
Robot Learning with Regularized Reinforcement Learning

Amir-massoud Farahmand1, Mohammad Ghavamzadeh2, Csaba Szepesvári1, Shie Mannor3

1Department of Computing Science, University of Alberta, Canada {amir,szepesva}@cs.ualberta.ca

2INRIA Lille - Nord Europe, Team SequeL, France mohammad.ghavamzadeh@inria.fr

3Department of ECE, McGill University, Canada - Department of EE, Technion, Israel shie.mannor@mcgill.ca

1. Introduction

Sequential decision-making problems are of prominent
importance in robotics. Many robotics tasks, such
as motion planning for a robotic arm, gait optimiza-
tion for a quadruple robot, and dynamic balancing
of humanoids, can all be formulated as a sequential
decision-making problem. To give a concrete exam-
ple, consider the visual-servoing problem where the
goal is finding a control signal that moves the robot’s
arm from the initial position to the target position
while minimizing constraints such as consumed energy,
movement time, and the jerkiness of the movement.
In visual-servoing, both current and target positions
are directly or indirectly specified by visual features.
The problem becomes more difficult in uncalibrated
setting where the kinematic and dynamic models of
the robot-camera system are not known a priori. This
may happen, for instance, when the robot picks up a
wooden stick with unknown measurements and wants
to use it to move another objects around – a common
scenario for humans and some other animals.

Reinforcement learning (RL) and dynamic program-
ming (DP) are mathematical frameworks that cast
a sequential decision-making task as an optimization
problem. A common approach for solving RL/DP and
finding optimal or close-to-optimal policies is using an
intermediate entity, called value function. In many
robotics tasks, the state space is large or infinite, and
thus, the value function should inevitably be repre-
sented by a function approximator, whose quality has
a major impact on the quality of the learned policy.
Although different methods for value function approx-
imation have been considered in RL/DP literature,
such as generalized linear models with predefined ba-
sis functions, kernel regression, regression trees, and
neural networks, the designer still needs to make non-
trivial design choices such as basis function selection
or the stopping rule for growing the tree. The hassle of
designing the right function approximator is one im-
portant reason that has prevented roboticist from us-

ing RL/DP methods in their problems. On the other
hand, the usual practice of hand-designing controllers
is not easily scalable to problems with highly-nonlinear
and uncertain dynamics.

Our goal is to design adaptive RL/DP methods that
automatically find the right value-function approxima-
tor for the problem in hand. The decision must ideally
be based on the regularities of the problem such as the
smoothness or sparsity of the value function, and the
number of samples coming from the agent’s direct in-
teraction with the environment. We are advocating
the use of regularization as a powerful tool to design
adaptive learning procedures. The use of regulariza-
tion has been proven useful in supervised learning, and
we believe the same is true for RL/DP. The idea of reg-
ularization is to start with a large function space and
control the solution’s complexity by a regularization
(penalization) term. This is a principled way to bal-
ance approximation and estimation errors (or bias and
variance).

In this work, we present L2-regularized counterparts of
two widely-used RL/DP algorithms: approximate pol-
icy iteration and fitted Q-iteration. We show how our
regularized algorithms can be implemented efficiently
when the value function approximator belongs to 1) a
space spanned by a finite number of linearly indepen-
dent basis functions (a parametric approach), and 2)
a reproducing kernel Hilbert space (a non-parametric
approach). We also prove finite-sample performance
bounds for our algorithms. In particular, we show
that they are able to achieve rates that are as good
as the corresponding regression rates when the value
functions belong to a known smoothness class. For
the detailed formulation of the algorithms and their
implementation and analysis, please refer to Farah-
mand et al. (2009b) for regularized policy iteration,
and to Farahmand et al. (2009a) for regularized fitted
Q-itteration. The results of applying our algorithms to
a visual-servoing problem can be found in Farahmand
et al. (2009c).



Robot Learning with Regularized Reinforcement Learning

2. Regularized Policy Iteration

The pseudo-code of the policy iteration algorithm is
shown in Algorithm 1. In this algorithm, a policy
is first evaluated (Line 5) and then improved (Line
6). This process is repeated for N steps. In each it-
eration i, training sample Di = {(Xt, At, Rt)}1≤t≤n
is generated by policy πi, thus, At = πi(Xt) and
Rt ∼ R(·|Xt, At), and is given to an approximate
policy evaluation (APEval) method. The goal of
APEval is to find a “close enough” approximation of
the value function of policy πi, Q(i). The improved
policy πi+1 is the greedy policy w.r.t. the action-
value function estimate Q(i). Two widely-used APEval
methods in RL/DP are Bellman residual minimization
(BRM) and least-squares temporal-difference learning
(LSTD). In our regularized policy iteration algorithms
we replace these two APEval methods with their L2-
regularized counterparts, REG-BRM and REG-LSTD.

In REG-BRM, the action-value function of policy πi is
estimated by solving the following coupled optimiza-
tion problems:

h
∗
(·;Q) = argmin

h∈FM

h ‚‚‚h− T̂πiQ‚‚‚2
n

+ λh,nJ(h)
i
,

Q
(i)

= argmin
Q∈FM

h ‚‚‚Q− T̂πiQ‚‚‚2
n
−
‚‚‚h∗(·;Q)− T̂πiQ

‚‚‚2
n

+ λQ,nJ(Q)
i
,

where Zt = (Xt, At) and Z ′t =
(
Xt+1, πi(Xt+1)

)
,

(T̂πiQ)(Zt) = Rt + γQ(Z ′t) is the empirical Bellman
operator, ‖·‖2n is the empirical norm, and J(·) and
λh,n, λQ,n > 0 are the regularization (penalty) term
and coefficients, respectively.

In REG-LSTD, the following coupled optimization
problems must be solved to estimate the action-value
function of the ith policy:

h
∗
(·;Q) = argmin

h∈FM

h ‚‚‚h− T̂πiQ‚‚‚2
n

+ λh,nJ(h)
i
,

Q
(i)

= argmin
Q∈FM

h ‚‚Q− h∗(·;Q)
‚‚2
n

+ λQ,nJ(Q)
i
.

The choice of FM is by the designer. It can be a
finite dimensional parametric space with L2 norm of
weights as the regularizer, or an infinite dimensional
function space like a reproducing kernel Hilbert space
(RKHS) with its corresponding norm as the regular-
izer, i.e. J(·) = ‖·‖2H. In these two cases, we can show
that the coupled optimization problems of REG-BRM
and REG-LSTD have closed-form solutions.

3. Regularized Fitted Q-Iteration

Fitted Q-iteration is an approximate value iteration
method, whose pseudo-code is shown in Algorithm 2.

Algorithm 1 Approximate Policy Iteration
1: ApproxPolicyIteration(N, Q(−1), APEval)
• N : number of iterations
• Q(−1): Initial action-value function

2: π0 ← π̂(Q(−1))
3: for i = 0 to N − 1 do
4: Generate training sample Di

5: Q(i) ← APEval(πi,Di) // an approximate policy
evaluation method, e.g., REG-LSTD or REG-BRM

6: πi+1 ← π̂(Q(i)) // the greedy policy w.r.t. Q(i)

7: end for

8: return Q(N−1) or πN = π̂(Q(N−1))

We add regularization to fitted Q-iteration by using a
regularized least-squares algorithm as its fitting pro-
cedure. The algorithm starts with an initial action-
value function Q(0). At each iteration i, it applies an
approximate Bellman optimality operator and uses a
regularized least-squares algorithm to fit Q(i+1) as the
new estimate of the action-value function. Assuming
that Di contains ni samples, the (i+ 1)th action-value
function is obtained by

Q
(i+1)

= argmin
Q∈FM

1

ni

niX
j=1

ˆ
Rj+γ max

a′∈A
Q

(i)
(X
′
j , a
′
)−Q(Xj , Aj)

˜2
+λJ(Q),

where J(Q) and λ > 0 are the regularization term and
coefficient, respectively, and X ′j is the next-state of
Xj . As in REG-BRM and REG-LSTD, we can obtain
closed-form solution when FM is the space spanned
by a finite number of basis functions or an RKHS.

Algorithm 2 Fitted Q-Iteration
1: Fitted Q-Iteration(N, Q(0), FitQ)
• N : number of iterations
• Q(0): Initial action-value function

2: for i = 0 to N − 1 do
3: Generate training sample Di

4: Q(i+1) ← FitQ(Q(i),Di) // a fitting procedure,
e.g., penalized least-squares

5: end for

6: return Q(N)

References

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, C., &
Mannor, S. (2009a). Regularized fitted Q-iteration for
planning in continuous-space Markovian decision prob-
lems. ACC.

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, C.,
& Mannor, S. (2009b). Regularized policy iteration.
NIPS21 (pp. 441–448).

Farahmand, A. M., Shademan, A., Jägersand, M., &
Szepesvári, C. (2009c). Model-based and model-free re-
inforcement learning for visual servoing. ICRA.


