SequeL, France

1. Introduction
Hierarchical reinforcement learning (HRL) is a general
framework which attempts to accelerate policy learn-
ing in large domains. The basic idea is to incorporate
prior knowledge and decompose the task into a col-
lection of subtasks with smaller and more manageable
state and action spaces, and learn these subtasks in
a way to solve the overall problem. The well-studied
HRL frameworks: HAMs (Parr, 1998), options (Sut-
ton et al., 1999), and MAXQ (Dietterich, 2000) are all
based on value function-based RL (VFRL) methods.
Although VFRL has been extensively studied in the
machine learning literature, there are only weak the-
oretical guarantees on the convergence of these meth-
ods on problems with large or continuous state spaces.
Moreover, application of these methods can be prob-
lematic in domains with large or continuous action
spaces. This is because finding the greedy action,
which is required at every step of these algorithms,
can be very expensive in such problems.

An alternative approach to VFRL is policy gradient
RL (PGRL). These algorithms have received much at-
tention as a means to solve problems with continuous
state and action spaces, mainly because 1) they are
guaranteed to converge to local optimal policies, and
2) it is possible to incorporate prior knowledge into
these methods via appropriate choice of the paramet-
ric form of the policy. However, in high-dimensional
tasks, in which the policy is parameterized using a
large number of parameters, the PGRL methods may
show poor performance by becoming stuck in local op-
tima. Moreover, they are usually slower than VFRL
methods, due to the large variance of their gradient
estimators.

A possible approach to control high-dimensional prob-
lems, including those in robotics, is to design algo-
rithms that can take advantage of the strengths of
all the above techniques: the modularity of HRL, the
speed of VFRL algorithms, and the efficacy of PGRL
methods in dealing with continuos state and action
problems. In this work, we define a family of HRL
algorithms in which VFRL methods are used to con-
trol high-level subtasks, which usually involve smaller
and more manageable state and finite action spaces,
and PGRL controllers are used for low-level subtasks,
which usually have continuous state and/or action

spaces. We call this family of algorithms hierarchi-

cal hybrid RL. In the next section, we use an example
to briefly describe these algorithms; for more details
please refer to Ghavamzadeh and Mahadevan (2003).

2. Hierarchical Hybrid RL

The ship steering problem (Miller et al., 1990) is a
continuous 4-dim state 1-dim action problem (Fig. 1),
in which a ship starts at a randomly chosen position,
orientation, and turning rate, and is to be maneuvered
at a constant speed through a gate placed at a fixed
position. Flat PGRL algorithms without careful tun-
ing do not achieve a good performance in a reasonable
amount of time in this problem. We believe the failure
is due to 1) Since the ship cannot turn faster than 15
deg/sec, all the state variables change only by a small
amount at each control interval. Thus, a high reso-
lution discretization of the state space is necessary in
order to accurately model state transitions, which in
turn means a large number of parameters for the ap-
proximator. 2) There is a time lag between changes in
the desired turning rate r, and the actual turning rate
θ̇, ship’s position x, y and orientation θ, which requires
the controller to deal with long delays.

1 km

1 km

0
0

x

y

(x,y).

Gate

θ

State x 0 to 1000 m
y 0 to 1000 m
θ -180 to 180 deg

θ̇ -15 to 15 deg/sec
Action r -15 to 15 deg/sec

Figure 1. The ship steering domain.

However, the flat PGRL algorithms can be successfully
applied to simplified versions of this problem shown in
Fig. 2, when 1) the range of x and y is smaller, 2) the
ship always starts at a fixed position with randomly
chosen orientation and turning rate, and 3) the goal is
a fixed point. It indicates that the control problem can
be learned using an appropriate hierarchical decompo-
sition (Fig. 3). At the high-level, the ship learns to se-
lect among four diagonal and four horizontal/vertical
subtasks (see Fig. 2). At the low-level, each subtask
learns a sequence of actions (turning rates) to achieve
its goal. Using symmetry, the eight subtasks of the
root can be mapped to only two subtasks, one corre-
sponding to the four diagonal subtasks and one cor-
responding to the four horizontal/vertical subtasks.



Hierarchical Hybrid Reinforcement Learning Algorithms

150 m

0
0 x

y

150 m

Initial Position (40,75)

Goal (140,75)

0
0 x

y

150 m

150 m

Initial Position (40,40)

Goal (140,140)

Figure 2. Simplified versions of the ship steering problem.

Continuous Action
Turning Rate r

-15 < r < 15

Continuous Action
Turning Rate r

-15 < r < 15

x = x + 100
y = y + 100

x = x + 100
y = y - 100

x = x - 100
y = y + 100

x = x - 100
y = y - 100

x = x + 100
y = y

x = x
y = y - 100

x = x - 100
y = y

x = x
y = y + 100

Root

Diagonal Subtasks Subtasks
Horizontal / Vertical

Diagonal
Subtask Subtask

Primitive Action

Horizontal / Vertical

Figure 3. A task graph for the ship steering problem.

After decomposing the overall task into a collection of
subtasks, each subtask is formulated either as a VFRL
or a PGRL problem. At the high-level subtasks in
which only a subset of the state variables is relevant
(positions x and y), and the action space is discrete (4
diagonal and 4 horizontal/vertical subtasks), the state
space is coarsely discretized and a VFRL algorithm is
used to learn a policy. At the low-level subtasks in
which only a small range of the state variables is rele-
vant (0 ≤ x, y ≤ 150) and the action space is continu-
ous, the state space is finely discretized and a PGRL
algorithm is used for learning. In these subtask, the
performance measure optimized by the PGRL algo-
rithm is weighted reward-to-go χπ =

∑
s
Iπ(s)Jπ(s),

where Jπ(s) is the expected sum of rewards when
starting in state s, and following policy π until the sub-
task terminates, and Iπ(s) is the probability that the
subtask starts in state s under policy π. The overall
learning algorithm is similar to MAXQ-Q (Dietterich,
2000). It is a recursive function that executes the cur-
rent exploration policy starting from the root. When
control is at a subtask, it performs an action until it
reaches a terminal state, at which point it returns the
sum of the rewards observed and the number of ac-
tions taken during its execution to its parent task. To
execute an action, the algorithm calls itself recursively.
When the recursive call returns, it updates its param-
eters either using a VFRL or a PGRL algorithm.

3. Discussion
Although the hybrid algorithms presented in this pa-
per provide a framework for concurrent learning of
high-level strategies and low-level behaviors, they may
not yet be adequate for many problems in robotics.
However, they have a number of desirable properties
(discussed below) that give them the potential to be
used along with other techniques in order to tackle
robotics applications.

1) As we showed in the ship steering problem, differ-
ent notions of similarity such as symmetry can be used
to reduce the number of parameters to be learned.
2) Using state abstraction, only a subset of the state
variables is usually relevant to control each subtask.
State abstraction can also help to reduce the range of
the state variables used by the subtasks.
3) Additional rewards to those of the original MDP
can be used inside each subtask to accelerate its learn-
ing, but they should not be propagated to the higher
levels of the hierarchy. This can be implemented using
two value functions for each subtask: internal value

function that is defined based on both the reward of
the MDP and the additional reward, and is used only
inside the subtask, and external value function that is
only based on the reward of the MDP and is propa-
gated to the higher levels of the hierarchy.
4) Learning in subtasks does not have to be started
from scratch, subtasks can be initialized with policies
acquired through imitation learning, practice, or some
sort of bottom-up learning.
5) The policy learned for each subtask is without ref-
erence to the context in which it is executed. This
property makes it easier to share and reuse subtasks.
6) Although the context-free property allows for
subtask-sharing among problems, it generates non-
smooth policies that may not be desirable in many ap-
plications, especially those in robotics. This is because
each subtask terminates independent of the goal of the
subtask that must be executed next. A possible solu-
tion to this problem is an alternative policy execution
in the task graph, called polling (Dietterich, 2000). In
polling, each action is chosen by starting at root (not at
the current node in the hierarchy) and computing the
path with the highest action-value function. The prim-
itive action at the end of this path is then executed,
and the process is repeated. If the learned policy is
not optimal, then this one-step greedy policy will be
closer to an optimal policy, because it corresponds to
one step of policy improvement in policy iteration.

References

Dietterich, T. (2000). Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial In-
telligence Research, 13, 227–303.

Ghavamzadeh, M., & Mahadevan, S. (2003). Hierarchical policy
gradient algorithms. Proceedings of the Twentieth ICML (pp.
226–233).

Miller, W., Sutton, R., & Werbos, P. (1990). Neural netwroks for
control. MIT Press.

Parr, R. (1998). Hierarchical control and learning for Markov de-
cision processes. Doctoral dissertation, University of California
at Berkeley.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. AI, 112, 181–211.


