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Abstract

We prove the convergence of four new reinforcement learning algorithms based on the actor-
critic architecture, on function approximation, and on natural gradients. Reinforcement learning
is a class of methods for solving Markov decision processes from sample trajectories under lack
of model information. Actor-critic reinforcement learning methods are online approximations
to policy iteration in which the value-function parameters are estimated using temporal dif-
ference learning and the policy parameters are updated by stochastic gradient ascent/descent.
Reinforcement learning methods based on policy gradients in this way are of special interest
because of their compatibility with function approximation methods, which are needed to han-
dle infinite or large state spaces, and the use of temporal-difference learning in this way is of
special interest because in many applications it dramatically reduces the variance of the es-
timates. Natural or Fisher-information versions of policy gradient algorithms are of interest
because they can produce better conditioned parameterizations and have been shown to have
further reduced variance in some cases. Our results extend prior two-timescale convergence
results for actor-critic methods by Konda and Tsitsiklis by using temporal difference learning
in the actor and by incorporating natural gradients. Our results extend prior empirical studies
of natural-gradient actor-critic methods by Peters, Vijayakumar and Schaal by providing the
first convergence proofs and the first fully incremental algorithms. We present empirical results
verifying the convergence of our algorithms. A limitation of our results is that they do not
address the use of least-squares methods and eligibility traces.

Key Words: Actor-critic reinforcement learning algorithms, policy gradient methods, ap-
proximate dynamic programming, bootstrapping, function approximation, two-timescale stochas-
tic approximation, temporal-difference learning, natural-gradient.

1 Introduction

Many problems of scientific and economic importance are optimal sequential decision problems
and as such can be formulated as Markov decision processes (MDPs) [15, 48, 60]. In some cases
MDPs can be solved analytically, and in many cases they can be solved iteratively by dynamic
programming or linear programming. However, in other cases these methods cannot be applied
either because the state space is too large, a system model is available only as a simulator, or no
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system model is available. It is in these cases that the techniques and algorithms of reinforcement
learning may be helpful.

Reinforcement learning [18, 54] can be viewed as a broad class of sample-based methods for
solving MDPs. In place of a model, these methods use sample trajectories of the system and the
controller interacting, such as could be obtained from a simulation. It is not unusual in practical
applications for such a simulator to be available when an explicit transition-probability model of
the sort suitable for use by dynamic or linear programming is not (e.g., [56, 28]). Reinforcement
learning methods can also be used with no model at all by obtaining sample trajectories by direct
interaction with the system (e.g., [12, 36]).

One of the biggest challenges to solving MDPs with conventional methods is handling large state
spaces. This is sometimes known as the “curse of dimensionality” because of the tendency of the size
of a state space to grow exponentially with the number of its dimensions. The computational effort
required to solve Bellman equation thus increases exponentially with the dimension and cardinality
of the state space. A natural and venerable way of addressing the curse is to approximate the
value function and policy parametrically with a number of parameters much smaller than the
size of the state space (e.g., [13, 29, 27]). However a straightforward application of such function
approximation methods to dynamic programming has not proved effective on very large problems.
Some work with reinforcement learning and function approximation has also run into problems of
convergence and instability [24, 7], but about a decade ago it was established that if trajectories
were sampled according to their distribution under the target policy (the on-policy distribution)
then convergence could be assured for linear feature-based function approximators [58, 52, 55].
Reinforcement learning’s most impressive successes have in fact been on problems with extremely
large state spaces that could not have been solved without function approximation (e.g., [56, 28, 45]).
The ability of sample-based methods to use function approximation effectively is one of the most
important reasons for interest in reinforcement learning within the engineering disciplines.

Policy gradient methods [62, 44, 53, 38, 10, 11] are some of the simplest reinforcement learning
methods and provide both a good illustration of reinforcement learning and a foundation for the
actor-critic methods that are the primary focus of this paper. In all these methods, the policy
is taken to be an arbitrary differentiable function of a parameter vector θ ∈ R

d. Given some
performance measure J : R

d → R, we would like to update the policy parameter in the direction
of the gradient:

∆θ ∝ ∇θJ(θ). (1)

The gradient is not directly available of course, but sample trajectories can be used to construct
consistent estimators of it, estimators that can be used in a stochastic approximation of the actual
gradient. This is the basic idea behind policy-gradient reinforcement learning methods. Both theo-
retical analysis and empirical evaluations have highlighted a major shortcoming of these algorithms,
namely, the high variance of the gradient estimates. This high variance results in the slowness and
sample-inefficiency of these algorithms.

One possible solution to this problem, proposed by Kakade in 2002 [35] and then refined and
extended by Bagnell and Schneider [8] and by Peters et al. [46], is based on the idea of natural
gradients previously developed for supervised learning by Amari [4]. In the application to rein-
forcement learning, the policy gradient in (1) is replaced with a natural version. This is motivated
by the intuition that the policy updates should be invariant to bijective transformations of the
parametrization. Put more simply, a change in the way the policy is parametrized should not
influence the result of the policy update. In terms of the policy update rule (1), the move to a
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natural gradient rule amounts to linearly transforming the gradient using the inverse Fisher infor-
mation matrix of the policy. In empirical evaluations, natural policy gradient has outperformed
conventional policy gradient methods [35, 8, 46]. Moreover, the use of natural gradients can lead to
simpler, and in some cases, more computationally efficient algorithms. Three of the four algorithms
we introduce in this paper incorporate natural gradients.

In this paper we focus on a sub-class of policy-gradient methods known as actor-critic methods.
These methods can be thought of as reinforcement learning analogs of dynamic programming’s
policy iteration method. Actor-critic methods are based on the simultaneous online estimation
of the parameters of two structures, called the actor and the critic. The actor corresponds to a
conventional action-selection policy, mapping states to actions in a probabilistic manner. The critic
corresponds to a conventional state-value function, mapping states to expected cumulative future
reward. Thus, the critic addresses a problem of prediction, whereas the actor is concerned with
control. These problems are separable, but are solved simultaneously to find an optimal policy. A
variety of methods can be used to solve the prediction problem, but the ones that have proved most
effective in large applications are those based on some form of temporal difference (TD) learning
[51], in which estimates are updated on the basis of other estimates much as they are in dynamic
programming. Such “bootstrapping methods” [54] can be viewed as a way of accelerating learning
by trading bias for variance [49].

Actor-critic methods were among the earliest to be investigated in reinforcement learning [9,
50]. They were largely supplanted in the 1990’s by methods that estimate action-value functions
(mappings from states and actions to the subsequent expected return) that are then used directly
to select actions without constructing an explicit policy structure. The action-value approach
was initially appealing because of its simplicity, but theoretical complications arose when it was
combined with function approximation: these methods do not converge in the normal sense, but
rather may “chatter” in the neighborhood of a good solution [32]. These complications lead to
renewed interest in policy gradient methods. Policy gradient methods without bootstrapping can
easily be proved convergent, but can suffer from high variance resulting in slow convergence as
mentioned above, motivating their combination with bootstrapping TD methods as in actor-critic
algorithms.

In this paper we introduce four novel actor-critic algorithms along these lines. For all four
methods we prove convergence of the parameters of the policy and state-value function to a local
maximum of a performance function that corresponds to the average reward plus a measure of
the temporal difference error inherent in the function approximation. Our results are an extension
of prior work on the convergence of two-timescale stochastic approximation recursions [1, 19, 37,
38]. That work had previously shown convergence to a locally optimal policy for several non-
bootstrapping algorithms with or without function approximation. Konda and Tsitsiklis [38] have
shown convergence for an actor-critic algorithm that uses bootstrapping in the critic, but our results
are the first to prove convergence when the actor is bootstrapping as well. Our results also extend
prior two-timescale results by incorporating natural gradients. Our results and algorithms differ in
a number of other, smaller ways from those of Konda and Tsitsiklis; we detail these in Section 7
after the analysis has been presented.

Two other aspects of the theoretical results presented here should be mentioned at the outset.
First, one of the issues that arises in policy gradient methods is the selection of a baseline reward
level. In contrast to previous work we show that, in an actor-critic setting when compatible features
are used, the baseline that minimizes the estimator variance for any given policy is in fact the state-
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value function. Second, for the case of a fixed policy we use a recent result by Borkar and Meyn
[22] to provide an alternative, simpler proof of convergence (cf. [58, 59]) in the Euclidean norm of
temporal difference recursions.

In this paper we do not explicitly consider the treatment of eligibility traces (λ > 0 in TD(λ)
[51]), which have been shown to improve performance in cases of function approximation or partial
observability, but we believe the extension of all of our results to general λ would be straightforward.
Less clear is how or whether our results could be extended to least-squares temporal-difference
methods [25, 23, 41, 46, 31]. It is not clear how to satisfactorily incorporate these methods in a
context in which the policy is changing. Our proof techniques do not immediately extend to this
case and we leave it for future work. We do consider the use of approximate advantages as in the
works of Baird [6] and Peters el al. [46].

The rest of the paper is organized as follows. In Section 2 we present our reinforcement learn-
ing framework and provide an overview of policy gradient methods. We motivate two-timescale
stochastic approximation in Section 3 as this is the technique used by our algorithms. In Section
4 we discuss policy gradient methods with function approximation and present some preliminary
results. We show here in particular that the minimum variance baseline corresponds to the state-
value function and obtain a form of bias in gradient estimates that results from the use of function
approximation. Our four actor-critic algorithms are presented in Section 5, and their convergence
analysis is in Section 6. In Section 7 we discuss the relationship of our algorithms to the actor-critic
algorithm of Konda and Tsitsiklis [38] and the natural actor-critic algorithm of Peters, Vijayakumar
and Schaal [46]. Section 8 presents numerical experiments verifying the operation of our algorithms.
Section 9 contains concluding remarks.

2 The Policy Gradient Framework

Consider the standard reinforcement learning framework in which a learning agent interacts with a
stochastic environment. The overall model we consider is that of a discrete time Markov decision
process (MDP) with finite numbers of states and actions, and bounded rewards. We allow S and
A to respectively denote the state and action spaces of this MDP. For simplicity, we assume that S
is the set S = {1, . . . , n}. We denote by st, at and rt, the state, action and reward, respectively, at
time t. We assume that reward is random, real-valued and uniformly bounded. For simplicity and
ease of notation, we assume that all actions in A are feasible in each state. The state transition
probabilities for the environment will be characterized by P (s, a, s′) = Pr(st+1 = s′|st = s, at = a),
∀s, s′ ∈ S, a ∈ A. Further, the single-stage expected reward when action a is taken in state s will
be denoted R(s, a) = E[rt+1|st = s, at = a].

An admissible policy π̄ is a decision rule that is described by a sequence of functions π̄ = {µ0,
µ1, . . .} such that each µt : S → A, with action µt(s) taken in state s at instant t ≥ 0. A stationary
policy is a time invariant decision rule, i.e., one for which µt = µ, ∀t ≥ 0, for some µ : S → A.
Most often, one refers to the function µ itself as the stationary policy. A stationary randomized
policy π that we refer to as simply a randomized policy is specified via a probability distribution
π(s, ·) over A, for s ∈ S. Under the long-run average reward setting considered in this paper, it
can be shown that a stationary optimal policy exists. Note that any stationary policy is trivially a
randomized policy as well. We motivate the following discussion from the viewpoint of randomized
policies as we consider a parameterized class of these in this paper. From now on, for simplicity,
we shall refer to a randomized policy as simply a policy.
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Let J(π) be the long-run average reward under policy π. Let {st, t = 0, 1, 2, . . .} denote the
MDP. The following assumption will be considered throughout the paper.

(A1) Under any policy π, the Markov chain resulting from the MDP {st, t = 0, 1, 2, . . .} is
irreducible and aperiodic.

Let dπ(s) denote the stationary probability of the Markov chain under policy π being in state
s ∈ S and let dπ = (dπ(s), s ∈ S). Our aim is to find a policy π that maximizes the long-run
average reward J(π) given by

J(π) = lim
T→∞

1

T
E

[
T−1∑

t=0

rt+1|π

]

=
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)R(s, a). (2)

The limit in (2) is well defined by (A1). Let πopt denote the optimal policy

πopt = arg max
π

J(π).

Further, we shall denote by Qπ(s, a), the expected differential reward associated with a state-action
pair (s, a), given policy π, that is defined by

Qπ(s, a) =

∞∑

t=1

E[rt+1 − J(π)|s0 = s, a0 = a, π], ∀s ∈ S, a ∈ A.

Likewise, we denote by V π(s), the expected differential reward associated with a state s when
actions are selected according to policy π. Here

V π(s) =
∑

a∈A

π(s, a)Qπ(s, a).

The Poisson equation under policy π is given by

J(π) + V π(s) =
∑

a∈A

π(s, a)[R(s, a) +
∑

s′∈S

P (s, a, s′)V π(s′)], ∀s ∈ S. (3)

In policy gradient methods, we define a class of parameterized randomized policies {πθ(s, .), s ∈
S, θ ∈ R

d1}, estimate the gradient of the average reward with respect to the policy parameters
θ from the observed states, actions, and rewards, and then improve the policy by adjusting its
parameters in the direction of an estimate of the gradient of J with respect to θ. Since in this
setting a policy π is represented by its parameters θ, J can be viewed as a function of θ and by
abuse of notation, we let J(θ) denote the long-run average reward when the parameter is θ. In what
follows, we shall interchangeably use J(π) or J(θ) to denote the long-run average reward when the
policy π or its associated parameter θ are to be emphasized. We also drop θ from πθ, and simply
denote this quantity as π. The optimum parameter can now be obtained as

θopt = arg max
θ

J(θ).

In order for the gradient of the policy to be well defined, we shall make the following assumption.
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(A2) For any state-action pair (s, a), π(s, a) is continuously differentiable in the parameter θ.

Previous works [44, 53, 10] have shown that the gradient of the average reward for parameterized
policies that satisfy (A1) and (A2) is given by1

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)Qπ(s, a). (4)

For the case of parameterized Markov processes, a similar expression can be found in [26]. Observe
that if b(s) is any given function of s (also called a baseline), then

∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)b(s) =
∑

s∈S

dπ(s)b(s)∇(
∑

a∈A

π(s, a)) = 0,

and thus the gradient of the average reward can be written as

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)[Qπ(s, a) ± b(s)], (5)

for any b(s). The baseline b(s) can be chosen in a way that the variance of the gradient estimates
∇J(π) is minimized [33].

The natural gradient, denoted ∇̃J(π), can be calculated by linearly transforming the regu-
lar gradient, ∇J(π), using the inverse of the Fisher information matrix of the policy ∇̃J(π) =
G−1(θ)∇J(π). The Fisher information matrix G(θ) is given by

G(θ) = Es∼dπ,a∼π[∇ log π(s, a)∇ log π(s, a)⊤] =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)∇ log π(s, a)∇ log π(s, a)⊤. (6)

Matrix G(θ) plays an important role in the algorithms that use natural gradients [35, 46]. Here
Es∼dπ,a∼π[·] denotes the expectation under the conditional joint distribution where states are first
selected according to distribution dπ, and then given that a state s is selected, actions are selected
according to distribution π(s, ·). The Fisher information matrix is clearly positive definite [35].
In the next section, we shall develop certain multi-timescale actor-critic algorithms. While certain
recursions in some of these algorithms use regular gradients, their counterparts that we also present
use the more efficient natural gradients [46] and are based on the Fisher information matrix. In two
of these algorithms, we obtain a least squares optimal parametric representation for the advantage
function Aπ(s, a) along the faster timescale recursion, for any given θ. The parameter θ is then
updated on the slower timescale. These ideas will become clear subsequently. We first present a
few basic results for the case when the parameter θ in policy π is held fixed in Section 4. Our
control algorithms will then be presented in Section 5.

A well-studied example of parameterized randomized policies, which we use in the experiments
of this paper, is the Gibbs (or Boltzmann) distribution having the form

π(s, a) =
eθ

⊤φsa

∑

a′∈A e
θ⊤φ

sa′
, ∀s ∈ S, a ∈ A, (7)

1In the rest of the paper we use the notation ∇ to denote ∇θ — the gradient with respect to the policy parameters.
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where each φsa is a d1-dimensional feature vector for the state-action pair (s, a). The Gibbs dis-
tribution has connections with statistical mechanics and is also used in other domains such as
evolutionary algorithms [30] and the well-known simulated annealing search technique for multi-
variate optimization [3].

Before we proceed further, we first motivate two-timescale stochastic approximation [21] as our
algorithms in the next section also use this technique.

3 Two-Timescale Stochastic Approximation Algorithms

These are typically characterized by coupled stochastic recursions that are driven by two different
(decreasing) step-size schedules, of which one has a higher convergence rate to zero than the other.
We present here more generally the setting of two-timescale stochastic approximations. Suppose
Xt, Yt, t ≥ 0 be two parameter sequences that are governed according to

Xt+1 = Xt + αt(f(Xt, Yt) +N1
t+1), (8)

Yt+1 = Yt + βt(g(Xt, Yt) +N2
t+1), (9)

where f , g are Lipschitz continuous functions and {N1
t }, {N

2
t } are martingale difference sequences

w.r.t. the σ-fields F̄t = σ(Xn, Yn, N
1
n, N

2
n, n ≤ t), t ≥ 0, satisfying

E[‖ N i
t+1 ‖2| F̄t] ≤ D1(1+ ‖ Xt ‖

2 + ‖ Yt ‖
2), i = 1, 2, t ≥ 0,

for some constant D1 <∞. Also, here {αt} and {βt} are two step-size schedules that satisfy

∑

t

αt =
∑

t

βt = ∞,
∑

t

α2
t ,
∑

t

β2
t <∞, (10)

βt = o(αt). (11)

As a consequence of (11), βt → 0 faster than {αt}. Hence (8) is a ‘faster’ recursion than (9) as
beyond some t0 (i.e., for t ≥ t0), (8) has uniformly higher increments as compared to (9). Consider
the ODEs

.
X= f(X(t), Y (t)), (12)

.
Y= 0. (13)

Alternatively, as a consequence of (13), one can consider the ODE

.
X= f(X(t), Y ) (14)

in place of (12), where because of (13), Y is a constant. We assume

(B1) sup
t

‖ Xt ‖, sup
t

‖ Yt ‖<∞.

(B2) The ODE (14) has a globally asymptotically stable equilibrium µ(Y ) where µ(·) is a Lips-
chitz continuous function.
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Consider also the ODE
.
Y= g(µ(Y (t)), Y (t)). (15)

We also assume

(B3) The ODE (15) has a globally asymptotically stable equilibrium Y ⋆.

Define two real-valued sequences {rt} and {st} as rt =
t−1∑

n=0

αn and st =
t−1∑

n=0

βn, respectively.

Note that (rt−rt−1), (st−st−1) → 0 as t→ ∞. Define continuous time processes X̄(r), Ȳ (r), r ≥ 0
as X̄(rt) = Xt, Ȳ (rt) = Yt, respectively, with linear interpolations in between. For s ≥ 0, let Xs(r),
Y s(r), r ≥ s denote the trajectories of (12)-(13) with Xs(s) = X̄(s) and Y s(s) = Ȳ (s). Note that
because of (13), Y s(r) = Ȳ (s) ∀r ≥ s. Now (8)-(9) can be viewed as ‘noisy’ Euler discretizations
of the ODEs (12)-(13) when the time discretization corresponds to {rt}. This is because (9) can
be written as

Yt+1 = Yt + αt

(
βt

αt

(
g(Xt, Yt) +N2

t+1

)
)

,

and (11) implies that the term multiplying αt on the RHS above vanishes in the limit. One can
now show (cf. [21]) using a sequence of approximations involving the Gronwall inequality that for
any given T > 0, with probability one, sup

r∈[s,s+T ]
‖ X̄(r) −Xs(r) ‖ → 0 as s→ ∞. The same is also

true for sup
r∈[s,s+T ]

‖ Ȳ (r) −Y s(r) ‖ as well. Further, using the time discretization {st} for the ODE

(15), a similar conclusion with regards to iteration (9) (and ODE (15)) can be drawn following a
continuous time trajectory that is obtained with the iterates in (9) interpolated along the time line
{st}. The following is the main two-timescale convergence result (cf. [21]).

Theorem 1 With probability one, (Xt, Yt) → (µ(Y ⋆), Y ⋆) as t→ ∞.

In the analysis of our algorithms in Section 6, we shall show that assumptions (B1)-(B3) above
hold good. For this purpose, we shall show some key requirements in [22] that allow us to use
the main convergence result there. The analysis in [22] is however only for the one-timescale case.
Hence, we combine the same with the requirements for the two-timescale algorithms [21]. We shall
skip details wherever (in Section 6) the analysis is along standard lines and appropriately point to
suitable references.

4 Policy Gradient with Approximation

Now consider the case in which the state-action value function for a fixed policy π, Qπ, is approx-
imated by a learned function approximator. If the approximation is sufficiently good, we might
hope to use it in place of Qπ in Equations (4) and (5), and still point roughly in the direction of
the true gradient. Sutton et al. [53] showed that if the approximation Q̂π

w with parameter w ∈ R
d1

is compatible, i.e., ∇wQ̂
π
w(s, a) = ∇ log π(s, a), and minimizes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[Qπ(s, a) − Q̂π
w(s, a)]2, (16)
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for parameter value w⋆, then we can replace Qπ with Q̂π
w⋆ in Equations (4) and (5). Thus, we

work with linear approximation Q̂π
w(s, a) = w⊤ψsa in which the ψsa’s are compatible features

defined according to ψsa = ∇ log π(s, a). Note that compatible features are well-defined under
(A2). As an example, the compatible features for the Gibbs policy in Equation (7) are ψsa =
φsa −

∑

a′∈A π(s, a′)φsa′ .
The Fisher information matrix of Equation (6) can be written using the compatible features as

G(θ) = Es∼dπ,a∼π[ψsaψ
⊤
sa] =

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)ψsaψ
⊤
sa.

Suppose Eπ(w) denotes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[Qπ(s, a) − w⊤ψsa − b(s)]2, (17)

of our compatible linear parameterized approximation w⊤ψsa and an arbitrary baseline b(s). Let
w⋆ = arg minw Eπ(w) denote the optimal weight parameter. We first show in Lemma 1 that the
value of w⋆ does not depend on the given baseline b(s) and as a result the mean squared error
problems of Equations (16) and (17) have the same solutions. Next, in Lemma 2, we show that
if the weight parameter is set to be equal to w⋆, the resulting mean squared error Eπ(w⋆) (now
treated as a function of the baseline b(s)) is further minimized when b(s) = V π(s). In other words,
the variance in the state-action value function estimator is minimized if the baseline is chosen to
be the value function itself.

Lemma 1 The optimum weight parameter w⋆ for any given θ satisfies2

w⋆ = G(θ)−1Es∼dπ,a∼π[Qπ(s, a)ψsa].

Proof Note that

∇wE
π(w) = −

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)2[Qπ(s, a) − w⊤ψsa − b(s)]ψsa. (18)

Equating the above to zero, one obtains

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)ψsaψ
⊤
saw

⋆ =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)Qπ(s, a)ψsa −
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)b(s)ψsa.

The last term on the right hand side equals zero since
∑

a∈A

π(s, a)ψsa = 0. Now from (18), the

Hessian ∇2
wE

π(w) of Eπ(w) evaluated at w⋆ can be seen to be 2G(θ). The claim follows since G(θ)
is positive definite for any θ. �

Next (as stated above), given the optimum weight parameter w⋆, we obtain the minimum
variance baseline corresponding to policy π. Thus we consider now Eπ(w⋆) and obtain b⋆(s) =
arg min

b=b(s) , s∈S
Eπ(w⋆).

2This lemma is similar to Theorem 1 in [35].
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Lemma 2 For any given policy π, the minimum variance baseline b⋆(s) corresponds to the value
function V π(s).

Proof For any s ∈ S, let Eπ,s(w⋆) denote

Eπ,s(w⋆) =
∑

a∈A

π(s, a)[Qπ(s, a) − w⋆⊤ψsa − b(s)]2.

Then Eπ(w⋆) =
∑

s∈S

dπ(s)Eπ,s(w⋆). Note that by Assumption (A1), the Markov chain corresponding

to any policy π is positive recurrent since the number of states is finite. Hence, dπ(s) > 0 for all
s ∈ S. Thus, for each s ∈ S, one needs to find the optimum b(s) in Eπ,s(w⋆). Now for any s ∈ S,

∂Eπ,s(w⋆)

∂b(s)
= −

∑

a∈A

π(s, a)2[Qπ(s, a) − w⋆⊤ψsa − b(s)].

Equating the above to zero, we obtain

b⋆(s) =
∑

a∈A

π(s, a)Qπ(s, a) −
∑

a∈A

π(s, a)w⋆⊤ψsa.

The last term again equals zero since
∑

a∈A

π(s, a)ψsa = 0. Hence b⋆(s) =
∑

a∈A

π(s, a)Qπ(s, a) = V π(s).

The second derivative of Eπ,s(w⋆) with respect to b(s) is equal to 2. The claim follows. �

From Lemmas 1 and 2, w⋆⊤ψsa is a least squared optimal parametric representation for the
advantage function Aπ(s, a) = Qπ(s, a)− V π(s) as well as the state-action value function Qπ(s, a).
However, since

∑

a∈A π(s, a)w⊤ψsa = 0, ∀s ∈ S, it is better to think of w⊤ψsa as an approximation
of the advantage function Aπ(s, a) rather than of the state-action value function Qπ(s, a).

The temporal-difference (TD) error δt is a random quantity that is defined according to

δt = rt+1 − Ĵt+1 + V̂st+1
− V̂st

, (19)

where V̂si
is a consistent estimates of the differential reward in state si, i = t, t + 1. Likewise,

Ĵt+1 is a consistent estimate of the average reward. Thus, in particular, these estimates satisfy
E[V̂st

|st, π] = V π(st) and E[Ĵt+1|st, π] = J(π), respectively, for any t ≥ 0. We assume here that
actions are chosen according to policy π. The next lemma shows that δt is a consistent estimate of
the advantage function Aπ.

Lemma 3 Under given policy π with actions chosen according to it, we have

E[δt|st, at] = Aπ(st, at).

Proof Note that

E[δt|st, at] = E[rt+1 − Ĵt+1 + V̂st+1
− V̂st

|st, at] = R(st, at) − J(π) + E[V̂st+1
|st, at] − V π(st).

10



Now

E[V̂st+1
|st, at] = E[E[V̂st+1

|st+1] | st, at] = E[V π(st+1)|st, at] =
∑

st+1∈S

P (st, at, st+1)V
π(st+1).

Also, R(st, at) − J(π) +
∑

st+1∈S

P (st, at, st+1)V
π(st+1) = Qπ(st, at). The claim follows. �

By setting the baseline b(s) equal to the value function V π(s), Equation (5) can be written as
∇J(π) =

∑

s∈S d
π(s)

∑

a∈A π(s, a)ψsaA
π(s, a). From Lemma 3, ∇̂J(π) = δtψstat

is a consistent
estimate of ∇J(π).

However, calculating δt requires having estimates of average reward Ĵ and value function V̂ .
While an average reward estimate is simple enough to obtain given the single stage reward function,
the same is not necessarily true for the value function. We use function approximation for the value
functions as well. Suppose fs is a d2-dimensional feature vector for state s (for some d2 ≥ 1). We
denote fs = (fs(1), . . . , fs(d2))

⊤. One may then approximate V π(s) with v⊤fs, where v is a d2-
dimensional weight vector which can be tuned (for a fixed policy π) using a TD algorithm. In our
algorithms, we then use

δt = rt+1 − Ĵt+1 + v⊤t fst+1
− v⊤t fst

(20)

as an estimate for the TD error, where vt corresponds to the tth update of the value function weight
parameter. From now on, unless explicitly mentioned, we shall consider δt to be defined according
to (20). Let V̄ π(s) denote the quantity

V̄ π(s) =
∑

a∈A

π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′ ], (21)

where vπ⊤fs′ is an estimate of the differential value function V π(s′) that is obtained upon conver-
gence of a TD recursion (above) viz., lim

t→∞
vt = vπ with probability one. Let also δπ

t denote the

associated quantity
δπ
t = rt+1 − Ĵt+1 + vπ⊤fst+1

− vπ⊤fst
.

Here rt+1 and Ĵt+1 are the same as before. Then δπ
t corresponds to a stationary estimate of the

TD error (with function approximation) under policy π. We have the following analog of Theorem
1 of [53].

Lemma 4 E[δπ
t ψstat

|θ] = ∇J(π) +
∑

s∈S

dπ(s)[∇V̄ π(s) −∇vπ⊤fs].

Proof A simple calculation shows that

E[δπ
t ψstat

|θ] = E[E[δπ
t |st, at]ψstat

|θ]

=
∑

s∈S

dπ(s)
∑

a∈A

∇π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′ − vπ⊤fs]. (22)

Now from (21),

∇V̄ π(s) =
∑

a∈A

∇π(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤f ′s]
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+
∑

a∈A

π(s, a)[−∇J(π) +
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′].

Thus, from (22) and the above, we get

∑

s∈S

dπ(s)∇V̄ π(s) = E[δπ
t ψstat

|θ] −∇J(π) +
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′. (23)

Now observe that dπ(s) correspond to the stationary probabilities that satisfy

dπ(s) =
∑

s′′∈S

dπ(s′′)pπ(s′′, s), s ∈ S, with
∑

s′′∈S

dπ(s′′) = 1, (24)

where pπ(s′′, s) =
∑

a∈A

π(s′′, a)P (s′′, a, s) are the transition probabilities of the resulting Markov

chain under policy π. Hence,

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)
∑

s′∈S

P (s, a, s′)∇vπ⊤fs′ =
∑

s∈S

dπ(s)
∑

s′∈S

pπ(s, s′)∇vπ⊤fs′

=
∑

s′∈S

∑

s∈S

dπ(s)pπ(s, s′)∇vπ⊤fs′ =
∑

s′∈S

dπ(s′)∇vπ⊤fs′. (25)

The claim now follows from (23). �

Note that according to Theorem 1 of [53], E[δtψstat
|θ] = ∇J(π), provided δt is defined accord-

ing to (19). For the case with function approximation that we study, from Lemma 4, the quantity
∑

s∈S d
π(s)[∇V̄ π(s) −∇vπ⊤fs] may be viewed as the error or bias in the estimate of the gradient

of average reward that results from the use of function approximation. It is interesting to observe
that this does not depend on the differential reward V π(s) that is obtained as a solution to (3).
We also have

Corollary 1
∑

s∈S

dπ(s)[V̄ π(s) − vπ⊤fs] = 0.

Proof This follows directly from the definition of V̄ π(s) in (21), the definition of J(π) in (2),
and an analogous equation as (25) with vπ⊤fs′ in place of ∇vπ⊤fs′. �

5 Actor-Critic Algorithms

We present four new actor-critic algorithms in this section. These algorithms are in the general form
shown in Table 1. They update the policy parameters along the direction of the average reward
gradient. While estimates of the regular gradient are used for this purpose in Algorithm 1, natural
gradient estimates are used in Algorithms 2-4. While critic updates in our algorithms can be easily
extended to the case of TD(λ), λ > 0, we restrict our attention to the case when λ = 0. Let {st,
t = 0, 1, 2, . . .} denote the MDP. Also, let V̂ (s, v) = v⊤fs denote the parameterized approximation
to the differential reward in state s. One can also denote the same as V̂ (v) = Φv, where Φ is an
n× d2–dimensional matrix whose kth column (k = 1, . . . , d2) is f(k) = (fs(k) , s ∈ S)⊤. We make
the following assumption as in [58, 59].

12



(A3) The basis functions {f(k), k = 1, . . . , d2} are linearly independent. In particular, d2 ≤ n
and Φ has full rank. Also, for every v ∈ R

d2 , Φv 6= e, where e is the n-dimensional vector with all
entries equal to one.

Let {αt} and {βt} be two step-size schedules that satisfy (10)-(11). As a consequence of (10)-
(11), βt → 0 faster than αt. Hence as explained in the couple of lines following (11), actor is a faster
recursion than critic. In addition, we assume that αt < 1, ∀t ≥ 0. This is however required only
for Algorithms 2-4. We set the average reward step-size ξt = cαt, for a positive scalar c. However,
more general step-sizes may be chosen. For instance, it may be desirable in some cases to have
the average reward update move on a faster timescale as compared to critic (in which case it will
converge faster than critic does).

Table 1: A Template for AC Algorithms.
1: Input:

• Randomized parameterized policy πθ(·, ·),
• Value function feature vector fs.

2: Initialization:
• Policy parameters θ = θ0,
• Value function weight vector v = v0,
• Step sizes α = α0, β = β0, ξ = cα0.

3: for t = 0, 1, 2, . . . do
4: Execution:

• Draw action at ∼ πθt(st, at),
• Observe next state st+1 ∼ P (st, at, st+1),
• Observe reward rt+1.

5: Average Reward Update: Ĵt+1 = (1 − ξt)Ĵt + ξtrt+1

6: TD Error: δt = rt+1 − Ĵt+1 + v⊤t fst+1
− v⊤t fst

7: Critic Update: algorithm specific
8: Actor Update: algorithm specific
9 : endfor
10: return Policy and value function parameters θ, v

We now present the critic and the actor updates of our four actor-critic algorithms.

Algorithm 1:

Critic Update: vt+1 = vt + αtδtfst
, (26)

Actor Update: θt+1 = θt + βtδtψstat
. (27)

This is the only actor-critic algorithm presented in the paper that is based on the regular gradient
estimate.
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The next algorithm is based on the natural gradient estimate ∇̃J(θt) = G(θt)
−1δtψstat

in place
of the regular gradient estimate in Algorithm 1. We derive a procedure below for recursively
estimating G(θ)−1 on a faster timescale. The above estimation is done on a faster scale so that
convergence of the associated iterates is achieved prior to a θ-update. Suppose G−1

t denote the tth
estimate of G(θ)−1. Our procedure is obtained in a similar manner as the method described on
pp. 147-152 of [61]. The latter approach however considers the estimates as being obtained via a
“fading memory” condition in which the most recent observation is given the highest weight. The
weights themselves decrease geometrically over past observations. On the other hand, unlike [61],
we consider stationary averages that depend on parameter θ, that in turn gets updated along the
“slower timescale”. This constitutes a natural setting for our algorithm. We show in Lemma 6 that
G−1

t → G(θ)−1 as t → ∞ with probability one. This is required for proving convergence of our
algorithm. On the other hand, showing the same for the corresponding estimates in [61] does not
seem possible as Gt 6→ G(θ) there.

Note that in the case where Gt, t ≥ 0 are defined as (the sample averages)

Gt =
1

t+ 1

t∑

l=0

ψslal
ψ⊤

slal
,

one may obtain recursively

Gt =

(

1 −
1

t+ 1

)

Gt−1 +
1

t+ 1
ψstat

ψ⊤
stat

. (28)

More generally, one may consider the recursion

Gt = (1 − αt)Gt−1 + αtψstat
ψ⊤

stat
, (29)

where the step-size αt is as before. This would correspond to a case of weighted averages (with the
weights corresponding to the step-sizes αt), however, through a stochastic approximation argument,
one can see that (29) would asymptotically converge to G(θ), almost surely, if θ is held fixed. In
fact, with an appropriate choice of {αt}, one can obtain faster convergence of iterates in (29) over
those in (28). Using Sherman-Morrison matrix inversion lemma, one obtains

G−1
t =

1

1 − αt

[

G−1
t−1 − αt

(G−1
t−1ψstat

)(G−1
t−1ψstat

)⊤

1 − αt + αtψ⊤
stat

G−1
t−1ψstat

]

. (30)

We thus have the following algorithm:

Algorithm 2:

Critic Update: vt+1 = vt + αtδtfst
, (31)

Actor Update: θt+1 = θt + βtG
−1
t δtψstat

. (32)

where the estimate of the inverse of the Fisher information matrix is updated according to Equation
(30). As with [61], we let G−1

0 = kI, where I is a d1 × d1-dimensional identity matrix and k > 0 is
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a large constant. Thus G−1
0 and hence also G0 are positive definite and symmetric matrices. From

(29), Gt, t ≥ 1 can be seen to be positive definite and symmetric as these are convex combinations
of positive definite and symmetric matrices. Hence, G−1

t , t ≥ 1 are positive definite and symmetric
matrices as well.

As we mentioned in Section 4, it is better to think of the compatible approximation w⊤ψsa as
an approximation of the advantage function rather than of the state-action value function. In our
next algorithm, we tune the weight parameters w in a way as to minimize an estimate of the least
squared error Eπ(w) = Es∼dπ,a∼π[(w⊤ψsa −Aπ(s, a))2]. Note that the gradient of Eπ(w) is

∇wE
π(w) =

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)2[w⊤ψsa −Aπ(s, a)]ψsa.

We use the following estimate of ∇wE
π(w).

∇̂wE
π(w) = 2(ψstat

ψ⊤
stat

w − δtψstat
). (33)

Hence, we update parameters w along with value function parameters v in the critic update of this
algorithm as

wt+1 = wt − αt∇̂wt
Eπ(wt) = wt − αt(ψstat

ψ⊤
stat

wt − δtψstat
).

The factor 2 on the RHS of (33) does not play a role because of the diminishing step-size sequence
αt, t ≥ 0 and so has been dropped in the above recursion. We maximize the long-run average
reward J(θ) along the slower timescale. We use the natural gradient estimate for this purpose. As
with [46], we use the natural gradient estimate ∇̃J(θt) = wt+1 in the actor update of Algorithm 3.

Algorithm 3:

Critic Update: vt+1 = vt + αtδtfst
, (34)

wt+1 = [I − αtψstat
ψ⊤

stat
]wt + αtδtψstat

(35)

Actor Update: θt+1 = θt + βtwt+1. (36)

Although the estimates of G(θ)−1 are not explicitly computed and used in Algorithm 3, the con-
vergence analysis of this algorithm in the next section shows that the overall scheme still moves in
the direction of the natural gradient of average reward.

In Algorithm 4, however, we explicitly estimate G(θ)−1 (as in Algorithm 2), and use it in the
critic update for w. The overall scheme is again seen to follow the direction of the natural gradient
of average reward. Here, we let

∇̃wE
π(w) = G−1

t 2(ψstat
ψ⊤

stat
w − δtψstat

) (37)

be the estimate of the natural gradient of Eπ(w). This also results in a simplification of our faster
timescale recursion (critic update). Further, we remove the factor 2 from the natural gradient
estimate (37) because of diminishing αt, t ≥ 0 as before.
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Algorithm 4:

Critic Update: vt+1 = vt + αtδtfst
, (38)

wt+1 = (1 − αt)wt + αtG
−1
t δtψstat

. (39)

Actor Update: θt+1 = θt + βtwt+1, (40)

where the estimate of the inverse of the Fisher information matrix is updated according to Equation
(30). As with Algorithm 2, we let G−1

0 = kI with k > 0 is a large constant.

6 Convergence Analysis

We now present the convergence analysis of our algorithms. The analysis mainly follows the ordi-
nary differential equation (ODE) approach. Note that the problem we consider is a maximization
and not a minimization problem. For the purpose of analysis, we consider an associated problem
with costs defined as negative rewards and our aim is to minimize the associated long-run average
cost. The negative of the minimum cost thus obtained then corresponds to the maximum reward
in the original problem. This is useful in pushing through certain stability arguments and showing
convergence of iterates. Our algorithms use function approximation and aim at finding the local
maxima of the average rewards. All our convergence results are in the Euclidean norm. Further,
for any matrix A, we define its norm as the induced matrix norm ‖ A ‖ = max

{x|‖x‖=1}
‖ Ax ‖.

6.1 Convergence Analysis for Algorithm 1

We require Assumptions (A1)–(A3) here. As explained above, one may view −rt+1 as the cost
incurred at instant t in a transformed problem. Because of the above, a change occurs only in the
actor recursion (27) due to this transformation, and it becomes

θt+1 = θt − βtδtψstat
. (41)

Recursions for average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26)
being fixed point recursions (see [59]) are left unchanged. Unfortunately, because of the use of
function approximation, it appears difficult to show boundedness of {θt}. We explain the reasons
for this in Remark 1 below. In particular, the iterates in (41) can be seen to be almost surely
bounded using the stochastic Lyapunov function approach described in [40], provided the look up
table representation is used as it is easy to obtain in such a case the form of the Lyapunov function
to use. An exact functional form of the Lyapunov function, however, appears difficult to obtain
when function approximation is used. For the purposes of proving convergence of the proposed
scheme, we replace (41) by

θt+1 = Γ(θt − βtδtψstat
), (42)

where Γ(·) is the projection onto a compact set C = {x | qi(x) ≤ 0, i = 1, . . . , s} ⊂ R
d1, where

qi(·), i = 1, . . . , s are real-valued, continuously differentiable functions on R
d1 that represent the
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constraints specifying the (above) compact region. Suppose also that for each x on the boundary
of C, the gradients of the active constraints are linearly independent. This is the setting considered
for projection based algorithms in Chapter 5 of [39]. For any x ∈ R

d1, Γ(x) ∈ C and in particular
for x ∈ C, Γ(x) = x itself. As explained in Chapter 2 of [39], any compact hyperrectangle in
R

d1 is a special case of C (above). The projection method is an often used technique to ensure
boundedness of iterates in stochastic approximation algorithms, see for instance, [2] where it has
been used in the context of a stochastic shortest path queue learning algorithm. Some discussion
on this is also available in [57]. The other approach (that is also usually taken, which we do not
follow) is to simply assume that the iterates (41) are bounded and show convergence of these under
this assumption. In our experiments, however, we do not project the iterates to a constraint region
as they are seen to remain bounded.

Note that recursions for average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1),
and critic (26) move on the faster timescale or step-size schedule, hence converge faster, while
(42) moves slower [21], see the discussion in Section 3. For any given policy π (along the faster
timescale), average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26)
recursions correspond to the TD(λ) recursions in [59] with λ = 0. In [59], the updates in these
recursions are rewritten as

µt+1 = µt + αt(A(Xt)µt + b(Xt)),

where, Xt = (st, st+1, fst
) is another associated Markov chain under π, µt = (Jt, vt)

⊤, and A(Xt),
b(Xt) are suitably defined matrix and column vector respectively.

Let D denote the diagonal matrix with elements dπ(s1), . . . , d
π(sn) along its diagonal. Let

P π be the probability matrix with elements pπ(s, s′) =
∑

a∈A

π(s, a)P (s, a, s′), s, s′ ∈ S. Let Rπ be

the column vector (
∑

a∈A

π(s1, a)R(s1, a), . . . ,
∑

a∈A

π(sn, a)R(sn, a))
⊤. Also, let T : R

n → R
n be the

operator given by
T (J) = Rπ − J(π) + P πJ.

The proof of convergence of TD(λ) in [59] is based on a result from [14]. We provide in Lemma 5
an alternative simpler proof of convergence using a recently developed result in [22]. We consider
λ = 0 to suit our algorithm. The proof however carries through quite easily for λ > 0 as well. We
have

Lemma 5 For any given π and {Ĵt}, {vt} as in the average reward recursion (Line 5 in Ta-
ble 1) and the critic recursion (26), we have Ĵt → J(π) and vt → vπ with probability one, where

J(π) =
∑

s∈S

dπ(s)
∑

a∈A

π(s, a)R(s, a), (43)

is the average cost under π and vπ is obtained as the solution to

Φ′DΦvπ = Φ′DT (Φvπ). (44)

Proof First consider the average reward recursion (Line 5 in Table 1). The ODE describing the
asymptotic behavior of this recursion corresponds to

.
η= −η +

∑

s∈S

dπ(s)
∑

s∈A

π(s, a)R(s, a). (45)
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Let f(η) denote the RHS of (45). Then f(η) is Lipschitz continuous in η. Let f∞(η) = lim
r→∞

f(rη)

r
.

The function f∞(η) exists and is simply f∞(η) = −η. The origin is an asymptotically stable equi-
librium for the ODE

.
η = f∞(η), with V1(η) = η2/2 serving as an associated Lyapunov function.

Now consider recursions for TD-error (Line 6 in Table 1) and critic (26). Consider the following
ODE associated with them.

.
v=

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[R(s, a) − J(π) + v⊤
∑

s′∈S

P (s, a, s′)fs′ − v⊤fs]fs. (46)

Let g1(v) denote the RHS of (46). Then g1(v) is also Lipschitz continuous in v. Further, for

g1
∞(v)

△
= lim

r→∞

g1(rv)

r
, it can be seen that g1

∞(v) exists and equals

g1
∞(v) =

∑

s∈S

dπ(s)
∑

a∈A

π(s, a)[v⊤
∑

s′∈S

P (s, a, s′)fs′ − v⊤fs]fs.

The origin can again be shown [20] to be an asymptotically stable equilibrium for the ODE
.
v

= g1
∞(v).

Now, from average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (26)
recursions, define N1(t), M1(t), t ≥ 0, according to

N1(t) = rt+1 − E[rt+1 | F1(t)], M1(t) = δtfst
− E[δtfst

| F1(t)],

respectively, where F1(t) = σ(vr, Ĵr,M
1(r), N1(r), r ≤ t). It is easy to see that

E[‖ N1(t+ 1) ‖2| F1(t)] ≤ C1(1+ ‖ Ĵt ‖
2 + ‖ vt ‖

2), t ≥ 0,

E[‖M1(t+ 1) ‖2| F1(t)] ≤ C2(1+ ‖ vt ‖
2 + ‖ Ĵt ‖

2), t ≥ 0,

for some C1, C2 < ∞. In fact, quantities N1(t) can be directly seen to be uniformly bounded
almost surely. Thus Assumptions (A1) and (A2) of [22] can be seen to be satisfied in the case
of the average reward (Line 5 in Table 1), the TD-error (Line 6 in Table 1), and the critic (26)
recursions. From Theorem 2.1 of [22], average reward, TD-error, and critic iterates are uniformly
bounded with probability one. Now note that (45) has J(π) defined as in (43) as its unique globally
asymptotically stable equilibrium with V2(η) = (η − J(π))2 serving as the associated Lyapunov
function. For (46), vπ can be shown as in [20] to be a globally asymptotically stable equilibrium.
The claim now follows from Theorem 2.2, pp. 450 of [22]. �

Note that from (44), by premultiplying both sides by Φ(Φ′DΦ)−1, one gets

Φvπ = Φ(Φ′DΦ)−1Φ′DT (Φvπ) = ΠT (Φvπ),

where Π = Φ(Φ′ DΦ)−1Φ′D corresponds to the projection matrix that projects onto the subspace
spanned by the basis functions and satisfies for any J ∈ R

n,

ΠJ = arg min
J̄∈{Φr|r∈Rd2}

‖ J − J̄ ‖D,
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with respect to the weighted norm ‖ · ‖D (see [59]).
Consider now recursion (42) along the slower timescale corresponding to βt. Let v(·) be a vector

field on C. Define another vector field

Γ̂(v(y)) = lim
0<η→0

(
Γ(y + ηv(y)) − y

η

)

.

In case the above limit is not unique, we let Γ̂(v(y)) be the set of all possible limit points (see
pp. 191 of [39]). Consider now the ODE

.
θ= Γ̂

(

−
∑

s

dπ(s)
∑

a

∇πθ(s, a)(R(s, a) − J(π) +
∑

s′

P (s, a, s′)vπ⊤fs′)

)

. (47)

Let H(θ) denote the RHS of (47). Also, let Z denote the set of asymptotically stable equilibria
of (47) that is contained within the set {θ | H(θ) = 0}. Note that because of the projection Γ(·),
(47) may have spurious fixed points on the boundary of the constraint set C, see [40] for detailed
discussions. We obtain

Theorem 2 For the parameter iterations given by Algorithm 1, we have (Ĵt, vt, θt) → {(J(θ⋆),
vπ⋆

, θ⋆) | θ⋆ ∈ Z} as t→ ∞ with probability one, where π⋆ is the policy corresponding to θ⋆.

Proof Let F2(t) = σ(θr, r ≤ t) denote the sequence of σ-fields generated by θr, r ≥ 0. We
have

θt+1 = Γ(θt − βtE[δπt

t ψstat
| F2(t)] − βt(δtψstat

− E[δtψstat
| F2(t)]) − βtE[(δt − δπt

t )ψstat
| F2(t)]),

where πt is the policy corresponding to θt. Since the critic converges along the faster timescale,
from Lemma 5, it follows that E[(δt − δπt

t )ψstat
| F2(t)] = o(1). Now let

M2(t) =

t−1∑

r=0

βr(δrψsrar
− E[δrψsrar

| F2(t)]), t ≥ 1.

The quantities δt can be seen to be uniformly bounded since from the proof in Lemma 5, {Ĵt+1}
and {vt} are bounded sequences. It is now easy to see [19] using (10) that {M2(t)} is a convergent
martingale sequence. This implies that βt(δtψstat

− E[δtψstat
| F2(t)]) = o(1) as well. Next, it can

be seen using similar arguments as before (see proof of Lemma 4) that

E[δπt

t ψstat
| θt] =

∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′].

We now show that h1(θt)
△
= −

∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′ ]

is Lipschitz continuous. Here vπt corresponds to the weight vector to which the critic update
converges along the faster timescale when the corresponding policy is πt (see Lemma 5). A simple
calculation shows that for s ∈ S, a ∈ A,

∇2πt(s, a) = πt(s, a)[ψsa
⊤ψsa −

∑

a′∈A

πt(s, a
′)ψsa′

⊤φsa′ ].
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Thus ∇2πt(s, a) exists and is bounded. Further, from (24), it can be seen that dπt(s), s ∈ S are
continuously differentiable in θ and have bounded derivatives. Also, J(πt) is continuously differen-
tiable as well and has bounded derivative as can also be seen from (43). Further, vπt can be seen
to be continuously differentiable with bounded derivatives. Thus h1(θ) is a Lipschitz continuous
function. The requirements in (B1)-(B3) of Section 3 can also be seen to hold. As described before,
J(π), vπ are asymptotically stable attractors of (43), (44), respectively, and are Lipschitz continu-
ous functions of θ. The rest of the proof can be shown as explained in Section 3 (see [21]) using the
arguments on pp. 191-196 of [39] leading to convergence in the case of projected algorithms (see
[19]). In particular, we note that the hypotheses under which Theorem 5.3.1, pp. 191-196 of [39] is
shown can easily be verified in our setting. This completes the proof. �

Remark 1 The set Z corresponds to the set of local maxima θ⋆ of a performance function
whose gradient is E[δπ

t ψsa | θ] (cf. Lemma 4). The latter equals zero when θ = θ⋆ and for which
π = π⋆. The algorithm thus converges to one of the points in Z.

We discuss now the difficulties involved in proving boundedness of iterates in (41). Suppose we
rewrite h1(θ) as

h1(θ) = −
∑

s∈S

dπ(s)
∑

a∈A

πθ(s, a)ψθ
sa[R(s, a) − J(π) +

∑

s′∈S

P (s, a, s′)vπ⊤fs′ ].

Note here that we write ψθ
sa in place of ψsa in order to show explicit dependence of ψsa on θ. Then

defining h1
∞(θ) as h1

∞(θ) = lim
r→∞

h1(rθ)

r
, one obtains

h1
∞(θ) = − lim

r→∞

1

r

∑

s∈S

dπ(s)
∑

a∈A

πrθ(s, a)ψrθ
sa

∑

s′∈S

P (s, a, s′)vπrθ⊤
fs′ .

It is not clear whether the limit above exists because of the complex dependence of dπ and vπ

on θ. Note that vπ is obtained as a solution to a linear system of equations (see Lemma 5) with
the matrix D therein also depending on θ. Assumption (A1′), pp. 454 in [22] considers the case
where the above limits may not exist. However, it requires that for r ≥ R and t ≥ T , for some

R,T > 0, the trajectories φ̂(t) of the ODE
.
θt=

h1(rθt)

r
should lie within a ball of radius 1/2 around

the origin. This can be shown provided the origin is a unique asymptotically stable attractor for
the above ODEs for all r ≥ R. It is not clear if this is the case here. Next, note that the methods
described in [2] and [57] for stability of iterates are for different classes of algorithms, largely of the
Q-learning type, and are not directly applicable in our setting.

Finally, we discuss the use of the stochastic Lyapunov function method [40] for stability of
iterates in (41). The prime requirement here is that there exists a real-valued nonnegative function
W (·) that satisfies

E[W (θt+1) | θt = θ]−W (θ) ≤ −K(θ)

for all θ ∈ Qλ
△
= {θ | W (θ) ≤ λ}, where K(θ) ≥ 0 is continuous on Qλ. Then by Theorem

4.1, pp. 80-81 of [40], the stability and convergence of iterates would follow. Hence consider the
recursion (41). By a Taylor’s expansion for “small” βt assuming a smooth W (·), one gets

E[W (θt+1)|θt] ≈W (θt) − βtE[δπ
t ψstat

|θt]
′∇W (θt) + o(βt). (48)
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A natural choice for the Lyapunov function W (·) in (48) would be one for which ∇W (θt) =
E[δπ

t ψstat
|θt] itself. This choice would then give

W (θ) = J(θ) −

∫
∑

s∈S

ddπ(s)

dθ
[V̄ π(s) − vπ⊤fs]dθ.

It is difficult to obtain the exact dependence of dπ(s) on θ and to solve the above integral precisely.
On the other hand, if we use the look up table representation (viz., d2 = n in Assumption (A3) or
that δt is as in (19)), then from Lemma 4 above, as also Theorem 1 of [53], one would get E[δtψstat

| θ] = ∇θJ(θ). Then W (θ) = J(θ) would serve as a Lyapunov function and the iterates (41) can be
seen to be bounded and almost surely convergent, in lieu of Theorem 4.1 of [40]. It is only because
of the use of function approximation in the iterates that a Lyapunov function is hard to obtain.
Because of the above arguments and as can also be seen from our experiments where we do not
use projection at all (and yet convergence is achieved), we conjecture that the iterates in (41) shall
remain bounded.

Note also that if function approximation is not used, J(θ) also serves as a Lyapunov function
for the ODE associated with (41). When function approximation is used (as with our case), the
above problem of finding a suitable Lyapunov function (now) for the associated ODE also carries
over and it is difficult to suitably characterize the set of stable attractors.

Remark 1 and many of the arguments in the analysis of Algorithm 1 are also valid for the
analysis of the other algorithms. We skip the details in such cases to avoid repetition.

6.2 Convergence Analysis for Algorithm 2

The analysis of recursions for average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1),
and critic (31) proceeds in the same manner as for Algorithm 1. We thus concentrate on showing
convergence of the recursion for the inverse of the Fisher information matrix (30) and the actor re-
cursion (32). As discussed previously, Gt, G

−1
t , t ≥ 1 are positive definite and symmetric matrices.

We require the following assumption in addition to (A1)–(A3).

(A4) The iterates Gt satisfy sup
t,θ,s,a

‖ Gt ‖, sup
t,θ,s,a

‖ G−1
t ‖< ∞.

Recall that we set G−1
0 = aI with a > 0. A sufficient condition for both the requirements in

(A4) is that (cf. pp. 35 of [16]) for some scalars c1, c2 > 0,

c1 ‖ z ‖2≤ z⊤ψsaψ
⊤
saz ≤ c2 ‖ z ‖2,

for all s ∈ S, a ∈ A, z ∈ R
d2 and θ. It is then easy to see that

c̄1 ‖ z ‖2≤ z⊤Gtz ≤ c̄2 ‖ z ‖2,

for all t ≥ 0, and the eigenvalues of Gt lie between c̄1 and c̄2. Here c̄1 = min(a, c1) and
c̄2 = max(a, c2). Also, c̄1, c̄2 > 0. Hence, the procedure does not get stuck at a nonstation-
ary point. Under the above sufficient condition, (A4) follows from Propositions A.9 and A.15 of
[16]. We now have

Lemma 6 For any given parameter θ, G−1
t , t ≥ 1 in (30) satisfy G−1

t → G(θ)−1 as t → ∞
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with probability one.

Proof It is easy to see from recursion (29) that Gt → G(θ) as t → ∞ with probability one,
for any given θ held fixed. Now for fixed θ, we have

‖ G−1
t −G(θ)−1 ‖=‖ G(θ)−1(G(θ)G−1

t − I) ‖=‖ G(θ)−1(G(θ) −Gt)G
−1
t ‖

≤ sup
θ

‖ G(θ)−1 ‖ sup
t,s,a

‖ G−1
t ‖ · ‖ G(θ) −Gt ‖→ 0 as t→ ∞,

by (A4). In the above, I denotes the d2 × d2–dimensional identity matrix. The inequality above
follows from the property on induced matrix norms (see Proposition A.12 of [17]). The claim fol-
lows. �

As with Algorithm 1, we consider again the transformed problem with rewards replaced with
costs (see above). This transformation, however, only affects the actor recursion (32). Further,
as before, we use the projection Γ(·) to ensure boundedness of iterates. The transformed slower
timescale recursion that we have is thus

θt+1 = Γ(θt − βtG
−1
t δtψstat

). (49)

We have

Theorem 3 For the parameter iterations given by Algorithm 2, we have (G−1
t , Ĵt, vt, θt) →

{(G(θ⋆)−1, J(θ⋆), vπ⋆

, θ⋆) | θ⋆ ∈ Z} as t → ∞ with probability one, where π⋆ is the policy
corresponding to θ⋆.

Proof As with the proof of Theorem 2, let F3(t) = σ(θr, r ≤ t), t ≥ 0. Note that

θt+1 = Γ(θt−βtE[G(θt)
−1δπt

t ψstat
| F3(t)]−βt(G(θt)

−1δtψstat
−E[G(θt)

−1δtψstat
| F3(t)])+βtξ1(t)),

where in lieu of Lemmas 5 and 6, ξ1(t) = o(1). As before, the critic recursion (31) converges faster
for given policy πt corresponding to an actor update θt and converges to vπt . For t ≥ 1, let

M3(t) =

t−1∑

r=0

βr(G(θr)
−1δrψsrar

− E[G(θr)
−1δrψsrar

| F3(r)])

=

t−1∑

r=0

βrG(θr)
−1(δrψsrar

−E[δrψsrar
| F3(r)]).

The quantities δt and G(θt)
−1 are uniformly bounded from Lemmas 5 and 6, and (A4) respectively.

Now using (10), it can be seen [19] that {M3(t)} is a convergent martingale sequence. Hence,
βt(G(θt)

−1δtψstat
−E[G(θt)

−1δtψstat
| F3(t)]) = o(1). As before, also note that

E[G(θt)
−1δπt

t ψstat
|θt] = G(θt)

−1

[
∑

s∈S

dπt(s)
∑

a∈A

∇πt(s, a)[R(s, a) − J(πt) +
∑

s′∈S

P (s, a, s′)vπt⊤fs′ ]

]

Consider now the ODE
.
θ= Γ̂(−G(θ)−1

∑

s∈S

dπ(s)
∑

a∈A

∇πθ(s, a)[R(s, a) − J(π) +
∑

s′∈S

P (s, a, s′)vπ⊤fs′ ]), (50)
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associated with recursion (49). As with (47), Z can be seen to be the set of stable fixed points of
(50) as well since G(θ)−1 is positive definite and symmetric for all θ. Recall that J(θ) and vπ are
Lipschitz continuous functions. From (A4), G(θ)−1 can be seen to be Lipschitz continuous as well.
The RHS of (50) is thus Lipschitz continuous. The rest follows in a similar manner as Theorem 2.
�

6.3 Convergence Analysis for Algorithm 3

As stated previously, the main idea in this algorithm is to minimize the least squares error in
estimating the advantage function via function approximation. The analysis of average reward
(Line 5 in Table 1), TD-error (Line 6 in Table 1), and critic (34) recursions proceeds in the same
manner as before. We now concentrate on recursion (35) and the actor recursion (36). Note that
we only require Assumptions (A1)–(A3) here and not (A4). In the transformed problem (with costs
in place of rewards), recursion (35) can be rewritten as

wt+1 = (I − αtψstat
ψ⊤

stat
)wt − αtδtψstat

, (51)

with the actor recursion (36) the same as before. Note that (51) moves on a faster timescale as
compared to the actor recursion. Hence, on the timescale of the former recursion, one may consider
the parameter θt to be fixed. We have the following result:

Lemma 7 Under a given parameter θ, wt, t ≥ 1 in (51) satisfy wt → −G(θ)−1E[δπ
t ψstat

] as
t→ ∞ with probability one, where π is the policy corresponding to θ.

Proof Consider the following ODE associated with (51) for given θ

.
w= Est∼dπ ,at∼π[−ψstat

ψT
stat

w − δπ
t ψstat

]. (52)

Let g2(w) correspond to the RHS of (52). Then g2(w) is Lipschitz continuous in w. For any r ≥ 1,

let g2
∞(w) = lim

r→∞

g2(rw)

r
. The function g2

∞(w) exists and can be seen to satisfy g2
∞(w) = −G(θ)w.

For the ODE
.
w= −G(θ)w, the origin is an asymptotically stable equilibrium with V4(w) = w′w/2

as the associated Lyapunov function. Define now {M4(t)} as

M4(t) = (−ψstat
ψT

stat
wt − δtψstat

) + E[(ψstat
ψT

stat
wt + δtψstat

) | F4(t)],

where F4(t) = σ(wr,M
4(r), r ≤ t). It is easy to see that there exists a constant C0 <∞ such that

E[‖M4(t+ 1) ‖2| F4(t)] ≤ C0(1+ ‖ wt ‖
2),

for all t ≥ 0. For the ODE (52), consider the function V5(w) defined by

V5(w) = (w +G(θ)−1E[δπ
t ψstat

])′(w +G(θ)−1E[δπ
t ψstat

])/2.

Then
dV5(w)

dt
= ∇V5(w)′

.
w= −(w +G(θ)−1E[δπ

t ψstat
])′(G(θ)w + E[δπ

t ψstat
])

= −(w +G(θ)−1E[δπ
t ψstat

])′G(θ)(w +G(θ)−1E[δπ
t ψstat

])
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< 0 for all w 6= −G(θ)−1E[δπ
t ψstat

],

since G(θ)−1 is a positive definite matrix. Thus (see [40]) wπ = −G(θ)−1E[δπ
t ψstat

] is an asymp-
totically stable equilibrium for (52). Now from Theorem 2.2 of [22], recursion (51) converges with
probability one to wπ. �

We now consider the actor recursion (36), which is the slower recursion. As before, we use the
projection Γ(·) to ensure boundedness of the iterates. The projected recursion that we consider is
thus

θt+1 = Γ(θt + βtwt). (53)

We have

Theorem 4 For the parameter iterations given by Algorithm 3, we have (Ĵt, vt, wt, θt) → {(J(θ⋆),
vπ⋆

, wπ⋆

, θ⋆) | θ⋆ ∈ Z} as t→ ∞ with probability one, where π⋆ is the policy corresponding to θ⋆.

Proof Note that as a consequence of Lemma 7, recursion (53) can be replaced with

θt+1 = Γ(θt − βtG(θt)
−1E[δπt

t ψstat
| θt])

As with Theorem 3, wπ, the asymptotically stable equilibrium for (52) is also a Lipschitz continuous
function of parameter θ, in addition to J(θ) and vπ. The rest can be shown in a similar manner as
Theorems 2-3. �

6.4 Convergence Analysis for Algorithm 4

As with Algorithm 2, we require Assumption (A4) here as well in addition to (A1)–(A3). The
result in Lemma 6 continues to hold here and we get for fixed θ, G−1

t → G(θ)−1 as t → ∞ with
probability one. Recursions for average reward (Line 5 in Table 1), TD-error (Line 6 in Table 1),
and critic (38) are the same as before and have been analyzed earlier. We now concentrate on
recursion (39) and the actor recursion (40). Under the transformed problem (with costs in place of
rewards), recursion (39) can be rewritten as

wt+1 = (1 − αt)wt − αtG
−1
t δtψstat

, (54)

with the actor recursion the same as before. An exactly similar result as Lemma 7 holds in this
case as well (described as Lemma 8 below).

Lemma 8 Under a given parameter θ, wt defined by (54) converge as wt → −G(θ)−1E[δπ
t ψstat

| θ]
as t→ ∞ with probability one, with π being the policy corresponding to θ.

Proof Note that as a consequence of (A4) and Lemma 5, sup
t,θ,st,at

‖ G−1
t δtψstat

‖< ∞ with prob-

ability one. As a consequence of (10), there exists an integer N0 < ∞, such that for all t ≥ N0,
αt ≤ 1. Hence for all t ≥ N0, wt+1 is a convex combination of wt and a uniformly bounded quantity.
Thus, starting from any initial value w0 ∈ R

d2 , the overall sequence wt of iterates remains bounded
with probability one. Now note that one can rewrite (54) as

wt+1 = (1 − αt)wt − αtG(θ)−1E[δπ
t ψstat

| θ] +M5(t) + ξ2(t) + ξ3(t),
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where M5(t) = αtG(θ)−1(E[δtψstat
| θ] − δtψstat

), ξ2(t) = αt(G(θ)−1 −G−1
t )δtψstat

, and ξ3(t) = αt

G(θ)−1E[(δπ
t − δt)ψstat

| θ], respectively. As before, one can see that M5(t), ξ2(t) and ξ3(t) are all
o(1). Consider the following ODE associated with (54).

.
w= −w −G(θ)−1Est∼dπ,at∼π[δπ

t ψstat
]. (55)

It is easy to see that h(w) defined as the RHS of (55) is Lipschitz continuous in w. One can show
as in Lemma 7 that wπ = −G(θ)−1E[δπ

t ψstat
] is an asymptotically stable attractor for the ODE

(55). The rest follows as a consequence of Theorem 1, pp. 339 of [34], see for instance [19]. �

We now consider the actor recursion (40), which is the slower recursion. As before, we use the
projection Γ(·) to ensure boundedness of the iterates. The projected recursion is the same as (53)
in this case. We thus have the following result whose proof follows as in Theorems 3-4.

Theorem 5 For the parameter iterations given by Algorithm 4, we have (G−1
t , Ĵt, vt, wt, θt) →

{(G(θ⋆)−1, J(θ⋆), vπ⋆

, wπ⋆

, θ⋆) | θ⋆ ∈ Z} as t → ∞ with probability one, where π⋆ is the policy
corresponding to θ⋆. �

7 Relation to Previous Algorithms

As we mentioned in Section 1, the actor-critic algorithms presented in this paper extend prior
actor-critic methods, especially those of Konda and Tsitsiklis [38] and of Peters, Vijayakumar and
Schaal [46]. In this section, we discuss these relationships further.

Actor-Critic Algorithm of Konda and Tsitsiklis [38]: Contrary to Algorithms 2-4, this al-
gorithm does not use estimates of natural gradient in its actor’s update. It is somewhat similar to
our Algorithm 1, but with some key differences. 1) Konda’s algorithm uses the Markov process of
state-action pairs and thus its critic update is based on an action-value function. Algorithm 1 uses
the state process and therefore its critic update is based on a value function. 2) While Algorithm 1
uses TD error in both critic and actor recursions, Konda’s algorithm uses TD error only in its
critic update. The actor recursion in Konda’s algorithm uses a Q-value estimate instead. Because
the TD error is a consistent estimate of the advantage function (Lemma 3), the actor recursion in
Algorithm 1 uses estimates of advantages instead of Q-values, which may result in lower variances.
3) The convergence analysis of Konda’s algorithm is based on the martingale approach and aims at
bounding error terms and directly showing convergence. Convergence to a local optimum is shown
when TD(1) critic is used. For the case when λ < 1, they show that given ǫ > 0, there exists λ
close enough to one such that when a TD(λ) critic is used, one gets lim inft |∇J(θt)| < ǫ with prob-
ability 1. Unlike Konda and Tsitsiklis, we primarily use the ordinary differential equation (ODE)
based approach for our convergence analysis. Even though we also use martingale arguments in
our analysis, these are restricted to showing that the noise terms asymptotically diminish and the
resulting scheme can be viewed as a Euler-discretization of the associated ODE.

Natural Actor-Critic Algorithm of Peters et al. [46]: Algorithms 2-4 extend this algorithm,
by being fully incremental and providing convergence proofs. Peters’s algorithm uses a least-squares
TD method in its critic’s update, while our algorithms are all fully incremental. It is not entirely
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clear how to satisfactorily incorporate least-squares TD methods in a context in which the policy is
changing. Our proof techniques do not immediately extend to this case. However, we use estimates
of advantage function in Algorithms 3 and 4 as in Peters’s algorithm.

8 Empirical Results

In this section we report empirical results applying the algorithms presented in the paper to a set of
abstract randomly constructed MDPs which we call Garnet problems. We present results with our
algorithms exactly as described in Section 5, illustrating the convergence proved in Section 6. We
also report results for the most closely related algorithm in the prior literature, that by Konda and
Tsitsiklis [38].3 In all our experiments, we observed that the average rewards obtained by Konda’s
algorithm were much smaller than those obtained by our algorithms. Thus, we do not plot them
in Figure 1 and only report their means and standard errors (STSs) in Table 2. The C++ code for
all the experiments conducted in this section is available at [43].

Garnet problems are a class of randomly constructed finite MDPs serving as environments for
reinforcement learning algorithms optimizing average reward. Garnet problems do not correspond
to any particular application, but are meant to be totally abstract or generic while remaining
representative of the kind of MDPs that might be encountered in practice (cf. [5]). The name
“Garnet” is an acronym for Generic Average Reward Non-stationary Environment Testbed. The
process for generating an instance of a Garnet problem is characterized by 5 parameters and written
as Garnet(n,m, b, σ, τ). The parameters n and m are the number of states and actions respectively,
and b is a branching factor specifying the number of possible next states for each state-action
pair. The possible next states are chosen at random from the state set without replacement. The
probability of going to each next state is generated by partitioning the unit interval at b−1 cut points
selected randomly between 0 and 1. The expected reward for each such transition is a normally
distributed random variable with mean 0 and unit variance. The actual reward is selected randomly
according to a normal distribution with mean equal to the expected reward and standard deviation
σ. Finally, the parameter τ, 0 ≤ τ ≤ 1/n determines the degree of non-stationarity in the problem.
If τ = 0, the Garnet problem is stationary. If τ > 0, states of the MDP are occasionally selected
randomly for deletion and replacement with newly constructed expected rewards and transition
probabilities. At each time step, with probability n ∗ τ , one of the states is selected at random and
reconstructed as described above. We use stationary Garnet problems (τ = 0) in the experiments
of this paper. From the above definition, it is clear that Garnet(n,m, b, σ, τ) represents a family of
Garnet problems with the same structure.

In our experiments, we used linear function approximation for state value functions V (s, v) =
v⊤fs, and parameterized Gibbs distribution for policies (7). State feature vectors fs and state-
action feature vectors φsa were binary and were randomly generated using two parameters d and l.
The parameter d is the dimensionality of the state feature vectors fs ∈ {0, 1}d (i.e., d2 = d). The
parameter l is the number of components of the state feature vectors that were 1 (the others were
0). The locations of the 1’s were chosen randomly with equal probability such that no two states
had the same feature vector. The state-action feature vectors had dimension d×m, φsa ∈ {0, 1}d×m

3From now on in the paper we call this algorithm Konda’s algorithm.
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(i.e., d1 = d×m) and were constructed using state feature vectors as follows:

φsai
= ( 0, . . . , 0

︸ ︷︷ ︸

d×(i−1)

, fs , 0, . . . , 0
︸ ︷︷ ︸

d×(m−i)

)⊤ (56)

We chose d such that d × m are ≪ n. Therefore, an exact solution is usually not possible and
approximate value functions are required. We also chose l substantially less than d as this case has
proven powerful in many applications of reinforcement learning and is computationally efficient.

We set the initial values for policy parameters θ0, state value function weights v0, and weights
w0 to 0.0. We used the following step-size schedules for the critic {αt} and the actor {βt}:

αt =
α0 · αc

αc + t2/3
, βt =

β0 · βc

βc + t
.

Note that these step-size schedules satisfy (10) and (11). We set the constant c used for the average
reward step-size in our algorithms to 0.95. In Algorithms 2 and 4, we initialized the inverse of
the Fisher information matrix to G−1

0 = 1.5I and G−1
0 = 2.5I respectively. We also used step-size

0.001αt in place of αt to update G−1
t for numerical stability in these algorithms.

Figure 1 shows the average rewards obtained by the four actor-critic algorithms presented in
the paper in two families of stationary Garnet problems, Garnet(30,4,2,0.1,0) (top row) and Gar-
net(100,10,3,0.1,0) (bottom row). The function approximation parameters were set to d = 8 and
l = 3 in Garnet(30,4,2,0.1,0), and to d = 20 and l = 5 in Garnet(100,10,3,0.1,0). All the graphs in
the top row are averaged over 100 independent runs of a fixed Garnet(30,4,2,0.1,0) problem (top
left) and 100 different randomly and independently generated Garnet(30,4,2,0.1,0) problems (top
right). All the graphs in the bottom row are averaged over 20 independent runs of a fixed Gar-
net(100,10,3,0.1,0) problem (bottom left) and 20 different randomly and independently generated
Garnet(100,10,3,0.1,0) problems (bottom right). Table 2 contains the means and the standard errors
(STEs) of the average rewards obtained by the four actor-critic algorithms presented in the paper,
plus the Konda’s algorithm, for 100 runs of a fixed Garnet(30,4,2,0.1,0) problem (2nd column),
100 different Garnet(30,4,2,0.1,0) problems (3rd column), 20 runs of a fixed Garnet(100,10,3,0.1,0)
problem (4th column), and 20 different Garnet(100,10,3,0.1,0) problems (5th column).

Algorithm Mean ± STE Mean ± STE Mean ± STE Mean ± STE

Algorithm 1 1.592 ± 0.004 0.780 ± 0.025 0.764 ± 0.003 0.816 ± 0.018
Algorithm 2 1.582 ± 0.002 0.787 ± 0.024 0.872 ± 0.002 0.948 ± 0.022
Algorithm 3 1.597 ± 0.001 0.835 ± 0.025 0.918 ± 0.001 0.992 ± 0.014
Algorithm 4 1.570 ± 0.002 0.786 ± 0.024 0.871 ± 0.002 0.933 ± 0.021

Konda’s Algorithm 0.607 ± 0.005 0.444 ± 0.017 0.144 ± 0.001 0.230 ± 0.012

Table 2: Means and standard errors (STEs) of the average rewards obtained by the algorithms on
100 runs of a fixed Garnet(30,4,2,0.1,0) problem (2nd column), 100 different Garnet(30,4,2,0.1,0)
problems (3rd column), 20 runs of a fixed Garnet(100,10,3,0.1,0) problem (4th column), and 20
different Garnet(100,10,3,0.1,0) problems (5th column).

Table 3 contains the values of the step-size schedule parameters used by the algorithms in
the experiments with Garnet(30,4,2,0.1,0) (2nd column) and Garnet(100,10,3,0.1,0) (3rd column)
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Figure 1: This figure shows the average rewards obtained by the four actor-critic algorithms pre-
sented in the paper in two families of stationary Garnet problems, Garnet(30,4,2,0.1,0) (top row)
and Garnet(100,10,3,0.1,0) (bottom row). All the graphs in the top/bottom left figure are aver-
aged over 100/20 independent runs of a fixed Garnet(30,4,2,0.1,0)/Garnet(100,10,3,0.1,0) problem,
while the graphs in the top/bottom right figure are averaged over 100/20 different randomly and
independently generated Garnet(30,4,2,0.1,0)/Garnet(100,10,3,0.1,0) problems.

problems. We tried many values for these parameters in the experiments with the fixed Garnet
problems (left column in Figure 1) and those in the table yielded the best performance. We then
used the same parameters in the experiments with different Garnet problems (right column in
Figure 1).

Algorithm 3 showed reliably good performance in both small and large size problems. We
found it easier to find good parameter settings for Algorithm 3 than for the other natural gradient
algorithms and, perhaps because of this, it converged more rapidly than them and than Konda’s
algorithm. However, these empirical observations should be taken only as suggestive; our experi-
ments were not extensive enough to be taken as showing anything comparative about the relative
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Algorithm α0 αc β0 βc α0 αc β0 βc

Algorithm 1 0.1 1000 0.01 100000 0.1 1000000 0.01 100000000
Algorithm 2 0.1 1000 0.01 1000 0.1 1000 0.01 1000
Algorithm 3 0.1 10000 0.001 10000 0.1 10000 0.001 100000
Algorithm 4 0.1 1000 0.001 10000 0.1 1000 0.001 10000

Konda’s Algorithm 0.1 10000 0.01 10000 0.1 10000 0.01 10000

Table 3: Values of the step-size schedule parameters in the Garnet(30,4,2,0.1,0) (second column)
and Garnet(100,10,3,0.1,0) (third column) experiments.

rate of convergence of any of the algorithms.
We used relative value iteration algorithm [18] and separately computed the best average rewards

if there were no constraints due to the function approximator, for the fixed Garnet problems.
The unconstrained optimal rewards are 1.618 and 1.170 for the fixed Garnet(30,4,2,0.1,0) and
Garnet(100,10,3,0.1,0) problems respectively. On the smaller Garnet problem, our four actor-critic
algorithms converged to the unconstrained optimal average reward 1.618 (see Figure 1 top-left and
the second column of Table 2). On the larger problem function approximation plays a larger role
and the unconstrained optimum is not reached and presumably cannot be reached.

9 Conclusions and Future Work

We have introduced and analyzed four actor-critic reinforcement learning algorithms utilizing linear
function approximation. All the algorithms are based on existing ideas such as temporal difference
learning, natural policy gradients, and two-timescale convergence analysis, but we combine them in
new ways. The main contribution of this paper is the proof of convergence of the four algorithms to
a local maximum in the space of policy and value function parameters. Our work extends that by
Konda and Tsitsiklis [38] and others [1, 19, 37] by incorporating a bootstrapping (λ < 1) form of
temporal difference learning. Our four algorithms are the first actor-critic algorithms to be shown
convergent that utilize both function approximation and bootstrapping, a combination which seems
essential to large-scale applications of reinforcement learning.

Our Algorithms 2-4 are explorations of the use of natural gradients within an actor-critic policy
gradient architecture. The way we use natural gradients is distinctive in that it is totally incre-
mental: the policy is changed on every time step yet we never reset the gradient computation as
is done in the algorithm of Peters et al. [46]. Algorithm 3 is perhaps the most interesting of the
three natural gradient algorithms. It never explicitly stores an estimate of the inverse of the Fisher
information matrix and, as a result, it requires less computation. In our empirical experiments we
found it easier to find good parameter settings for Algorithm 3 than for the other natural gradient
algorithms and, perhaps because of this, it converged more rapidly than them and than Konda
and Tsitsiklis’s algorithm. These empirical observations should be taken only as suggestive; more
experiments to properly assess the relative performance of these algorithms must be carried out.

The most important potential extension of our results would be to characterize the quality of
the converged solution. It may be possible to bound the performance loss due to bootstrapping
and approximation error in a way similar to how it was bounded by Tsitsiklis and Van Roy [58].
There are a number of other ways in which our results are limited and suggest for future work.
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First, there is the issue of rate of convergence. Ideally one would like analytic results but, short of
that, it would be useful to conduct a thorough empirical study, varying parameters and schedules
in a more extensive and sophisticated way than we have done here. Second, the algorithms could
be extended to incorporate eligibility traces and least-squares methods. As discussed earlier, the
former seems straightforward whereas the latter seems to require more fundamental extensions.
Finally, application of these ideas and algorithms to a real-world problem is needed to assess their
ultimate utility.
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