
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 1

Classification-based Approximate Policy Iteration
Amir-massoud Farahmand, Doina Precup, André M.S. Barreto, Mohammad Ghavamzadeh

Abstract—Tackling large approximate dynamic programming
or reinforcement learning problems requires methods that can
exploit regularities of the problem in hand. Most current methods
are geared towards exploiting the regularities of either the value
function or the policy. We introduce a general classification-
based approximate policy iteration (CAPI) framework that can
exploit regularities of both. We establish theoretical guarantees
for the sample complexity of CAPI-style algorithms, which allow
the policy evaluation step to be performed by a wide variety
of algorithms, and can handle nonparametric representations of
policies. Our bounds on the estimation error of the performance
loss are tighter than existing results.1

Index Terms—Approximate Dynamic Programming, Rein-
forcement Learning, Approximate Policy Iteration, Classification,
Finite-Sample Analysis

I. INTRODUCTION

WE consider the problem of finding a near-optimal
policy (i.e., controller) for discounted Markov Decision

Processes (MDPs) with large state space and finite action
space [4] with an unknown model. For problems with large
state spaces (e.g., when the state space is Rd with large
d), finding a close-to-optimal policy is difficult (due to the
so-called curse of dimensionality) unless one benefits from
regularities, or special structure, of the problem in hand. One
group of algorithms developed in reinforcement learning (RL)
and approximate dynamic programming (ADP) focuses on
exploiting regularities of the value function [5, 6, 7, 8, 9],
while another group tries to benefit from regularities of the
policy [10, 11, 12]. The goal of this paper is to introduce and
analyze a class of algorithms, which we call Classification-
based Approximate Policy Iteration (CAPI), that can poten-
tially benefit simultaneously from both types of regularities.

Our approach is inspired by existing classification-based
RL algorithms [13, 14, 15]. These methods use rollout (i.e.,
Monte Carlo trajectories) to roughly estimate the action-value
function of the current policy at several states. The estimates
define a set of (noisy) greedy actions (positive examples) and

A.M. Farahmand is affiliated with the School of Computer Science,
McGill University, Montreal, Canada, the Robotics Institute, Carnegie Mellon
University, Pittsburgh, USA, and Mitsubishi Electric Research Laboratories,
Cambridge, USA (webpage: academic.SoloGen.net).

D. Precup is with the School of Computer Science, McGill University,
Montreal, Canada (email: dprecup@cs.mcgill.ca).

A.M.S. Barreto is affiliated with the School of Computer Science, McGill
University, Montreal, Canada and the National Laboratory for Scientific
Computing (LNCC), Petrópolis, Brazil (e-mail: amsb@lncc.br).

M. Ghavamzadeh is with Adobe Research, USA on leave of absence from
INRIA Lille, France (email: mohammad.ghavamzadeh@inria.fr).

Manuscript received on November 18, 2013, and revised and resubmitted
on July 3, 2014 and November 29, 2014.

1The CAPI framework was presented at the European Workshop on Rein-
forcement Learning (no proceedings) [1] and the Multidisciplinary Conference
on Reinforcement Learning and Decision Making (extended abstract) [2]. This
version includes the proofs and a significantly more detailed discussion of the
results. An extended version, including experimental results, is available [3].

non-greedy actions (negative examples), which are then fed
to a classifier. The classifier “generalizes” the greedy action
choices over the state space. The procedure is repeated.

Classification-based methods can be interpreted as variants
of Approximate Policy Iteration (API) that use rollouts to
estimate the action-value function (policy evaluation) and then
project the greedy policy obtained at those points onto a given
space of controllers (policy improvement).

Although classification-based RL methods can benefit from
regularities of the policy, the use of rollouts prevents gen-
eralization through the value function, which reduces data
efficiency. This lack of generalization makes rollout-based
estimators data-inefficient. This is a concern in real problems,
in which new samples may be expensive, e.g., in adaptive
treatment strategies. Moreover, one cannot easily use rollouts
when only access to a batch of data is allowed and a generative
model or simulator of the environment is not available.

To address the limitation of rollout-based estimators, we
propose the CAPI framework. CAPI generalizes the current
classification-based algorithms by allowing the use any policy
evaluation method including, but not limited to, rollout-based
estimators (as in previous work [13, 15]), LSTD [16], the
policy evaluation version of Fitted Q-Iteration [17], and their
regularized variants [5, 7], as well as online methods for
policy evaluation such as Temporal Difference learning. This
is a significant generalization of the existing classification-
based RL algorithms, which become special cases of CAPI.
Our theoretical results indicate that this extension is indeed
sound. CAPI uses a weighted loss instead of the conventional
0/1-loss of classification, which may lead to surprisingly bad
policies [3].

The main theoretical contribution of this paper is the finite-
sample error analysis of CAPI-style algorithms, which allows
general policy evaluation algorithms, handles nonparametric
(in the sense used by e.g., [18, 19]) policy spaces, and provides
a faster convergence rate for the estimation error than existing
results. Using nonparametric policies is a significant extension
of the work by Fern et al. [14], which is limited to finite
policy spaces, and of Lazaric et al. [15] and Gabillon et al.
[20], which are limited to policy spaces with finite Vapnik-
Chervonenkis (VC) dimension. Our faster convergence rates
are due to using a concentration inequality based on the
powerful notion of local Rademacher complexity [21], which
is known to lead to fast rates in supervised learning.

We also leverage the notion of action-gap regularity [22],
which implies that choosing the right action at each state may
not require a precise estimate of the action-value function.
When the action-gap regularity of a problem is favourable,
the convergence rate of CAPI is faster than the convergence
rate of the estimate of the action-value function (and without
any such assumption, the convergence rate is the same).

academic.SoloGen.net

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 2

Another theoretical contribution of this work is a new error
propagation result that shows that the errors at later iterations
of CAPI play a more important role on the performance of
the resulting policy.

II. BACKGROUND AND NOTATION

We consider a finite-action discounted MDP
(X ,A,P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X × A → M(X) is the
transition probability kernel, R : X × A → M(R) is the
reward kernel (with expected reward uniformly bounded
by Rmax), and γ ∈ [0, 1) is a discount factor. We use
rather standard notations and definitions (see e.g., [3, 4]):
π : X → A is a (deterministic Markov stationary) policy, V π

and Qπ are its value and action-value functions, and V ∗ and
Q∗ are the optimal value and action-value functions (bounded
by Qmax). A policy π is greedy w.r.t. an action-value function
Q, denoted by π = π̂(·;Q), if π(x) = argmaxa∈AQ(x, a)
holds for all x ∈ X (if there exist multiple maximizers, one
of them is chosen in an arbitrary deterministic manner).

Our theoretical analysis will rely on the notion of action-gap
regularity of an MDP [22], which characterizes the complexity
of a control problem. For simplicity, we define and analyze the
two-action case, but the CAPI framework naturally accommo-
dates MDPs with more actions, as we explain below.

Consider an MDP with two actions. For any Q : X ×A →
R, the action-gap function is defined as gQ(x) , |Q(x, 1) −
Q(x, 2)| for all x ∈ X . To understand why the action-gap
function is informative, suppose that we have an estimate Q̂π

of Qπ and we want to perform policy improvement based on
Q̂π . The greedy policy w.r.t. Q̂π , i.e., π̂(·; Q̂π), should ideally
be close to the greedy policy w.r.t. Qπ , i.e., π̂(·;Qπ). If the
action-gap gQπ (x) is large for some state x, the regret of
choosing an action different from π̂(x;Qπ), roughly speaking,
is large; however, confusing the best action with the other
one is also less likely. If the action-gap is small, a confusion
is more likely to arise, but the regret stemming from the
wrong choice will be small. To characterize how difficult a
problem is, we need to summarize the behaviour of the action-
gap function over the entire state space. This is done in the
following assumption.

Assumption A1 (Action-Gap). For a fixed MDP
(X ,A,P,R, γ) with |A| = 2 and a fixed distribution over
states ν ∈ M(X), there exist constants cg > 0 and
ζ ≥ 0 such that for any π ∈ Π and all ε > 0, we have
Pν (0 < gQπ (X) ≤ ε) ,

∫
X I{0 < gQπ (x) ≤ ε} dν(x) ≤

cg ε
ζ .

The value of ζ controls the distribution of the action-gap
gQπ (X). A large value of ζ indicates that the probability of
Qπ(X, 1) being very close to Qπ(X, 2) is small. This implies
that the estimate Q̂π can be quite inaccurate in a large subset of
the state space (measured according to ν), but π̂(·; Q̂π) would
still be the same as π̂(·;Qπ). Note that any MDP satisfies the
inequality when ζ = 0 and cg = 1, so the class of MDPs
satisfying this property is not restricted in any way.

Finally, the L∞-norm on X × A is defined as ‖Q‖∞ ,
sup(x,a)∈X×A |Q(x, a)|. We also use a definition of supremum

Algorithm CAPI(Π, ν,K)
Input: Policy space Π, State distribution ν, Number of iterations
K
Initialize: Let π(0) ∈ Π be an arbitrary policy
for k = 0, 1, . . . ,K − 1 do

Construct a dataset D(k)
n = {Xi}ni=1, Xi

i.i.d.∼ ν
Q̂πk ← PolicyEval(πk)
πk+1 ← argminπ∈Π L̂

πk
n (π) (action-gap-weighted classification)

end for

Fig. 1. CAPI pseudocode

norm that holds only on a set of points from X . Let Dn =
{X1, . . . , Xn}; then, ‖Q‖∞,Dn , maxx∈Dn,a∈A |Q(x, a)|.

III. CAPI FRAMEWORK

CAPI is an approximate policy iteration framework that
takes a policy space Π, a distribution over states ν ∈M(X),
and the number of iterations K as inputs, and returns a policy
whose performance should be close to the best policy in Π
(Figure 1). PolicyEval can be any algorithm that computes an
estimate Q̂π of Qπ , including all policy evaluation methods
mentioned in the Introduction.

Exploiting the intuition given by the action-gap phe-
nomenon [22], which entails that when gQπ (x) is large at
some state x, the regret of choosing an action different from
π̂(x;Qπ) is also large, the approximate policy improvement
step of CAPI at each iteration k is performed by minimizing
the following action-gap-weighted empirical loss function in
policy space Π:

L̂πkn (π) ,
∫
X
gQ̂πk (x)I{π(x) 6= argmax

a∈A
Q̂πk(x, a)} dνn (1)

=
∑

Xi∈D(k)
n

gQ̂πk (Xi)I{π(Xi) 6= argmax
a∈A

Q̂πk(Xi, a)},

where νn is the empirical distribution induced by the samples
in D(k)

n = {Xi}ni=1 with Xi ∼ ν, i.e., νn = 1
n

∑
Xi∈D(k)

n
δXi

with δXi being a point mass at Xi for i = 1, . . . , n. This loss
function emphasizes states in which the regret of choosing a
non-greedy action is large. The policy improvement step of
CAPI is defined by

πk+1 ← argmin
π∈Π

L̂πkn (π) (2)

Policy πk+1 is the projection of the greedy policy π̂(·; Q̂πk),
defined only at points D(k)

n , onto policy space Π when
the distance measure is weighted according to the esti-
mated action-gap function gQ̂πk . This should be contrasted
with the conventional classification-based approaches [13],
which use a uniform weight for all states, i.e., they mini-
mize

∫
X I{π(x) 6= argmaxa∈A Q̂

πk(x, a)}dνn. Note that the
loss (1) is also used by [15, 20]. In [3], we discuss why
uniformly weighted loss might lead to a bad choice of policies
and provide some empirical evidence too.

The flexibility in the choice of policy space Π and
PolicyEval allows benefitting from regularities of both policy
and value function. The policy space can be a parametric
function space, which is described by a fixed finite number

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 3

of parameters, or a nonparametric space, which grows with
data [18, 19]. Some examples are described by [3]. The
flexibility in the choice of PolicyEval enables CAPI to exploit
regularities of the value function, such as smoothness, which is
impossible with a rollout-based estimator. The optimal choices
for PolicyEval and Π are problem-dependent and should
ideally be determined by a model selection method [23].

The dataset used by PolicyEval to generate Q̂πk , in general,
is different from D(k)

n used in (1). In practice, however, one
might use the same dataset for both. It is also possible to
change the sampling distribution ν at each iteration, e.g.,
similar to [24]. Reusing the same dataset or changing the
sampling distribution is not analyzed here.

To extend the current loss function to problems
with |A| > 2, one can define the action-gap
function as gQ(x, a) , maxa′∈AQ(x, a′) − Q(x, a).
The empirical loss function would be L̂πkn (π) ,∫
X gQ̂πk (x, π(x))I{π(x) 6= argmaxa∈A Q̂

πk(x, a)}dνn.
Our theoretical analysis, however, does not cover this case.

Since the loss function (1) is non-convex, solving (2) is
computationally difficult for some policy spaces. But for local
methods such as action-gap-weighted K-Nearest Neighbour
or decision trees, one can get simple and computationally
efficient rules [3]. Another possibility is to relax the non-
convex loss with a convex surrogate such as action-gap-
weighted hinge or exponential loss.

IV. THEORETICAL ANALYSIS

In this section we analyze the theoretical properties of
CAPI-style algorithms and provide an upper bound on the
performance loss (or regret) of the resulting policy πK . The
performance loss of a policy π is the expected difference
between the value of the optimal policy π∗ and the value of
π when the initial state distribution is ρ ∈M(X), i.e.,

Loss(π; ρ) ,
∫
X

(V ∗(x)− V π(x)) dρ(x).

The choice of ρ enables the user to specify the relative
importance of different states.

The analysis has two main steps. First, in Section IV-A
we study the behaviour of one iteration of the algorithm and
provide an error bound on the expected loss Lπk(πk+1) ,∫
X gQπk (x)I{πk+1(x) 6= argmaxa∈AQ

πk(x, a)}dν, as a
function of the number of samples in D(k)

n , the quality
of the estimate Q̂πk , the complexity of Π, and the policy
approximation error. In Section IV-B, we analyze how the
loss sequence (Lπk(πk+1))

K−1
k=0 affects Loss(πK ; ρ).

A. Approximate Policy Improvement Error

Policy πk depends on data used in earlier iterations, but
is independent of D(k)

n , so we will work on the probability
space conditioned on D(0)

n , . . . ,D(k−1)
n . To avoid clutter, we

omit the conditional probability symbol and the dependence of
the loss function, policy, and dataset on the iteration number.
In the rest of this section, π′ refers to a σ(D(0)

n , . . . ,D(k−1)
n)-

measurable policy and is independent of Dn, which denotes a
set of n independent and identically distributed (i.i.d.) samples

from the distribution ν ∈ M(X). We also assume that we
have a Dn-independent approximation Q̂π

′
of the action-value

function Qπ
′
.

For any π ∈ Π, we define two pointwise loss func-
tions: lπ

′
(π)(x) = gQπ′ (x)I{π(x) 6= argmaxa∈AQ

π′(x, a)}
and l̂π

′
(π)(x) = gQ̂π′ (x)I{π(x) 6= argmaxa∈A Q̂

π′(x, a)}.
Note that lπ

′
(π) is defined as a function of Qπ

′
, which is

not accessible to the algorithm. On the other hand, l̂π
′
(π)

is defined as a function of Q̂π
′
, which is available to the

algorithm. The latter pointwise loss is a distorted version of
the former. To simplify the notation, we may use l(π) and
l̂(π) to refer to lπ

′
(π) and l̂π

′
(π), respectively.

For a function l : X → R, let Pnl = 1
n

∑n
i=1 l(Xi) and

Pl = E [l(X)], where X,Xi
i.i.d.∼ ν and Xis are from Dn.

Now we can define the expected loss L(π) = Pl(π) and the
empirical loss Ln(π) = Pnl(π) (both w.r.t. the true action-
value function Qπ

′
) and the distorted empirical loss L̂n(π) =

Pn l̂(π) (w.r.t. the estimate Q̂π
′
). Given Dn and Q̂π

′
, let

π̂n ← argmin
π∈Π

L̂n(π), (3)

(cf. (2)). Here and in the rest of the paper we make the standard
assumption that the minimum in (3) exists.

To study the behaviour of L(π̂n), we need to take care of
two main issues. First we should relate the empirical loss
of the minimizer of the distorted empirical loss L̂n, that
is Ln(π̂n), to the (unavailable) minimum of the empirical
loss, minπ∈Π Ln(π) (Lemma 3 in Appendix A). We also
should relate the expected loss L(π̂n) to the empirical loss
Ln(π̂n). Making this relation requires define a notion of
complexity (or capacity) of policy space Π. Among common
choices in the machine learning/statistics literature (such as
VC-dimension, metric entropy, etc., see e.g., [18]), we use
localized Rademacher complexity since it has favourable prop-
erties that often lead to tight upper bounds [21]. The use
of localized Rademacher complexity to analyze an RL/ADP
algorithm is a novel aspect of this work.

Let σ1, . . . , σn be independent random variables with
P {σi = 1} = P {σi = −1} = 1/2. For a function space
G : X → R, define RnG = supg∈G

1
n

∑n
i=1 σig(Xi) with

Xi ∼ ν. The Rademacher complexity (or average) of G is
E [RnG], in which the expectation is w.r.t. both σ and Xi [21].
One can interpret the Rademacher complexity as a measure
that quantifies the extent that a function from G can fit a noise
sequence of length n.

In order to benefit from the localized version of Rademacher
complexity, we need to define a sub-root function. A non-
negative and non-decreasing function Ψ : [0,∞) → [0,∞) is
called sub-root if r 7→ Ψ(r)√

r
is non-increasing for r > 0 [21].

The following theorem is the main result of this subsection.

Theorem 1. Fix a policy π′ and assume that Dn consists
of n i.i.d. samples drawn from distribution ν and Q̂π

′
is

independent of Dn. Let π̂n be defined by (3). Suppose that
Assumption A1 holds with a particular value of (ζ, cg). Let Ψ
be a sub-root function with a fixed point of r∗ such that for
r ≥ r∗,

Ψ(r) ≥ 2QmaxE
[
Rn

{
lπ
′
(π) : π ∈ Π,P[lπ

′
(π)]2 ≤ r

}]
. (4)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 4

Then there exist c1, c2, c3 > 0, which are independent of n,
‖Q̂π′−Qπ′‖∞,Dn , and r∗, so that for any 0 < δ < 1, L(π̂n) ≤
12 infπ∈Π L(π)+c1r

∗+c2‖Q̂π
′−Qπ′‖1+ζ

∞,Dn +c3
ln(1/δ)
n , with

probability at least 1− δ.

The upper bound has three important terms. The
infπ∈Π L(π) term is the policy approximation error. For a
rich enough policy space, this term can be zero.

The second important term is the estimation error of the
classifier, which is mainly determined by the behaviour of
the fixed point r∗ of (4). Condition (4) implies that the
estimation error is not determined by the global complexity of
the function space, but by its complexity in the neighbourhood
of the minimizer argminπ∈Π L

π′(π). If Π is a space with VC-
dimension d, one can show that r∗ behaves as O(d log(n)/n)
(cf. proof of Corollary 3.7 of [21]). This rate is considerably
faster than the O(

√
d/n) behaviour of the estimation error

term in the result of [15, 20]. Similar local Rademacher
complexity results exist for nonparametric spaces.

The last important term is ‖Q̂π′ − Qπ′‖1+ζ
∞,Dn , whose size

depends on 1) the quality of Q̂π
′

at the points in Dn, and 2)
the action-gap regularity of the problem, characterized by ζ.
When ζ > 0, the policy evaluation error ‖Q̂π′ −Qπ′‖∞,Dn is
dampened and the rate improves geometrically. The analysis
of [15, 20] does not benefit from this regularity. Finally note
that Q̂π

′
is often estimated using data, so ‖Q̂π′ −Qπ′‖∞,Dn

would be random. As we assumed that Q̂π
′

is independent
of Dn, the source of randomness of ‖Q̂π′ − Qπ

′‖∞,Dn in
the upper bound is different from Dn. The high probability
guarantee of the theorem is on the randomness due to Dn.

B. Performance Loss of CAPI
Here we state the main result of this paper, which upper

bounds Loss(πK ; ρ) as a function of Lπk(πk+1) at iterations
k = 0, . . . ,K − 1 and some other properties of the MDP and
policy space Π. First we introduce two definitions.

Definition 1 (Worst-Case Greedy Policy Error). For a policy
space Π, the worst-case greedy policy error is d(Π) =
supπ′∈Π infπ∈Π L

π′(π).

Definition 2 (Concentrability Coefficient). Given ρ, ν ∈
M(X), a policy π, and two integers m1,m2 ≥ 0, let
ρ(P∗)m1(Pπ)m2 denote the future-state distribution obtained
when the first state is drawn from ρ, then the optimal
policy π∗ is followed for m1 steps and policy π for m2

steps. Denote the supremum of the Radon-Nikodym derivative
of the resulting distribution w.r.t. ν by cρ,ν(m1;m2;π) ,
‖d(ρ(P∗)m1 (Pπ)m2)

dν ‖∞. If ρ(P∗)m1(Pπ)m2 is not absolutely
continuous w.r.t. ν, then c(m1,m2;π) = ∞. For an inte-
ger K ≥ 1 and a real s ∈ [0, 1], define Cρ,ν(K, s) ,
1−γ

2

∑K−1
k=0 γ(1−s)k∑

m≥0 γ
m supπ′∈Π cρ,ν(k,m;π′).

The intuition behind Definition 1 is discussed by [3].
For a discussion of Definition 2 and similar concentrability
coefficients, refer to [25, 26]. We are now ready to state the
main result.

Theorem 2. Consider the sequence of independent datasets
(D(k)

n)K−1
k=0 , each with n i.i.d. samples drawn from ν ∈

M(X). Let π0 ∈ Π be a fixed initial policy and (πk)Kk=1

be a sequence of policies obtained by solving (1), using
estimate Q̂πk of Qπk . Suppose that Q̂πk is independent of
D(k)
n and Assumption A1 holds with a particular value of

(ζ, cg). Let r∗ be the fixed point of a sub-root function
Ψ such that for any π′ ∈ Π and r ≥ r∗, Ψ(r) ≥
2QmaxE

[
Rn

{
lπ
′
(π) : π ∈ Π,P[lπ

′
(π)]2 ≤ r

}]
. Then there

exist constants c1, c2, c3 > 0 such that for any 0 < δ < 1,
for E(s) (0 ≤ s ≤ 1) defined as E(s) , 12d(Π) +

c1r
∗ + c2 max0≤k≤K−1

[
γ(K−k−1)s‖Q̂πk −Qπk‖1+ζ

∞,D(k)
n

]
+

c3
ln(K/δ)

n , we have with probability at least 1 − δ,
Loss(πK ; ρ) ≤ 2

1−γ
[
infs∈[0,1] Cρ,ν(K, s) E(s) + γKRmax

]
.

All discussions after Theorem 1 regarding the policy ap-
proximation error, the estimation error, and the role of the
action-gap regularity apply here too. Moreover, the new error
propagation result used in the proof is an improvement over
the previous results [15, 20]. The result indicates that the error
‖Q̂πk−Qπk‖∞,Dn is weighted proportional to γ(K−k−1)s, i.e.,
the errors at earlier iterations are geometrically discounted.

V. CONCLUSION AND FUTURE WORK

We proposed CAPI, a general family of algorithms that
exploits regularities of both the value function and the policy.
CAPI uses any policy evaluation method, defines an action-
gap-weighted loss function, and finds the policy minimizing
this loss from a desired policy space. We provided an error
upper bound that is tighter than existing results and applies
to general policy evaluation algorithms and nonparametric
policy spaces. The experiments reported in [3] show that
CAPI using a powerful PolicyEval outperforms a rollout-
based classification-based algorithm as well as a state-of-the-
art purely value-based approach.

Analyzing CAPI with a convex surrogate loss is an interest-
ing question, as is extending CAPI to continuous action spaces.
The sampling distribution ν can have a significant effect on
the performance; how to choose it is an open question.

APPENDIX
PROOFS

Lemma 3 (Loss Distortion Lemma). Fix a policy π′. Suppose
that Q̂π

′
is an approximation of the action-value function Qπ

′
.

Given the dataset Dn, let π̂n be defined as (3) and define
π∗n ← argminπ∈Π Ln(π). Let Assumption A1 hold. There exist
finite c1, c2 > 0, which depend only on ζ, cg , and Qmax, such
that for any z > 0, we have Ln(π̂n) ≤ 3Ln(π∗n) + c1‖Q̂π

′ −
Qπ
′‖1+ζ
∞,Dn + c2

z
n , with probability at least 1− e−z .

In the proofs, c1, c2, . . . are constants whose values may
change from line to line – unless specified otherwise.

Proof of Lemma 3. Let ε = ‖Q̂π′ −Qπ′‖∞,Dn and define the
set Aε = {x : 0 < gQπ′ (x) ≤ 4ε}. Denote p = Pν (X ∈ Aε).
For any z > 0, Bernstein inequality (Theorem 6.12 of [27])

shows that Pνn (X ∈ Aε)− Pν (X ∈ Aε) ≤
√

2p(1−p)z
n + 2z

3n

with probability at least 1 − e−z . By the arithmetic mean–
geometric mean inequality

√
[p(1− p)] 2z

n ≤
p(1−p)

2 + 2z
2n ≤

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 5

p
2 + z

n , so we get

Pνn (X ∈ Aε) ≤
3

2
Pν (X ∈ Aε) +

5z

3n
(5)

with probability at least 1− e−z . From now on, we focus on
the event that this inequality holds.

Define the new auxiliary loss L̃n(π) =∫
X gQπ′ (x)I{π(x) 6= argmaxa∈A Q̂

π′(x, a)}dνn. Notice
that unlike L̂n(π), it uses the weighting function gQπ′

(instead of gQ̂π′). In the following, for any π, we first relate
Ln(π) to L̃n(π), and then relate L̃n(π) to L̂n(π).
Upper bounding |Ln(π) − L̃n(π)|. For any π, |Ln(π) −
L̃n(π)| = |

∫
X gQπ′ (x)[I{π(x) 6= argmaxa∈AQ

π′(x, a)} −
I{π(x) 6= argmaxa∈A Q̂

π′(x, a)}]dνn| ≤
∫
X gQπ′ (x) ·

I{argmaxa∈AQ
π′(x, a) 6= argmaxa∈A Q̂

π′(x, a)}dνn =∫
Aε

gQπ′ (x)I{argmaxa∈AQ
π′(x, a) 6= argmaxa∈A Q̂

π′(x, a)}·
dνn +

∫
Acε

gQπ′ (x)×
I{argmaxa∈AQ

π′(x, a) 6= argmaxa∈A Q̂
π′(x, a)}dνn.

Whenever |Q̂π′(x, a)−Qπ′(x, a)| < 1
2gQπ′ (x) (for x ∈ Dn

and a ∈ {1, 2}), the maximizer action is the same. So on the
set Acε, where gQπ′ (x) > 4ε ≥ 4|Q̂π′(x, a) −Qπ′(x, a)|, the
value of I{argmaxa∈AQ

π′(x, a) 6= argmaxa∈A Q̂
π′(x, a)} is

always zero. Thus for any z > 0, we have∣∣∣Ln(π)− L̃n(π)
∣∣∣ ≤ (4ε)Pνn (X ∈ Aε) ≤

4ε

[
3

2
Pν (X ∈ Aε) +

5z

3n

]
≤

6× 22ζ
∥∥∥Q̂π′ −Qπ′∥∥∥1+ζ

∞,Dn
+

20

3

∥∥∥Q̂π′ −Qπ′∥∥∥
∞,Dn

z

n
≤

c1(ζ)
∥∥∥Q̂π′ −Qπ′∥∥∥1+ζ

∞,Dn
+ c2(Qmax)

z

n
. (6)

Here we used (5) in the second inequality, Assumption A1 in
the third inequality, and ‖Q̂π′ − Qπ′‖∞,Dn ≤ 2Qmax in the
last one.
Relation of L̂n(π) to L̃n(π). First note that
|gQ̂π′ (x) − gQπ′ (x)| ≤ 2ε (for all x ∈ Dn). We

also have maxx∈Acε∩Dn
g
Q̂π
′ (x)−g

Qπ
′ (x)

g
Qπ
′ (x) ≤ 2ε

4ε = 1
2 and

maxx∈Acε∩Dn
g
Qπ
′ (x)−g

Q̂π
′ (x)

g
Q̂π
′ (x) ≤ 2ε

2ε = 1. Thus,

L̂n(π)− L̃n(π) =∫
Aε

(gQ̂π′ (x)− gQπ′ (x))I{π(x) 6= argmax
a∈A

Q̂π
′
(x, a)}dνn +∫

Acε

gQ̂π′ (x)− gQπ′ (x)

gQπ′ (x)
gQπ′ (x)I{π(x) 6= argmax

a∈A
Q̂π
′
(x, a)}dνn

≤ (2ε)Pνn (X ∈ Aε) +
1

2
L̃n(π).

After re-arranging, we get

L̂n(π) ≤ 3

2
L̃n(π) + 2εPνn (X ∈ Aε) . (7)

Likewise, by writing gQπ′ (x) − gQ̂π′ (x) as
g
Qπ
′ (x)−g

Q̂π
′ (x)

g
Q̂π
′ (x) gQ̂π′ (x) and doing a similar decomposition

of the state space into Aε and Acε, we get

L̂n(π) ≥ 1

2
L̃n(π)− εPνn (X ∈ Aε) . (8)

We use the optimizer property of π̂n (which implies that
L̂n(π̂n) ≤ L̂n(π∗n)), apply (7), and finally use inequali-
ties (6) and (5) to get L̂n(π̂n) ≤ L̂n(π∗n) ≤ 3

2 L̃n(π∗n) +

(2ε)Pνn (X ∈ Aε) ≤ 3
2 [Ln(π∗n) + c1‖Q̂π

′ − Qπ
′‖1+ζ
∞,Dn +

c2
z
n] + (2ε)[3

2Pν (X ∈ Aε) + 5
3
z
n]. From (8) and by apply-

ing (6), we also have L̂n(π̂n) ≥ 1
2 L̃n(π̂n)−εPνn (X ∈ Aε) ≥

1
2 [Ln(π̂n)− c1‖Q̂π

′ −Qπ′‖1+ζ
∞,Dn − c2

z
n]− ε[3

2Pν (X ∈ Aε) +
5z
3n]. These two inequalities imply that Ln(π̂n) ≤ 3Ln(π∗n) +

c1‖Q̂π
′ −Qπ′‖1+ζ

∞,Dn + c2
z
n in the event that (5) holds, which

has probability at least 1− e−z .

Proof of Theorem 1. We use Theorem 3.3 by [21]. For
function l(π)(x) = gQπ′ (x)I{π(x) 6= argmaxa∈AQ

π′(x, a)},
we have Var [l(π)(X)] ≤
E
[
|gQπ′ (X)I{π(X) 6= argmaxa∈AQ

π′(X, a)}|2
]

≤
2QmaxE [l(π)(X)], so the variance condition of that theorem
is satisfied. If we have a function Ψ as defined in (4), the
theorem states that there exist c1, c2 > 0 such that for any
z > 0 and any π ∈ Π (including π̂n ∈ Π),

L(π) = Pl(π) ≤ 2Pnl(π) + c1r
∗ + c2

z

n
, (9)

with probability at least 1−e−z (c1 can be chosen as 704/Qmax
and c2 can be chosen as 126Qmax).

Let π∗Π ← argminπ∈Π L(π) be the minimizer of the
expected loss in policy space Π. Consider (9) with the
choice of π = π̂n, and add and subtract 6Pnl(π

∗
Π)

and 6Pl(π∗Π) and then use Lemma 3. With probabil-
ity at least 1 − 2e−z , we get L(π̂n) ≤ 2Pnl(π̂n) −
6 [Pnl(π

∗
Π)−Pnl(π

∗
Π)]−6 [Pl(π∗Π)−Pl(π∗Π)]+c1r

∗+c2
z
n ≤

6 [Pnl(π
∗
n)−Pnl(π

∗
Π)]+6 [Pnl(π

∗
Π)−Pl(π∗Π)]+6Pl(π∗Π)+

c1r
∗+c2‖Q̂π

′−Qπ′‖1+ζ
∞,Dn +c3

z
n ≤ 6 [Pnl(π

∗
Π)−Pl(π∗Π)]+

6Pl(π∗Π) + c1r
∗ + c2‖Q̂π

′ − Qπ′‖1+ζ
∞,Dn + c3

z
n , where in the

last inequality we used the minimizing property of π∗n, i.e.,
Pnl(π

∗
n)−Pnl(π

∗
Π) ≤ 0. Here c2 can be chosen as 36× 22ζ .

To upper bound Pnl(π
∗
Π) − Pl(π∗Π), we apply Bernstein

inequality to get that for any z > 0, Pnl(π∗Π) − Pl(π∗Π) ≤√
2Var[l(π∗Π)]z

n + 4Qmaxz
3n , with probability at least 1 − e−z .

Since Var [l(π∗Π)] ≤ 2QmaxPl(π
∗
Π) (as shown above), by the

application of arithmetic mean–geometric mean inequality we
obtain Pnl(π

∗
Π)−Pl(π∗Π) ≤ Pl(π∗Π) + 7Qmaxz

3n with the same
probability. This and the inequality in the previous paragraph
result in L(π̂n) ≤ 12Pl(π∗Π) + c1r

∗ + c2‖Q̂π
′ −Qπ′‖1+ζ

∞,Dn +
c3
z
n , with probability at least 1− 3e−z as desired.

Proof of Theorem 2. It is shown by [15] that
V ∗ − V πK ≤

∑K−1
k=0 γK−k−1(Pπ∗)K−k−1

∑
m≥0

γm(Pπk+1)mlπk(πk+1) + (γPπ∗)K(V ∗ − V π0). We apply ρ
to both sides and use the definition of cρ,ν(m1;m2;π) to get
ρ(V ∗ − V πK) ≤

∑K−1
k=0 γK−k−1

∑
m≥0 γ

mcρ,ν(K −
k − 1,m;πk+1) νlπk(πk+1) + γK(2Qmax). Recall
that νlπk(πk+1) = Lπk(πk+1). We decompose γ to
γsγ(1−s) (for 0 ≤ s ≤ 1) and separate terms involving
the concentrability coefficients and those related to
Lπk(πk+1). We then have for any 0 ≤ s ≤ 1,
ρ(V ∗ − V πK) ≤ max0≤k≤K−1

{
γs(K−k−1)Lπk(πk+1)

}
×∑K−1

k′=0 γ
(1−s)k′∑

m≥0 γ
m supπ′∈Π cρ,ν(k′,m;π′) +

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 6

γK(2Qmax). Taking the infimum w.r.t. s and using the defi-
nition of Cρ,ν(K), we get that Loss(πK ; ρ) = ρ(V ∗−V πK) ≤

2
1−γ [infs∈[0,1] Cρ,ν(K, s) max0≤k≤K−1[γs(K−k−1)Lπk(πk+1)]+

γKRmax].
Fix 0 < δ < 1. For each iteration k = 0, . . . ,K − 1,

by invoking Theorem 1 with the confidence parameter δ/K,
we get Lπk(πk+1) ≤ 12 infπ∈Π L

πk(π) + c1r
∗ + c2‖Q̂πk −

Qπk‖1+ζ
∞,Dkn

+ c3
ln(K/δ)

n , which holds with probability at least
1 − δ/K. Since infπ∈Π L

πk(π) ≤ d(Π), the previous set of
inequalities alongside the upper bound on Loss(πK ; ρ) imply
the desired result.

We would like to remark that to extend the analysis to |A| >
2, Lemma 3 is the main result that should be modified. The
proofs of Theorems 1 and 2 remain intact.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments.
This work is financially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] A-m. Farahmand, D. Precup, and M. Ghavamzadeh.
Generalized classification-based approximate policy iter-
ation. In European Workshop on Reinforcement Learning
(EWRL), 2012. 1

[2] A-m. Farahmand, D. Precup, A.M.S Barreto, and
M. Ghavamzadeh. CAPI: Generalized classification-
based approximate policy iteration. In Multidisciplinary
Conference on Reinforcement Learning and Decision
Making, October 2013. 1

[3] A-m. Farahmand, D. Precup, A.M.S Barreto, and
M. Ghavamzadeh. Classification-based approximate
policy iteration: Experiments and extended discussions.
arXiv e-print: 1407.0449, 2014. URL http://arxiv.org/
abs/1407.0449.

[4] Cs. Szepesvári. Algorithms for Reinforcement Learning.
Morgan Claypool Publishers, 2010. 1, 2

[5] A-m. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and
S. Mannor. Regularized policy iteration. In Advances
in Neural Information Processing Systems (NIPS), pages
441–448, 2009. 1

[6] G. Taylor and R. Parr. Kernelized value function ap-
proximation for reinforcement learning. In International
Conference on Machine Learning (ICML), pages 1017–
1024, 2009. 1

[7] A-m. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and
S. Mannor. Regularized fitted Q-iteration for planning
in continuous-space Markovian Decision Problems. In
American Control Conference (ACC), pages 725–730,
2009. 1

[8] M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoff-
man. Finite-sample analysis of Lasso-TD. In Interna-
tional Conference on Machine Learning (ICML), pages
1177–1184, 2011. 1

[9] A-m. Farahmand and D. Precup. Value pursuit iteration.
In Advances in Neural Information Processing Systems
(NIPS), 2012. 1

[10] P. Marbach and J.N. Tsitsiklis. Simulation-based opti-
mization of Markov reward processes. IEEE Trans. on
Automatic Control, 46(2):191–209, 2001. 1

[11] X.-R. Cao. A basic formula for online policy gradient
algorithms. IEEE Trans. on Automatic Control, 50(5):
696–699, 2005. 1

[12] M. Ghavamzadeh and Y. Engel. Bayesian policy gradient
algorithms. In Advances in Neural Information Process-
ing Systems (NIPS), pages 457–464, 2007. 1

[13] M.G. Lagoudakis and R. Parr. Reinforcement learning as
classification: Leveraging modern classifiers. In Interna-
tional Conference on Machine Learning (ICML), pages
424–431, 2003. 1, 2

[14] A. Fern, S. Yoon, and R. Givan. Approximate policy
iteration with a policy language bias: Solving relational
Markov Decision Processes. Journal of Artificial Intelli-
gence Research, 25:85–118, 2006. 1

[15] A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis
of a classification-based policy iteration algorithm. In
International Conference on Machine Learning (ICML),
pages 607–614, 2010. 1, 2, 4, 5

[16] M.G. Lagoudakis and R. Parr. Least-squares policy
iteration. Journal of Machine Learning Research, 4:
1107–1149, 2003. 1

[17] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6:503–556, 2005. 1

[18] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A
Distribution-Free Theory of Nonparametric Regression.
Springer Verlag, 2002. 1, 3

[19] L. Wasserman. All of Nonparametric Statistics. Springer,
2007. 1, 3

[20] V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scher-
rer. Classification-based policy iteration with a critic. In
International Conference on Machine Learning (ICML),
2011. 1, 2, 4

[21] P. L. Bartlett, O. Bousquet, and S. Mendelson. Local
Rademacher complexities. The Annals of Statistics, 33
(4):1497–1537, 2005. 1, 3, 4, 5

[22] A-m. Farahmand. Action-gap phenomenon in reinforce-
ment learning. In Advances in Neural Information
Processing Systems (NIPS), 2011. 1, 2

[23] A-m. Farahmand and Cs. Szepesvári. Model selection in
reinforcement learning. Machine Learning Journal, 85
(3):299–332, 2011. 3

[24] S. Ross, G. Gordon, and J. A. Bagnell. A reduction of
imitation learning and structured prediction to no-regret
online learning. In Artifical Intelligence and Statistics
(AISTATS), April 2011. 3

[25] R. Munos. Performance bounds in Lp norm for ap-
proximate value iteration. SIAM Journal on Control and
Optimization, pages 541–561, 2007. 4

[26] A-m. Farahmand, R. Munos, and Cs. Szepesvári. Error
propagation for approximate policy and value iteration.
In Advances in Neural Information Processing Systems
(NIPS), pages 568–576, 2010. 4

[27] I. Steinwart and A. Christmann. Support Vector Ma-
chines. Springer, 2008. 4

http://arxiv.org/abs/1407.0449
http://arxiv.org/abs/1407.0449

	Introduction
	Background and Notation
	CAPI Framework
	Theoretical Analysis
	Approximate Policy Improvement Error
	Performance Loss of CAPI

	Conclusion and Future Work
	Appendix: Proofs

