
Extending Hierarchical Reinforcement Learning
to Continuous-Time, Average-Reward,

and Multi-Agent Models

Mohammad Ghavamzadeh

Sridhar Mahadevan

Rajbala Makar

CMPSCI Technical Report 03-23

July 9, 2003

Department of Computer Science

140 Governors Drive

University of Massachusetts

Amherst, Massachusetts 01003-4601

Extending Hierarchical Reinforcement Learning

Abstract

Hierarchical reinforcement learning (HRL) is a general framework that studies how to
exploit the structure of actions and tasks to accelerate policy learning in large domains.
Prior work on HRL has been limited to the discrete-time discounted reward semi-Markov
decision process (SMDP) model. In this paper we generalize the setting of HRL to average-
reward, continuous-time and multi-agent SMDP models. We also describe experimental
results from a large-scale real-world domain, attesting to the benefits of HRL generally,
and to our extensions more specifically.

Although in principle any HRL framework could suffice, we focus in this paper on
the MAXQ framework. We describe three new hierarchical reinforcement learning algo-
rithms: continuous-time discounted reward MAXQ, discrete-time average reward MAXQ,
and continuous-time average reward MAXQ. We also investigate the use of hierarchical
reinforcement learning to speed up the acquisition of cooperative multiagent tasks. We
extend the MAXQ framework to the multiagent case which we term cooperative MAXQ,
where each agent uses the same task hierarchy. Learning is decentralized, with each agent
learning three interrelated skills: how to perform subtasks, which order to do them in, and
how to coordinate with other agents. Coordination skills among agents are learned by using
joint actions at the highest level(s) of the hierarchy.

We use two experimental testbeds to study the empirical performance of our proposed
extensions. One domain is a simulated robot trash collection task. The other domain is
a much larger real-world multi-agent autonomous guided vehicle (MAGV) problem. We
compare the performance of our proposed algorithms with each other, as well as with the
original MAXQ method and to standard Q-learning. In the MAGV domain, we show that
our proposed extensions outperform widely used industrial heuristics, such as “first come
first serve”, ”highest queue first” and ”nearest station first”.

Keywords: Hierarchical Reinforcement Learning, Multiagent Systems, Semi-Markov
Decision Processes, Average-Reward.

1

Ghavamzadeh, Mahadevan & Makar

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) is a class of problems whereby agents
must learn what actions to take in different situations or states in order to maximize a scalar
feedback function (or reward) over time. The mapping from states to actions is referred
to as a policy or a closed-loop plan. Learning occurs based on the idea that the tendency
to produce an action should be reinforced if it produces favorable long-term rewards, and
weakened otherwise. From the perspective of control theory, RL algorithms can be shown
to be approximations to classical approaches to solving optimal control problems. The clas-
sical approaches use dynamic programming (DP) (Bertsekas, 1995), which requires perfect
knowledge of the system dynamics and payoff function. Reinforcement learning has the
advantage of potentially being able to find optimal solutions (or close-to-optimal) solutions
in domains where models are not known or unavailable.

Instead of learning the policy directly, most approaches in RL learn an indirect target
function, referred to as the value function as it represents the long-term payoff associated
with states or state-action pairs. The policy can be recovered from a value function by
choosing “greedy” actions that maximize the value of states nearby (or immediate state
action pairs). Although it is possible to show theoretically that RL algorithms, such as
Q-learning (Watkins, 1989) or TD(λ) (Sutton, 1988), converge asymptotically to produce
the optimal value function (one that dominates all other value functions over the state
space), convergence is only assured in restricted cases. Often, real-world problems require
using nonlinear function approximators for which convergence is not guaranteed. Moreover,
even if asymptotic convergence was theoretically guaranteed by using a restricted class
of parametric approximators, in practice one is often interested in convergence within a
reasonable time bound. Real-time convergence is usually extremely slow with algorithms
such as Q-learning, when they are combined with nonlinear function approximators, such
as neural nets. For example, in the well-known multiagent elevator task (Crites and Barto,
1998), convergence takes on the order of millions of steps of simulated time.

The central focus of this paper is to present new algorithms for reinforcement learn-
ing, applicable to continuous-time multiagent tasks such as the elevator problem, using
which convergence occurs much more rapidly than with traditional Q-learning. The new
algorithms are based on extending hierarchical reinforcement learning (HRL), a general
framework for scaling reinforcement learning to problems with large state spaces by using
the task (or action) structure to restrict the space of policies. The key principle underly-
ing HRL is to develop learning algorithms that do not need to learn policies from scratch,
but instead reuse existing policies for simpler sub-tasks (or macro actions). The difficulty
with using the traditional framework for reusing learned policies is that decision making no
longer occurs in synchronous unit-time steps, as is traditionally assumed in RL. Instead,
decision-making occurs in epochs of variable length, such as when a distinguishing state is
reached (e.g., an intersection in a robot navigation task), or a subtask is completed (e.g.,
the elevator arrives on the first floor). Furthermore, these variable length intervals cause
the system dynamics to be non-Markov with respect to immediate state transitions, since
the state resulting from a macro action might depend on all states that occurred since that
macro was initiated. For example, a macro action undertaken by a robot for cleaning a
room by sweeping the floor twice and then exiting will require remembering when the robot

2

Extending Hierarchical Reinforcement Learning

started (you cannot predict its next state merely by observing that the robot was near the
door).

Fortunately, a well-known statistical model is available to treat variable length state dy-
namics: the semi-Markov decision process (SMDP) model. Here, state transition dynamics
is specified not only by the state where an action was taken, but also parameters specifying
the length of time since the action was taken. Work in HRL to date, including hierarchical
abstract machines (HAMs) (Parr, 1998), options (Sutton et al., 1999) and MAXQ (Diet-
terich, 2000), have used a discrete-time discounted SMDP framework. However a wide class
of tasks have continuous-time nature. Therefore, these frameworks, which are limited to
the discrete-time SMDP model, should be generalized to continuous-time SMDPs and also
to the average-reward framework. A primary goal of most of these tasks, such as AGV
scheduling, queuing and inventory control, is to find a gain optimal policy that maximizes
(minimizes) the long-run average reward (cost). Although average reward RL has been
extensively studied, using both the discrete-time MDP model (Schwartz, 1993, Mahadevan,
1996, Tadepalli and Ok, 1996a) as well as the continuous-time SMDP model (Mahadevan
et al., 1997, Wang and Mahadevan, 1999), prior work has been limited to “flat” algorithms.
Therefore, it is necessary to extend hierarchical reinforcement learning methods such as
MAXQ, which have been limited to discounted reward SMDP model, to the average reward
SMDP framework.

One of the principal contributions of this paper is to extend HRL to more interesting
(and practical) settings, including continuous-time SMDP models, average-reward optimal-
ity models, and also to multi-agent domains. These extensions make HRL more widely
applicable to many interesting practical problems, including the elevator domain, Robosoc-
cer (Stone and Veloso, 1999), transfer line production control (Wang and Mahadevan, 1999),
multi-agent autonomous guided vehicle (MAGV) scheduling, and so on.

We focus our extension of HRL to the MAXQ framework, although in principle, our
approach can be applied also to HAMS and options. We describe three new hierarchical re-
inforcement learning algorithms: continuous-time discounted reward MAXQ, discrete-time
average reward MAXQ, and continuous-time average reward MAXQ. We also extend the
MAXQ framework to the multiagent case which we term cooperative MAXQ, where each
agent uses the same task hierarchy to cooperatively learn complex tasks. Learning is decen-
tralized, with each agent learning three interrelated skills: how to perform subtasks, which
order to do them in, and how to coordinate with other agents. Coordination skills among
agents are learned by using joint actions at the highest level(s) of the hierarchy.

We use two experimental testbeds to study the empirical performance of our proposed
extensions. One domain is a simulated robot trash collection domain. The other domain
is a much larger real-world multi-agent autonomous guided vehicle (MAGV) domain. We
compare the performance of our proposed algorithms with each other, as well as with the
original MAXQ method and to standard Q-learning. In the MAGV domain, we show that
our proposed extensions outperform widely used industrial heuristics, such as “first come
first serve”, ”highest queue first” and ”nearest station first”.

The rest of this paper is organized as follows. Section 2 provides an overview of multi-
agent reinforcement learning. Section 3 introduces the continuous-time SMDP framework
under both discounted and average reward paradigms. Section 4 describes the original
discrete-time discounted MAXQ framework, and illustrates it using a multiagent robot

3

Ghavamzadeh, Mahadevan & Makar

trash collection task. Section 5, Section 6, and Section 7 describe the continuous-time
discounted reward MAXQ, discrete-time average reward MAXQ, and continuous-time aver-
age reward MAXQ algorithms, respectively. Section 8 describes the multiagent cooperative
MAXQ algorithm. Section 9 describes the real-world multiagent testbed of AGV scheduling.
Section 10 presents experimental results of using proposed algorithms in the trash collec-
tion task and the multiagent AGV scheduling problem. Finally, Section 11 summarizes the
paper and discusses some directions for future work.

2. Hierarchical Multiagent Reinforcement Learning

Consider sending a team of robots to carry out reconnaissance of an indoor environment
to check for intruders. This problem is naturally viewed as a multiagent task (Weiss,
1999). The most effective strategy will require coordination among the individual robots.
A natural decomposition of this task would be to assign different parts of the environments,
for example rooms, to different robots. In this paper, we are interested in learning algorithms
for such cooperative multiagent tasks, where the agents learn the coordination skills by trial
and error. The key idea underlying our approach is simply that coordination skills are
learned much more efficiently if the robots have a hierarchical representation of the task
structure (algorithms for learning task-level coordination have been developed in non-MDP
approaches, see (Sugawara and Lesser, 1998). In particular, rather than each robot learning
its response to low-level primitive actions of the other robots (for instance if robot-1 goes
forward, what should robot-2 do), it learns high-level coordination knowledge (what is the
utility of robot-2 searching room-2 if robot-1 is searching room-1, and so on).

Multiagent reinforcement learning has been recognized to be very challenging, since the
number of parameters to be learned increases dramatically with the number of agents. In ad-
dition, when agents carry out actions in parallel, the environment is usually non-stationary
and often non-Markovian as well (Mataric, 1997). We do not address the non-stationary as-
pect of multiagent learning in this paper. One approach that has been successful in the past
is to have agents learn policies that are parameterized by the modes of interaction (Wang
and Mahadevan, 1999). Prior work in multiagent reinforcement learning can be decomposed
into work on competitive models vs. cooperative models. Littman (Littman, 1994), and
Hu and Wellman (Hu and Wellman, 1998), among others, have studied the framework of
Markov games for competitive multiagent learning.

Here, we are primarily interested in the cooperative case. The work on cooperative
learning can be further separated based on the extent to which agents need to communicate
with each other. For example, in completely accessible models such as multiagent Markov
decision processes (MMDP) (Boutilier, 1999), agents have complete access to both the
global state and the global joint action. Tan (Tan, 1993) and Xuan (Xuan et al., 2001)
also exemplify the approach of requiring communication of global states and/or actions at
every step. Tan extends flat Q-learning to multiagent learning by using joint state-action
values. This approach requires communication of states and actions at every step. Xuan
assumes agents have to communicate to obtain other agent’s local state information. In the
elevator domain (Crites and Barto, 1998), agents share a common state description and a
global reinforcement signal, but do not model joint actions.

4

Extending Hierarchical Reinforcement Learning

There are also studies of multiagent learning which do not model joint states or actions
explicitly, such as by Balch (Balch and Arkin, 1998) and Mataric (Mataric, 1997), among
others. In such systems, each robot maintains its position in the formation depending on
the locations of the other robots, so there is some implicit communication or sensing of
states and actions of other agents. There has also been work on reducing the parameters
needed for Q-learning in multiagent domains, by learning action values over a set of derived
features(Stone and Veloso, 1999). These derived features are domain-specific, and have to
be encoded by hand, or constructed by a supervised learning algorithm.

Our approach differs from all the above in one key respect, namely the use of HRL to
speed up cooperative multiagent reinforcement learning. We assume each agent is given
an initial hierarchical decomposition of the overall task (as described below, we adopt the
MAXQ framework). However, the learning is distributed since each agent has only a local
view of the overall state space. Furthermore, each agent learns joint abstract action-values
by communicating with each other only the high-level subtasks that they are doing. Since
high-level tasks can take a long time to complete, communication is needed only fairly
infrequently (this is another significant advantage over flat methods).

A further advantage of the use of hierarchy in multiagent learning is that it makes it
possible to learn coordination skills at the level of abstract actions. The agents learn joint
action values only at the highest level(s) of abstraction in the proposed framework. This
allows for increased cooperation skills as agents do not get confused by low level details.
In addition, each agent has only local state information, and is ignorant about the other
agent’s location. This is based on the idea that in many cases, an agent can get a rough
idea of what state the other agent might be in just by knowing about the high level action
being performed by the other agent. Also, keeping track of just this information greatly
simplifies the underlying reinforcement learning problem.

These benefits can potentially accrue with using any type of hierarchical learning al-
gorithm, though in this paper we only describe results using the MAXQ framework. The
reason that we decided to adopt the MAXQ framework as a basis for our multiagent algo-
rithm is the fact that the MAXQ method stores the value function in a distributed way in
all nodes in the subtask graph. The value function is propagated upwards from the lower
level nodes whenever a high level node needs to be evaluated. This propagation enables the
agent to simultaneously learn subtasks and high level tasks. Thus, by using this method,
agents learn the coordination skills and the individual low level tasks and subtasks all at
once.

However, it is necessary to generalize the MAXQ framework to make it more applica-
ble to multiagent learning. A broad class of multiagent optimization tasks, such as AGV
scheduling, can be viewed as discrete-event dynamic systems. For such tasks, the termina-
tion predicate used in MAXQ has to be redefined to take care of the fact that the completion
of certain subtasks might depend on the occurrence of an event rather than just a state of
the environment.

3. Semi-Markov Decision Processes

We begin with a review of continuous-time semi-Markov decision processes. Semi-Markov
decision processes (SMDPs) are useful in modeling temporally extended actions. They

5

Ghavamzadeh, Mahadevan & Makar

extend the discrete-time MDP model in several aspects. Time is modeled as a continuous
entity and decisions are only made at discrete points in time (or events). The state of the
system may change continually between decisions, unlike MDPs where state changes are
only due to actions.

An SMDP is defined as a five tuple (S,A,P ,R,F), where S is a finite set of states, A

is the set of actions, P is a set of state and action dependent transition probabilities, R

is the reward function, and F is a function giving probability of transition times for each
state-action pair. P (s′|s, a) denotes the probability that action a will cause the system to
transition from state s to state s′. This transition is at decision epochs only. Basically, the
SMDP represents snapshots of the system at decision points, whereas the so-called natural
process describes the evolution of the system over all times. F (t|s, a) is the probability that
the next decision epoch occurs within t time units after the agent chooses action a in state
s at a decision epoch. From F and P , we can compute Φ by

Φ(t, s′|s, a) = P (s′|s, a)F (t|s, a)

where Φ denotes the probability that the system will be in state s′ for the next decision
epoch, at or before t time units after choosing action a in state s, at the last decision epoch.
In discrete-time semi-Markov decision processes, P (s′, N |s, a) denotes the probability that
the system will be in state s′ for the next decision epoch, at or before N time steps after
choosing action a in state s, at the last decision epoch. The reward function for continuous-
time SMDPs is more complex than in the MDP model. In addition to the fixed reward of
taking action a in state s, k(s, a), an additional reward may be accumulated at rate c(s′, s, a)
for the time the natural process remains in state s′ between decision epochs. Formally, the
expected reward between two decision epochs, given that the system is in state s and chooses
action a in the first decision epoch, is expressed as

r(s, a) = k(s, a) + Ea
s {

∫ τ

0
c(Wt, s, a)dt}

where τ is the transition time to the second decision epoch and Wt denotes the state of the
natural process during this transition.

3.1 Discounted Models

We now give a short overview of infinite-horizon discounted semi-Markov decision processes
(Puterman, 1994, Bradtke and Duff, 1995). We assume continuous-time discounting at rate
β > 0, which means that the present value of one reward unit received t time units in the
future equals e−βt. In this model, for policy π, vπ(s) denotes the expected infinite-horizon
discounted reward, given that the process occupies state s at the first decision epoch and
is defined by

vπ(s) = Eπ
s {

∞
∑

n=0

e−βσn [k(sn, an) +

∫ σn+1

σn

e−β(t−σn)c(Wt, sn, an)dt]} (1)

In the above expression, σ0, σ1, . . . represent the times of successive decision epochs and
e−βσn transforms the reward to values at the first decision epoch. In this model, the expected

6

Extending Hierarchical Reinforcement Learning

discounted reward between two decision epochs is defined as

r(s, a) = k(s, a) +

∫

∞

0

∑

s′∈S

[

∫ u

0
e−βtc(s′, s, a)P (s′|s, a)dt]F (du|s, a) (2)

Using Equation (2), we can re-express the value function in Equation (1) as

vπ(s) = r(s, π(s)) +
∑

s′∈S

∫

∞

0
e−βtvπ(s′)Φ(dt, s′|s, π(s))

The action value function Qπ(s, a) represents the discounted cumulative reward of doing an
action a in state s once, and then following policy π subsequently.

Qπ(s, a) = r(s, a) +
∑

s′∈S

P (s′|s, a)

∫

∞

0
e−βtQπ(s′, π(s′))F (dt|s, a)

3.2 Average Reward Models

The theory of infinite-horizon semi-Markov decision processes with the average reward crite-
rion is more complex than that for discounted models (Puterman, 1994, Mahadevan, 1996).
To simplify exposition we assume that for every stationary policy, the embedded Markov
chain has a unichain transition probability matrix. Under this assumption, the expected
average reward of every stationary policy does not vary with the initial state. In this section
we illustrate both discrete-time and continuous-time average reward semi-Markov decision
processes.

3.2.1 Discrete-Time Average Reward Models

For policy π, state s ∈ S and number of time steps N ≥ 0, vπ
N (s) denotes the expected total

reward generated by the policy π up to time step N , given that the system occupies state
s at time 0 and is defined as

vπ
N (s) = Eπ

s {

N−1
∑

u=0

r(su, au)}

The average expected reward or gain gπ(s) for a policy π at state s can be defined by taking
the limit inferior of the ratio of the expected total reward up until the Nth decision epoch
to the number of decision epochs. So, the gain of a policy gπ(s) can be expressed as the
ratio

gπ(s) = lim
N→∞

Eπ
s {

∑N−1
u=0 r(su, au)}

N

For unichain MDPs, the gain of any policy is state independent and we can write gπ(s) = gπ.
For each transition, the expected number of transition steps is defined as:

y(s, a) = Ea
s {N} =

∞
∑

N=0

N
∑

s′∈S

P (s′, N |s, a)

7

Ghavamzadeh, Mahadevan & Makar

In discrete-time unichain average reward SMDPs, the expected average adjusted sum of
rewards hπ for stationary policy π is defined as

hπ(s) = Eπ
s {

∞
∑

u=0

[r(su, au)− gπ(su)]} = Eπ
s {

∞
∑

u=0

[r(su, au)− gπ]} (3)

The Bellman equation for discrete-time unichain average reward SMDPs is defined based
on the h function in Equation (3) and can be written as

hπ(s) = r(s, π(s))− gπy(s, π(s)) +
∑

s′∈S,N

P (s′, N |s, π(s))hπ(s′)

The action value function Rπ(s, a) represents the average adjusted value of doing an action
a in state s once, and then following policy π subsequently.

Rπ(s, a) = r(s, a)− gπy(s, a) +
∑

s′∈S,N

P (s′, N |s, a)Rπ(s′, π(s′))

3.2.2 Continuous-Time Average Reward Models

For policy π, state s ∈ S and time t ≥ 0, vπ
t (s) denotes the expected total reward generated

by the process up to time t, given that the system occupies state s at time 0 and is defined
as

vπ
t (s) = Eπ

s {

vt−1
∑

n=0

k(sn, an) +

∫ t

0
c(Wu, svu , avu)du}

where vu is the number of decisions made up to time t. In this model, the expected total
reward between two decision epochs is defined as

r(s, a) = k(s, a) +

∫

∞

0

∑

s′∈S

[

∫ u

0
c(s′, s, a)P (s′|s, a)dt]F (du|s, a)

The average expected reward or gain gπ(s) for a policy π at state s can be defined by taking
the limit inferior of the ratio of the expected total reward up until the nth decision epoch
to the expected total time until the nth decision epoch. So, the gain of a policy gπ(s) can
be expressed as the ratio

gπ(s) = lim
n→∞

Eπ
s {

∑n
i=0[k(si, ai) +

∫ σi+1

σi
c(Wt, si, ai)dt]}

Eπ
s {

∑n
i=0 τi}

For unichain MDPs, the gain of any policy is state independent and we can write gπ(s) = gπ.
For each transition, the expected transition time is defined as:

y(s, a) = Ea
s {τ} =

∫

∞

0
t
∑

s′∈S

Φ(dt, s′|s, a)

In continuous-time unichain average reward SMDPs, the expected average adjusted sum of
rewards hπ for stationary policy π is defined as

hπ(s) = V π
t (s)− gπt (4)

8

Extending Hierarchical Reinforcement Learning

where t is the time at which the decision epoch occurs. The Bellman equation for unichain
average reward SMDPs is defined based on the h function in Equation (4) and can be
written as

hπ(s) = r(s, π(s))− gπy(s, π(s)) +
∑

s′∈S

P (s′|s, π(s))

∫

∞

0
hπ(s′)F (dt|s, π(s))

The action value function Rπ(s, a) represents the average adjusted value of doing an action
a in state s once, and then following policy π subsequently.

Rπ(s, a) = r(s, a)− gπy(s, a) +
∑

s′∈S

P (s′|s, a)

∫

∞

0
Rπ(s′, π(s′))F (dt|s, a)

4. The MAXQ Framework

The reinforcement learning algorithms introduced in this paper extend the MAXQ value
function decomposition developed originally in the context of the discrete-time SMDP model
(for single agents) (Dietterich, 2000). This approach involves the use of a graph to store
a distributed value function. The overall task is first decomposed into subtasks up to the
desired level of detail, and the task graph is constructed. We illustrate the idea using a
simple two-robot search task shown in Figure 1. Consider the case where a robot is assigned
the task of picking up trash from trash cans over an extended area and accumulating it into
one centralized trash bin, from where it might be sent for recycling or disposed. This is a
task which can be parallelized, if we have more than one agent working on it. An office
(rooms and connecting corridors) type environment is shown in figure. A1 and A2 represent
the two agents in the figure. Note the agents need to learn three skills here. First, how to
do each subtask, such as navigating to T1 or T2 or Dump, and when to perform Pickup

or Putdown action. Second, the agents also need to learn the order to do subtasks (for
instance, go to T1 and collect trash before heading to the Dump). Finally, the agents also
need to learn how to coordinate with other agents (i.e. Agent1 can pick up trash from T1
whereas Agent2 can service T2). The strength of the MAXQ framework (when extended
to the multiagent case) is that it can serve as a substrate for learning all these three types
of skills.

This trash collection task can be decomposed into subtasks and the resulting task graph
is shown in figure 2. The task graph is then converted to the MAXQ graph, which is shown
in figure 3. The MAXQ graph has two types of nodes: MAX nodes (triangles) and Q nodes
(rectangles), which represent the different actions that can be done under their parents.
Note that MAXQ allows learning of shared subtasks. For example, the navigation task Nav
is common to several parent tasks.

The multiagent learning scenario under investigation in this paper can now be illustrated.
Imagine the two robots start to learn this task with the same MAXQ graph structure. We
can distinguish between two learning approaches, selfish and cooperative. In the selfish case,
the two robots learn with the given MAXQ structure, but make no attempt to communicate
with each other. In the cooperative case, the MAXQ structure is modified such that the Q
nodes at the level(s) immediately under the root task include the joint action done by both
robots. For instance, each robot learns the joint Q-value of navigating to trash T1 when

9

Ghavamzadeh, Mahadevan & Makar

Room1

A1
Corridor

Dump

T2

T1

A2

T1: Location of one trash can.
T2: Location of another trash can.
Dump: Final destination location for depositing all trash.

Room2

Room3

Figure 1: A (simulated) multiagent robot trash collection task.

Navigate to T1 Navigate to T2 Put Pick

Root

Navigate

Follow Wall Align with Wall Find Wall

Navigate to D

Figure 2: The task graph for the trash collection task.

10

Extending Hierarchical Reinforcement Learning

Root

Max Node

Q Node

:

:

PickPut

PutNav

Follow Align Find

Follow Find

NavDNavT2NavT1

T2: Location of Trash 2

T1: Location of trash 1

D: Location of dump

Pick

Align

Figure 3: The MAXQ graph for the trash collection task.

the other robot is either navigating to T1 or T2 or Dump or doing a Put or Pick action.
As we will show in a more complex domain below, cooperation among the agents results
in superior learned performance than in the selfish case, or indeed the flat case when the
agents do not use a task hierarchy at all.

More formally, the MAXQ method decomposes an MDP M into a set of subtasks
M0, M1, ..., Mn. Each subtask is a three tuple (Ti, Ai, R̃i) defined as:

• Ti(si) is a termination predicate which partitions the state space S into a set of active
states Si, and a set of terminal states Ti. The policy for subtask Mi can only be
executed if the current state s ∈ Si.

• Ai is a set of actions that can be performed to achieve subtask Mi. These actions can
either be primitive actions from A, the set of primitive actions for the MDP, or they
can be other subtasks.

• R̃i(s
′

|s, a) is the pseudo reward function, which specifies a pseudo-reward for each
transition from a state s ∈ Si to a terminal state s

′

∈ Ti. This pseudo-reward tells
how desirable each of the terminal states is for this particular subtask.

Each primitive action a is a primitive subtask in the MAXQ decomposition, such that
a is always executable, it terminates immediately after execution, and it’s pseudo-reward
function is uniformly zero. The projected value function V π is the value of executing hierar-
chical policy π starting in state s, and at the root of the hierarchy. The outside completion
function (C(i , s, a)) is the expected cumulative discounted reward of completing subtask
Mi after invoking the subroutine for subtask Ma in state s. It is computed without any ref-
erence to R̃i. This completion function will be used by parent tasks to compute V (i, s), the
expected reward for performing action i starting in state s. The inside completion function

11

Ghavamzadeh, Mahadevan & Makar

(C̃(i , s, a)) is a completion function, which is used only inside node i in order to discover
the locally optimal policy for task Mi. This function incorporates rewards both from the
real reward function, R(s′|s, a), and from the pseudo-reward function, R̃i(s

′).
The value function V (i, s) for doing task i in state s is calculated by decomposing it

into two parts: the value of the subtask which is independent of the parent task, and the
value of the completion of the task, which of course depends on the parent task.

V (i, s) =

{

maxa Q(i, s, a) if i is composite
∑

s′ P (s′ | s, i)R(s′ | s, i) if i is primitive

Q(i, s, a) = V (a, s) + C(i, s, a) (5)

where Q(i, s, a) is the action value of doing subtask a in state s in the context of parent
task i.

The Q values and the C values can be learned through a standard temporal-difference
learning method, based on sample trajectories (see (Dietterich, 2000) for details). One
important point to note here is that since subtasks are temporally extended in time, the
update rules used here are based on the SMDP model.

Let us assume that an agent is in state s while doing task i, and chooses subtask j to
execute. Let this subtask terminate after N steps and result in state s′. Then, the SMDP
Q-learning rule used to update the outside and inside completion functions are given by

Ct+1(i, s, j)← (1− αt)Ct(i, s, j) + αtγ
N [Ct(i, s

′, a∗) + Vt(a
∗, s′)]

C̃t+1(i, s, j)← (1− αt)C̃t(i, s, j) + αtγ
N [R̃i(s

′) + C̃t(i, s
′, a∗) + Vt(a

∗, s′)]

where a∗ = argmaxa′ [C̃t(i, s
′, a′) + Vt(a

′, s′)].

A hierarchical policy π is a set containing a policy for each of the subtasks in the problem:
π = {π0 . . . πn}. The projected value function in the hierarchical case, denoted by V π(s),
is the value of executing hierarchical policy π starting in state s and starting at the root
of the task hierarchy. A recursively optimal policy for MDP M with MAXQ decomposition
{M0 . . .Mn} is a hierarchical policy π = {π0 . . . πn} such that for each subtask Mi the
corresponding policy πi is optimal for the SMDP defined by the set of states Si, the set of
actions Ai, the state transition probability function P π(s

′

, N |s, a), and the reward function
given by the sum of the original reward function R(s

′

|s, a) and the pseudo-reward function
Ri(s

′

). The MAXQ learning algorithm has been proven to converge to π∗

r , the unique
recursively optimal policy for MDP M and MAXQ graph H, where M = (S, A, P, R, P0)
is a discounted infinite horizon MDP with discount factor γ, and H is a MAXQ graph
defined over subtasks {M0 . . .Mn}.

5. Continuous-Time Discounted Reward MAXQ Algorithm

At the center of the MAXQ method for hierarchical reinforcement learning is the MAXQ
value function decomposition. We show how the overall value function for a policy is

12

Extending Hierarchical Reinforcement Learning

decomposed into a collection of value functions for individual subtasks for the continuous-
time discounted reward model. The projected value function of hierarchical policy π on
subtask Mi, denoted V π(i, s), is the expected cumulative discounted reward of executing
πi (and the policies of all descendants of Mi) starting in state s until Mi terminates. The
value V π(i, s) has the following form in the continuous-time discounted reward framework:

V π(i, s) = Eπ
s {

∞
∑

n=0

e−βσnr(sn, an)} (6)

where r(sn, an) is defined using Equation 2. Now let us suppose that the first action chosen
by πi is invoked and executes for a number of steps N and terminates in state s′ according
to P π

i (s′|s, a). We can rewrite Equation 6 as

V π(i, s) = Eπ
s {

N−1
∑

n=0

e−βσnr(sn, an) + e−βσN

∞
∑

n=0

e−βσnr(sN+n, aN+n)} (7)

The first summation on the right-hand side of Equation 7 is the discounted sum of rewards
for executing subroutine πi(s) starting in state s until it terminates, in other words, it is
V π(πi(s), s), the projected value function for the child task Mπi(s). The second term on the
right-hand side of the equation is the value of s′ for the current task i, V π(i, s′), discounted
by e−βt, where s′ is the current state when subroutine πi(s) terminates and t is the sample
transition time from state s to state s′. We can write Equation 7 in the form of a Belmopan
equation:

V π(i, s) = V π(πi(s), s) +
∑

s′∈Si

Pi(s
′|s, πi(s))

∫

∞

0
e−βtV π(i, s′)Fi(dt|s, πi(s)) (8)

Equation 8 can be re-stated for action-value function decomposition as follows:

Qπ(i, s, a) = V π(a, s) +
∑

s′∈Si

Pi(s
′|s, a)

∫

∞

0
e−βtQπ(i, s′, πi(s

′))Fi(dt|s, a)

The right-most term in this equation is the expected discounted cumulative reward of com-
pleting task Mi after executing action a in state s. This term is called the completion
function and is denoted by Cπ(i, s, a). With this definition, we can express the Q function
recursively as

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)

and we can re-express the definition for V as

V π(i, s) =







Qπ(i, s, πi(s)) if i is composite
ki(s, i) +

∫

∞

0

∑

s′∈Si
Pi(s

′|s, i)[
∫ u

0 e−βtci(s
′, s, i)dt]Fi(du|s, i)

if i is primitive

We can use the above formulas to obtain update equations for value function V , out-
side completion function C and inside completion function C̃ in the continuous-time dis-
counted reward model. Pseudo-code for the resulting algorithm is shown in Algorithm 1 1

(Ghavamzadeh and Mahadevan, 2001).

1. We use the notation u

α
←− v in Algorithm 1, Algorithm 2 and Algorithm 3 as an abbreviation for the

stochastic approximation update rule u←(1− α)u + αv.

13

Ghavamzadeh, Mahadevan & Makar

Algorithm 1 The continuous-time discounted reward MAXQ algorithm.

1: function MAXQ(MaxNode i, State s)
2: let Seq={} be the sequence of (states visited, transition times) while executing i

3: if i is a primitive MaxNode then
4: execute action i in state s, observe state s′ in τ time units, receive lump portion of

reward k(s, i) and continuous portion of reward with rate r(s′, s, i)

5: Vt+1(i, s)
α
←− [k(s, i) + 1−e−βτ

β
r(s′, s, i)]

6: push (state s, transition time τ) into the beginning of Seq
7: else
8: while i has not terminated do
9: choose action a according to the current exploration policy πi(s)

10: let ChildSeq=MAXQ(a,s), where ChildSeq is the sequence of (states visited, tran-
sition times) while executing action a

11: observe result state s′

12: let a∗ = argmaxa′∈Ai(s′)[C̃t(i, s
′, a′) + Vt(a

′, s′)]
13: T = 0;
14: for (s,τ) in ChildSeq from the beginning do
15: T = T + τ

16: C̃t+1(i, s, a)
α
←− e−βT [R̃i(s

′) + C̃t(i, s
′, a∗) + Vt(a

∗, s′)]
17: Ct+1(i, s, a)

α
←− e−βT [Ct(i, s

′, a∗) + Vt(a
∗, s′)]

18: end for
19: append ChildSeq onto the front of Seq
20: s = s′

21: end while
22: end if
23: return Seq
24: end MAXQ

14

Extending Hierarchical Reinforcement Learning

6. Discrete-Time Average Reward MAXQ Algorithm

We now describe a new discrete-time average reward hierarchical reinforcement learning
algorithm based on the MAXQ framework. To simplify exposition, we assume that for
every possible stationary policy of each subtask in the hierarchy, the embedded Markov
chain has a unichain transition probability matrix. Under this assumption every subtask
in the hierarchy is a unichain SMDP. This means the expected average reward of every
stationary policy for each subtask in the hierarchy does not vary with initial state. As we
mentioned earlier, value function decomposition is the heart of the MAXQ method. We
show how the overall h function for a policy is decomposed into a collection of h functions
for individual subtasks in the discrete-time average reward MAXQ method. The projected
h function of hierarchical policy π on subtask Mi, denoted hπ(i, s), is the average adjusted
sum of rewards earned of following policy πi (and the policies of all descendants of Mi)
starting in state s until Mi terminates:

hπ(i, s) = lim
N→∞

Eπ
s {

N−1
∑

u=0

(r(su, au)− gi)} (9)

where gi is the gain of subtask Mi. Now let us suppose that the first action chosen by π

is invoked and executes for a number of steps N and terminates in state s′ according to
P π

i (s′, N |s, a). We can write Equation 9 in the form of a Bellman equation:

hπ(i, s) = r(s, πi(s))− giyi(s, πi(s)) +
∑

s′∈Si,N

Pi(s
′, N |s, πi(s))h

π(i, s′) (10)

Since r(s, πi(s)) is the expected total reward between two decision epochs of subtask i, given
that the system occupies state s at the first decision epoch and decision maker chooses action
πi(s) and the number of time steps until next decision epoch is N , we have

r(s, πi(s)) = V π
yi(s,πi(s))

(πi(s), s) = hπ(πi(s), s) + gπi(s)yi(s, πi(s))

By replacing r(s, πi(s)) from the above expression, Equation 10 can be written as

hπ(i, s) = hπ(πi(s), s)− (gi − gπi(s))yi(s, πi(s)) +
∑

s′∈Si,N

Pi(s
′, N |s, πi(s))h

π(i, s′) (11)

We can re-state Equation 11 for action-value function decomposition as follows:

Rπ(i, s, a) = hπ(a, s)− (gi − ga)yi(s, a) +
∑

s′∈Si,N

Pi(s
′, N |s, a)Rπ(i, s′, πi(s

′))

In the above equation, the term

−(gi − ga)yi(s, a) +
∑

s′∈Si,N

Pi(s
′, N |s, a)Rπ(i, s′, πi(s

′))

denotes the average adjusted reward of completing task Mi after executing action a in state
s. This term is called the completion function and is denoted by Cπ(i, s, a). With this
definition, we can express the R function recursively as

Rπ(i, s, a) = hπ(a, s) + Cπ(i, s, a)

15

Ghavamzadeh, Mahadevan & Makar

and we can re-express the definition for h as

hπ(i, s) =

{

Rπ(i, s, πi(s)) if i is composite
∑

s′ P (s′|s, i)[r(s′|s, i)− gi] if i is primitive

The above formulas can be used to obtain update equations for h function, outside comple-
tion function C and inside completion function C̃ in the discrete-time average reward model.
Pseudo-code for the resulting algorithm is shown in Algorithm 2. As mentioned above, all
subtasks in the hierarchy, even primitive actions, are modeled by a unichain SMDP.

7. Continuous-Time Average Reward MAXQ Algorithm

We now describe a new average reward hierarchical reinforcement learning algorithm based
on the MAXQ framework. To simplify exposition, we assume that for every possible sta-
tionary policy of each subtask in the hierarchy, the embedded Markov chain has a unichain
transition probability matrix. Under this assumption every subtask in the hierarchy is a
unichain SMDP. This means the expected average reward of every stationary policy for
each subtask in the hierarchy does not vary with initial state. As we mentioned earlier,
value function decomposition is the heart of the MAXQ method. We show how the overall
h function for a policy is decomposed into a collection of h functions for individual subtasks
in the continuous-time average reward MAXQ method. The projected h function of hier-
archical policy π on subtask Mi, denoted hπ(i, s), is the average adjusted sum of rewards
earned of following policy πi (and the policies of all descendants of Mi) starting in state s

until Mi terminates:

hπ(i, s) = lim
N→∞

Eπ
s {

N−1
∑

t=0

(r(st, at)− giτt)} (12)

where τ ’s and gi are the length of decision epochs and gain of subtask Mi respectively. Now
let us suppose that the first action chosen by π is invoked and executes for a number of
steps and terminates in state s′ according to P π

i (s′|s, a). We can write Equation 12 in the
form of a Bellman equation:

hπ(i, s) = r(s, πi(s))− giyi(s, πi(s)) +
∑

s′∈Si

Pi(s
′|s, πi(s))

∫

∞

0
hπ(i, s′)Fi(dt|s, πi(s)) (13)

Since r(s, πi(s)) is the expected total reward between two decision epochs of subtask i, given
that the system occupies state s at the first decision epoch and decision maker chooses action
πi(s) and the expected length of time until next decision epoch is yi(s, πi(s)), we have

r(s, πi(s)) = V π
yi(s,πi(s))

(πi(s), s) = hπ(πi(s), s) + gπi(s)yi(s, πi(s))

By replacing r(s, πi(s)) from the above expression, Equation 13 can be written as

hπ(i, s) = hπ(πi(s), s)− (gi − gπi(s))yi(s, πi(s)) +
∑

s′∈Si

Pi(s
′|s, πi(s))

∫

∞

0
hπ(i, s′)Fi(dt|s, πi(s))

(14)

16

Extending Hierarchical Reinforcement Learning

Algorithm 2 The discrete-time average reward MAXQ algorithm.

function MAXQ(MaxNode i, State s)
2: let Seq={} be the sequence of (states visited, transition times, reward) while executing

i

if i is a primitive MaxNode then
4: execute action i in state s, receive reward r, and observe state s′

ht+1(i, s)←− (1− α)ht(i, s) + α(r(s′, s, i)− gi)
6: if i is a non-random action then

update average reward or gain of subtask i

8: gi
t+1 = rt+1(i)

nt+1(i) = rt(i)+rt

nt(i)+1
end if

10: push (state s, reward rt) into the beginning of Seq
else

12: while i has not terminated do
choose action a according to the current exploration policy πi(s)

14: let ChildSeq=MAXQ(a,s), where ChildSeq is the sequence of (states visited, tran-
sition times) while executing action a

observe result state s′

16: let a∗ = argmaxa′∈Ai(s′)[C̃t(i, s
′, a′) + ht(a

′, s′)]
let N = 1; R = 0;

18: for each (s,r) in ChildSeq from the beginning do
R = R + r;

20: C̃t+1(i, s, a)
α
←− [R̃i(s

′)− (gi
t − ga

t)N + C̃t(i, s
′, a∗) + ht(a

∗, s′)]
Ct+1(i, s, a)

α
←− [Ct(i, s

′, a∗) + ht(a
∗, s′)− (gi

t − ga
t)N]

22: N = N + 1
if a is a non-random action then

24: update average reward or gain of subtask i

gi
t+1 = rt+1(i)

nt+1(i) = rt(i)+R

nt(i)+N

26: end if
end for

28: append ChildSeq onto the front of Seq
s = s′

30: end while
end if

32: return Seq
end MAXQ

17

Ghavamzadeh, Mahadevan & Makar

We can re-state Equation 14 for action-value function decomposition as follows:

Rπ(i, s, a) = hπ(a, s)− (gi − ga)yi(s, a) +
∑

s′∈Si

Pi(s
′|s, a)

∫

∞

0
Rπ(i, s′, πi(s

′))Fi(dt|s, a)

In the above equation, the term

−(gi − ga)yi(s, a) +
∑

s′∈Si

Pi(s
′|s, a)

∫

∞

0
Rπ(i, s′, πi(s

′))Fi(dt|s, a)

denotes the average adjusted reward of completing task Mi after executing action a in state
s. This term is called the completion function and is denoted by Cπ(i, s, a). With this
definition, we can express the R function recursively as

Rπ(i, s, a) = hπ(a, s) + Cπ(i, s, a)

and we can re-express the definition for h as

hπ(i, s) =



























Rπ(i, s, πi(s)) if i is composite

k(s, i) +

∫

∞

0

∑

s′∈Si

Pi(s
′|s, i)[

∫ u

0
c(s′, s, i)dt]Fi(du|s, i)

− gi
∑

s′∈Si

Pi(s
′|s, i)

∫

∞

0
tFi(dt|s, i) if i is primitive

The above formulas can be used to obtain update equations for h function, outside com-
pletion function C and inside completion function C̃ in the continuous-time average reward
model. Pseudo-code for the resulting algorithm is shown in Algorithm 3 (Ghavamzadeh
and Mahadevan, 2001) As mentioned above, all subtasks in the hierarchy, even primitive
actions, are modeled by a unichain SMDP.

8. Multiagent MAXQ Algorithm (Cooperative MAXQ)

The MAXQ decomposition of the Q-function relies on a key principle: the reward function
for the parent task is the value function of the child task (see Equation 5). We show how
this idea can be extended to joint-action values. The most salient feature of the extended
MAXQ algorithm, which is proposed in this section, is that the top level(s) (the level
immediately below the root, and perhaps lower levels) of the hierarchy is (are) configured
to store the completion function (C) values for joint (abstract) actions of all agents. The
completion function Cj(i , s, a1 , a2 ...a j ...an) is defined as the expected discounted reward of
completion of subtask aj by agent j in the context of the other agents performing subtasks
a i , ∀i ∈ {1, ..., n}, i 6= j (Makar et al., 2001).

More precisely, the decomposition equations used for calculating the projected value
function V have the following form (for agent j)

V j(i, s, a1, . . . , aj−1, aj+1, . . . , an) =

{

maxaj Qj(i, s, a1. . .aj . . . an) if i is composite
∑

s′ P (s′ | s, i)R(s′ | s, i) if i is primitive

18

Extending Hierarchical Reinforcement Learning

Algorithm 3 The continuous-time average reward MAXQ algorithm.

function MAXQ(MaxNode i, State s)
2: let Seq={} be the sequence of (states visited, transition times, reward) while executing

i

if i is a primitive MaxNode then
4: execute action i in state s, observe state s′ in τ time units, receive lump portion of

reward k(s, i) and continuous portion of reward with rate r(s′, s, i)
ht+1(i, s)

α
←− [k(s, i) + r(s′, s, i)τ − gi

tτ]
6: if i is a non-random action then

update average reward or gain of subtask i

8: gi
t+1 = rt+1(i)

tt+1(i) = rt(i)+k(s,i)+r(s′,s,i)τ
tt(i)+τ

end if
10: push (state s, transition time τ , reward ρ = k(s, i) + r(s′, s, i)τ) into the beginning

of Seq
else

12: while i has not terminated do
choose action a according to the current exploration policy πi(s)

14: let ChildSeq=MAXQ(a,s), where ChildSeq is the sequence of (states visited, tran-
sition times) while executing action a

observe result state s′

16: let a∗ = argmaxa′∈Ai(s′)[C̃t(i, s
′, a′) + ht(a

′, s′)]
T = 0; R = 0;

18: for (s,τ ,ρ) in ChildSeq from the beginning do
T = T + τ ; R = R + ρ;

20: C̃t+1(i, s, a)
α
←− [R̃i(s

′)− (gi
t − ga

t)T + C̃t(i, s
′, a∗) + ht(a

∗, s′)]
Ct+1(i, s, a)

α
←− [Ct(i, s

′, a∗) + ht(a
∗, s′)− (gi

t − ga
t)T]

22: if a is a non-random action then
update average reward or gain of subtask i

24: gi
t+1 = rt+1(i)

tt+1(i) = rt(i)+R

tt(i)+T

end if
26: end for

append ChildSeq onto the front of Seq
28: s = s′

end while
30: end if

return Seq
32: end MAXQ

19

Ghavamzadeh, Mahadevan & Makar

Qj(i, s, a1. . .aj . . . an) = V j(aj , s) + Cj(i , s, a1 . . . a j . . . an) (15)

at the highest (or lower than the highest as needed) level(s) of the hierarchy, where joint
action values are being modeled, and aj is the action being performed by agent j. Compare
the decomposition in Equation 5 with Equation 15. Given a MAXQ hierarchy M for any
given task, we need to find the highest level at which this equation provides a sufficiently
good approximation of the true value. For both the AGV and the trash collection domain,
the subtasks immediately below the root seem to be a good compromise between good
performance and reducing the number of joint state action values that need to be learned.

To illustrate the multiagent MAXQ algorithm, for the two-robot trash collection task,
if we set up the joint action-values at only the highest level of the MAXQ graph, we get the
following value function decomposition for Agent1:

Q1
t (Root, s, NavT1, NavT2) = V 1

t (NavT1, s) + C1
t (Root, s, NavT1, NavT2)

which represents the value of Agent1 doing task NavT1 in the context of the overall Root

task, when Agent2 is doing task NavT2. Note that this value is decomposed into the value
of the NavT1 subtask itself and the completion cost of the remainder of the overall task. In
this example, the multiagent MAXQ decomposition embodies the heuristic that the value
of Agent1 doing the subtask NavT1 is independent of whatever Agent2 is doing.

A recursive algorithm is used for learning the C values. Thus, an agent starts from
the root task and chooses a subtask till it gets to a primitive action. The primitive action
is executed, the reward observed, and the leaf V values updated. Whenever any subtask
terminates, the C(i, s, a) values are updated for all states visited during the execution of that
subtask. Similarly, when one of the tasks at the level just below the root task terminates,
the C(i, s, a1, . . . , an) values are updated according to the MAXQ learning algorithm.

9. The AGV Scheduling Task

Automated Guided Vehicles (AGVs) are used in flexible manufacturing systems (FMS) for
material handling (Askin and Standridge, 1993). They are typically used to pick up parts
from one location, and drop them off at another location for further processing. Locations
correspond to workstations or storage locations. Loads which are released at the dropoff
point of a workstation wait at its pick up point after the processing is over, so the AGV is
able to take it to the warehouse or some other locations. The pickup point is the machine or
workstation’s output buffer. Any FMS system using AGVs faces the problem of optimally
scheduling the paths of AGVs in the system(Lee, 1996). For example, a move request occurs
when a part finishes at a workstation. If more than one vehicle is empty, the vehicle which
would service this request needs to be selected. Also, when a vehicle becomes available,
and multiple move requests are queued, a decision needs to be made as to which request
should be serviced by that vehicle. These schedules obey a set of constraints that reflect
the temporal relationships between activities and the capacity limitations of a set of shared
resources.

The uncertain and ever changing nature of the manufacturing environment makes it
virtually impossible to plan moves ahead of time. Hence, AGV scheduling requires dynamic
dispatching rules, which are dependent on the state of the system like the number of parts

20

Extending Hierarchical Reinforcement Learning

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 4: A multiple automatic guided vehicle (AGV) optimization task. There are four
AGV agents (not shown) which carry raw materials and finished parts between
the machines and the warehouse.

in each buffer, the state of the AGV and the processing going on at the workstations. The
system performance is generally measured in terms of the throughput, the online inventory,
the AGV travel time and the flow time, but the throughput is by far the most important
factor. In this case, the throughput is measured in terms of the number of finished assemblies
deposited at the unloading deck per unit time. Since this problem is analytically intractable,
various heuristics and their combinations are generally used to schedule AGVs (Klein and
Kim, 1996, Lee, 1996). However, the heuristics perform poorly when the constraints on the
movement of the AGVs are reduced.

Previously, Tadepalli and Ok (Tadepalli and Ok, 1996b) studied a single agent AGV
scheduling task using “flat” average-reward reinforcement learning. However, the multia-
gent AGV task we study is more complex. Figure 4 shows the layout of the system used
for experimental purposes in this paper. M1 to M4 show workstations in this environment.
Parts of type i have to be carried to drop off station at workstation i , Di, and the assembled
parts brought back from pick up stations of workstations, Pis, to the warehouse. The AGV
travel is unidirectional (as the arrows show).

The termination predicate has been redefined to take care of the fact that the completion
of certain tasks might depend on the occurrence of an event rather than just a state of the
environment. For example, if we consider the DM1 subtask in the AGV problem (see
Figure 5), the state of the system at the beginning of the subtask might be the same as that
at the end, as the system is very dynamic. New parts continuously arrive at the warehouse,
and the machines start and end work on parts at random intervals. Also, the actions of

21

Ghavamzadeh, Mahadevan & Makar

Root

DA2DA1DM2DM1

DM1 DM2

Load PutNavLoad

Nav Load Put

Forward Left Right

leftforward right

NavPuti

NavPuti: Navigate to Dropoff Station i

NavLoad: Navigate to Loading Deck

DAi: Deliver Assembly to Station i

Max Node

Q Node

:

:
DMi: Deliver Material to Station i

(b)

Figure 5: MAXQ graph for the AGV scheduling task.

a number of agents affects the environment. This kind of discrete event model makes it
necessary to have termination of subtasks to be defined in terms of events. Hence, a subtask
terminates when the event associated with that subtask is triggered by the robot performing
the subtask, for example DM1 subtask terminates when the “unload of material 1 at drop
off station of machine 1” event occurs.

9.1 State Abstraction

The state of the environment consists of the number of parts in the pickup station and in
the dropoff station of each machine, and whether the warehouse contains parts of each of
the four types. In addition, each agent keeps track of its own location and state as a part
of the state space. Thus, in the flat case, the size of the state space is ≈ 100 locations, 3
parts in each buffer, 9 possible states of the AGV (carrying Part1, ..., carrying Assembly1,
..., Empty), and 2 values for each part in the warehouse, i.e. 100× 48× 9× 24 ≈ 230, which
is enormous. The MAXQ state abstraction helps in reducing the state space considerably.
Only the relevant state variables are used while storing the completion functions in each
node of the task graph. For example, for the Navigate subtask, only the location state
variable is relevant, and this subtask can be learned with 100 values. Hence, for the highest
level actions DM1, . . . , DM4, the number of relevant states would be 100× 9× 4× 2 ≈ 213,
and for highest level actions DA1, . . . , DA4, the number of states would be 100×9×4 ≈ 212.
For the lower level state space, the action with the largest state space is Navigate with 100
values. This state abstraction gives us a compact way of representing the C functions, and
speeds up the algorithm (Dietterich, 2000).

22

Extending Hierarchical Reinforcement Learning

10. Experimental Results

We first describe experiments in the simple two-robot trash collection problem, and then
we will turn to the more complex multiagent AGV task and apply the cooperative discrete
and continuous time MAXQ algorithms to this problem.

10.1 Trash Collection Task (Discrete Time Model)

We first provide more details of how we implemented the trash collection task. In the single
agent scenario, one robot starts in the middle of Room 1 and learns the task of picking up
trash from T1 and T2 and depositing it into the Dump. The goal state is reached when trash
from both T1 and T2 has been deposited in Dump. The state space here is the orientation
of the robot (N,S,W,E), and another component based on its percept. We assume that a
ring of 16 sonars would enable the robot to find out whether it is in a corner, (with two
walls perpendicular to each other on two sides of the robot), near a wall (with wall only on
one side), near a door (wall on either side of an opening), in a corridor (parallel walls on
either side) or in an open area (the middle of the room). Thus, each room is divided into 9
states, and the corridor into 4 states. Thus, we have ((9× 3) + 4)× 4, or 124 locations for
a robot. Also, the trash object from trash basket T1 can be at T1, carried with robot, or
at Dump, and the trash object from trash basket T2 can be at T2, carried by robot, or at
Dump. Thus the total number of environment states is 124× 3× 3, or 1116 for the single
agent case. Going to the two-agent case would mean that the trash can be at either T1 or
T2, Dump, or carried by one of the two robots. Thus, in the flat case, the size of the state
space would grow to 124× 124× 4× 4, or ≈ 24× 104.

The environment is fully observable given this state decomposition, as the direction
which the robot is facing, in combination with the percept (which includes the room the
agent is in) gives a unique value for each location. The primitive actions considered here
are behaviors to find a wall in one of the four directions, align with the wall on left or right
side, follow wall, enter or exit door, align south or north in the corridor, or move in the
corridor.

In the two-robot trash collection task, examination of the learned policy in Figure 6
reveals that the robots have nicely learned all three skills: how to achieve a subtask, what
order to do them in, and how to coordinate with other agents. In addition, as Figure 7
confirms, the number of steps needed to do the trash collection task is greatly reduced when
the two agents coordinate to do the task, compared to when a single agent attempts to carry
out the whole task.

10.2 AGV Domain (Discrete-Time Model)

We now present detailed experimental results on the AGV scheduling task, comparing
several learning agents, including a single agent using MAXQ, selfish multiple agents using
MAXQ (where each agent acts independently and learns its own optimal policy), and the
new cooperative multiagent MAXQ approach. In this domain, there are four agents (each
AGV is an agent).

The experimental results were generated with the following model parameters. The
inter-arrival time for parts at the warehouse is uniformly distributed with a mean of 4 sec

23

Ghavamzadeh, Mahadevan & Makar

Learned Policy for Agent 1

root
navigate to trash 1

go to location of trash 1 in room 1
pick trash 1
navigate to bin

exit room 1
enter room 3
go to location of dump in room 3

put trash 1 in dump
end

Learned Policy for Agent 2

root
navigate to trash 2

go to location of trash 2 in room 1
pick trash 2
navigate to bin

exit room 1
enter room 3
go to location of dump in room 3

put trash 2 in dump
end

Figure 6: This figure shows the policy learned by the cooperative multiagent MAXQ algo-
rithm in the trash collection task.

and variance of 1 sec. The percentage of Part1, Part2, Part3 and Part4 in the part arrival
process are 20, 28, 22 and 30 respectively. The time required for assembling the various
parts is uniformly distributed with means 15, 24, 24 and 30 sec for Part1, Part2, Part3
and Part4 respectively, and variance 2 sec. The execution time of primitive actions (AGV
navigation actions, load and unload) is 1000 micro sec. The execution time for idle action
is 1 sec. Each experiment was conducted five times and the results averaged.

Figure 8 shows the throughput of the system for the three types of approaches. As seen
in Figure 8, the agents learn a little faster initially in the selfish multiagent method, but
after some time, undulations are seen in the graph showing not only that the algorithm does
not stabilize, but also that it results in sub-optimal performance. This is due to the fact that
two or more agents select the same action, but once the first agent completes the task, the
other agents might have to wait for a long time to complete the task, due to the constraints
on the number of parts that can be stored at a particular place. The system throughput

24

Extending Hierarchical Reinforcement Learning

10

20

30

40

50

60

70

80

90

100

110

120

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 p

rim
iti

ve
 a

ct
io

ns
 r

eq
ui

re
d

to
 c

om
pl

et
e

ta
sk

Number of trials averaged over 10 runs

Two Co-operating Agents performing task
Single Agent performing task

Figure 7: Number of actions needed to complete the trash collection task.

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Co-operating Multi-Agent MAXQ
Selfish Multi-Agent MAXQ

Single Agent MAXQ

Figure 8: This figure shows that the cooperative multiagent MAXQ approach outperforms
both the selfish (non-cooperative) and single agent MAXQ approaches when the
AGV travel time is very much less compared to the assembly time. Learning
curves are averaged over five runs.

achieved using the new cooperative multiagent MAXQ method is significantly higher than
the single agent or selfish multiagent case. This difference is even more significant in figure 9,
as when the primitive actions have longer execution time, almost 1

10th the average assembly
time (the execution time of primitive actions is 2 sec).

Figure 10 shows results from an implementation of a single flat Q-Learning agent with
the buffer capacity at each station set at 1. As can be seen from the plot, the flat algo-
rithm converges extremely slowly. The throughput at 70,000 sec has gone up to only 0.07,
compared with 2.6 for the hierarchical single agent case. Figure 11 compares the coopera-
tive multiagent MAXQ algorithm with several well-known AGV scheduling rules, showing
clearly the improved performance of the reinforcement learning method. Finally, Figure 12

25

Ghavamzadeh, Mahadevan & Makar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

(a) Time since start of simulation (sec)

Multiple Co-operating Agents
Multiple Selfish Agents

Figure 9: This figure compares the cooperative multiagent MAXQ approach with the selfish
(non-cooperative) MAXQ approach, when the AGV travel time and load/unload
time is 1

10th the average assembly time. Learning curves are averaged over five
runs.

shows that when the Q-nodes at the top two levels of the hierarchy are configured to repre-
sent joint action-values, learning is considerably slower (since the number of parameters is
increased significantly), and the overall performance is not better. The lack of improvement
is due in part to the fact that the second layer of the MAXQ hierarchy is concerned with
navigation. Adding joint actions does not help improve navigation because coordination is
not necessary in this environment. However, it might turn out that adding joint actions in
multiple layers will be worthwhile, even if convergence is slower, due to better overall task
performance.

10.3 AGV Domain (Continuous-Time Model)

We now apply the two proposed continuous-time algorithms described in section 4 to the
AGV scheduling task and compare their performance and speed with each other, as well as
several well-known AGV scheduling heuristics.

The experimental results were generated with the following model parameters. The
inter-arrival time for parts at the warehouse is uniformly distributed with a mean of 4 sec
and variance of 1 sec. The percentage of Part1, Part2, Part3 and Part4 in the part arrival
process are 20, 28, 22 and 30 respectively. The time required for assembling the various
parts is normally distributed with means 15, 24, 24 and 30 sec for Part1, Part2, Part3
and Part4 respectively, and the variance 2 sec. The execution time of primitive actions
(AGV navigation actions, load and unload) is normally distributed with mean 1000 micro
sec and variance 50 micro sec. The execution time of idle action is normally distributed
with mean 1 sec and variance 0.1 sec. Table 1 shows the value of all the parameters of the
continuous-time model used in the experimental results of this section. Each experiment
was conducted five times and the results averaged.

26

Extending Hierarchical Reinforcement Learning

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10000 20000 30000 40000 50000 60000 70000 80000 90000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Flat Q Learner

Figure 10: A flat Q-learner learns the AGV domain extremely slowly, showing the need
for using a hierarchical task structure. Note the y axis of this plot is greatly
expanded upward comparing to Figure 8.

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Co-operative Multi-Agent MAXQ
First Come First Served Heuristic

Highest Queue First Heuristic
Nearest Station First Heuristic

Figure 11: This plot shows the multiagent MAXQ outperforms three well-known widely
used (industrial) heuristics for AGV scheduling. Learning curves are averaged
over five runs.

27

Ghavamzadeh, Mahadevan & Makar

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Joint-Action in the Top Level of the Hierarchy
Joint-Action in the Top Two Levels of the Hierarchy

Figure 12: This plot compares the performance of the multiagent MAXQ algorithm with
joint actions at the top level vs. joint actions at the top two levels. Learning
curves are averaged over five runs.

Table 1: Model Parameters
Parameter Type of Distribution Mean Variance

Idle Action Normal 1 (sec) 0.1 (sec)

Primitive Actions Normal 1000 (micro sec) 50 (micro sec)

Assembly Time for Part1 Normal 15 (sec) 2 (sec)

Assembly Time for Part2 Normal 24 (sec) 2 (sec)

Assembly Time for Part3 Normal 24 (sec) 2 (sec)

Assembly Time for Part4 Normal 30 (sec) 2 (sec)

Inter-Arrival Time for Parts Uniform 4 (sec) 1 (sec)

28

Extending Hierarchical Reinforcement Learning

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Continuous-Time Average Reward MAXQ
Continuous-Time Discounted Reward MAXQ

Figure 13: This plot shows continuous-time average reward multiagent MAXQ algorithm
outperforms continuous-time discounted reward multiagent MAXQ algorithm.
Learning curves averaged over five runs.

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Highest Queue First Heuristic
Nearest Station First Heuristic

First Come First Serve Heurisitic
Continuous-Time Average Reward MAXQ

Continuous-Time Discounted Reward MAXQ

Figure 14: This plot shows both continuous-time average reward and discounted reward
multiagent MAXQ algorithms outperform three well-known widely used (indus-
trial) heuristics for AGV scheduling. Learning curves averaged over five runs.

Figure 13 shows the throughput of the system for continuous-time discounted and aver-
age reward MAXQ algorithms proposed in this paper. As seen in this figure, the agents learn
a little faster initially in the discounted reward method, but the final system throughput
achieved using the average reward algorithm is higher than the discounted reward case.

Figure 14 compares the proposed continuous-time MAXQ algorithms with several well-
known AGV scheduling rules, highest queue first, nearest station first and first come first
serve, showing clearly the improved performance of the reinforcement learning methods.

29

Ghavamzadeh, Mahadevan & Makar

11. Conclusion and Future Work

This paper extended the framework of hierarchical reinforcement learning to continuous-
time, average-reward, and multiagent domains. Using the MAXQ framework as an example,
we described three new hierarchical reinforcement learning algorithms: continuous-time dis-
counted reward MAXQ, discrete-time average reward MAXQ, and continuous-time average
reward MAXQ. We also extended the MAXQ framework to the multiagent case (cooperative
MAXQ), where each agent uses the same task hierarchy. Learning is decentralized, with
each agent learning three interrelated skills: how to perform subtasks, which order to do
them in, and how to coordinate with other agents. Coordination skills among agents are
learned by using joint actions at the highest level(s) of the hierarchy.

The effectiveness of the proposed algorithms were tested using two experimental testbeds:
a simulated robot trash collection domain, and a much larger real-world multi-agent au-
tonomous guided vehicle (MAGV) domain. The proposed algorithms performed well in both
domains, and in particular, in the MAGV domain, we showed that our proposed extensions
outperform widely used industrial heuristics, such as “first come first serve”, ”highest queue
first” and ”nearest station first”.

There are a number of directions for future work which can be briefly outlined. In
the continuous-time and average-reward extensions of MAXQ, an immediate question that
arises is the convergence of the algorithms to recursively optimal policies. These results
should provide some theoretical validity to the proposed methods, in addition to their
empirical effectiveness demonstrated in this paper. The multiagent extension to MAXQ
is more difficult to analyze theoretically, due to the inherent complexity of the multiagent
setting. However, a number of empirical extensions would be useful, from modeling the
cost of communication among agents, to studying the scenario where agents begin with
dissimilar task hierarchies. Finally, although our work primarily focused on the MAXQ
framework, the key ideas underlying our proposed methods could be equally well applied
to other HRL frameworks, such as options and HAMs.

Acknowledgments

This work was supported in part by the Defense Advanced Research Projects Agency,
DARPA contract No. DAANO2-98-C-4025, and in part by a Knowledge and Distributed
Intelligence (KDI) grant ECS-9873531 from the National Science Foundation. The compu-
tational experiments were carried out in the Autonomous Agents laboratory in the Depart-
ment of Computer Science and Engineering at Michigan State University.

References

R.G. Askin and C.R. Standridge. Modeling and Analysis of Manufacturing Systems. John
Wiley and Sons, 1993.

Tucker Balch and Ronald Arkin. Behavior-based formation control for multi-robot teams.
IEEE Transactions on Robotics and Automation, 14(6):1–15, 1998.

30

Extending Hierarchical Reinforcement Learning

D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
Massachusetts, 1995.

C. Boutilier. Sequential optimality and coordination in multi-agent systems. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), 1999.

S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time markov
decision problems. In Advances in Neural Information Processing Systems. MIT Press,
1995.

R.H. Crites and A.G. Barto. Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33:235–262, 1998.

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function de-
composition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

M. Ghavamzadeh and S. Mahadevan. Continuous-time hierarchical reinforcement learning.
In Proceedings of the Eighteenth International Conference on Machine Learning, pages
186–193, 2001.

J. Hu and M. Wellman. Multiagent reinforcement learning: Theoretical framework and an
algorithm. In Fifteenth International Conference on Machine Learning, pages 242–250,
1998.

C.M. Klein and J. Kim. Agv dispatching. International Journal of Production Research,
34(1):95–110, 1996.

J. Lee. Composite dispatching rules for multiple-vehicle agv systems. SIMULATION, 66
(2):121–130, 1996.

Michael Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the Eleventh International Conference on Machine Learning, pages 157–
163, 1994.

S. Mahadevan. Average reward reinforcement learning: foundations, algorithms, and em-
pirical results. Machine Learning, 22:159–196, 1996.

S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi. Self-improving factory simula-
tion using continuous-time average reward reinforcement learning. In Proceedings of the
Fourtheenth International Conference on Machine Learning, 1997.

R. Makar, S. Mahadevan, and M. Ghavamzadeh. Hierarchical multi-agent reinforcement
learning. In Proceedings of the Fifth International Conference on Autonomous Agents,
pages 246–253, 2001.

Maja Mataric. Reinforcement learning in the multi-robot domain. Autonomous Robots, 4
(1):73–83, 1997.

R.E. Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD Thesis,
University of California, Berkeley, 1998.

31

Ghavamzadeh, Mahadevan & Makar

M. L. Puterman. Markov Decision Processes. Wiley Interscience, 1994.

A. Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In
Proceedings of the Tenth International Conference on Machine Learning, 1993.

P. Stone and M. Veloso. Team-partitioned, opaque-transition reinforcement learning. Third
International Conference on Autonomous Agents, pages 86–91, 1999.

T. Sugawara and V. Lesser. Learning to improve coordinated actions in cooperative dis-
tributed problem-solving environments. Machine Learning, 33:129–154, 1998.

R. Sutton, D. Precup, and S. Singh. Between MDPs and Semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

R. C. Sutton and A. G. Barto. An Introduction to Reinforcement Learning. MIT Press,
1998.

R.S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

P. Tadepalli and D. Ok. Auto-exploratory average reward reinforcement learning. In Pro-
ceedings of the Thirteenth AAAI, pages 881–887, 1996a.

P. Tadepalli and D. Ok. Scaling up average reward reinforcement learning by approximating
the domain models and the value function. In Proceedings of International Machine
Learning Conference, 1996b.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the Tenth International Conference on Machine Learning, pages 330–337,
1993.

G. Wang and S. Mahadevan. Hierarchical optimization of policy-coupled semi-markov de-
cision processes. In Proceedings of the Sixteenth International Conference on Machine
Learning, 1999.

C.J. Watkins. Learning from Delayed Rewards. PhD thesis, Kings College, Cambridge,
England, May 1989.

G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.
MIT Press, 1999.

P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent coopera-
tion: Model and experiments. In Proceedings of the Fifth International Conference on
Autonomous Agents, pages 616–623, 2001.

32

