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Abstract

We consider the problem of multi-task reinforcement learning where the learner
is provided with a set of tasks, for which only a small number of samples can be
generated for any given policy. As the number of samples may not be enough to
learn an accurate evaluation of the policy, it would be necessary to identify classes
of tasks with similar structure and to learn them jointly. Weconsider the case
where the tasks share structure in their value functions, and model this by assum-
ing that the value functions are all sampled from a common prior. We adopt the
Gaussian process temporal-difference value function model and use a hierarchical
Bayesian approach to model the distribution over the value functions. We study
two cases, where all the value functions belong to the same class and where they
belong to an undefined number of classes. For each case, we present a hierarchi-
cal Bayesian model, and derive inference algorithms for (i)joint learning of the
value functions, and (ii) efficient transfer of the information gained in (i) to assist
learning the value function of a newly observed task.

1 Introduction

Multi-task learning (MTL) is an important learning paradigm and has recently been an area of active
research in machine learning (e.g., [4; 1; 17; 16; 3]). A common setup is that there are multiple
related tasks for which we are interested in improving the performance over individual learning by
sharing information across the tasks. This transfer of information is particularly important when we
are provided with only a limited number of data to learn each task. Exploiting data from related
problems provides more training samples for the learner andcan improve the performance of the
resulting solution.

Most reinforcement learning (RL) algorithms [2; 13] often need a large number of samples to solve
a problem and cannot directly take advantage of the information coming from other similar tasks.
Nonetheless, recent work has shown that transfer and multi-task learning techniques can be em-
ployed in RL to reduce the number of samples needed to achievenearly-optimal solutions. All
approaches to multi-task RL (MTRL) assume that the tasks share similarity in some components
of the problem such as dynamics, reward structure, or value function. While some methods explic-
itly assume that the shared components are drawn from a common generative model [15; 10], this
assumption is more implicit in others [14; 9]. In [10], tasksshare the same dynamics and reward
features, and only differ in the weights of the reward function. The proposed method initializes the
value function for a new task using the previously learned value functions as a prior. In [15], the
distribution over the dynamics and the reward functions of the tasks is drawn from a hierarchical
Bayesian model (HBM). Due to some similarity to our work, we discuss this method in more de-
tails in Section 5. In [9], the authors implicitly assume that the tasks are drawn from a common
distribution. They propose a method to selectively transfer samples from source tasks to a target
task based on the likelihood of the target samples being generated by the models built for the source
tasks. Finally, in [14], learning the value function of the target task is expedited using the solution
learned in a source task with related, but different, state and action spaces.



In this paper, we study the MTRL scenario in which the learneris provided with a number of tasks
with common state and action spaces. For any given policy, only a small number of samples can
be generated in each task, which may not be enough to accurately evaluate the policy. In such a
MTRL problem, it is necessary to identify classes of tasks with similar structure and to learn them
jointly. In our work, we consider a particular class of MTRL problems in which the tasks share
structure in their value functions. To allow the value functions to share a common structure, one
way would be to assume that they are all sampled from a common prior. We adopt the Gaussian
process temporal-difference (GPTD) value function model [6] for each task, model the distribution
over the value functions using a HBM, and develop solutions to the following problems: (i) joint
learning of the value functions, and (ii) efficient transferof the information acquired in (i) to facilitate
learning the value function of a newly observed task. We refer to the above problems assymmetric
andasymmetricmulti-task learning, respectively. In Section 3, we present a HBM for the case in
which all the value functions belong to the same class, and derive an EM algorithm to find MAP
estimates of the value functions and the model’s hyper-parameters. However, as pointed out in [4; 1],
if the functions do not belong to the same class, simply learning them together can be detrimental
(negative transfer). It is therefore important to have models that will generally benefit from related
tasks and will not hurt performance when the tasks are unrelated. This is particularly important in
RL as changing the policy at each step of the policy iterationalgorithm (this is true even for the
fitted value iteration algorithm) can change the way tasks are clustered together. This means that
even if we start with value functions that all belong to the same class, after one iteration the new
value functions may be clustered into several classes. In Section 4, we introduce a Dirichlet process
(DP) based HBM for the case that the value functions belong toan undefined number of classes,
and derive inference algorithms for both the symmetric and asymmetric scenarios. In Section 5,
we discuss the similarities and differences with closely related work. In Section 6, we report and
analyze experimental results.

2 Preliminaries

The agent-environment interaction in RL is conventionallymodelled as a Markov Decision Process
(MDP). A MDP is a tupleM = 〈X ,A,R,P〉 whereX andA are the state and action spaces,
respectively;R is the probability distribution over rewardsR; andP is the transition probability
distribution. Astationarypolicy π : X × A → [0, 1] is a mapping from states to action selection
probabilities. The MDP controlled by a policyπ induces a Markov chain with transition probability
distributionP π(x′|x) =

∫
A
P (x′|x, a)π(a|x)da. Given a policyπ, the (possibly discounted,γ ∈

[0, 1)) return for a statex, Dπ(x), is a random process defined byDπ(x) =
∑∞

t=0 γ
tR(xt)|x0 =

x, with xt+1 ∼ P π(·|xt). The value functionV π(x) is the expected value ofDπ(x) where the
expectation is over all possible trajectories and rewards collected along them.

A key problem in RL is to learn the value function of a given policy, which is calledpolicy evalu-
ation [2; 13]. Loosely speaking, in policy evaluation the goal is to find a “close enough” approx-
imationV of the value functionV π . Unlike in supervised learning, the target functionV π is not
known in advance and its values have to be inferred from the observed rewards. Therefore, it is
required to define a stochastic generative model connectingthe underlying hidden value function
with the observed rewards. In this paper, we adopt the GPTD value function model proposed in [6],
in which the discounted returnD is decomposed into its meanV and a random zero-mean residual
∆V ,D(x) = V (x)+∆V (x). Combining this decomposition with the Bellman equation, we obtain

R(x) = V (x)− γV (x′) + ǫ(x, x′), x′ ∼ P π(·|x), (1)

whereǫ(x, x′)
def
= ∆V (x) − γ∆V (x′). Suppose we are provided with a set of samplesD =

{(xn, x
′
n, rn)}

N
n=1, wherern andx′n are the reward and the next state observed by following pol-

icy π in statexn, respectively. By writing the model of Eq. (1) w.r.t. these samples, we obtain
R = HV + E , whereH ∈ R

N×2N and

R⊤ = (rn)
N
n=1; E

⊤ =
(
ǫ(xn, x

′
n)
)N
n=1

; V ⊤ =
(
V (xn), V (x′n)

)N
n=1
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Figure 1: Graphical representations for(a) the single-task model — an extension of GPTD by
defining a hyper-prior over the parameters,(b) the single-class multi-task model of Section 3, and
(c) the multi-class multi-task model of Section 4.
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Note that if the samples are generated from a single trajectory thenx′n = xn+1 andH will be of
the form defined by Eq. (2.7) in [6]. In order to specify a complete probabilistic generative model
connecting values and rewards, we need to define a prior distribution for the value functionV and
the distribution of the noiseǫ. Similar to [6], we model the value function as a Gaussian process
(GP), and the noise vector asE ∼ N (0,S), whereS is the noise covariance matrix modelling the
correlation of the noise between different states. In the following we writeS = σ2

P, whereσ2 and
P are the variance and the correlation matrix of the noise, respectively. For a more extended discus-
sion about different models of noise we refer readers to [5] and Section 8.4. The value functionV
may be represented either in parametric or non-parametric form. In this paper we use the parametric
representation to make the formulation easier to follow, but all the results can be extended to the non-
parametric case following similar steps as in Section 5.2 of[17]. In the parametric form, the value

function is represented by a finite set ofd featuresφ(·) =
(
φ1(·), . . . , φd(·)

)⊤
and a weight vector

w = (w1, . . . , wd)
⊤ asV (·) = φ(·)⊤w. The randomness inV is now due tow being a random

vector with Gaussian priorw ∼ N (µ,Σ). The model equation now becomesR = HΦ
⊤
w + E ,

whereΦ = [φ(x1),φ(x
′
1), . . . ,φ(xN ),φ(x′N )] is ad × 2N matrix. Fig. 1(a) shows the graphical

representation of this model. Note that the model shown in Fig. 1(a) is the model that we use for
single-task learning (STL) in the experiments of this paper. It is an extension of the original GPTD
model by defining a Normal-inverse-Wishart and an inverse-Gamma hyper-priors parametrized by
ψ0 = (µ0, k0, ν0,Σ0, α0, β0) over the model parameters(µ,Σ, σ2). This allows us to optimize the
model parameters given the data.

In the MTRL setting of this paper, the learner is provided withM tasks or MDPs with common state
and action spacesMm = 〈X ,A,Rm,Pm〉, m = 1, . . . ,M . Given a fixed policy,N samples are
generated in each task, i.e.,Dm = {(xmn, x

′
mn, rmn)}Nn=1, which may not be enough to have an

accurate evaluation of the policy. We consider the case in which the tasks share structure in their
value functions. In the parametric value function model discussed above, this can be interpreted as
the value functions share the same feature space and their weight vectors are sampled independently
from a common prior, i.e.,Vm(·) = φ(·)⊤wm;wm ∼ N (µ,Σ). In the next two sections, we study
two different scenarios: 1) when all the tasks belong to the same class, i.e., they share the same prior,
and 2) when they can be clustered into an undefined number of classes.

3 Single-class Multi-task Learning

In this section, we consider the case where all the tasks belong to the same class, i.e., they share
the same distribution over their value functionswm ∼ N (µ,Σ), m = 1, . . . ,M ; and the same
observation noiseσ2. The goal in the symmetric form of this problem is to estimate{wm}Mm=1 from



the data{Dm}Mm=1, whereas in the asymmetric case we are interested in estimating the parameters
θ = (µ,Σ, σ2) from the data in order to use them as a prior for a newly observed task (e.g.,
taskMM+1). We use a parametric HBM for this problem. HBMs allow us to model both the
individuality of the tasks and the correlation between them. In HBMs, individual models with task
specific parameters are usually located at the bottom, and atthe layer above, tasks are connected
together via a common prior placed over those parameters. Learning the common prior is a part of
the training process in which data from all the tasks contribute to learning, thus making it possible
to share information between the tasks usually via sufficient statistics. Then given the learned prior,
individual models are learned independently. As a result, learning at each task is affected by both its
own data and by data from the other tasks related through the common prior.

3.1 The Model

We assume a normal-inverse-Wishart and an inverse-Gamma hyper-priors for(µ,Σ) andσ2, re-
spectively.

p(θ|ψ0) = p(µ,Σ) × p(σ2) = N (µ;µ0,Σ/k0) IW(Σ; ν0,Σ0) × IG(σ2;α0, β0). (2)

These distributions are the conjugate priors for multivariate Gaussian distributionsp(wm|µ,Σ) and
p(Rm|wm, σ

2) = N (HΦ
⊤
mwm, σ

2
P), respectively. This leads to the following generative model

for the data,{Dm}. Fig. 1(b) shows the graphical representation of this model. The details of the
model can be found in Section 8.

Single-Class Model: Given the hyper-parametersψ0 = (µ0, k0, ν0,Σ0, α0, β0),

1. The parametersθ = (µ,Σ, σ2) are sampled once from the hyper-prior as in Eq.(2),

2. For each taskMm (value functionVm), the weight vector is sampled aswm ∼ N (µ,Σ),

3. Given{(xmn, x
′
mn)}

N
n=1, we haveRm = HΦ

⊤
mwm + E , whereE ∼ N (0, σ2

P), m =
1, . . . ,M .

3.2 Inference

This model can be learned by optimizing the penalized likelihoodp
(
{Rm}|{(xmn, x

′
mn)}, θ

)
p(θ)

w.r.t. the parametersθ = (µ,Σ, σ2) using an EM algorithm. In the rest of the paper, we refer to
this algorithm asSCMTL, for single-class multi-task learning.

E-step: Since the posterior distribution of the latent variablesp({wm}|{Dm}, θ) is a prod-
uct ofM Gaussian posterior distributionsp(wm|Dm, θ) = N (µ′

0m,Σ
′
0m), for each taskm, we

compute the mean and covariance as

µ′
0m = Σ

′
0m

[
1

σ2
ΦmH⊤

P
−1Rm +Σ

−1µ

]
, Σ

′
0m =

[
1

σ2
ΦmH⊤

P
−1HΦ

⊤
m +Σ

−1

]−1

.

M-step: We optimizeθ to maximize the penalized expected log-likelihood of complete data
log p

(
{Dm}, {wm}|θ

)
over the posterior distribution estimated in the E-step andobtain the new

parameters

µnew =
1

M + k0

(
k0µ0

+
M∑

m=1

µ
′

0m

)
,

Σnew =
1

M + ν0 + d+ 2

{

k0(µ− µ
0
)(µ− µ

0
)⊤ +Σ0 +

M∑

m=1

[
(µ′

0m
− µ)(µ′

0m
− µ)

⊤
+Σ

′

0m

]}

,

σ2

new =
1

MN + 2(1 + α0)

{
2β0 +

M∑

m=1

[
tr
(
P

−1HΦ
⊤

mΣ
′

0mΦmH⊤

)
+
(
Rm − HΦ

⊤

mµ
′

0m

)
P

−1

(
Rm − HΦ

⊤

mµ
′

0m

)
⊤
]}

.



4 Multi-class Multi-task Learning

In this section, we consider the case where the tasks belong to an undefined number of classes.
Tasks in the same class{Mm| cm = c} share the same distribution over their value functions
wm ∼ N (µc,Σc), and the same observation noiseσ2

c . We use a nonparametric HBM for this
problem. In the HBM proposed in this paper, the common prior is drawn from a Dirichlet process
(DP). As addressed in the statistics literature (see, e.g.,[11]), DP is powerful enough to model the
parameters of individual classes, to fit them well without any assumption about the functional form
of the prior, and to automatically learn the number of underlying classes.

4.1 The Model

We place a DP(τ,G0) prior over the class assignment and the class parameters. The concentration
parameterτ and the base distributionG0 can be considered as priors over the number of classes
and the class parametersθc = (µc,Σc, σ

2
c ), respectively. G0 is specified as the product of a

d-dimensional normal-inverse-Wishart and a1-dimensional inverse-Gamma distributions, with
parametersψ0 = (µ0, k0, ν0,Σ0, α0, β0), (see Eq. 2). We employ the stick-breaking representation
of the DP prior [7], and define a task-to-class assignment variable(cm1, . . . , cm∞) for each taskm,
whose elements are all zero except that thecth element is equal to one if taskm belongs to classc.
Given the above, the data{Dm} can be seen as drawn from the following generative model, whose
graphical representation is shown in Fig. 1(c).

Multi-Class Model: Given the hyper-parameters(τ, ψ0),

1. Stick-breaking view: Draw vc from the Beta distributionBe(1, τ), computeπc =

vc
∏c−1

i=1 (1− vi), and independently drawθc ∼ G0, c = 1, . . . ,∞,

2. Task-to-class assignment:Draw the indicator(cm1, . . . , cm∞) from a multinomial distri-
butionM∞(1;π1, . . . , π∞), m = 1, . . . ,M ,

3. The weight vector is sampled aswm ∼ N (µcm ,Σcm), m = 1, . . . ,M ,

4. Given{(xmn, x
′
mn)}

N
n=1, we haveRm = HΦ

⊤
mwm + E , whereE ∼ N (0, σ2

cmP), m =
1, . . . ,M .

4.2 Inference

We are interested in the posterior distribution of the latent variablesZ =
{
{wm}, {cm}, {θc}

}

given the observed data and the hyper-parametersτ and ψ0, i.e., p
(
Z|{Dm}, τ, ψ0

)
∝

p
(
{Dm}|Z, τ, ψ0

)
p(Z|τ, ψ0). In the following we outline the main steps of the algorithm used to

solve this inference problem, which we refer to asMCMTL , for multi-class multi-task learning (see
Fig. 2). MCMTL combines theSCMTL algorithm of Sec. 3.2 for class parameters estimation, with
a Gibbs sampling algorithm for learning the class assignments [12]. The main advantage of such
combination is that at each iteration, given the current estimate of the weights, we take advantage of
the conjugate priors to derive an efficient Gibbs sampling procedure.

More formally, given an arbitrary initial class assignment{cm}, a distinct EM algorithm is run
on each classc = 1, . . . , C (with C the current estimate of the number of classes) and returns
M distributionsN (µ′

0m,Σ
′
0m). Given the weights estimated at the previous step,ŵm = µ′

0m,
the Gibbs sampling solves the DP inference by drawing samples from the posterior distribution
p
(
{cm}|{Rm}, {ŵm}, τ, ψ0

)
. In particular, the state of the Markov chain simulated in the Gibbs

sampling is the class assignment{cm}, i.e., the vector of the classes each task belongs to. At each
iteration, each componentcm of the state is updated by sampling from the following distribution

If c = cm′ , m′ 6= m: p
(
cm = c|{cm′}, Rm, ŵm, τ, ψ0

)
= b

M−m,c

M − 1 + τ

∫
p
(
Rm, ŵm|θc

)
p
(
θc|{cm′}, ψ0

)
dθc,

else:p
(
cm 6= cm′ , m′ 6= m|{cm′}, Rm, ŵm, τ, ψ0

)
= b

τ

M − 1 + τ

∫
p(Rm, ŵm|θ)p(θ|ψ0)dθ, (3)



MCMTL
(
{Rm}, τ, ψ0

)

Initialize {cm}
repeat

for c = 1, . . . , C do
Initialize θc
repeat

for m : cm = c do
p(wm|Rm, θc) = N (µ′

0m
,Σ′

0m) (E-step)
end for
Optimizeθc (M-step)

until convergence
end for
Setŵm = µ′

0m
, m = 1, . . . ,M

p({cm}|{ŵm}, {Rm}, τ, ψ0)
until convergence
return {ŵm} and{cm}

Figure 2: The inference algorithm for the multi-class multi-task learning (MCMTL ) scenario.

whereM−m,c is the number of tasks in classc except taskm, andb is a normalizing constant. While
the first term in Eq. (3) is the probability of taskm to belong to an existing classc, the second term
returns the probability of assigning taskm to a new class. Thanks to the conjugate base distribution
G0, the integrals in Eq. (3) can be solved analytically. In fact

p(Rm, ŵm|θ)p(θ|ψ0) = p(Rm|ŵm, σ
2)p(ŵm|µ,Σ)× p(µ,Σ|µ0, k0, ν0,Σ0)p(σ

2|α0, β0)

∝ N (µ;µ′
0,Σ/k

′
0)IW(Σ; ν′0,Σ

′
0)× IG(σ2;α′

0, β
′
0), (4)

whereψ′
0 = (µ′

0, k
′
0, ν

′
0,Σ

′
0, α

′
0, β

′
0) are the posterior parameters ofG0 given the weight̂wm and

the rewardsRm (see Section 8 for their definition). Using the posterior hyper-parameters, the second
integral in Eq. (3) can be written as

∫
p(Rm, ŵm|θ)p(θ|ψ0)dθ =

(
k0
πk′0

) d
2 |Σ0|ν0/2

|Σ′
0|

ν′

0
/2

Γ
(

ν′

0

2

)

Γ
(

ν′

0
−d
2

)×(2π|P|)−
N
2

βα0

0

Γ(α0)

Γ(α′
0)

β
′α′

0

0

. (5)

In the first integral of Eq. (3), the density functionp(θc|{cm′}, ψ0) is the posterior probability over
the class parametersθc given the data from all the tasks belonging tocm according to the current
class assignment{cm′}. Similar to Eq. (4), we compute the posterior hyper-parametersψ0c of the
normal-inverse-Wishart and inverse-Gamma distributionsgiven {ŵm′} and{Rm′}, with m′6= m
andcm′ = cm. Finally, the integral can be analytically calculated as inEq. (5), where the hyper-
parametersψ0 and the posterior hyper-parametersψ′

0 are replaced byψ0c andψ′
0c, respectively.

4.3 Symmetric vs. Asymmetric Learning

TheMCMTL algorithm returns both the distribution over the weights for each task and the learned
hierarchical model (task-class assignments). While the former can be used to evaluate the learn-
ing performance in the symmetric case, the latter provides aprior for learning a new task in the
asymmetric scenario.

Symmetric Learning. According to the generative model in Section 4.1, the task weights are dis-
tributed according to the normal distributionN (µ′

0m,Σ
′
0m), whereµ′

0m andΣ
′
0m are the pos-

terior mean and covariance of the weight vectorwm returned by theMCMTL algorithm. Since
Vm(x) = φ(x)

⊤
wm, the value ofVm at a test statex∗ is distributed as

p
(
Vm(x∗)|x∗,µ

′
0m,Σ

′
0m

)
= N

(
φ(x∗)

⊤
µ′
0m, φ(x∗)

⊤
Σ

′
0
−1
m φ(x∗)

)
.



If MCMTL successfully clusters the task, we expect the value function prediction to be more accurate
than learning each task independently.

Asymmetric Learning. In the asymmetric setting the class of the new task is not known in advance.
The inference problem is formalized asp

(
wM+1|RM+1, ψ0, {cm}Mm=1

)
, wherewM+1 andRM+1

are the weight vector and rewards of the new taskMM+1, respectively. Similar to Section 4.2, this
inference problem cannot be solved in closed form, thus, we must apply theMCMTL algorithm to
the new task. The main difference with the symmetric learning is that the class assignments{cm}
and weights{ŵm} for all the previous tasks are kept fixed, and are used as a prior over the new task
learned by theMCMTL algorithm. As a result, the Gibbs sampling reduces to a one-step sampling
process assigning the new task either to one of the existing classes or to a new class. IfMM+1

belongs to a new class, then the inference problem becomesp (wM+1|RM+1, ψ0), that is exactly
the same as inSTL. On the other hand, ifMM+1 belongs to classc, the rewards and weights{Rm′},
{wm′} of the tasks in classc can be used to compute the posterior hyper-parametersψ′

0c as in Eq.
(4), and to solve the inference problemp(wM+1|RM+1, ψ

′
0c).

5 Related Work

In RL, the approach of this paper is mainly related to [15]. Although we both use a DP-based HBM
to model the distribution over the common structure of the tasks, in [15] the tasks share structure
in their dynamics and reward function, while we consider thecase that the similarity is in the value
function. There are scenarios in which significantly different MDPs and policies may lead to very
similar value functions. In such scenarios, the method proposed in this paper would still be able to
leverage on the commonality of the value functions, thus performing better than single-task learning.
Moreover in [15], the setting is incremental, i.e., the tasks are observed as a sequence, and there is no
restriction on the number of samples generated by each task.The focus is not on joint learning with
finite number of samples, it is on using the information gained from the previous tasks to facilitate
learning in a new one. This setting is similar to the asymmetric learning considered in our work.

In supervised learning, our work is related to [17] and [16].In [17], the authors present a single-class
HBM for learning multiple related functions using GPs. Our single-class model of Section 3 is an
adaptation of this work for RL using GPTD. Besides, our multi-class model of Section 4 extends
this method to the case with an undefined number of classes. In[16], a DP-based HBM is used to
learn the extent of similarity between classification problems. The problem considered in our paper
is regression, the multi-class model of Section 4 is more complex than the one used in [16], and the
inference algorithms of Section 4 are based on Gibbs sampling, where a variational method is used
for inference in [16].

6 Experiments

In this section, we report empirical results applying the Bayesian multi-task learning (BMTL ) al-
gorithms presented in this paper to a regression problem anda benchmark RL problem, inverted
pendulum. We compare the performance of single-task learning (STL) with single-class multi-task
learning (SCMTL), i.e., all tasks are assumed to belong to the same class, andmulti-class multi-task
learning (MCMTL ), i.e., tasks belong to a number of classes not known in advance. By STL, we
refer to running the EM algorithm of Section 3.2 for each taskseparately. The reason to use the
regression problem in our experiments is that it allows us toevaluate ourBMTL algorithms when
the tasks are generated exactly according to the generativemodels of Sections 3 and 4.

6.1 A Regression Problem

In this problem, tasks are functions in the linear space spanned by a feature spaceφ(x) =(
1, x, x2, x3, x4, x5)⊤ on the domainX = [−1, 1]. The weights for the tasks are drawn from four

different classes, i.e., four6-dim multivariate Gaussian distributions, with the parameters shown in
Fig. 3(a). The noise covariance matrixS = diag(σ2) for all the algorithms. We evaluate the perfor-
mance of eachBMTL algorithm by computing its relative mean squared error (MSE) improvement
overSTL : (MSESTL−MSEBMTL )/MSESTL. The MSEs are computed overN ′ = 1000 test samples.
All the reported results are averaged over200 independent runs.



µc σ2

c

c1 (50 10 5 0 0 0) 1.0
c2 (0 0 0 0.5 0.1 0.05) 3.0
c3 (0 -20 0 -0.5 0 -0.05) 5.0
c4 (-50 0 -5 0 -0.1 0) 7.5

Σc

c1 diag(20.0 10.0 5.0 0.0 0.0 0.0)
c2 diag(0.0 0.0 0.0 0.5 0.1 0.05)
c3 diag(0.0 5.0 0.0 0.5 0.0 0.01)
c4 diag(20.0 0.0 5.0 0.0 0.1 0.0)

Min Max
c1 37.35% ± 1.2 64.78% ± 0.9
c2 29.86% ± 0.9 67.64% ± 0.8
c3 66.69% ± 0.8 91.81% ± 0.6
c4 56.47% ± 1.2 75.78% ± 0.3
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Figure 3: (a) class parameters,(b) minimum and maximum improvement ofSCMTL over STL in
each class,(c) relative MSE improvement ofSCMTL over STL when all the tasks are drawn from
classc2.

In the first experiment, we draw all the tasks from classc2. Fig. 3(c) shows the performance of
SCMTL for different number of tasks (M ) and samples per task (N ). SCMTL achieves an improve-
ment overSTL that varies from29.86%± 0.9 for N = 100 and20 tasks to67.64%± 0.8 for 100
tasks with only20 samples each. The results indicate thatSCMTL successfully takes advantage of
the samples coming from all the tasks to build a more accurateprior than the one obtained by con-
sidering each task separately as inSTL. However, the advantage ofSCMTL overSTL declines asN
is increased. In fact, asSTL converges,SCMTL cannot make further improvement. We repeated the
same experiment for the other classes. The minimum and maximum performance ofSCMTL for all
the classes (all obtained forN = 100,M = 20 andN = 20,M = 100, respectively) are summarized
in Fig. 3(b).

In the second experiment, we draw the tasks randomly from thefour classes. We first applySCMTL
to this problem. Fig. 4(a) shows theSCMTL’s performance. As it can be seen, the results are worse
than those in the first experiment (Fig. 3(c)), varying from30.15% ± 4.8 to 54.05% ± 1.2. By
clustering all the tasks together,SCMTL takes advantage of all the available samples, thus, performs
better thanSTL. However, when the tasks are drawn from significantly different distributions, it
learns a very general prior which does not allow a significantimprovement overSTL. We then apply
MCMTL to this problem.MCMTL ’s performance (Fig. 4(b)) is significantly better thanSCMTL’s
(Fig. 4(a)), and it varies from45.64%±5.6 to 77.65%±0.8. In order to evaluate how wellMCMTL
classifies the tasks, we also compare its performance to a version of MCMTL in which each task
is assigned to the right class in advance. The difference between the two algorithms is statistically
significant only forN = 20 (with the maximum of5.08% for M = 20), in which the noise on the
samples makes it more difficult to discriminate between the distributions generating the tasks, and
thus, to classify them correctly.

Finally, we compare the performance ofSCMTL andMCMTL in the asymmetric setting. At the end
of each run of the symmetric problem, we draw100 new test tasks at random from the same four
classes used to generate the training tasks. We run the asymmetric algorithm described in Section 4.3
on each of the test tasks separately. Fig. 4(c) shows the performance ofSCMTL andMCMTL for
different number of training tasks andN fixed to 20. The results indicate thatMCMTL performs
relatively better thanSCMTL as the number of training tasks increases.

6.2 Inverted Pendulum

The experiments of Section 6.1 indicate that when the tasks are generated exactly according to the
generative models of Sections 3 and 4, theBMTL methods can significantly improve the perfor-
mance of a regression problem w.r.t.STL. As discussed in Section 2, the policy evaluation step of
policy iteration can be casted as a regression problem, thus, similar improvement can be expected.
In this section, we compare ourBMTL algorithms withSTL in the problem of learning a control
policy for balancing an inverted pendulum. Dynamics, reward function, and basis functions are the
same as in [8]. Each task is generated by drawing the parameters of the dynamics (pole mass, pole
length, cart mass, and noise on the actions) from Gaussian distributions with means and variances
summarized in Fig. 5(a). The distribution over the two classes is uniform. It is worth noting that,
unlike the regression experiments, here we have no guarantee that the weights of the value functions
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Figure 4: Results for the case that the tasks are drawn randomly from the four classes:(a) relative
MSE improvement ofSCMTL overSTL, (b) relative MSE improvement ofMCMTL overSTL, (c)
asymmetric performance ofMCMTL andSCMTL forN = 20.

c1 c2
pole mass 1.0, 0.2 3.0, 0.0
pole length 0.5, 0.0 2.0, 0.2
cart mass 6.0, 0.5 10.0, 0.5

noise 12, 0.1 12, 0.1
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Figure 5: Results for the inverted pendulum problem:(a) distributions of the parameters of the
dynamics,(b) comparing the performance ofSTL, SCMTL, andMCMTL in terms of the number of
balanced steps forM = 10, (c) comparing the performance ofSCMTL andMCMTL in terms of the
area ratio on the first500 samples.

will follow the generative models assumed by theBMTL methods. We use policy iteration with
10 iterations and the noise correlation matrixP

−1 = Φm
⊤(ΦmΦm

⊤)−1
Φm for all the algorithms.1

In STL, each policy evaluation step is solved using the EM algorithm of Section 3.2 for each task
separately, where inBMTL , it is solved by runningSCMTL or MCMTL over all the tasks. All the
results are averaged over150 independent runs.

Fig. 5(b) shows the performance of the policy learned bySTL, SCMTL, andMCMTL for M = 10
tasks and different (up to 500) number of samples per task. Note thatSTL converges at about1200
samples per task with an average performance of2473 ± 61.9 balanced steps. As it can be seen,
bothBMTL methods outperformSTL, andMCMTL achieves a better performance thanSCMTL as
the number of samples is increased. SinceSCMTL forces all the tasks to have weights generated
from a common distribution, it learns a very general prior, and thus, it cannot approximate the
value functions as accurate asMCMTL , which is able to correctly discriminate between the tasks in
classesc1 andc2. In order to show how the performance changes with differentnumber of tasks, we
compute the area ratio [14] on the first 500 samples asρBMTL = ABMTL −ASTL

ASTL
, whereASTL (ABMTL )

is the area under the learning curve ofSTL (BMTL ) from 100 to 500 samples. Fig. 5(c) shows that
MCMTL has significantly better area ratio thanSCMTL for all values ofM except very small ones.

7 Conclusions

We presented hierarchical Bayesian models (HBMs) and inference algorithms for multi-task rein-
forcement learning (RL) where the tasks share structure in their value functions. To the best of our
knowledge, this is the first work that models value function similarity using HBMs. In particular,
we considered two cases, where all the value functions belong to the same class, and where they
belong to an undefined number of classes. In these cases, we modelled the distribution over the
value functions using a parametric HBM and a Dirichlet process (DP) based non-parametric HBM,

1This is the noise correlation matrix of LSTD(0) in the parametric GPTD form (see Section 8.4).



respectively. For each case, we derived inference algorithms for learning the value functions jointly
and to transfer the knowledge acquired in the joint learningto improve the performance of learning
the value function of a new task.

We first applied our proposed Bayesian multi-task learning (BMTL ) algorithms to a regression prob-
lem, in which the tasks are drawn from the generative models used by theBMTL methods. The
results indicate thatBMTL algorithms achieve significant improvement over single-task learning
(STL) in both symmetric and asymmetric settings. We then appliedour BMTL algorithms to a
benchmark RL problem, inverted pendulum. Although the tasks are no longer generated according
to the models used by theBMTL algorithms, they still outperformSTL. In our DP-based model we
used Gibbs sampling, the most common simulation tool for Bayesian inference. We plan to look
into variational techniques for Bayesian inference as an alternative approach.

8 Appendix

8.1 Details of the Single-class Multi-task Model

• Rm

p(Rm|wm, θ) = p(Rm|wm, σ
2) = N (HΦ

⊤
mnwm, σ

2
P)

• wm

p(wm|θ) = p(wm|µ,Σ) = N (µ,Σ) = (2π)−d/2|Σ|−1/2 exp

(
−
1

2
(wm − µ)⊤Σ−1(wm − µ)

)

• θ

p(θ|ψ0) = p(µ,Σ;µ0, k0, ν0,Σ0) × p(σ2;α0, β0)

= N (µ;µ0,Σ/k0) IW(Σ; ν0,Σ0) × IG(σ2;α0, β0)

= (2π/k0)
−d/2|Σ|−1/2 exp

(
−
k0
2
(µ− µ0)

⊤
Σ

−1(µ− µ0)

)
(normal)

×B|Σ0|
ν0/2|Σ|−(ν0+d+1)/2 exp

(
−
1

2
tr
(
Σ0Σ

−1
))

(inverse-Wishart)

×
βα0

0

Γ(α0)

(
1

σ2

)α0+1

exp

(
−
β0
σ2

)
(inverse-Gamma)

where

B−1 = 2ν0d/2πd(d−1)/4
d∏

j=1

Γ

(
ν0 + 1− j

2

)
.

8.2 Posterior Distribution of the Parameters with the Normal-Inverse-Wishart ×
Inverse-Gamma Prior

Taking advantage of the conjugate prior the posterior distribution overθ = (µ,Σ, σ2) given obser-
vations{(wm, Rm)}Mm=1 and hyperpriorψ0 is

p(µ,Σ, σ2|wm, Rm, ψ0) = N (µ;µ′
0,Σ/k

′
0) IW(Σ; ν′0,Σ

′
0)× IG(σ2;α′

0, β
′
0) (6)



where the posterior hyper-parametersψ′
0 = (µ′

0, k
′
0, ν

′
0,Σ

′
0, α

′
0, β

′
0) are

µ′
0 =

M

k0 +M
w̄ +

k0µ0

k0 +M
, (7)

k′0 = k0 +M , (8)

ν′0 = ν0 +M , (9)

Σ
′
0 = Σ0 +Q0 +

k0M

k0 +M−m,c
(w̄ − µ0)(w̄ − µ0)

⊤ , (10)

α′
0 = α0 +

NM

2
, (11)

β′
0 = β0 +

1

2

M∑

m=1

(HΦ
⊤
mwm −Rm)

⊤
P

−1(HΦ
⊤
mwm −Rm) , (12)

wherew̄ = 1
M

∑M
m=1 wm,Q0 =

∑M
m=1(wm − w̄)(wm − w̄)

⊤.

8.3 Gibbs Sampling

In this section, we report the equations used in the Gibbs sampling described in Section 4.2 of the
paper. At each iteration of the MCMTL algorithm of Figure 2 inthe paper, the Gibbs sampling is fed
with observations({ŵm}, {Rm}), whereŵm = µ′

0m. In particular, we use the the Gibbs sampling
with conjugate-priors (Algorithm 3 in [12]).

We begin with the probability of taskm belonging to a new class. Given observation(ŵm, Rm) and
hyper-priorψ0, the non-normalized probability can be written as

∫
p(Rm,wm|θ)p(θ|ψ0)dθ =

(
k0
πk′0

)d/2
|Σ0|ν0/2

|Σ′
0|

ν′

0
/2

Γ
(

ν′

0

2

)

Γ
(

ν′

0
−d
2

) × (2π|P |)−N/2 βα0

0

Γ(α0)

Γ(α′
0)

β
′α′

0

0

,

where hyper-parametersψ′
0 = (µ′

0, k
′
0, ν

′
0,Σ

′
0, α

′
0, β

′
0) are computed as in Section 8.2 for observa-

tion (Rm,wm).

Similarly, letm′ : cm′ = c,m′ 6= m, then the posterior over parameters for classc is

p(µc,Σc, σ
2
c |{ŵm′}, {Rm′}, ψ0) = N (µc;µ0c,Σc/k0)IW(Σc; ν0c,Σ0c)× IG(σ2

c ;α0c, β0c) (13)

with the following posterior hyper-parameters (which playthe role of prior hyper-parameters for the
class)

µ0c =
M−m,c

k0 +M−m,c
w̄+

k0µ0

k0 +M−m,c
, (14)

k0c = k0 +M−m,c , (15)

ν0c = ν0 +M−m,c , (16)

Σ0c = Σ0 +Q0 +
k0M−m,c

k0 +M−m,c
(w̄ − µ0)(w̄ − µ0)

⊤
, (17)

α0c = α0 +
NM−m,c

2
, (18)

β0c = β0 +
1

2

∑

m′

(HΦ
⊤
mŵm −Rm)

⊤
P

−1(HΦ
⊤
mŵm −Rm) , (19)

whereM−m,c is the number of tasks belonging to classc except taskm, w̄ = 1
M−m,c

∑
m′ ŵm′ , and

Q0 =
∑

m′(ŵm′ − w̄)(ŵm′ − w̄)
⊤. As a result, the integral for the probability of taskm belong

to classc becomes



∫
p
(
Rm, ŵm|θ

)
p
(
θ|{cm′}, ψ0

)
dθ =

∫
p
(
Rm, ŵm|θ

)
p
(
θ|ψ0c

)
dθ

=

(
k0c
πk′0c

)d/2
|Σ0c|

ν0c/2

|Σ′
0c|

ν′

0c/2

Γ
(

ν′

0c

2

)

Γ
(

ν′

0c−d

2

) × (2π|P |)−N/2 βα0c

0c

Γ(α0c)

Γ(α′
0c)

β
′α′

0c

0

,

whereψ′
0c is computed as in Equations (2)-(7) but usingψ0c as prior instead ofψ0.

8.4 Noise Correlation Models

We analyze the equations for̂wm for two different noise correlation models. In particular we show
that depending on the covariance matrix, both GPTD and BMTL can be seen as extensions of either
Bellman residual minimization (BRM) or LSTD.

We first analyze the general formulation withS = σ2
P be the covariance matrix of the noise.

Let θ = (µ,Σ, σ2) be the model parameters. The expected value of the weights inBMTL is written
as

ŵm =

[
1

σ2
ΦmH⊤

P
−1HΦ

⊤
m +Σ

−1

]−1 [
1

σ2
ΦmH⊤

P
−1Rm +Σ

−1µ

]
, (20)

whereS = σ2
P is the noise covariance matrix modeling the correlation of the noise at different

states. We callσ2 andP the noise variance and the noise correlation matrix, respectively.

In caseµ = 0 andΣ = I, we obtain a general form for the posterior mean of the weights in the
parametric form of GPTD (Equation (4.4.41) in [5])

ŵm =
[
ΦmH⊤

P
−1HΦ

⊤
m + σ2I

]−1

ΦmH⊤
P

−1Rm. (21)

The (parametric) GPTD of [5; 6] is obtained by settingP = HH⊤ in Equation (21). As it was
shown in Section 4.5 of [5], by settingσ2 → 0 andP−1 = Φm

⊤GΦm in Equation (21), whereG is
an arbitraryd× d symmetric positive-definite matrix, we can derive a new set of GPTD algorithms
that are based on the LSTD(0) algorithm. As it was discussed in Section 4.5.3 of [5], a reasonable

choice forG isG =
(
ΦmΦm

⊤
)−1

.

8.5 Experiment Setups

In the following we list all the details about the setup used in the experiments of the paper. We report
the hyper-prior parameters(τ, ψ0) and the parameters used in the inference algorithm. In particular,
ǫEM is the threshold used in the stopping condition of the EM algorithm,nMCMTL is the maximum
number of iterations of the outer loop ofMCMTL , andnGibbs is the number of steps of the Gibbs
sampling. In none of the experiments the parameters have been systematically optimized.

8.5.1 The Regression Problem

In Figure 6 we report examples of the functions (tasks) and the generated samples for each of the four
different classes used in the experiments of Section 6.1 of the paper. The parameters used in the ex-
periments are reported in Tables 1. As it can be noticed the prior is not very informative and it has not
been optimized for this specific problem. Since the four classes are quite well separated, the value of
the concentrationτ is not critical for the success of theMCMTL algorithm. Finally, the length of the
Gibbs sampling changes with the number of tasks, so that whenmany tasks are involved, a longer
MCMC simulation is performed and a more accurate estimationof p({cm}|{ŵm}, {Rm}, τ, ψ0) is
computed.
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Figure 6: Examples of functions and samples drawn from each of the4 classes (N = 100,M = 4).

Hyper-prior Value

µ
0

[0 0 0 0 0 0]
k0 1.0
ν0 6
Σ0 10I
β0 1.0
α0 2.0
τ 30

Inference Value

ǫEM 0.0001
nMCMTL 10
nGibbs 100×M

Table 1: Hyper-prior parameters and parameters of the inference algorithm in the regression prob-
lem.

8.5.2 Inverted Pendulum

In the inverted pendulum the state spaceX ∈ R
2 is a 2-dimensional space with variables(θ, θ̇), the

vertical angle and the angular velocity, respectively. Theaction space isA = {−50, 0, 50}, where
a = 50 means that a right force of50 Newtons is applied to the cart. Each action is perturbed
by a uniform noise in[−η, η] (as reported in the paper for each taskη is drawn from a Gaussian
distributionN (12, 0.1)). The discount factor isγ = 0.9. At each step of policy iteration,Q(s, a)
is approximated in a linear space spanned by 10 RBF features for each action as in [8]. The critical
parameters controlling the nonlinear dynamics of the system arem the mass of the pendulum,M
the mass of the cart, andl the length of the pendulum. To illustrate the impact of theseparameters
on the optimal value function and the corresponding optimalpolicy, we show the value functions
and the policies for two sample tasks drawn from classesc1 andc2 in Figure 7. As it can be noticed
different values form, M , andl, induce significantly different value functions and policies. The
parameters used in the experiments are reported in Tables 2.
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Figure 7: Examples of value functions and corresponding policies for two tasks with parameters
m1 = 1.03,M1 = 5.64, l1 = 0.5, η1 = 12.09 andm2 = 3.0,M2 = 10.04, l2 = 2.01, η2 = 11.91,
drawn from classesc1 andc2, respectively. The tasks are solved usingSTL with N = 2, 500. In the
policy plots blue, green, and red colors correspond to actions−50, 0, and50, respectively.



Hyper-prior Value

µ
0

0 ∈ R
30

k0 1.0
ν0 30
Σ0 30I
β0 0.75
α0 1.1
τ 20

Inference Value

ǫEM 0.0001
nMCMTL 10
nGibbs 20×M

Table 2: Hyper-prior parameters and parameters of the inference algorithm in the inverted-pendulum
problem.

At iterationk = 1 of policy iteration, the training setD(1)
m = {〈xn, an, x′n, πR(x

′
n)〉}

N
n=1 is built by

following a fully random policyπR for each taskMm. At iterationk = 2, 3, . . ., all the samples in
the training setD(k)

m have the samexn, an, x′n components, while the fourth component is changed
according toπk−1(x

′
n). At the end of policy iteration, the performance of the learned policy is

evaluated by taking the average over 30 episodes with a maximum of 3,000 steps each.
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