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Hierarchical Average Reward Reinforcement Learning

Abstract

Hierarchical reinforcement learning (HRL) is the study of mechanisms for exploiting the
structure of tasks in order to learn more quickly. By decomposing tasks into subtasks, fully
or partially specified subtask solutions can be reused in solving tasks at higher levels of
abstraction. The theory of semi-Markov decision processes provides a theoretical basis for
HRL. Several variant representational schemes based on SMDP models have been studied
in previous work, all of which are based on the discrete-time discounted SMDP model. In
this approach, policies are learned that maximize the long-term discounted sum of rewards.

In this paper we investigate two formulations of HRL based on the average-reward

SMDP model, both for discrete time and continuous time. In the average-reward model,
policies are sought that maximize the expected reward per step. The two formulations
correspond to two different notions of optimality that have been explored in previous work
on HRL: hierarchical optimality, which corresponds to the set of optimal policies in the
space defined by a task hierarchy, and a weaker local model called recursive optimality.
What distinguishes the two models in the average reward framework is the optimization
of subtasks. In the recursively optimal framework, subtasks are treated as continuing, and
solved by finding gain optimal policies given the policies of their children. In the hierarchical
optimality framework, the aim is to find a globally gain optimal policy within the space
of policies defined by the hierarchical decomposition. We present algorithms that learn to
find recursively and hierarchically optimal policies under discrete-time and continuous-time
average reward SMDP models.

We use four experimental testbeds to study the empirical performance of our proposed
algorithms. The first two domains are relatively simple, and include a small autonomous
guided vehicle (AGV) scheduling problem and a modified version of the well-known Taxi
problem. The other two domains are larger real-world single-agent and multiagent AGV
scheduling problems. We model these AGV scheduling tasks using both discrete-time and
continuous-time models and compare the performance of our proposed algorithms with
each other, as well as with other HRL methods and to standard Q-learning. In the large
AGV domain, we also show that our proposed algorithms outperform widely used industrial
heuristics, such as “first come first serve”, “highest queue first” and “nearest station first”.

Keywords: Hierarchical Reinforcement Learning, Semi-Markov Decision Processes, Av-
erage Reward, Hierarchical and Recursive Optimality.
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1. Introduction

Reinforcement learning (RL) (Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998) is
the study of algorithms that enable agents embedded in stochastic environments to learn
what actions to take in different situations or states in order to maximize a scalar feedback
function or reward over time. The mapping from states to actions is referred to as a policy

or a closed-loop plan. Learning occurs based on the idea that the tendency to produce
an action should be reinforced if it produces favorable long-term rewards, and weakened
otherwise. From the perspective of control theory, RL algorithms can be shown to be
approximations to classical approaches to solving optimal control problems. The classi-
cal sample-based approaches use dynamic programming (DP) (Bertsekas, 1995, Puterman,
1994), which requires perfect knowledge of the system dynamics and payoff function. Re-
inforcement learning has the advantage of potentially being able to find optimal solutions
(or close-to-optimal) solutions in domains where models are not known or unavailable.

Broadly speaking, the two main approaches to RL are to search the policy space directly
using the gradient of the parametric representation of the policy with respect to some
performance metric – the so-called policy gradient formulation (Marbach, 1998, Baxter
and Bartlett, 2001) – or, instead, to learn an indirect target function, referred to as the
value function as it represents the long-term payoff associated with states or state-action
pairs. The policy can be recovered from a value function by choosing “greedy” actions that
maximize the value of states nearby (or immediate state action pairs). In this paper, we
focus on the value function-based approach, although we have recently begun to investigate
hierarchical policy gradient RL algorithms as well (Ghavamzadeh and Mahadevan, 2003).

The asymptotic convergence of value function-based RL algorithms, such as Q-learning
(Watkins, 1989) or TD(λ) (Sutton, 1988), is only assured in restricted cases, typically when
the values are represented explicitly for each state. Often, real-world problems require us-
ing function approximators for which convergence is not guaranteed in general. In such
cases, convergence is guaranteed only if the value function is approximated using a linear

superposition of basis feature values, and samples are generated using an on policy distri-
bution. However, even if asymptotic convergence was theoretically guaranteed by adhering
to these restrictions, in practice these algorithms can take hundreds of thousands of epochs
to converge.

The central focus of this paper is to present new algorithms for reinforcement learning,
applicable to discrete-time and continuous-time continuing tasks, using which convergence
occurs much more rapidly than with traditional Q-learning (Watkins, 1989). The new
algorithms are based on extending hierarchical reinforcement learning (HRL), a general
framework for scaling reinforcement learning to problems with large state spaces by using
the task (or action) structure to restrict the space of policies. The key principle underlying
HRL is to develop learning algorithms that do not need to learn policies from scratch,
but instead reuse existing policies for simpler subtasks (or macro actions). The difficulty
with using the traditional framework for reusing learned policies is that decision making no
longer occurs in synchronous unit-time steps, as is traditionally assumed in RL. Instead,
decision-making occurs in epochs of variable length, such as when a distinguishing state is
reached (e.g., an intersection in a robot navigation task), or a subtask is completed (e.g.,
the elevator arrives on the first floor).
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Fortunately, a well-known statistical model is available to treat variable length actions:
the semi-Markov decision process (SMDP) model (Howard, 1971, Puterman, 1994). Here,
state transition dynamics is specified not only by the state where an action was taken, but
also parameters specifying the length of time since the action was taken. Early work in RL
on the SMDP model studied extensions of algorithms such as Q-learning (Bradtke and Duff,
1995, Mahadevan et al., 1997b). This early work on SMDP models was then expanded to
include hierarchical task models over fully or partially specified lower level subtasks. The
options model (Sutton et al., 1999) in its simplest form studied how to learn policies given
fully specified policies for executing subtasks. The hierarchical abstract machines (HAMs)
formulation (Parr, 1998) showed how hierarchical learning could be achieved even when the
policies for lower-level subtasks were only partially specified. Lastly, the MAXQ framework
(Dietterich, 2000) provided a fully comprehensive framework for hierarchical learning where
instead of specifying policies for subtasks, the learner is given pseudo-reward functions.
While a full comparison of these variant approaches is beyond the scope of this paper, what
these treatments have in common is that they are all based on the discrete-time discounted
reward SMDP framework.

The average-reward formulation has been shown to be more appropriate for a wide
class of continuing tasks. A primary goal of continuing tasks, including manufacturing,
scheduling, queuing and inventory control, is to find a gain optimal policy that maximizes
(minimizes) the long-run average reward (cost) over time. Although average reward RL
has been extensively studied, using both the discrete-time MDP model (Schwartz, 1993,
Mahadevan, 1996, Tadepalli and Ok, 1996a, Marbach, 1998, Van-Roy, 1998) as well as the
continuous-time SMDP model (Mahadevan et al., 1997b, Wang and Mahadevan, 1999),
prior work has been limited to flat policy representations.

In this paper, we extend previous work on hierarchical reinforcement learning to the
average reward SMDP framework and present discrete-time and continuous-time hierar-
chical average reward RL algorithms corresponding to two notions of optimality in HRL:
hierarchical optimality and recursive optimality. A secondary contribution of this paper is
to illustrate how HRL can be applied to more interesting (and practical) domains than has
been illustrated previously. In particular, we focus on autonomous guided vehicle (AGV)
scheduling, although our approach easily generalizes to other problems, such as transfer
line production control (Gershwin, 1994, Wang and Mahadevan, 1999). We use four exper-
imental testbeds to study the empirical performance of our proposed algorithms. The first
two domains are simple, a small autonomous guided vehicle (AGV) scheduling problem and
a modified version of the Taxi problem (Dietterich, 2000). The other domains are much
larger real-world single-agent and multiagent AGV scheduling problems. We model these
AGV scheduling tasks using both discrete-time and continuous-time models and compare
the performance of our proposed algorithms with each other, as well as with the MAXQ
method (Dietterich, 2000) and to standard Q-learning. In the multiagent AGV domain, we
also show that our proposed extensions outperform widely used industrial heuristics, such
as “first come first serve”, “highest queue first” and “nearest station first”.

The rest of this paper is organized as follows. Section (2) describes a framework for hi-
erarchical reinforcement learning which is used to develop the algorithms of this paper. In
Section (3), we present two discrete-time and two continuous-time hierarchical average re-
ward RL algorithms. Section (3.1) reviews average reward discrete-time SMDPs. In Section
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(3.3), we present discrete-time and continuous-time hierarchically optimal average reward
RL algorithms. In Section (3.4), we investigate different methods to formulate subtasks in
a recursively optimal hierarchical average reward RL framework and present discrete-time
and continuous-time recursively optimal hierarchical average reward RL algorithms. Section
(4) provides a brief overview of the Automated Guided Vehicle (AGV) scheduling problem,
which is used in the experimental study presented in this paper. Section (5) presents ex-
perimental results of using the proposed algorithms in a simple AGV scheduling problem, a
modified version of the Taxi problem and large real-world single-agent and multiagent AGV
scheduling problems. Section (6) summarizes the paper and discusses some directions for
future work. Finally, we list the notation used in this paper in Appendix A.

2. A Framework for Hierarchical Reinforcement Learning

In this section, we introduce a general hierarchical reinforcement learning framework for
simultaneous learning at multiple levels of the hierarchy. Our treatment builds upon the
existing approaches, including the MAXQ value function decomposition (Dietterich, 2000),
hierarchies of abstract machines (HAMs) (Parr, 1998), and the options model (Sutton et al.,
1999). We describe the common principles underlying these variant formulations below,
ignoring some of the subtle differences between the frameworks. In the next section, we
will extend this framework to average reward model and present our hierarchical average
reward reinforcement learning algorithms.

2.1 Motivating Example

Hierarchical reinforcement learning methods provide a general framework for scaling re-
inforcement learning to problems with large state spaces by using the task structure to
restrict the space of policies. In these methods, the designer of the system uses his/her
domain knowledge to recursively decompose the overall task into a collection of subtasks
that he/she believes are important for solving the problem.

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

Figure 1: A (simulated) robot trash collection task and its associated task graph.
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Let us illustrate the idea using a simple search task shown in Figure (1). Consider
the case where in an office (rooms and connecting corridors) type environment, a robot is
assigned the task of picking up trash from trash cans (T1 and T2) over an extended area
and accumulating it into one centralized trash bin (Dump), from where it might be sent
for recycling or disposed. The main subtasks in this problem are root (the whole trash
collection task), collect trash at T1 and T2, navigate to T1, T2 and Dump. Each of these
subtasks is defined by a set of termination states, and terminates when reaches one of its
termination states. After defining subtasks, we must indicate for each subtask, which other
subtasks or primitive actions it should employ to reach its goal. For example, navigate to

T1, T2 and Dump use three primitive actions find wall, align with wall and follow wall.
Collect trash at T1 uses two subtasks navigate to T1 and Dump, plus two primitive actions
Put and Pick, and so on.

All of this information can be summarized by a directed acyclic graph called the task

graph. The task graph for the trash collection problem is shown in Figure (1). A key
challenge for any HRL method is how to support temporal abstraction, state abstraction
and subtask sharing.

• Temporal Abstraction: The process of navigating to T1 is a temporally extended
action that can take different lengths of time to complete depending on the distance
to T1.

• State Abstraction: While the agent is moving toward the Dump, the status of trash
cans T1 and T2 are irrelevant and cannot affect this navigation process. Therefore,
the variables defining the status of trash cans T1 and T2 can be removed from the
state space of navigate to Dump subtask.

• Subtask Sharing: If the system could learn how to solve the navigate to Dump

subtask once, then the solution could be shared by both collect trash at T1 and T2
subtasks.

2.2 Temporal Abstraction using SMDPs

Hierarchical RL studies how lower-level policies over subtasks or primitive actions can them-
selves be composed into higher level policies. Policies over primitive actions are “semi-
Markov” when composed at the next level up, because they can take variable stochastic
amount of time. Thus, semi-Markov decision processes (SMDPs) have become the preferred
language for modeling temporally extended actions (Mahadevan et al., 1997a). We briefly
explain the basic SMDP model here, leaving details of the average-reward formulation to
later sections. Semi-Markov decision processes extend the MDP model in several aspects.
Decisions are only made at discrete points in time. The state of the system may change con-
tinually between decisions, unlike MDPs where state changes are only due to actions. Thus,
the time between transitions may be several time units and can depend on the transition
that is made.

An SMDP is defined as a four tuple (S,A,P ,R), where S is a finite set of states, A

is the set of actions, P : S × N × S × A → [0, 1] is a set of state and action dependent
multi-step transition probabilities, and R is the reward function. P (s′, N |s, a) denotes the
probability that action a will cause the system to transition from state s to state s′ in N
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time steps. This transition is at decision epochs only. Basically, the SMDP model represents
snapshots of the system at decision points, whereas the so-called natural process describes
the evolution of the system over all times.

While SMDP theory provides the theoretical underpinnings of temporal abstraction by
allowing for actions that take varying amounts of time, the SMDP model provides little in
the way of concrete representational guidance which is critical from a computational point
of view. In particular, the SMDP model does not specify how tasks can be broken up into
subtasks, how to decompose value functions etc. We examine these issues next.

Mathematically, a task hierarchy such as the one illustrated above can be modeled by
decomposing the overall task MDP M , into a finite set of subtasks {M0, M1, . . . , Mn},
where M0 is the root task and solving it solves the entire MDP M .

Definition 1: Each non-primitive subtask i (i is not a primitive action) consists of five
components (Si, Ii, Ti, Ai, Ri):

• Si is the state space for subtask i. It is described by those state variables that are
relevant to subtask i. The range of the state variables describing Si might be a subset
of their range in S (state abstraction).

• Ii is the initiation set for subtask i. Subtask i can be initiated only in states belong
to Ii.

• Ti is the set of terminal states for subtask i. Subtask i terminates when it reaches
a state in Ti. The policy for subtask i can only be executed if the current state s

belongs to (Si − Ti).

• Ai is the set of actions that can be performed to achieve subtask i. These actions can
either be primitive actions from A (the set of primitive actions for MDP M), or they
can be other subtasks.

• Ri is the reward structure inside subtask i and could be different from the reward
function of MDP M . Besides the reward of the overall task (MDP M), each subtask
i can use additional rewards to guide its local learning (Ng et al., 1999). Additional
rewards are only used inside each subtask and do not propagate to upper levels in the
hierarchy. If the reward structure inside a subtask is different than the reward function
of the overall task, we need to define two types of value functions for the subtask,
internal value functions and external value functions. Internal value functions are
defined based on both the local reward structure of the subtask and the reward of
the overall task, and only used in learning the subtask. On the other hand, external
value functions are defined only based on the reward function of the overall task and
propagated to higher levels in the hierarchy to be used in learning the global policy.

Each primitive action a is a primitive subtask in this decomposition, such that a is always
executable and it terminates immediately after execution. From now on in this paper, we
use subtask to refer to non-primitive subtasks.
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2.3 Policy Execution

If we have a policy for each subtask in this model, it gives us a policy for the overall task.
This collection of policies is called a hierarchical policy.

Definition 2: A hierarchical policy µ is a set with a policy for each of the subtasks in
the hierarchy: µ = {µ0, . . . , µn}.

The hierarchical policy is executed using a stack discipline, similar to ordinary program-
ming languages. Each subtask policy takes a state and returns the name of a primitive
action to execute or the name of a subtask to invoke. When a subtask is invoked, its name
is pushed onto the Task Stack and its policy is executed until it enters one of its terminal
states. When a subtask terminates, its name is popped off the Task Stack. If any subtask on
the Task Stack terminates, then all subtasks below it are immediately aborted, and control
returns to the subtask that had invoked the terminated subtask. Hence, at any time, the
root subtask is located at the bottom and the subtask which is currently being executed is
located at the top of the Task Stack.

Under a hierarchical policy µ, we define a multi-step transition probability P
µ
i : Si ×

N × Si → [0, 1] for each subtask i in the hierarchy, where P
µ
i (s′, N |s) denotes the prob-

ability that action µi(s) will cause the system to transition from state s to state s′ in N

primitive steps. We also define a single-step transition probability function for each subtask
i under hierarchical policy µ by marginalizing the multi-step transition probability function
P

µ
i , as F

µ
i (s′|s) =

∑∞
N=1 P

µ
i (s′, N |s). F

µ
i (s′, n|s) denotes the n-step (or abstract) transition

probability from state s to state s′ under hierarchical policy µ, where n is the number of
actions taken by subtask i, not the number of primitive actions taken in this transition. In
this paper, we use the abstract transition probability F to model state transition at the
subtask level and transition probability P to model state transition at the level of primitive
actions.

Definition 3: Under a hierarchical policy µ, each subtask i can be modeled by an SMDP
consists of components (Si, Ai, P

µ
i , Ri).

2.4 Local versus Global Optimality

In the HRL framework, the designer imposes a hierarchy on the problem to incorporate
prior knowledge and thereby reduces the size of the space that must be searched to find
a good policy. However, this hierarchy constrains the space of possible policies so that it
may not be possible to represent the optimal policy or its value function and hence make it
impossible to learn the optimal policy. If we cannot learn the optimal policy, the next best
target would be to learn the best policy that is consistent with the given hierarchy. Two
notions of optimality have been explored in previous work on hierarchical reinforcement
learning:

Definition 4: Hierarchical optimality is a global optimum consistent with the given hi-
erarchy. In this form of optimality, the policy for each individual subtask is not necessarily
optimal, but the policy for the entire hierarchy is optimal. The HAMQ HRL algorithm
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(Parr, 1998) and the SMDP Q-learning algorithm for a fixed set of options (Sutton et al.,
1999) both converge to a hierarchically optimal policy. More formally, a hierarchical opti-
mal policy for MDP M is a hierarchical policy which has the best performance among all
policies consistent with the given hierarchy.

Definition 5: Recursive optimality is a weaker but more flexible form of optimality which
only guarantees that the policy of each subtask is optimal given the policies of its children.
It is an important and flexible form of optimality because it permits each subtask to learn
a locally optimal policy while ignoring the behavior of its ancestors in the hierarchy. This
increases the opportunities for subtask sharing and state abstraction. The MAXQ-Q HRL
algorithm (Dietterich, 2000) converges to a recursively optimal policy. More formally, a
recursive optimal policy for MDP M with hierarchical decomposition {M0, M1, . . . , Mn} is
a hierarchical policy µ = {µ0, . . . , µn} such that for each subtask Mi, the corresponding
policy µi is optimal for the SMDP defined by the tuple (Si, Ai, P

µ
i , Ri).

2.5 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ = {µ0, . . . , µn} such that
for each subtask Mi in the hierarchy, the expected cumulative reward of executing policy µi

and the policies of all descendants of Mi is maximized. In this case, the value function to
be learned for subtask i under hierarchical policy µ must contain only the reward received
during the execution of subtask i. We call this the projected value function and define it as
follows:

Definition 6: The projected value function of hierarchical policy µ on subtask Mi, de-
noted V̂ µ(i, s), is the expected cumulative reward of executing policy µi and the policies of
all descendants of Mi starting in state s ∈ Si until Mi terminates.

The expected cumulative reward outside a subtask is not a part of its projected value
function. It makes the projected value function of a subtask dependent only on itself and
its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical policy
that maximizes the expected cumulative reward. In this case, the value function to be
learned for subtask i under hierarchical policy µ must contain the reward received during
the execution of subtask i and the reward after subtask i terminates. We call this the hier-

archical value function. The hierarchical value function of a subtask includes the expected
reward outside the subtask and therefore depends on the subtask and all its ancestors up
to the root of the hierarchy. In the case of hierarchical optimality, we need to consider the
contents of the Task Stack as an additional part of the state space of the problem, since a
subtask might be shared by multiple parents.

Definition 7: Ω is the space of possible values of the Task Stack for hierarchy H.

Let us define a joint state space X as the cross product of Task Stack values Ω and the
states S in hierarchy H. We define the hierarchical value function using state space X as:
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Definition 8: A hierarchical value function for subtask Mi in state x = (ω, s) and un-
der hierarchical policy µ, denoted V µ(i, x), is the expected cumulative reward of following
the hierarchical policy µ starting in state s ∈ Si and Task Stack ω.

The current subtask i is a part of the Task Stack ω and as a result is a part of state
x. So we can exclude it from the hierarchical value function notation and write V µ(i, x) as
V µ(x). However, we keep the current subtask i as a part of the hierarchical value function
notation to simplify the notation in the following section.

3. Hierarchical Average Reward Reinforcement Learning

Given the above fundamental principles of HRL, we can now proceed to describe our hierar-
chical average reward formulation. We begin with a review of average reward discrete-time
SMDPs.

3.1 Discrete-time Average Reward SMDPs

The theory of infinite-horizon SMDPs with the average reward criterion is more complex
than that for discounted models (Howard, 1971, Puterman, 1994). To simplify exposition
we assume that for every stationary policy, the embedded Markov chain has a unichain
transition probability matrix.1 Under this assumption, the expected average reward of
every stationary policy does not vary with the initial state.

For policy µ, state s ∈ S and number of time steps N ≥ 0, V
µ
N (s) denotes the expected

total reward generated by the policy µ up to time step N , given the system occupies state
s at time 0, and is defined as

V
µ
N (s) = Eµ

s

{

N−1
∑

k=0

r(sk, ak)

}

The average expected reward or gain gµ(s) for a policy µ in state s can be defined by taking
the ratio of the expected total reward and the number of decision epochs. The gain gµ(s)
of a policy µ can be expressed as

gµ(s) = lim inf
N→∞

E
µ
s {

∑N−1
k=0 r(sk, ak)}

N

For unichain MDPs, the gain of any policy is state independent and we can write gµ(s) = gµ.
For each transition, the expected number of transition steps until the next decision epoch
is defined as

y(s, a) = Ea
s {N} =

∞
∑

N=0

N
∑

s′∈S

P (s′, N |s, a)

1. The underlying Markov chain for every stationary policy has a single recurrent class, and a (possibly
empty) set of transient states.
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The expected average adjusted sum of rewards Hµ for policy µ is defined as

Hµ(s) = Eµ
s {

∞
∑

k=0

[r(sk, ak)− gµ(sk)]} = Eµ
s {

∞
∑

k=0

[r(sk, ak)− gµ]}

The Bellman equation for the average adjusted value function Hµ can be written as

Hµ(s) = r(s, µ(s))− gµy(s, µ(s)) +
∑

N,s′∈S

P (s′, N |s, µ(s))Hµ(s′)

The average adjusted action value function Lµ(s, a) represents the average adjusted value
of doing action a in state s once, and then following policy µ subsequently is defined as

Lµ(s, a) = r(s, a)− gµy(s, a) +
∑

N,s′∈S

P (s′, N |s, a)Lµ(s′, µ(s′))

3.2 Assumptions

In this paper, we consider continuing HRL problems for which the following assumptions
hold.

Assumption 1 (Continuing Root Task) The root of the hierarchy is a continuing task,
i.e., the root task goes on continually without terminating.

Assumption 2 (Root Task Recurrence) There exists a state s∗0 ∈ S0 such that, for
every hierarchical policy µ and for every state s ∈ S0, we have2

|S0|
∑

n=1

F
µ
0 (s∗0, n|s) > 0

where n is the number of steps at the level of root task, not the number of primitive actions
as defined in Section (2.3).

Assumption (2) is equivalent to assuming that the underlying Markov chain for every
policy of the root task has a single recurrent class and the state s∗0 is a recurrent state.3

Under this assumption, the balance equations for policy µ

|S0|
∑

s=1

F
µ
0 (s′|s)πµ

0 (s) = π
µ
0 (s′), s′ = 1, . . . , |S0| − 1

|S0|
∑

s=1

π
µ
0 (s) = 1

(1)

have a unique solution π
µ
0 = (πµ

0 (1), . . . , π
µ
0 (|S0|)). We refer to π

µ
0 as the steady state

probability vector of the Markov chain with transition probability F
µ
0 (s′|s) and to π

µ
0 (s) as

the steady state probability of being in state s.

2. Notice that the root task is represented as subtask M0 in the HRL framework described in Section (2).
3. This assumption can be relaxed by assuming that the MDP corresponding to the root task is unichain.
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If assumption (2) holds, the gain gµ is well defined for every hierarchical policy µ and
does not depend on the initial state. We have the following relation:

gµ =
∑

s∈S0

π
µ
0 (s)r(s, µ0(s))

When assumption (2) holds, we are interested in finding a hierarchical control policy µ∗

which maximizes the gain, i.e.,

gµ∗

≥ gµ, for all µ (2)

We refer to a hierarchical policy µ∗ which satisfies condition (2) as a gain optimal policy,
and to gµ∗

as the optimal average reward or the optimal gain.

However, since the policy learned for the root task involves the policies of its children,
the type of optimality achieved at root depends on how we formulate subtasks in the hierar-
chy. We already addressed two notions of optimality: hierarchical optimality and recursive

optimality. In Section (3.3), we introduce an algorithm to find a hierarchically gain opti-

mal policy (a hierarchical policy that has the maximum gain among all hierarchical policies)
(Ghavamzadeh and Mahadevan, 2002). In Section (3.4), we investigate different approaches
for finding a recursively gain optimal policy (a hierarchical policy in which the policy at each
node has the maximum gain given the policies of its children) and introduce a recursively
gain optimal average reward HRL algorithm.

3.3 Hierarchically Gain Optimal Average Reward RL Algorithm

In this section, we consider problems for which assumptions (1) and (2) (Continuing Root

Task) and (Root Task Recurrence) hold, i.e., the average reward for root (overall problem)
is well defined for every hierarchical policy and does not vary with initial state. We use the
hierarchical RL framework described in Section (2). Since we are interested in finding the
hierarchical optimal policy, we include the contents of the Task Stack as a part of the state
space of the problem. We also replace value function and action-value function with average
adjusted value function and average adjusted action-value function in the hierarchical model
of Section (2).

The hierarchical average adjusted value function H for hierarchical policy µ and subtask
i, denoted Hµ(i, x), is the average adjusted sum of rewards earned of following policy µ

starting in state x = (ω, s) until i terminates plus the expected average adjusted reward
outside subtask i:

Hµ(i, x) = lim
N→∞

Eµ
x{

N−1
∑

k=0

(r(xk, ak)− gµ)} (3)

where gµ is the gain of the root task and we call it global gain of the hierarchical policy µ.

Now let us suppose that the first action chosen by µ is invoked and executed for a number
of primitive steps N1 and terminates in state x1 = (ω, s1) according to P

µ
i (x1, N1|x, µi(x))

and after that subtask i itself executes for n2 steps at the level of subtask i (n2 is the
number of actions taken by subtask i, not the number of primitive actions) and terminates

11
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in state x2 = (ω, s2) according to abstract transition probability F
µ
i (x2, n2|x1). We can

write Equation (3) in the form of a Bellman equation:

Hµ(i, x) = r(x, µi(x))− gµyi(x, µi(x)) +
∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))Ĥµ(i, x1)

+
∑

s1∈Si

F
µ
i (x1|x, µi(x))

∑

n2,s2∈Si

F
µ
i (x2, n2|x1)H

µ(Parent(i), (ω ↗ i, s2))
(4)

where Ĥµ(i, .) is the projected average adjusted value function of hierarchical policy µ on
subtask i, and ω ↗ i is the content of the Task Stack after popping subtask i off. Notice
that Ĥ does not contain the reward outside the current subtask and should be distinguished
with the hierarchical average adjusted value function H, which includes the sum of rewards
outside the current subtask.

Since r(x, µi(x)) is the expected total reward between two decision epochs of subtask
i, given that the system occupies state x at the first decision epoch and decision maker
chooses action µi(x), we have

r(x, µi(x)) = V̂
µ

yi(x,µi(x))(µi(x), (µi(x)↘ ω, s)) = Ĥµ(µi(x), (µi(x)↘ ω, s)) + gµyi(x, µi(x))

where µi(x) ↘ ω is the content of the Task Stack after pushing subtask µi(x) onto it. By
replacing r(x, µi(x)) from the above expression, Equation (4) can be written as

Hµ(i, x) = Ĥµ(µi(x), (µi(x)↘ ω, s)) +
∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))Ĥµ(i, x1)

+
∑

s1∈Si

F
µ
i (x1|x, µi(x))

∑

n2,s2∈Si

F
µ
i (x2, n2|x1)H

µ(Parent(i), (ω ↗ i, s2))
(5)

We can re-state Equation (5) for hierarchical average adjusted action-value function as

Lµ(i, x, a) = Ĥµ(a, (a↘ ω, s)) +
∑

N1,s1∈Si

P
µ
i (x1, N1|x, a)Ĥµ(i, x1)

+
∑

s1∈Si

F
µ
i (x1|x, a)

∑

n2,s2∈Si

F
µ
i (x2, n2|x1)L

µ(Parent(i), (ω ↗ i, s2), µparent(i)(ω ↗ i, s2))

and we can re-express the definition for Ĥ as

Ĥµ(i, s) =

{

L̂µ(i, s, µi(s)) if i is a composite action
∑

s′ P (s′|s, i)[r(s′|s, i)− gµ] if i is a primitive action
(6)

where L̂ is the projected average adjusted action-value function.
The above formulas can be used to obtain update equations for Ĥ, L̂ and L in this frame-

work. Pseudo-code for the resulting algorithm is shown in Algorithm (1). After running
for appropriate time, this algorithm should generate a gain-optimal policy that maximizes
the average reward for the overall task. In this algorithm, primitive subtasks update only
their projected average adjusted value functions Ĥ (line 5), while non-primitive subtasks

12
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update both their projected average adjusted action-value functions L̂ and hierarchical av-
erage adjusted action-value functions L (lines 17 and 18). We store only one global gain g

and update it after each non-random primitive action (line 7). In update formulas at lines
17 and 18, the projected average adjusted value function Ĥ(a, (a↘ ω, s)) is the reward of
executing action a in state (ω, s) under subtask i and is recursively calculated by subtask
a and its descendants using Equation (6).

Algorithm 1 The discrete-time hierarchically gain optimal average reward RL algorithm.

1: Function HO-AR(Task i, State x = (ω, s))
2: let Seq = {} be the sequence of states visited while executing i

3: if i is a primitive action then
4: execute action i in state x, observe state x′ = (ω, s′) and reward r(s′|s, i)
5: Ĥt+1(i, x)←− (1− αt)Ĥt(i, x) + αt[r(s

′|s, i)− gt]
6: if i and all its ancestors are non-random actions then
7: update the global average reward gt+1 = rt+1

nt+1
= rt+r(s′|s,i)

nt+1
8: end if
9: push state x1 = (ω ↗ i, s) into the beginning of Seq

10: else
11: while i has not terminated do
12: choose action a according to the current exploration policy µi(x)
13: let ChildSeq=HO-AR(a, (a↘ ω, s)), where ChildSeq is the sequence of states visited

while executing action a

14: observe result state x′ = (ω, s′)
15: let a∗ = argmaxa′∈Ai(s′)Lt(i, x

′, a′)
16: for each x = (ω, s) in ChildSeq from the beginning do
17: L̂t+1(i, x, a)← (1− αt)L̂t(i, x, a) + αt[Ĥt(a, (a↘ ω, s)) + L̂t(i, x

′, a∗)]
18: Lt+1(i, x, a)← (1− αt)Lt(i, x, a) + αt[Ĥt(a, (a↘ ω, s)) + Lt(i, x

′, a∗)]
19: replace state x = (ω, s) with x1 = (ω ↗ i, s) in the ChildSeq

20: end for
21: append ChildSeq onto the front of Seq

22: x = x′

23: end while
24: end if
25: return Seq

26: end HO-AR

This algorithm can be easily extended to continuous-time by changing the update for-
mulas for Ĥ and g in lines 5 and 7 as

Ĥt+1(i, x)←−(1− αt)Ĥt(i, x) + αt[k(s, i) + r(s′|s, i)τ(s′|s, i)− gtτ(s′|s, i)]

gt+1 =
rt+1

tt+1
=

rt + k(s, i) + r(s′|s, i)τ(s′|s, i)

tt + τ(s′|s, i)

where τ(s′|s, i) is the time elapsing between states s and s′, k(s, i) is the fixed reward of
taking action i in state s and r(s′|s, i) is the reward rate for the time that the natural
process remains in state s′ between decision epochs.
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3.4 Recursively Gain Optimal Average Reward RL

In the previous section, we introduced hierarchically gain optimal average reward RL al-
gorithms for both discrete and continuous time problems. In the proposed average reward
algorithms, we define only a global gain for the entire hierarchy to guarantee global opti-
mality for the overall task. The hierarchical policy has the highest gain among all policies
consistent with the given hierarchy. However, there might exist a subtask where its policy
must be locally suboptimal so that the overall policy becomes optimal.

Recursive optimality is a kind of local optimality in which the policy at each node is
optimal given the policies of its children. The reason to seek recursive optimality rather
than hierarchical optimality is that recursive optimality makes it possible to solve each
subtask without reference to the context in which it is executed. This leaves open the
question of what local optimality criterion should be used for each subtask except root in
the recursive optimal average reward HRL setting.4 One possibility is to simply optimize the
total reward of every subtask in the hierarchy except root. Another possibility, investigated
in (Ghavamzadeh and Mahadevan, 2001), is to treat subtasks as average reward problems
that maximize their gain given the policies of their children. We will describe this approach
in detail later in this section. Finally the third approach, pursued in (Seri and Tadepalli,
2002), is to optimize subtasks using their expected total relativized reward with respect to
the gain of the overall task (gain of the root task). Seri and Tadepalli (Seri and Tadepalli,
2002) introduce a model-based algorithm called Hierarchical H-Learning (HH-Learning).
For every subtask, this algorithm learns the action model and maximizes the expected total
average adjusted reward with respect to the gain of the overall task at each state. In their
approach, the projected average adjusted value functions with respect to the gain of the
overall task satisfy the following Bellman equations:

Ĥµ(i, s) =























r(s′|s, i)− gµτ(s′|s, i) if i is a primitive action

0 if s is a goal state for subtask i

maxa∈Ai(s)[Ĥ
µ(a, s) +

∑

N,s′∈Si
P

µ
i (s′, N |s, a)Ĥµ(i, s′)] otherwise

(7)

The first term of the last part of Equation (7), Ĥµ(a, s), denotes the expected total aver-
age adjusted reward during the execution of subtask a, and the second term denotes the
expected total average adjusted reward from then on until the completion of subtask i.
Since the expected average adjusted reward after subtask i execution is not a component
of the average adjusted value function, this approach does not necessarily allow for hier-
archical gain optimality (as will be shown in experiments of Section (5)). Moreover, the
policy learned for each subtask using this approach is not context free, because each node
maximizes its relativized reward with respect to the gain of the overall policy. However, this
method finds the hierarchically gain optimal policy when the result distribution invariance

condition holds (Seri and Tadepalli, 2002).
On the other hand, the approach in which subtasks are treated as average reward prob-

lems (Ghavamzadeh and Mahadevan, 2001) might fail to find the hierarchical gain optimal

4. Like the previous section, we consider those problems for which assumptions (1) and (2) (Continuing

Root Task) and (Root Task Recurrence) hold. Thus, for root, the goal is to maximize its gain, given the
policies for its descendants.
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policy as shown in (Seri and Tadepalli, 2002). However the policy learned at each node
using this method maximizes the gain of the node given the policies of its children. There-
fore, it is independent of the context in which it is executed and could be reused in other
hierarchies. Now we first describe this approach in detail and then introduce an algorithm
for finding recursively optimal average reward policies.

In HRL methods, we typically assume that every time a subtask except root is called,
it starts at one of its initial states and terminates at one of its terminal states after a finite
number of steps. Therefore, we make the following assumption for every subtask i in the
hierarchy except root. Under this assumption, each instantiation of a subtask can be con-
sidered as an episode and each subtask as an episodic problem.

Assumption 3 (Subtask Termination) There exists a distinguished state s∗i ∈ Si such
that, for all hierarchical stationary policies µ and every terminal state sT

i , we have

F
µ
i (s∗i |s

T
i , µi(s

T
i )) = 1 and ri(s

∗
i |s

T
i , µi(s

T
i )) = 0

and, for all non-terminal states s ∈ Si of the subtask, we have

F
µ
i (s∗i |s, µi(s)) = 0

and finally, for all states s ∈ Si, we have

F
µ
i (s∗i , n|s) > 0

where n = |Si| is the number of states in the state space of the subtask.

Although subtasks are episodic problems, when the overall task is continuing, they are
executed an infinite number of times and therefore can be modeled as continuing problems
using the model described in Figure (2). In this model, each subtask i terminates at one of
its terminal states sT

i ∈ Ti. All terminal states transit with probability one and reward zero
to a distinguished state s∗i . Finally, the distinguished state transits with reward zero to one
of the initial states (∈ Ii) of the subtask. It is important for the validity of this model to
fix the value of the distinguished state equal to zero.

Under this model, for every hierarchical policy µ, each subtask i in the hierarchy (except
root) can be modeled as a Markov chain with transition probabilities

F
µ
i,π̄(s′|s, µi(s)) =















F
µ
i (s′|s, µi(s)) s 6= s∗i

π̄i(s
′) s = s∗i

(8)

and rewards

ri,π̄(s′|s, µi(s)) = ri(s
′|s, µi(s))

where π̄i is a probability distribution on initial states of subtask i.
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Figure 2: This figure shows how each subtask in the hierarchy except root can be modeled
as a continuing task. In this figure, F and r are transition probability and reward.

Let F
µ
i,π̄ be the transition matrix with entries F

µ
i,π̄(s′|s, µi(s)) and let Fi,π̄ be the set of

all such transition matrices. We have the following result for all subtasks in the hierarchy
except root.

Theorem 1 Let assumption (3) (Subtask Termination) hold. Then, for every F
µ
i,π̄ ∈ F

µ
i,π̄

and every state s ∈ Si, we have5

|Si|
∑

n=1

F
µ
i,π̄(s∗i , n|s) > 0

Theorem (1) is equivalent to assuming that the underlying Markov chain for every hierar-
chical policy µ of any subtask i in the hierarchy has a single recurrent class and state s∗i is
its recurrent state. Under this assumption, for every subtask i in the hierarchy, the balance
equations for every hierarchical policy µ have a unique solution π

µ
i,π̄ and the average reward

g
µ
i,π̄ is well defined and does not depend on the initial state. Using this model, we define

the average reward of subtask i under the hierarchical policy µ as:

g
µ
i,π̄ =

∑

s∈Si

π
µ
i,π̄(s)ri,π̄(s′|s, µi(s))

where π
µ
i,π̄(s) is the steady state probability of being in state s under hierarchical policy µ.

In the next section, we illustrate the recursively optimal average reward algorithm us-
ing the above formulation. We consider problems for which assumptions (1), (2) and (3)
(Continuing Root Task), (Root Task Recurrence) and (Subtask Termination) hold and every
subtask in the hierarchy except root is modeled as an average reward problem using the
model in Figure (2) and Equation (8), i.e., the average reward for every subtask in the
hierarchy including root is well defined for every policy and does not vary with initial state.

5. This theorem is a restatement of the lemma 5 in page 34 of Peter Marbach’s thesis (Marbach, 1998),
which is applicable to the model described in Figure (2).

16



Hierarchical Average Reward Reinforcement Learning

3.4.1 Recursively Gain Optimal Average Reward RL Algorithm

In this section, we describe a discrete-time recursively optimal average reward HRL algo-
rithm.6 Since we are interested in finding a recursive optimal policy, we can exclude the
contents of the Task Stack from the state space of the problem. We also use the hierarchical
model of Section (2) with projected average adjusted value function and projected average
adjusted action-value function.

We show how the overall projected average adjusted value function (the projected av-
erage adjusted value function of the root task) of a hierarchical policy is decomposed into
a collection of projected average adjusted value functions of individual subtasks in this al-
gorithm. The projected average adjusted value function of hierarchical policy µ on subtask
i, denoted Ĥµ(i, s), is the average adjusted (with respect to local gain g

µ
i ) sum of rewards

earned of following policy µi (and the policies of all descendants of subtask i) starting in
state s until subtask i terminates. Now let us suppose that the first action chosen by µ is
invoked and executed for a number of primitive steps N and terminates in state s′ according
to P

µ
i (s′, N |s). We can write the projected average adjusted value function in the form of

a Bellman equation as

Ĥµ(i, s) = r(s, µi(s))− g
µ
i yi(s, µi(s)) +

∑

N,s′∈Si

P
µ
i (s′, N |s, µi(s))Ĥ

µ(i, s′) (9)

Since r(s, µi(s)) is the expected total reward between two decision epochs of subtask i, given
that the system occupies state s at the first decision epoch, decision maker chooses action
µi(s) and the number of time steps until next decision epoch is defined by yi(s, µi(s)), we
have

r(s, µi(s)) = V̂
µ

yi(s,µi(s))
(µi(s), s) = Ĥµ(µi(s), s) + g

µ

µi(s)
yi(s, µi(s))

By replacing r(s, µi(s)) from the above expression, Equation (9) can be written as

Ĥµ(i, s) = Ĥµ(µi(s), s)− (gµ
i − g

µ

µi(s)
)yi(s, µi(s)) +

∑

N,s′∈Si

P
µ
i (s′, N |s, µi(s))Ĥ

µ(i, s′) (10)

We can re-state Equation (10) for projected action-value function as follows:

L̂µ(i, s, a) = Ĥµ(a, s)− (gµ
i − gµ

a )yi(s, a) +
∑

N,s′∈Si

P
µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

In the above equation, the term

−(gµ
i − gµ

a )yi(s, a) +
∑

N,s′∈Si

P
µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

denotes the average adjusted reward of completing subtask i after executing action a in state
s. We call this term completion function and denote it by Cµ(i, s, a). With this definition,
we can express the average adjusted action-value function L̂µ recursively as

L̂µ(i, s, a) = Ĥµ(a, s) + Cµ(i, s, a)

6. The continuous-time recursively optimal average reward HRL algorithm is similar and was introduced
in (Ghavamzadeh and Mahadevan, 2001).
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and we can re-express the definition for Ĥ as

Ĥµ(i, s) =

{

L̂µ(i, s, µi(s)) if i is a composite action
∑

s′ P (s′|s, i)[r(s′|s, i)− g
µ
i ] if i is a primitive action

(11)

The above formulas can be used to obtain update equations for Ĥ and C functions in
discrete-time recursively optimal average reward model. Pseudo-code for this algorithm is
shown in Algorithm (2). After running for appropriate time, this algorithm should generate
a recursively gain-optimal policy that maximizes the gain of each subtask given the policies
of its children. In this algorithm, a gain is defined for every subtask in the hierarchy (even
primitive subtasks) and this gain is updated every time the subtask is non-randomly chosen.
Primitive subtasks update their projected average adjusted value functions Ĥ (line 5) and
gain (line 7), whereas non-primitive subtasks update their completion functions C (line
19) and gain (line 21). The projected average adjusted value function Ĥ for non-primitive
subtasks used at lines 15 and 19 is recursively calculated using Equation (11).

4. The AGV Scheduling Task

In this section, we provide a brief overview of the AGV scheduling problem used in the
experiments of this paper. Automated Guided Vehicles (AGVs) are used in flexible man-
ufacturing systems (FMS) for material handling (Askin and Standridge, 1993). They are
typically used to pick up parts from one location, and drop them off at another location
for further processing. Locations correspond to workstations or storage locations. Loads
which are released at the drop-off point of a workstation wait at its pick up point after the
processing is over, so the AGV is able to take it to the warehouse or some other locations.
The pickup point is the machine or workstation’s output buffer. Any FMS system using
AGVs faces the problem of optimally scheduling the paths of AGVs in the system (Klein
and Kim, 1996). For example, a move request occurs when a part finishes at a workstation.
If more than one vehicle is empty, the vehicle which would service this request needs to be
selected. Also, when a vehicle becomes available, and multiple move requests are queued,
a decision needs to be made as to which request should be serviced by that vehicle. These
schedules obey a set of constraints that reflect the temporal relationships between activities
and the capacity limitations of a set of shared resources.

The uncertain and ever changing nature of the manufacturing environment makes it
virtually impossible to plan moves ahead of time. Hence, AGV scheduling requires dynamic
dispatching rules, which are dependent on the state of the system like the number of parts
in each buffer, the state of the AGV and the process going on at workstations. The system
performance is generally measured in terms of the throughput, the on-line inventory, the
AGV travel time and the flow time, but the throughput is by far the most important factor.
The throughput is measured in terms of the number of finished assemblies deposited at
the unloading deck per unit time. Since this problem is analytically intractable, various
heuristics and their combinations are generally used to schedule AGVs (Klein and Kim,
1996). However, the heuristics perform poorly when the constraints on the movement of
the AGVs are reduced.

Previously, Tadepalli and Ok (Tadepalli and Ok, 1996b) studied a single-agent AGV
scheduling task using flat average reward reinforcement learning. In the next section, we
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Algorithm 2 The discrete-time recursively optimal average reward HRL algorithm.

1: Function RO-AR(Task i, State s)
2: let Seq = {} be the sequence of (state-visited, reward) while executing i

3: if i is a primitive action then
4: execute action i in state s, receive reward r(s′|s, i) and observe state s′

5: Ĥt+1(i, s)←− (1− αt)Ĥt(i, s) + αt(r(s
′|s, i)− g(i))

6: if i and all its ancestors are non-random actions then
7: update gain of subtask i gt+1(i) = rt+1(i)

nt+1(i) = rt(i)+r(s′|s,i)
nt(i)+1

8: end if
9: push (state s, reward r(s′|s, i)) onto the front of Seq

10: else
11: while i has not terminated do
12: choose action a according to the current exploration policy µi(s)
13: let ChildSeq=RO-AR(a, s), where ChildSeq is the sequence of (state-visited, reward)

while executing action a

14: observe result state s′

15: let a∗ = argmaxa′∈Ai(s′)[Ct(i, s
′, a′) + Ĥt(a

′, s′)]
16: let N = 0; ρ = 0;
17: for each (s, r) in ChildSeq from the beginning do
18: N = N + 1; ρ = ρ + r;
19: Ct+1(i, s, a)←− (1−αt)Ct(i, s, a)+αt[Ct(i, s

′, a∗)+Ĥt(a
∗, s′)−(gt(i)−gt(a))N ]

20: if a and all its ancestors are non-random actions then
21: update gain of subtask i gt+1(i) = rt+1(i)

nt+1(i) = rt(i)+ρ

nt(i)+N

22: end if
23: end for
24: append ChildSeq onto the front of Seq

25: s = s′

26: end while
27: end if
28: return Seq

29: end RO-AR

study both single-agent and more complex multiagent AGV scheduling tasks and apply the
HRL algorithms described in previous section to these tasks.

5. Experimental Results

The goal of this section is to demonstrate the efficacy of the algorithms proposed in this
paper. We show the type of the optimality that they converge to as well as their per-
formance and speed comparing to other algorithms. We conduct four sets of experiments
in this section. In Section (5.1), we apply five hierarchical RL algorithms to a simple
discrete-time AGV scheduling problem. The advantage of using this simple domain is that
it clearly demonstrates the difference between hierarchical and recursive optimal policies
and differences between the optimality criteria achieved by these algorithms. In Section
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(5.2), we use a modified version of the well-known Taxi problem (Dietterich, 2000). Since
hierarchical and recursive optimal policies are not different in this domain, we just test
two hierarchically optimal algorithms on this problem. Then we will turn to more complex
multiagent and single-agent AGV tasks in Sections (5.3), and (5.4) to demonstrate the per-
formance and speed of the proposed algorithms in complex domains. In Section (5.3), we use
a complex continuous-time multiagent AGV scheduling problem and compare the perfor-
mance and speed of our continuous-time recursively gain optimal average reward algorithm
with continuous-time recursively optimal discounted reward HRL algorithm introduced in
(Ghavamzadeh and Mahadevan, 2001) as well as three widely used industrial AGV schedul-
ing heuristics. Finally in Section (5.4), we model a single-agent AGV scheduling task as
discrete and continuous time problems and apply three hierarchical RL algorithms as well
as a flat RL algorithm to both models.

5.1 Simple AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically gain optimal algorithm (HO-AR)
described in Section (3.3), the discrete-time recursively gain optimal algorithm (RO-AR) il-
lustrated in Section (3.4.1), and HH-Learning, the algorithm proposed by Seri and Tadepalli
(Seri and Tadepalli, 2002) to a simple AGV scheduling task. We also test MAXQ (a re-

cursively optimal discounted reward HRL algorithm) (Dietterich, 2000) and a hierarchically

optimal discounted reward RL algorithm (HO-DR) on this task. We derived HO-DR algo-
rithm by combining the three parts value function decomposition introduced by Andre and
Russell (Andre and Russell, 2002) and MAXQ hierarchical task decomposition (Dietterich,
2000). These experimental results clearly demonstrate the difference between hierarchical
and recursive optimal policies and between the optimality criteria achieved by the above
algorithms.

A small AGV domain is depicted in Figure (3). In this domain there are two machines
(M1 and M2) that produce parts to be delivered to corresponding destination stations (G1
and G2). Since machines and destination stations are in two different rooms, the AGV has
to pass one of the two doors (D1 and D2) every time it goes from one room to another.
Part 1 is more important than part 2, therefore the AGV gets a reward of 20 when part
1 delivered to destination G1 and a reward of 1 when part 2 delivered to destination G2.
The AGV receives a reward of -1 for all other actions. This task is deterministic and the
state variables are AGV location and AGV status (empty, carry part 1 or carry part 2),
which is total of 26 × 3 = 78 states. In all experiments, we use the task graph shown in
Figure (3) and set the discount factor to 0.99 for discounted reward algorithms. We tried
several discounting factors and 0.99 yielded the best performance. Using this task graph,
hierarchical and recursive optimal policies are different. Since delivering part 1 has more
reward than part 2, the hierarchically optimal policy is one in which the AGV always serves
machine M1. In the recursively optimal policy, the AGV switches from serving machine
M1 to serving machine M2 and vice versa. In this policy, the AGV goes to machine M1,
picks up a part of type 1, goes to goal G1 via door D1, drops the part there, then passes
through door D2, goes to machine M2, picks up a part of type 2, goes to goal G2 via door
D2 and then switches again to machine M1 and so on so forth.
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Figure 3: A simple AGV domain (left) and its associated task graph (right).

Among the algorithms we applied to this task, the hierarchically gain optimal average
reward RL (HO-AR) and the hierarchically optimal discounted reward RL (HO-DR) al-
gorithms find the hierarchically optimal policy, where the other algorithms only learn the
recursively optimal policy. Figure (4) demonstrates the throughput of the system for the
above algorithms. In this figure, the throughput of the system is the number of parts de-
posited at the destination stations weighted by their reward ((part1× 20) + (part2× 1)) in
10000 time steps. Each experiment was conducted ten times and the results averaged.
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Figure 4: This plot shows that HO-DR and HO-AR algorithms learn the hierarchically
optimal policy while MAXQ, RO-AR and HH-Learning only find the recursively
optimal policy for the simple AGV task.

5.2 Modified Taxi Problem

In this section, we apply the discrete-time hierarchically gain optimal average reward RL al-

gorithm (HO-AR) described in Section (3.3) and the discounted reward hierarchically optimal

RL algorithm (HO-DR) to a modified version of the well-known Taxi problem (Dietterich,
2000).
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Unlike the original Taxi problem (Dietterich, 2000), the version used in this paper is
a continuing task. A 5-by-5 grid world inhabited by a taxi agent is shown in Figure (5).
There are four stations, marked as B(lue), G(reen), R(ed) and Y(ellow). The taxi starts
in a randomly chosen location and passengers randomly appear at these four stations.
The passenger at each station wishes to be transported to one of the other three stations
(also chosen randomly). The taxi must go to one of the passenger’s locations, pick up the
passenger, go to its destination location and drop off the passenger there. Then, passengers
once again randomly appear in four stations and the task continues. Each navigation action
with probability 0.7 causes the taxi to move one cell in the corresponding direction, and with
probability 0.3 moves the agent in one of the other three directions, each with probability
0.1. The system performance is measured in terms of the number of passengers dropped
off at their destinations per a fixed number of time steps. The state variables in this task
are taxi location, taxi status, status of each station (whether there is a passenger waiting
at that station or not), and destination of passenger at each station, which equals 512,000
states.

Y: Yellow Station

R: Red Station

G: Green Station

B: Blue Station

T: Taxi

0 1 2 3 4
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1

2

3

4 G

B

R

Y

T
Putdown BlueNav to BluePickup Blue

Get Blue Put Blue 

Root

Nav

North West South East

. . . . . .

Figure 5: The Taxi Domain (left) and its associated task graph (right).

Figure (6) compares the proposed discrete-time hierarchically gain optimal algorithm
(HO-AR) with the discrete-time hierarchically optimal discounted reward algorithm (HO-
DR) showing the better performance of the average reward algorithm. Each experiment
was conducted ten times and the results averaged. With the task graph depicted in Figure
(5), the hierarchical and recursive optimal policies are not different for this problem. Hence,
we did not test the recursively optimal algorithms on this domain.

5.3 Multiagent AGV Scheduling Problem (Continuous-Time Model)

In this section, we apply continuous-time recursively optimal discounted reward HRL algo-

rithm introduced in (Ghavamzadeh and Mahadevan, 2001) and continuous-time recursively

gain optimal average reward algorithm (RO-AR) illustrated in Section (3.4.1) to a complex
multiagent AGV scheduling problem and compare their performance and speed with each
other, as well as several well-known AGV scheduling heuristics.

We use a modified version of the above two continuous-time algorithms. This modi-
fication makes them well suited to multiagent problems. The most salient feature of this
extension is that the top level (the level immediately below the root) of the hierarchy is
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Figure 6: This plot shows that HO-AR algorithm works better than the discounted reward
HO-DR (with discount factor 0.9) on the modified taxi problem. We tried several
discounting factors and 0.9 yielded the best performance.

configured to store the completion function values C for joint abstract actions of all agents.
The completion function for agent j, Cj(i, s, a1, ..., aj , ..., an), is defined as the expected
(discounted or undiscounted) reward of completion of subtask aj by agent j in the context
of the other agents performing subtasks ai, ∀i 6= j ∈ {1, ..., n}, where s is the local state
of agent j not the joint state. This method reduces the number of joint state-action val-
ues that need to be learned in a complex multiagent task, and provides a sufficiently good
approximation of the true value functions (see (Makar et al., 2001) for details).

Figure (7) shows the layout of the AGV scheduling problem used in this experiment.
M1 to M4 show workstations in this environment. Parts of type i have to be carried to
drop off station at workstation i (Di), and the assembled parts brought back from pick up
stations of workstations (Pi’s), to the warehouse. The AGV travel is unidirectional (as the
arrows show).

Each agent uses a copy of the task graph in Figure (8). Learning is decentralized, with
each agent learning three interrelated skills: how to perform subtasks, which order to do
them in, and how to coordinate with other agents. Coordination skills among agents are
learned by using joint actions at the highest level of the hierarchy as described above.

The state of the environment consists of the number of parts in the pickup and drop-off
stations of each machine, and whether the warehouse contains parts of each of the four
types. In addition, each agent keeps track of its own location and status as a part of its
state space. Thus, in the flat case, state space consists of 100 locations, 8 buffers of size 3,
9 possible states of the AGV (carrying Part1, . . . , carrying Assembly1, . . . , empty), and 2
values for each part in the warehouse, i.e. 100×48×9×24 ≈ 230 states, which is enormous.
State abstraction helps in reducing the state space considerably. Only the relevant state
variables are used while storing the completion functions in each node of the task graph.
For example, for the Navigation subtask, only the location state variable is relevant, and
this subtask can be learned with 100 values. Hence, for the highest level actions DM1, . . .
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Figure 7: A multiagent AGV scheduling task. There are four AGV agents (not shown)
which carry raw materials and finished parts between machines and warehouse.
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Figure 8: Task graph for the AGV scheduling task.

, DM4, the number of relevant states would be 100 × 9 × 4 × 2 ≈ 213, and for the highest
level actions DA1, . . . , DA4, the number of relevant states would be 100 × 9 × 4 ≈ 212.
This state abstraction gives us a compact way of representing the C functions, and speeds
up the algorithm (Dietterich, 2000).

The experimental results were generated with the following model parameters. The
inter-arrival time for parts at the warehouse is uniformly distributed with a mean of 4 sec
and variance of 1 sec. The percentage of Part1, Part2, Part3 and Part4 in the part arrival
process are 20, 28, 22 and 30 respectively. The time required for assembling the various
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parts is normally distributed with means 15, 24, 24 and 30 sec for Part1, Part2, Part3
and Part4 respectively, and the variance 2 sec. The execution time of primitive actions
(navigation actions, load and unload) is normally distributed with mean 1000 and variance
50 micro sec. The execution time of idle action is normally distributed with mean 1 sec
and variance 0.1 sec. Table (1) shows the value of all the parameters of the continuous-time
model used in the experimental results of this section. Each experiment was conducted five
times and the results averaged.

Parameter Type of Distribution Mean (sec) Variance (sec)
Idle Action Normal 1 0.1

Primitive Actions Normal 0.001 0.00005
Assembly Time for Part1 Normal 15 2
Assembly Time for Part2 Normal 24 2
Assembly Time for Part3 Normal 24 2
Assembly Time for Part4 Normal 30 2

Inter-Arrival Time for Parts Uniform 4 1

Table 1: Model Parameters

Figure (9) shows the throughput of the system for continuous-time recursively optimal
discounted reward HRL algorithm and continuous-time recursively gain optimal average
reward (RO-AR) algorithm. As seen in this figure, the agents learn a little faster initially in
the discounted reward method, but the final system throughput achieved using the average
reward algorithm is higher than the discounted reward case. This figure also compares these
two algorithms with several well-known AGV scheduling rules, highest queue first, nearest

station first and first come first serve, showing clearly the improved performance of the
reinforcement learning methods.
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Figure 9: This plot shows continuous-time recursively gain optimal average reward (RO-
AR) algorithm outperforms continuous-time recursively optimal discounted re-
ward algorithm. It also demonstrates both these algorithms outperform three
well-known widely used (industrial) heuristics for AGV scheduling.
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5.4 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on a modified version of the AGV
scheduling task described in Section (5.3). In the experiments of this section, we assume
a single-agent problem with only three machines in the environment (Figure (7) without
machine M3). It reduces the number of states to 1,347,192 states. We model this AGV
scheduling task using both discrete-time and continuous-time models, and compare the
performance and speed of three HRL algorithms: hierarchically gain optimal RL (HO-AR),
hierarchically optimal discounted reward RL (HO-DR) and recursively gain optimal RL (RO-
AR) as well as a non-hierarchical average reward algorithm. In both sets of experiments, we
use the task graph for the AGV scheduling task shown in Figure (8) and discount factors
0.9 and 0.95 for discounted reward algorithms. In both experiments, using a discount factor
of 0.95 yielded better performance.

The discrete-time experimental results were generated with the following model parame-
ters. The inter-arrival time for parts at the warehouse is uniformly distributed with a mean
of 12 time steps and variance of 2 time steps. The percentage of Part1, Part2 and Part3 in
the part arrival process are 40, 35 and 25 respectively. The time required for assembling the
various parts are Poisson random variables with means 6, 10 and 12 time steps for Part1,
Part2 and Part3 respectively, and variance 2 time steps. Table (2) shows the parameters
of the discrete-time model.

Parameter Distribution Mean (steps) Variance (steps)

Assembly Time for Part1 Poisson 6 2

Assembly Time for Part2 Poisson 10 2

Assembly Time for Part3 Poisson 12 2

Inter-Arrival Time for Parts Uniform 12 2

Table 2: Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model pa-
rameters. The time required for execution of each primitive action is a normal random
variable with mean 10 sec and variance 2 sec. The inter-arrival time for parts at the ware-
house is uniformly distributed with a mean of 100 seconds and variance of 20 seconds. The
percentage of Part1, Part2 and Part3 in the part arrival process are 40, 35 and 25 re-
spectively. The time required for assembling the various parts are normal random variables
with means 100, 120 and 180 sec for Part1, Part2 and Part3 respectively, and variance 20
sec. Table (3) contains the parameters of the continuous-time model. In both cases, each
experiment was conducted five times and the results averaged.

Parameter Type of Distribution Mean (sec) Variance (sec)
Execution Time for Primitive Actions Normal 10 2

Assembly Time for Part1 Normal 100 20
Assembly Time for Part2 Normal 120 20
Assembly Time for Part3 Normal 180 20

Inter-Arrival Time for Parts Uniform 100 20

Table 3: Parameters of the Continuous-Time Model

26



Hierarchical Average Reward Reinforcement Learning

Figure (10) compares the proposed discrete-time hierarchically gain optimal algorithm
(HO-AR) described in Section (3.3) with the discrete-time discounted reward hierarchically
optimal algorithm (HO-DR) and the discrete-time recursively gain optimal algorithm (RO-
AR) illustrated in Section (3.4.1). The graph shows the improved performance of the
proposed discrete-time average reward algorithm (HO-AR). This figure also shows that the
HO-AR algorithm converges faster to the same throughput as the non-hierarchical average
reward algorithm. The non-hierarchical average reward algorithm used in this experiment
is relative value iteration (RVI) Q-learning (Abounadi et al., 2001). The difference in
convergence speed between flat and hierarchical algorithms becomes more significant as we
increase the number of states.
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Figure 10: This plot shows that the discrete-time HO-AR algorithm performs better than
both the discounted reward HO-DR and RO-AR algorithms on the AGV schedul-
ing task. It also demonstrates the faster convergence of the HO-AR algorithm
comparing to the non-hierarchical average reward algorithm (RVI Q-learning).

Figure (11) compares the continuous-time hierarchically gain optimal algorithm (HO-
AR) proposed in Section (3.3) with the continuous-time hierarchically optimal discounted
reward HO-DR algorithm and the continuous-time recursively gain optimal algorithm (RO-
AR) described in Section (3.4.1). The graph shows that the HO-AR converges to the
same performance as the discounted reward HO-DR algorithm. Both clearly have better
performance than the average reward recursively optimal algorithm (RO-AR). This figure
also shows that the HO-AR algorithm converges faster to the same throughput as the
non-hierarchical average reward algorithm. The non-hierarchical average reward algorithm
used in this experiment is a continuous-time version of the relative value iteration (RVI)
Q-learning (Abounadi et al., 2001). The difference in convergence speed between flat and
hierarchical algorithms becomes more significant as we increase the number of states.

These results in the last two sections are consistent with the hypothesis that the undis-
counted optimality paradigm is superior to the discounted framework for learning a gain-
optimal policy, since undiscounted methods do not need careful tuning of the discount factor
to find gain-optimal policies.
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Figure 11: This plot shows that the continuous-time HO-AR converges to the same perfor-
mance as the discounted reward HO-DR, and both outperform the recursively
optimal average reward algorithm on the AGV scheduling task. It also demon-
strates the faster convergence of the HO-AR compared to the flat average reward
algorithm (RVI Q-learning).

6. Conclusion and Future Work

This paper presents new discrete-time and continuous-time hierarchical reinforcement learn-
ing algorithms applicable to continuing tasks, including manufacturing, scheduling, queuing
and inventory control. These algorithms are based on the average-reward SMDP model,
which has been shown to be more appropriate for a wide class of continuing tasks. These
hierarchical average-reward reinforcement learning algorithms can be categorized into two
groups corresponding to two notions of optimality that have been studied in previous work
on HRL: hierarchical optimality and recursive optimality. Hierarchically gain optimal av-
erage reward RL algorithms aim to find a globally gain optimal policy within the space of
policies defined by the hierarchical decomposition. In the recursive optimal average reward
HRL setting, the formulation of learning algorithms directly depends on the local optimality
criterion used for each subtask in the hierarchy. In this paper, we investigate several meth-
ods to formulate subtasks, however, recursively gain optimal average reward RL algorithms
proposed in this paper treat subtasks as continuing problems and solve them by finding
gain optimal policies given the policies of their children. A secondary contribution of this
paper is to illustrate how hierarchical reinforcement learning can be applied to more inter-
esting and practical domains than has been shown previously. In particular, we focus on
AGV scheduling, although our approach easily generalizes to other industrial optimization
problems such as transfer line production control.

The effectiveness of the proposed algorithms were tested using four experimental testbeds:
a small AGV scheduling domain, a modified version of the Taxi problem, and much larger
real-world single-agent and multiagent AGV domains. The proposed algorithms performed
well in all domains, and in particular, in the multiagent AGV domain, we showed that our
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proposed algorithms outperform widely used industrial heuristics, such as “first come first

serve”, “highest queue first” and “nearest station first”.

There are a number of directions for future work which can be briefly outlined. An
immediate question that arises is the convergence of the algorithms to recursive and hi-
erarchical optimal policies. These results should provide some theoretical validity to the
proposed methods, in addition to their empirical effectiveness demonstrated in this pa-
per. It is obvious that many other manufacturing and robotics problems can benefit from
these algorithms. Combining hierarchical reinforcement learning with function approxima-
tion and factored action models is an important area for research. In this direction, we
are currently working to develop a hierarchical reinforcement learning framework suitable
for problems with continuous state spaces, using a mixture of policy gradient-based RL
and value function-based RL methods (Ghavamzadeh and Mahadevan, 2003). We used
the flexibility provided by recursive optimality and developed HRL algorithms for learning
in this hierarchical hybrid framework. In this hybrid framework, when the overall task is
continuing, we formulate the root task as a continuing problem using the average reward
criterion. Since the policy learned at root involves policies of its children, the type of opti-
mality achieved at root depends on how we formulate other subtasks in the hierarchy. We
are currently investigating different formulations for average reward recursive optimality de-
scribed in this paper, in our hierarchical hybrid framework. Finally, deriving abstractions
automatically is another fundamental problem that needs to be addressed.
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Appendix A.

List of Notation

Notation Definition
H hierarchy
N set of natural numbers
S set of states
Ω set of possible values for Task Stack in hierarchy

X = Ω× S joint state space of Task Stack values and states
x = (ω, s) joint state value x formed by Task Stack value ω and state value s

ω ↗ i popping subtask i off the Task Stack with content ω

i↘ ω pushing subtask i onto the Task Stack with content ω

|S| cardinality of the set S

A set of actions
P transition probability function
R reward function
Si set of states for subtask i

Ai set of actions for subtask i

Ri reward function for subtask i

Ii initiation set for subtask i

Ti termination set for subtask i

sT
i a terminal state of subtask i, sT

i ∈ Ti

µi policy for subtask i

µ = {µ0, . . . , µn} hierarchical policy
µ∗ hierarchical optimal policy

P
µ
i (s′, N |s) probability that action µi(s) causes transition from state s to state s′

in N primitive steps under the hierarchical policy µ

F
µ
i (s′, n|s) probability of transition from state s to state s′ in n actions taken

by subtask i under the hierarchical policy µ

gµ gain of policy µ

y(s, a) expected number of transition steps until the next decision epoch
πµ(s) steady state probability of being in state s for Markov chain defined

by policy µ

πµ steady state probability vector of the Markov chain defined by policy µ

π̄i probability distribution on initial states of subtask i

V µ hierarchical value function of hierarchical policy µ

V̂ µ projected value function of hierarchical policy µ

Hµ hierarchical average adjusted value function of hierarchical policy µ

Ĥµ projected average adjusted value function of hierarchical policy µ

Lµ hierarchical average adjusted action-value function of hierarchical policy µ

L̂µ projected average adjusted action-value function of hierarchical policy µ

Cµ completion function of hierarchical policy µ

Table 4: List of notation used in the paper
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