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Abstract

We propose a new online algorithm for cumu-
lative regret minimization in a stochastic lin-
ear bandit. The algorithm pulls the arm with
the highest estimated reward in a linear model
trained on its perturbed history. Therefore, we
call it perturbed-history exploration in a lin-
ear bandit (LinPHE). The perturbed history is
a mixture of observed rewards and randomly
generated i.i.d. pseudo-rewards. We derive a
Õ(d
√
n) gap-free bound on the n-round regret

of LinPHE, where d is the number of features.
The key steps in our analysis are new concen-
tration and anti-concentration bounds on the
weighted sum of Bernoulli random variables.
To show the generality of our design, we gen-
eralize LinPHE to a logistic model. We eval-
uate our algorithms empirically and show that
they are practical.

1 INTRODUCTION

A multi-armed bandit [19, 4, 20] is an online learning
problem where the learning agent acts by pulling arms.
After the arm is pulled, the agent receives its stochas-
tic reward. The objective of the agent is to maximize its
expected cumulative reward. The agent does not know
the mean rewards of the arms in advance and faces the
so-called exploration-exploitation dilemma: explore, and
learn about arms; or exploit, and pull the arm with the
highest estimated reward thus far. This model captures
many practical applications. In a clinical trial, for ex-
ample, the arm may be a treatment and its reward is the
outcome of that treatment on some patient population.

A stochastic linear bandit [7, 28, 1] is a generalization
of the multi-armed bandit to the setting where each arm
is associated with a feature vector. The mean reward of

an arm is the dot product of its feature vector and an un-
known parameter vector, which is shared by all arms. In
our clinical example, the feature vector may be a vector
of treatment indicators and the parameter vector may be
the effects of individual treatments.

The most popular exploration strategies in stochastic
bandits, optimism in the face of uncertainty (OFU) [4]
and Thompson sampling (TS) [32, 2, 29], are relatively
well understood in linear bandits [7, 1, 3, 20]. Unfortu-
nately, these designs and their guarantees do not extend
easily to complex problems. For instance, in general-
ized linear bandits [11], all OFU algorithms use approx-
imate high-probability confidence sets, which are loose
and statistically suboptimal [11, 21, 14]. Also the pos-
terior distribution of model parameters does not have a
closed form. Therefore, posterior sampling in TS has to
be approximated. Posterior approximations are compu-
tationally costly in general [12, 16, 24, 27, 22, 23].

In this work, we study a simple exploration strategy that
can be easily generalized to complex problems. The key
idea is to explore by perturbing the training data of a re-
ward generalization model, which is fit by an existing
offline oracle. Specifically, the model is fit to a mixture
of history, features of the pulled arms with their real-
ized rewards; and pseudo-history, features of the pulled
arms with randomly generated i.i.d. pseudo-rewards. In
perturbed-history exploration (PHE), the agent pulls the
arm with the highest reward in its estimated model and
then updates its history with the observed reward.

The key to the generality and optimism in PHE are the
pseudo-rewards. They are drawn from the same family
of distributions as the actual rewards, and thus we can
reuse existing methods for fitting the reward generaliza-
tion model. They are also maximum variance random-
ized data, which induce suitable exploration. We show
that appropriate randomization, not necessarily by poste-
rior sampling, can lead to practical exploration in struc-
tured problems.



We make the following contributions in this paper. First,
we propose LinPHE, a linear bandit algorithm that esti-
mates the mean rewards of arms using PHE. Second, we
prove a Õ(d

√
n) gap-free bound on the n-round regret

of LinPHE, where d is the number of features. Our anal-
ysis relies on novel concentration and anti-concentration
bounds on the weighted sum of Bernoulli random vari-
ables. Third, we propose a generalization of LinPHE to
a logistic model and call it LogPHE. Finally, we evaluate
both algorithms empirically. They are competitive with
Thompson sampling, although they are derived based on
different insights.

2 SETTING

We adopt the following notation. The set {1, . . . , n} is
denoted by [n]. All vectors are column vectors. The
minimum and maximum eigenvalues of matrix M are
denoted by λmin(M) and λmax(M), respectively. We
define Ber(x; p) = px(1 − p)1−x and let Ber(p) be
the corresponding Bernoulli distribution. We also define
B(x;n, p) =

(
n
x

)
px(1 − p)n−x and let B(n, p) be the

corresponding binomial distribution. For any event E,
1{E} = 1 if event E occurs and 1{E} = 0 otherwise.
We denote a d × d identity matrix by Id. We use Õ for
the big-O notation up to logarithmic factors.

A stochastic linear bandit [7, 28, 1] is an online learn-
ing problem where the learning agent sequentially pulls
arms, each of which is associated with a feature vector.
Let K be the number of arms, xi ∈ Rd be the feature
vector of arm i ∈ [K], and θ∗ ∈ Rd be an unknown pa-
rameter vector. The reward of arm i in round t ∈ [n],
Yi,t, is drawn i.i.d. from a distribution of that arm with
mean µi = x>i θ∗. The learning agent acts as follows. In
round t, it pulls arm It ∈ [K] and receives reward YIt,t.
The agent aims to maximize its expected cumulative re-
ward in n rounds. To simplify exposition, we denote by
Xt = xIt and Yt = YIt,t the feature vector of the pulled
arm in round t and its reward, respectively.

Without loss of generality, we assume that arm 1 is opti-
mal, that is µ1 > maxi>1 µi. Let ∆i = µ1 − µi denote
the gap of arm i. Maximization of the expected cumula-
tive reward in n rounds is equivalent to minimizing the
expected n-round regret,

R(n) =

K∑
i=2

∆iE

[
n∑

t=1

1{It = i}

]
.

We make several additional assumptions. First, rewards
are bounded in [0, 1], that is Yi,t ∈ [0, 1] for any arm i
and round t. This assumption is standard. Second, the
last feature is a bias term, xi(d) = 1 for all arms i. This
is without loss of generality, since such a feature can be

Algorithm 1 Perturbed-history exploration in a linear
bandit (LinPHE) with [0, 1] rewards.

1: Inputs:
2: Integer perturbation scale a > 0
3: Regularization parameter λ > 0

4: for t = 1, . . . , n do
5: if t > d then
6: Generate (Zj,`)j∈[a], `∈[t−1] ∼ Ber(1/2)

7: Gt ← (a+ 1)

t−1∑
`=1

X`X
>
` + λ(a+ 1)Id

8: θ̃t ← G−1
t

t−1∑
`=1

X`

[
Y` +

a∑
j=1

Zj,`

]
9: It ← arg max i∈[K] x

>
i θ̃t

10: else
11: It ← K − t+ 1

12: Pull arm It and get reward YIt,t
13: Xt ← xIt , Yt ← YIt,t

always added. Finally, the feature vectors of the last d
arms are a basis in Rd. This is without loss of generality,
since the arms can be always reordered to satisfy this.

3 PERTURBED-HISTORY
EXPLORATION

Now we introduce perturbed-history exploration (PHE).
Our algorithm, perturbed-history exploration in a linear
bandit (LinPHE), is presented in Algorithm 1. In round
t, LinPHE fits a linear model to its perturbed history up
to round t (line 8),

θ̃t = G−1
t

t−1∑
`=1

X`

[
Y` +

a∑
j=1

Zj,`

]
, (1)

where

Gt = (a+ 1)

t−1∑
`=1

X`X
>
` + λ(a+ 1)Id (2)

is the sample covariance matrix up to round t, a > 0
is a tunable integer parameter, λ > 0 is the regulariza-
tion parameter, and (Zj,`)j∈[a], `∈[t−1] are i.i.d. pseudo-
rewards, which are freshly sampled in each round. Our
model can be viewed as follows. If Zj,` were omitted in
(1) and a + 1 was omitted in (2), we would get a regu-
larized least-squares regression on rewards up to round
t. Thus, θ̃t is a regularized least-squares solution on the
past t− 1 rewards and a(t− 1) i.i.d. pseudo-rewards.

LinPHE pulls the arm with the highest estimated reward
under θ̃t (line 9). Any tie-breaking rule can be used as



needed. LinPHE is initialized by pulling each arm in the
basis once (line 11). This guarantees that LinPHE is suf-
ficiently optimistic about any optimal arm (Lemma 7).

LinPHE has two tunable parameters. The perturbation
scale a dictates the number of pseudo-rewards for each
observed reward in the perturbed history. Therefore, it
trades off exploration and exploitation, with higher val-
ues of a leading to more exploration. We argue infor-
mally in Section 3.1 that any a > 1 is sufficient for sub-
linear regret. The formal regret analysis is in Section 4.
The regularization parameter λ > 0 ensures that Gt can
be inverted and makes LinPHE stable. Regularization is
used frequently in linear bandit analyses [1, 3].

3.1 Informal Justification

Before we analyze LinPHE in Section 4, we informally
explain how exploration arises in it. To do this, we intro-
duce two least-squares solutions that are closely related
to θ̃t in (1). In the first, the pseudo-rewards are replaced
by their means,

θ̄t = G−1
t

t−1∑
`=1

X`

[
Y` +

a∑
j=1

Z̄j,`

]
, (3)

where Z̄j,` = E [Zj,`] = 1/2. In the second, both the
rewards and pseudo-rewards are the so-replaced,

¯̄θt = G−1
t

t−1∑
`=1

X`

[
X>` θ∗ +

a∑
j=1

Z̄j,`

]
.

Let H = (I1, . . . , It−1) be a sequence of pulled arms in
the first t− 1 rounds.

The solution θ̃t has two important properties that allow
us to bound the regret of LinPHE. First, it concentrates
at ¯̄θt given history H, since ¯̄θt solves a noiseless variant
of the least-squares problem solved by θ̃t. Furthermore,
¯̄θt → θ′ as regularization vanishes, where θ′ are scaled
and shifted parameters of the original problem. That is,
x>i θ

′ = (µi + a/2)/(a+ 1) for all arms i.

Second, from the definitions of θ̃t, θ̄t, and ¯̄θt, we have

x>i
¯̄θt − x>i θ̄t = x>i G

−1
t

t−1∑
`=1

X`W` ,

x>i θ̃t − x>i θ̄t = x>i G
−1
t

t−1∑
`=1

X`

a∑
j=1

(Zj,` − Z̄j,`) ,

where W` = X>` θ∗ − Y` is the “noise” in the reward in
round `. The first term is the deviation in the estimated
reward of arm i due to reward randomness. The second
term represents the deviation in the estimated reward of
arm i due to pseudo-reward randomness.

Fix history H and let (Y`)
t−1
`=1 be conditionally indepen-

dent givenH. Then

var
[
x>i

¯̄θt − x>i θ̄t
∣∣∣H] < var

[
x>i θ̃t − x>i θ̄t

∣∣∣H]
for a > 1, because x>i

¯̄θt − x>i θ̄t | H is a weighted sum
of t− 1 i.i.d. reward deviations and x>i θ̃t − x>i θ̄t | H is
a weighted sum, with the same weights, of a(t− 1) i.i.d.
maximum-variance deviations on [0, 1].

If both x>i
¯̄θt − x>i θ̄t and x>i θ̃t − x>i θ̄t were normally

distributed, this would imply that for any ε > 0,

P
(
x>i

¯̄θt − x>i θ̄t = ε
∣∣∣H)

≤ P
(
x>i

¯̄θt − x>i θ̄t ≥ ε
∣∣∣H)

< P
(
x>i θ̃t − x>i θ̄t ≥ ε

∣∣∣H) ,
where the first inequality holds trivially. That is, for any
potentially harmful deviation ε > 0 in the estimated re-
ward of arm i, x>i θ̃t overestimates the perturbed mean
reward with a higher probability than the probability of
that deviation. This optimism induces exploration and is
the key feature of LinPHE.

The idea of offsetting a fixed history of rewards by i.i.d.
pseudo-rewards is very general and applies beyond the
linear model in this section. In Section 3.3, we apply it
to a logistic model. In Section 5, we evaluate our linear
and logistic algorithms empirically.

3.2 Efficient Implementation

LinPHE can be implemented such that its expected com-
putational cost in round t is independent of t. In particu-
lar, line (8) in LinPHE can be rewritten as

θ̃t = G−1
t

K∑
i=1

xi[Vi,t + Ui,t] , (4)

where Vi,t is the cumulative reward of arm i in the first
t − 1 rounds, Ui,t ∼ B(a Ti,t−1, 1/2) is the sum of the
pseudo-rewards of arm i in round t, and Ti,t is the num-
ber of pulls of arm i in the first t rounds. The statistics
Vi,t and Gt can be updated incrementally as

Vi,t = Vi,t−1 + 1{It−1 = i}Yt−1 ,

Gt = Gt−1 + (a+ 1)Xt−1X
>
t−1 ,

where we assume that Vi,0 = 0 and G0 = λ(a + 1)Id.
The inverse of Gt can be also updated directly using the
Sherman-Morrison formula.

The statistics Vi,t and Gt take O(K + d2) space. If the
Sherman-Morrison formula is used, the cost of updating



G−1
t is O(d2). After that, the cost of computing θ̃t in (4)

is O(Kd2), if Ui,t can be sampled in O(1) time. Based
on Section 4.4 of Devroye [8], B(n, p) can be sampled
from in O(1) time in expectation for any n and p.

3.3 Algorithm LogPHE

While our formal analysis is for linear bandits, the idea
of PHE is much more general. To illustrate it, we extend
LinPHE to a logistic bandit, where the mean reward of
arm i is µi = σ(x>i θ∗) and σ(v) = 1/(1 + exp[−v])
is a sigmoid function. The reward of arm i in round t is
drawn i.i.d. from Ber(µi).

To extend LinPHE to this class of problems, we replace
θ̃t in LinPHE with the minimizer of

t−1∑
`=1

[
g(X>` θ, Y`) +

a∑
j=1

g(X>` θ, Zj,`)

]
+ λ‖θ‖22 ,

where g(s, y) = −y log(σ(s))− (1− y) log(1− σ(s)).
For λ = 0, we obtain the maximum likelihood solution.

The above problem is convex. Also the sufficient statis-
tics in this problem, the number of positive and negative
observations of arms, can be updated incrementally as in
Section 3.2. Therefore, θ̃t in round t can be estimated in
a constant time in t. We call this algorithm LogPHE and
evaluate it in Section 5.2.

4 ANALYSIS

We now provide a formal analysis of LinPHE. In Sec-
tion 4.1, we introduce relevant notation. In Section 4.2,
we prove a generic regret bound that applies to any ran-
domized algorithm that estimates θ∗. The regret bound
of LinPHE in Section 4.3 is an instance of this result.

4.1 Notation

To simplify the analysis of LinPHE, we assume that its
sample covariance matrix is not scaled by a + 1. That
is, Gt =

∑t−1
`=1X`X

>
` + λId. This does not change the

behavior of LinPHE. We also assume that θ∗ ∈ Rd is a
parameter vector such that x>i θ∗ = µi + a/2 holds for
any arm i. Note that this transformation does not change
the gaps of arms. It only shifts their mean rewards by a
factor of a/2. Recall that arm 1 is optimal.

Let Ft = σ(I1, . . . , It, YI1,1, . . . , YIt,t) be the σ-algebra
generated by the pulled arms and their rewards by the end
of round t ∈ [n] ∪ {0}. We define F0 = {∅,Ω}, where
Ω is the sample space of the probability space that holds
all random variables. We denote by Pt (·) = P (· | Ft−1)
and Et [·] = E [· | Ft−1] the conditional probability and

expectation operators, respectively, given the past at the
beginning of round t. Let ‖x‖M =

√
x>Mx. Let

E1,t =
{
∀i ∈ [K] :

∣∣x>i θ̄t − x>i θ∗∣∣ ≤ c1‖xi‖G−1
t

}
(5)

be the event that θ̄t is “close” to θ∗ in round t, where θ̄t
is defined in (3) and c1 > 0 is tuned such that Ē1,t, the
complement of E1,t, is unlikely. Let E1 =

⋂n
t=d+1E1,t

and Ē1 be its complement. Let

E2,t =
{
∀i ∈ [K] :

∣∣∣x>i θ̃t − x>i θ̄t∣∣∣ ≤ c2‖xi‖G−1
t

}
(6)

be the event that θ̃t is “close” to θ̄t in round t, where θ̃t
is defined in (1) and c2 > 0 is tuned such that Ē2,t, the
complement of E2,t, is unlikely given any past.

4.2 General Regret Bound

In this section, we prove a general regret bound for any
“model-based” linear bandit algorithm. The algorithm
is model-based if the pulled arm in round t is chosen as
in line 9 of LinPHE, where θ̃t can be computed by any
possibly randomized procedure based on past data.

Our regret bound involves three probability constants.
The first constant, p1, is an upper bound on the proba-
bility of event Ē1, that is p1 ≥ P

(
Ē1

)
. The second con-

stant, p2, is an upper bound on the probability of event
Ē2,t given any past,

Pt

(
Ē2,t

)
≤ p2 . (7)

The last constant, p3, is a lower bound on the probability
that the estimated reward of the optimal arm 1 is opti-
mistic given any past,

Pt

(
x>1 θ̃t − x>1 θ̄t > c1‖x1‖G−1

t

)
≥ p3 . (8)

To simplify exposition, we define 〈x〉 = min {x, 1}. The
main result of this section is the following regret bound.

Theorem 1. Let c1, c2 ≥ 1. Let A be any algorithm that
pulls arm It = arg max i∈[K] x

>
i θ̃t in round t, where θ̃t

is estimated from past data. Let the rewards be in [0, 1];
p1, p2, and p3 be defined as above; and p3 > p2. Then
the expected n-round regret of A is bounded as R(n) ≤

(c1 + c2)

(
1 +

2

p3 − p2

)
√
c3n+ (p1 + p2)n+ d ,

where c3 is defined in Table 1.

Theorem 1 is extracted from prior work, where similar
randomized algorithms have been analyzed [3, 33]. The
proof relies on the following two lemmas.



Lemma 2. Let c1, c2 ≥ 1. Then for any round t > d and
history Ft−1, Et [∆It1{E1,t}] ≤

(c1 + c2)

(
1 +

2

p3 − p2

)
Et

[
〈‖xIt‖G−1

t
〉
]

+ p2 .

We defer the proof of Lemma 2 to Appendix A. We also
use Lemma 11 of Abbasi-Yadkori et al. [1].

Lemma 3. For any λ > 0,
∑n

t=d+1〈‖xIt‖2G−1
t

〉 ≤ c3,

where c3 = 2d log(1 + nL2/(dλ)).

Proof of Theorem 1. First, we split the regret based on
whether event E1 occurs and obtain

R(n) ≤
n∑

t=d+1

E [∆It ] + d

≤
n∑

t=d+1

E [∆It1{E1,t}] + nP
(
Ē1

)
+ d

≤
n∑

t=d+1

E [Et [∆It1{E1,t}]] + p1n+ d .

Since E1,t is Ft−1 measurable, Et [∆It1{E1,t}] can be
bounded from above by Lemma 2. We apply it and get

R(n) ≤ (c1 + c2)

(
1 +

2

p3 − p2

)
×

E

[
n∑

t=d+1

〈‖xIt‖G−1
t
〉

]
+ (p1 + p2)n+ d .

By the Cauchy-Schwarz inequality and Lemma 3,

n∑
t=d+1

〈‖xIt‖G−1
t
〉 ≤

√√√√n

n∑
t=d+1

〈‖xIt‖2G−1
t

〉 ≤
√
c3n .

The claim follows from chaining the above two inequal-
ities.

4.3 Expected n-Round Regret of LinPHE

The main result of this section is stated below.

Theorem 4. Let all parameters be chosen as in Table 1
and n > max

{
34, 8

√
2c1
}

= Õ(d). Then the expected
n-round regret of LinPHE is R(n) = Õ(d

√
n).

Our regret bound scales with d and n as that of LinTS
[3]. This is unsurprising, since we build on the analysis
of LinTS. Our bound also does not improve over those
of OFU designs, such as LinUCB [1]. The improvement
is in practical performance, as shown in Section 5.

The proof of Theorem 4 follows from Theorem 1 for ap-
propriate choice of c1, c2, p1, p2, and p3. These values,

Constant Value
L maxi∈[K] ‖xi‖2
L∗ ‖θ∗‖2
p1 1/n
p2 1/n2

p3
1/2− 128 c21n

−3

16 logn

c1
1

2

√
d log (n+ n2L2/(dλ)) + λ

1
2L∗

c2

√
a log(

√
2Kn)

c3 2d log(1 + nL2/(dλ))
λ λmin(Gd+1)/4
a

⌈
16 c21

⌉
Table 1: Summary of the constants in the analysis.

together with a number of other constants, are summa-
rized in Table 1. The proof is broken down into lemmas,
which are proved in Appendix A.

The first lemma guides our choice of c1. Specifically, we
get p1 = 1/n for c1 in Table 1.
Lemma 5 (Least-squares concentration). For any λ > 0,
δ > 0, and

c1 =
1

2

√
d log

(
1 + nL2/(dλ)

δ

)
+ λ

1
2L∗ ,

event E1 occurs with probability at least 1− δ.

The next lemma, together with the union bound over all
arms, guarantees that p2 = 1/n2 for c2 in Table 1. This
lemma is a key part of our analysis.
Lemma 6 (Concentration). For any t > d, c > 0, and
vector x ∈ Rd, we have

Pt

(∣∣∣x>θ̃t − x>θ̄t∣∣∣ ≥ c‖x‖G−1
t

)
≤ 2 exp

[
−2c2/a

]
.

The next lemma bounds p3 from below. This lemma is
another key part of our analysis.
Lemma 7 (Anti-concentration). For any round t > d,
constants a and c such that 2a log n > c2 > 0, and
vector x ∈ Rd such that x 6= 0, we have

Pt

(
x>θ̃t − x>θ̄t > c‖x‖G−1

t

)
≥ 1

16 log n
(1− λλ−1

min(Gd+1)− 4a−1c2 − 8an−3) .

For λ = λmin(Gd+1)/4, a =
⌈
16 c21

⌉
, c = c1, and any

x1 6= 0, Lemma 7 implies that

p3 − p2 ≥
1/2− 128 c21n

−3 − 16n−2 log n

16 log n
.

Since λmin(Gd+1) = λ+ λmin(
∑d

`=1X`X
>
` ), we have

that λ = λmin(
∑d

`=1X`X
>
` )/3. Finally, we set c3 as in

Table 1. Now are ready to prove Theorem 4.



Proof of Theorem 4. If x1 = 0, the proof is trivial. Now
suppose that x1 6= 0. Since L = O(

√
d), L∗ = O(

√
d),

and λ = O(1), we have c1 = Õ(
√
d). Moreover, since

a =
⌈
16 c21

⌉
, we have c2 = Õ(

√
d). Finally, c3 = Õ(d).

Now we show that 1 + 1/(p3 − p2) = Õ(1). Trivially,
n−1 log n ≤ 1 for n ≥ 1. In addition, for n ≥ 8

√
2c1,

128 c21n
−2 ≤ 1. So, for any such n,

p3 − p2 ≥
1/2− 17n−1

16 log n
.

Finally, for any n > 34, the above lower bound is pos-
itive and 1 + 1/(p3 − p2) = Õ(1). This concludes our
proof.

5 EXPERIMENTS

We conduct two experiments to evaluate both LinPHE

and LogPHE in terms of their regret. The algorithms are
compared to several state-of-the-art baselines.

5.1 Linear Bandit

The first experiment is with linear bandits. We experi-
ment with dimensions d from 5 to 20. The number of
arms is K = 100. To avoid biases, we randomly gen-
erate problem instances. Each instance is generated as
follows. The first d − 1 entries of feature vector xi are
drawn from a unit (d− 2)-sphere and the last entry is 1.
The first d − 1 entries of parameter vector θ∗ are drawn
from a (d − 2)-sphere with radius 0.5 and the last entry
is 0.5. This construction guarantees that x>i θ∗ ∈ [0, 1]
for all arms i. The reward of arm i is drawn i.i.d. from
Ber(x>i θ∗). The horizon is n = 10000 rounds and our
results are averaged over 100 problem instances.

We compare LinPHE to LinUCB [1], LinTS [3], and the
ε-greedy policy [30, 4] with a linear model. LinUCB is
an OFU algorithm. We set the regularization parameter
in LinUCB as λ = 1. All other parameters are set as in
Abbasi-Yadkori et al. [1]. LinTS is a posterior sampling
algorithm. We set its prior to N (0, Id). The exploration
rate in the ε-greedy policy is εt = min{1, 0.05/(2

√
t)},

which results in about 5% exploration. We experiment
with three practical perturbation scales a in LinPHE: 2,
1, and 0.5. We implement LinPHE with non-integer per-
turbation scales a by replacing B(a Ti,t−1, 1/2) in Sec-
tion 3.2 with B(da Ti,t−1e , 1/2).

Our results are reported in Figure 1. We observe the fol-
lowing trends. First, LinPHE outperforms LinUCB at all
perturbation scales a. Second, LinPHE outperforms the
ε-greedy policy at all perturbation scales a in the first
two problems. In the last problem, this happens only at
a ≤ 1. Finally, LinPHE performs similarly to LinTS at

a = 1 and outperforms it at a = 0.5. However, the run
time of LinPHE is less than a half of that of LinTS. For
instance, at d = 5, the average run times of LinPHE and
LinTS are 113 and 273 seconds, respectively. The in-
creased run time of LinTS is due to posterior sampling
from the multivariate normal distribution.

5.2 Logistic Bandit

The last experiment is with logistic bandits (Section 3.3).
The experimental setup differs from Section 5.1 only in
how θ∗ is generated. The first d− 1 entries of parameter
vector θ∗ are drawn from a (d − 2)-sphere with radius
1.5 and the last entry is 0. By design,

∣∣x>i θ∗∣∣ ≤ 1.5.

We compare LogPHE to LogTS [6, 29], GLM-UCB [11],
UCB-GLM [21], and the ε-greedy policy [30, 4] with a lo-
gistic model. GLM-UCB and UCB-GLM are OFU methods
for logistic bandits. We implement them with regulariza-
tion (Section 3.3) and λ = 1. The minimum derivative of
the mean function, which is tunable in both methods, is
set to the most optimistic value of 1/4. All other param-
eters are set as suggested by theory. LogTS is a posterior
sampling algorithm for logistic regression, which uses
the Laplace approximation and has prior N (0, Id). The
ε-greedy policy is implemented as in Section 5.1.

Our results are reported in Figure 2. We observe similar
trends to Section 5.1. In particular, LogPHE usually out-
performs OFU algorithms and is competitive with poste-
rior sampling when a ≤ 1. In summary, our experimen-
tal results show that both LinPHE and LogPHE perform
well, and are comparable to or better than existing algo-
rithms.

6 RELATED WORK

Our work is motivated by Kveton et al. [17], who pro-
posed a multi-armed bandit algorithm that pulls the arm
with the highest average reward in its perturbed history
with i.i.d. pseudo-rewards. We generalize this approach
to linear, and more generally contextual, bandits. This
generalization is important. While the perturbed history
is conceptually simple, it is unclear how to extend it to
structured problems, and assessing if such a generaliza-
tion is sound is non-trivial. We propose one generaliza-
tion, and show it to be both sound and effective.

Our work is related to posterior sampling. In particular,
let µ ∼ N (µ0, σ

2) and (Y`)
s
`=1 ∼ N (µ, σ2) be s i.i.d.

noisy observations of µ. Then the posterior distribution
of µ conditioned on (Y`)

s
`=1 is

N
(
µ0 +

∑s
`=1 Y`

s+ 1
,
σ2

s+ 1

)
. (9)
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Figure 1: Comparison of LinPHE to several baselines in three linear bandit problems. All results are averaged over
100 random problem instances. The shaded areas are standard errors of the estimates. The legend is split between the
first two plots.
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Figure 2: Comparison of LogPHE to several baselines in three logistic bandit problems. All results are averaged over
100 random problem instances. The shaded areas are standard errors of the estimates. The legend is split between the
first two plots.

It is easy to see that the above distribution can be indi-
rectly sampled from as follows. First, draw s + 1 i.i.d.
samples (Z`)

s
`=0 ∼ N (0, σ2). Then

µ0 +
∑s

`=1 Y` +
∑s

`=0 Z`

s+ 1

is a sample from (9). This equivalence can be general-
ized to linear models with Gaussian noise [24]. Unfortu-
nately, it holds only for normal random variables. There-
fore, it cannot justify our perturbation scheme as a form
of posterior sampling.

The design of LinPHE is similar to follow the perturbed
leader (FPL) [13, 15]. FPL has been traditionally studied
in the non-stochastic full-information setting. Neu and
Bartok [25] extended it to semi-bandits using geometric
resampling. Their algorithm cannot solve our problem
efficiently because it is for a K-armed bandit with inde-
pendent arms.

Our work is closely related to bootstrapping exploration
[5, 9, 26, 31, 10, 18, 34], where the learning agent per-
turbs its history of observations by resampling in order
to achieve exploration. Contextual bootstrapping algo-
rithms [31, 10, 18, 34] have superior empirical perfor-

mance but no regret bounds. Our work provides a step-
ping stone for the analysis of such algorithms, since our
perturbation scheme is similar but simpler.

7 CONCLUSIONS

We propose LinPHE, a new online algorithm for cumula-
tive regret minimization in stochastic linear bandits. The
key idea in LinPHE is to perturb the history in round t
by O(t) i.i.d. pseudo-rewards, which are drawn from the
maximum variance distribution. We derive a Õ(d

√
n)

bound on the n-round regret of LinPHE, where d is the
number of features. We also propose LogPHE, a natural
generalization of LinPHE to a logistic model. We eval-
uate LinPHE and LogPHE empirically. Both algorithms
are competitive with Thompson sampling, although they
are derived based on different insights.

LinPHE can be easily extended to any linear model with
a bounded support. In particular, if Yi,t ∈ [m,M ], Y` in
LinPHE should be replaced with (Y` −m)/(M −m).

Our work can be extended in several directions. First, al-
though we propose LogPHE for a logistic model, we do



not analyze it. We believe that the regret analysis is pos-
sible because generalized linear bandit analyses [11, 21]
are similar to linear bandit analyses [7, 1]. Second, the
theory-suggested perturbation scale a in Table 1 is too
conservative to be practical, for the same reason as the
analyzed variant of LinTS in Agrawal and Goyal [3]. A
tighter analysis should be possible. Third, our key tech-
nical lemmas, Lemmas 6 and 7, can be extended to other
randomized pseudo-rewards than Bernoulli. This would
be necessary for other generalized linear models than lo-
gistic. Finally, our design seems conservative since the
strategy for adding pseudo-rewards does not adapt over
time. More adaptive designs may be possible.

A PROOFS

A.1 Proof of Lemma 2

Let

S̄t =
{
i ∈ [K] : (c1 + c2)‖xi‖G−1

t
≥ ∆i

}
(10)

be the set of undersampled arms in round t. Note that by
definition 1 ∈ S̄t. The set of sufficiently sampled arms is
defined as St = [K] \ S̄t. Let

Jt = arg min i∈S̄t
‖xi‖G−1

t
(11)

be the least uncertain undersampled arm in round t. In
all steps below, we assume that event E1,t occurs.

Let c = c1 + c2. In round t on event E2,t,

∆It = ∆Jt + 〈x>Jt
θ∗ − x>Itθ∗〉

≤ ∆Jt
+ 〈x>Jt

θ̃t − x>It θ̃t〉+

c (〈‖xIt‖G−1
t
〉+ 〈‖xJt

‖G−1
t
〉)

≤ c (〈‖xIt‖G−1
t
〉+ 2〈‖xJt

‖G−1
t
〉) ,

where the first inequality is by the definitions of events
E1,t and E2,t, and the second follows from the defini-
tions of It and Jt. We also used that c = c1 + c2 ≥ 1.
Now we take the expectation of both sides and get

Et [∆It ]

= Et [∆It1{E2,t}] + Et

[
∆It1

{
Ē2,t

}]
≤ cEt

[
〈‖xIt‖G−1

t
〉+ 2〈‖xJt‖G−1

t
〉
]

+ Pt

(
Ē2,t

)
.

The last step is to bound Et

[
〈‖xJt

‖G−1
t
〉
]

from above.
The key observation is that

Et

[
〈‖xIt‖G−1

t
〉
]

≥ Et

[
〈‖xIt‖G−1

t
〉
∣∣∣ It ∈ S̄t

]
Pt

(
It ∈ S̄t

)
≥ 〈‖xJt

‖G−1
t
〉Pt

(
It ∈ S̄t

)
,

where the last inequality is from the definition of Jt and
that S̄t is Ft−1-measurable. We rearrange the inequality
and get

〈‖xJt
‖G−1

t
〉 ≤ Et

[
〈‖xIt‖G−1

t
〉
]/

Pt

(
It ∈ S̄t

)
.

Next we bound Pt

(
It ∈ S̄t

)
from below. On event E1,t,

Pt

(
It ∈ S̄t

)
≥ Pt

(
∃i ∈ S̄t : x>i θ̃t > max

j∈St

x>j θ̃t

)
≥ Pt

(
x>1 θ̃t > max

j∈St

x>j θ̃t

)
≥ Pt

(
x>1 θ̃t > max

j∈St

x>j θ̃t, E2,t occurs
)

≥ Pt

(
x>1 θ̃t > x>1 θ∗, E2,t occurs

)
≥ Pt

(
x>1 θ̃t > x>1 θ∗

)
− Pt

(
Ē2,t

)
.

Note that we require a sharp inequality because x>i θ̃t ≥
maxj∈St x

>
j θ̃t does not imply that arm i is pulled. The

fourth inequality holds because for any j ∈ St,

x>j θ̃t ≤ x>j θ∗ + c‖xj‖G−1
t
< x>j θ∗ + ∆j = x>1 θ∗

on event E1,t ∩ E2,t. Finally,

Pt

(
x>1 θ̃t > x>1 θ∗

)
≥ Pt

(
x>1 θ̃t − x>1 θ̄t > c1‖x1‖G−1

t

)
on eventE1,t, because x>1 θ∗ ≤ x>1 θ̄t+c1‖x1‖G−1

t
holds

on event E1,t. Now we chain all inequalities and use the
definitions of p1, p2, and p3 to complete the proof.

A.2 Proof of Lemma 5

By the Cauchy-Schwarz inequality,

x>i θ̄t − x>i θ∗ = x>i G
− 1

2
t G

1
2
t (θ̄t − θ∗)

≤ ‖θ̄t − θ∗‖Gt
‖xi‖G−1

t
.

Now note that the least-squares estimate θ̄t is computed
from sub-Gaussian rewards with variance proxy 1/4. As
a result, by Theorem 2 of Abbasi-Yadkori et al. [1] for
R = 1/2, ‖θ̄t − θ∗‖Gt ≤ c1 holds jointly in all rounds
t ≤ n with probability of at least 1 − δ. This concludes
the proof.

A.3 Proof of Lemma 6

Let

U =

t−1∑
`=1

a∑
j=1

x>G−1
t X`Zj,` ,

Ū =

t−1∑
`=1

a∑
j=1

x>G−1
t X`Z̄j,` ,



and D = U − Ū . Then by Hoeffding’s inequality,

Pt

(∣∣∣x>θ̃t − x>θ̄t∣∣∣ ≥ c‖x‖G−1
t

)
= Pt

(
|D| ≥ c‖x‖G−1

t

)
≤ 2 exp

[
−

2c2‖x‖2
G−1

t

a
∑t−1

`=1 x
>G−1

t X`X>` G
−1
t x

]
.

This step of the proof relies on the fact that new Zj,` are
generated in each round t. Also note that

t−1∑
`=1

x>G−1
t X`X

>
` G
−1
t x (12)

≤ x>G−1
t

(
t−1∑
`=1

X`X
>
` + λId

)
G−1

t x = ‖x‖2
G−1

t
.

Our claim follows from chaining all above inequalities.

A.4 Proof of Lemma 7

Let U , Ū , and D be defined as in the proof of Lemma 6.
Then x>θ̃t − x>θ̄t = D. We also define events

F1 =
{
|D| ≤ c‖x‖G−1

t

}
,

F2 =
{
|D| ≤

√
2a log n‖x‖G−1

t

}
.

Since 2a log n > c2, F1 ⊂ F2. Then

var [U | Ft−1] = Et

[
D21{F1}

]
+

Et

[
D21

{
F̄1, F2

}]
+

Et

[
D21

{
F̄2

}]
.

Now we bound each term on the right-hand side of the
above equality from above. From the definition of event
F1, term 1 is bounded as

Et

[
D21{F1}

]
≤ c2‖x‖2

G−1
t
.

By the definition of F1 and F2, term 2 is bounded as

Et

[
D21

{
F̄1, F2

}]
≤ (2a‖x‖2

G−1
t

log n)Pt

(
F̄1, F2 occur

)
≤ (2a‖x‖2

G−1
t

log n)Pt

(
|D| > c‖x‖G−1

t

)
.

Now we bound term 3. First, note that

|D| ≤ a
t−1∑
`=1

∣∣x>G−1
t X`

∣∣
≤ a
√
n

√√√√t−1∑
`=1

x>G−1
t X`X>` G

−1
t x

≤ a
√
n‖x‖G−1

t
,

where the last step follows from (12). Then, by the defi-
nition of event F2 and Lemma 6 for c =

√
2a log n,

Et

[
D21

{
F̄2

}]
≤ a2n‖x‖2

G−1
t
Pt

(
F̄2

)
≤

2a2‖x‖2
G−1

t

n3
.

Finally, by the definition of U ,

var [U | Ft−1] =
a

4

t−1∑
`=1

x>G−1
t X`X

>
` G
−1
t x

=
a

4
‖x‖2

G−1
t
− a

4
λx>G−2

t x .

We bound the last term from below as follows. For any
positive semi-definite matrix M ∈ Rd×d,

x>M2x = λ2
max(M)x>

(
λ−2

max(M)M2
)
x

≤ λ2
max(M)x>

(
λ−1

max(M)M
)
x

= λmax(M)‖x‖2M ,

where the inequality follows from the fact that all eigen-
values of λ−2

max(M)M2 are in [0, 1]. We apply this upper
bound for M = G−1

t and get that

var [U | Ft−1] ≥ a

4
‖x‖2

G−1
t
− aλ

4λmin(Gt)
‖x‖2

G−1
t

≥ a

4
‖x‖2

G−1
t
− aλ

4λmin(Gd+1)
‖x‖2

G−1
t
,

where the last inequality is by λmin(Gt) ≥ λmin(Gd+1)
and holds for any t > d.

Now we combine all above inequalities and get[
a

4
− aλ

4λmin(Gd+1)
− c2 − 2a2

n3

]
‖x‖2

G−1
t

≤ (2a‖x‖2
G−1

t
log n)Pt

(
|D| > c‖x‖G−1

t

)
.

Since 2a log n > 0 and ‖x‖G−1
t
> 0, the above inequal-

ity can be simplified as

Pt

(
|D| > c‖x‖G−1

t

)
≥ 1

8 log n
(1− λλ−1

min(Gd+1)− 4a−1c2 − 8an−3) .

Finally, we note that the distribution of D is symmetric.
Therefore, for any ε > 0, Pt (|D| > ε) = 2Pt (D > ε).
This completes the proof.
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