Bayesian Multi-Task Reinforcement L earning

Alessandro Lazaric Mohammad Ghavamzadeh
INRIA Lille - Nord Europe, Team Sequel, France
{al essandro. | azari c, mohammad. ghavanzadeh}@nri a.fr

Abstract

We consider the problem of multi-task reinforcement leagnivhere the learner
is provided with a set of tasks, for which only a small numbfesamples can be
generated for any given policy. As the number of samples noaypa enough to

learn an accurate evaluation of the policy, it would be neagsto identify classes
of tasks with similar structure and to learn them jointly. Ansider the case
where the tasks share structure in their value functiorgpaodel this by assum-
ing that the value functions are all sampled from a commoaorphiVe adopt the

Gaussian process temporal-difference value function tresdkuse a hierarchical
Bayesian approach to model the distribution over the valmetions. We study
two cases, where all the value functions belong to the saass eind where they
belong to an undefined number of classes. For each case, seanpeehierarchi-

cal Bayesian model, and derive inference algorithms fojo{ijt learning of the

value functions, and (ii) efficient transfer of the infornoatgained in (i) to assist
learning the value function of a newly observed task.

1 Introduction

Multi-task learning (MTL) is an important learning paradigind has recently been an area of active
research in machine learning (e.g., [4; 1; 17; 16; 3]). A camrseetup is that there are multiple
related tasks for which we are interested in improving thégomance over individual learning by
sharing information across the tasks. This transfer ofrmédion is particularly important when we
are provided with only a limited number of data to learn eakt Exploiting data from related
problems provides more training samples for the learnercamdimprove the performance of the
resulting solution.

Most reinforcement learning (RL) algorithms [2; 13] oftemed a large number of samples to solve
a problem and cannot directly take advantage of the infaonaipming from other similar tasks.
Nonetheless, recent work has shown that transfer and taskiiearning techniques can be em-
ployed in RL to reduce the number of samples needed to achieady-optimal solutions. All
approaches to multi-task RL (MTRL) assume that the taskees$imilarity in some components
of the problem such as dynamics, reward structure, or valnetion. While some methods explic-
itly assume that the shared components are drawn from a cargererative model [15; 10], this
assumption is more implicit in others [14; 9]. In [10], tasisare the same dynamics and reward
features, and only differ in the weights of the reward fumictiThe proposed method initializes the
value function for a new task using the previously learnddeséunctions as a prior. In [15], the
distribution over the dynamics and the reward functionsheftasks is drawn from a hierarchical
Bayesian model (HBM). Due to some similarity to our work, wectiss this method in more de-
tails in Section 5. In [9], the authors implicitly assumetttiee tasks are drawn from a common
distribution. They propose a method to selectively transéanples from source tasks to a target
task based on the likelihood of the target samples beingrgaateby the models built for the source
tasks. Finally, in [14], learning the value function of tlaeget task is expedited using the solution
learned in a source task with related, but different, statkation spaces.

In this paper, we study the MTRL scenario in which the leais@rovided with a number of tasks
with common state and action spaces. For any given polidy, @ismall number of samples can
be generated in each task, which may not be enough to aclguestduate the policy. In such a
MTRL problem, it is necessary to identify classes of taskihwimilar structure and to learn them
jointly. In our work, we consider a particular class of MTREkoplems in which the tasks share
structure in their value functions. To allow the value fuoes to share a common structure, one
way would be to assume that they are all sampled from a commion pVe adopt the Gaussian
process temporal-difference (GPTD) value function mo@Efdgr each task, model the distribution
over the value functions using a HBM, and develop solutionthé following problems: (i) joint
learning of the value functions, and (i) efficient transféthe information acquired in (i) to facilitate
learning the value function of a newly observed task. Werrieféghe above problems agmmetric
andasymmetrianulti-task learning, respectively. In Section 3, we preésehiBM for the case in
which all the value functions belong to the same class, angdedan EM algorithm to find MAP
estimates of the value functions and the model’s hypermpatars. However, as pointed outin [4; 1],
if the functions do not belong to the same class, simply legrthem together can be detrimental
(negative transfer It is therefore important to have models that will genlgraknefit from related
tasks and will not hurt performance when the tasks are ueckld his is particularly important in
RL as changing the policy at each step of the policy iterasitgorithm (this is true even for the
fitted value iteration algorithm) can change the way taskschustered together. This means that
even if we start with value functions that all belong to theneaclass, after one iteration the new
value functions may be clustered into several classes.dtid®et, we introduce a Dirichlet process
(DP) based HBM for the case that the value functions belorantandefined number of classes,
and derive inference algorithms for both the symmetric asydremetric scenarios. In Section 5,
we discuss the similarities and differences with closelgtesl work. In Section 6, we report and
analyze experimental results.

2 Preéiminaries

The agent-environment interaction in RL is conventionailydelled as a Markov Decision Process
(MDP). A MDP is a tupleM = (X, A, R,P) whereX and .4 are the state and action spaces,
respectively;R is the probability distribution over rewards; andP is the transition probability
distribution. Astationarypolicy 7 : X x A — [0, 1] is a mapping from states to action selection
probabilities. The MDP controlled by a polieyinduces a Markov chain with transition probability
distribution P™(2'|z) = [, P(a'|z,a)7(a|z)da. Given a policyr, the (possibly discounted,
[0,1)) return for a stater, D™ (x), is a random process defined By (z) = >°.° v R(x¢)|zo =

x, with 2411 ~ P™(-|a;). Thevalue functionV"(x) is the expected value dP™(x) where the
expectation is over all possible trajectories and rewaotiected along them.

A key problem in RL is to learn the value function of a givenipglwhich is calledpolicy evalu-
ation [2; 13]. Loosely speaking, in policy evaluation the goalddind a “close enough” approx-
imation V' of the value functior/™. Unlike in supervised learningthe target functioV’™ is not
known in advance and its values have to be inferred from tlsemied rewards. Therefore, it is
required to define a stochastic generative model connetlimginderlying hidden value function
with the observed rewards. In this paper, we adopt the GPTi¥anction model proposed in [6],
in which the discounted returP is decomposed into its mednhand a random zero-mean residual
AV, D(z) = V(z)+ AV (z). Combining this decomposition with the Bellman equatioa,abtain

R(z) =V(z) = V(') + e(w,2’), '~ P"(|z), 1)

wheree(z, z') et AV (xz) — vAV(2’). Suppose we are provided with a set of samfles=
{(zp, 2!, 7,)}N_,, wherer,, andz!, are the reward and the next state observed by following pol-
icy « in statex,,, respectively. By writing the model of Eq. (1) w.r.t. theserples, we obtain

R =HV + & whereH € RV*2N and

RT = (ra)N_y; 7 = (e(@n,) _1; VT = (V(wa), V(al))

) (1.3) (o, ko, v, 50) w (ke) | (o, ko, vo, Bo)
(1. X2) (o, ko, 0. 2o) WWQ : : m O
l a? (@, Bo) a? (v, Bo)
0, 20) rmn
O

o2 (g, Bo) Tmn ; 2(
0
m Tin

(a) M (®) M oc ()

Figure 1: Graphical representations @) the single-task model — an extension of GPTD by
defining a hyper-prior over the parametgts), the single-class multi-task model of Section 3, and
(c) the multi-class multi-task model of Section 4.

1 —v 0 0 0 0
0 0 1 —v 0 0
H:
0 0 0 0 1 —y

Note that if the samples are generated from a single trajethenz/, = z,, ., andH will be of
the form defined by Eq. (2.7) in [6]. In order to specify a coetplprobabilistic generative model
connecting values and rewards, we need to define a prioitdistm for the value functio’ and
the distribution of the noise. Similar to [6], we model the value function as a Gaussiarcgese
(GP), and the noise vector &~ N (0, S), whereS is the noise covariance matrix modelling the
correlation of the noise between different states. In thieing we write S = 2P, wheres? and

P are the variance and the correlation matrix of the noispaets/ely. For a more extended discus-
sion about different models of noise we refer readers tofid] @ection 8.4. The value functidn
may be represented either in parametric or non-parametrit.fin this paper we use the parametric
representation to make the formulation easier to followaltiihe results can be extended to the non-
parametric case following similar steps as in Section 5.4 ¢. In the parametric form, the value
function is represented by a finite setdfeaturesp(-) = (qbl(-), cee ¢d(-))T and a weight vector
w = (w,...,wq)" asV(-) = ¢(-)"w. The randomness ilf is now due tow being a random
vector with Gaussian priot ~ A (u,3). The model equation now becomBs= H® w + &,
where® = [¢(z1), p(z)), ..., d(zn), ¢(z)y)] is ad x 2N matrix. Fig. Xa) shows the graphical
representation of this model. Note that the model showndn Kg) is the model that we use for
single-task learninggTL) in the experiments of this paper. It is an extension of thgiwal GPTD
model by defining a Normal-inverse-Wishart and an inversga@®a hyper-priors parametrized by
o = (pg, ko, 10, X0, ap, Bo) over the model parametefg, 3, 02). This allows us to optimize the
model parameters given the data.

In the MTRL setting of this paper, the learner is providedwiif tasks or MDPs with common state
and action space#t,, = (X, A, R, Pm), m = 1,..., M. Given a fixed policy)N samples are
generated in each task, i.®,, = {(Zmn, T\, "mn) }—1, Which may not be enough to have an
accurate evaluation of the policy. We consider the case iictwifne tasks share structure in their
value functions. In the parametric value function modetdssed above, this can be interpreted as
the value functions share the same feature space and thightwectors are sampled independently
from a common prior, i.e¥,,(-) = ¢(-) " Wy; Wy, ~ N (e,). In the next two sections, we study
two different scenarios: 1) when all the tasks belong to #meesclass, i.e., they share the same prior,
and 2) when they can be clustered into an undefined numbeasded.

3 Single-class Multi-task Learning

In this section, we consider the case where all the tasksbdtothe same class, i.e., they share
the same distribution over their value functions, ~ A (u,X), m = 1,..., M; and the same
observation noise?. The goal in the symmetric form of this problem is to estimate,, } 2/_; from

the data{D,,} M_,, whereas in the asymmetric case we are interested in estgrthe parameters

6 = (u,X,0°) from the data in order to use them as a prior for a newly obsetask (e.g.,
task Ms4+1). We use a parametric HBM for this problem. HBMs allow us todmloboth the
individuality of the tasks and the correlation between thémHBMSs, individual models with task
specific parameters are usually located at the bottom, atitedayer above, tasks are connected
together via a common prior placed over those parameteesnlrey the common prior is a part of
the training process in which data from all the tasks contélio learning, thus making it possible
to share information between the tasks usually via suffigtatistics. Then given the learned prior,
individual models are learned independently. As a resdfling at each task is affected by both its
own data and by data from the other tasks related throughottmenon prior.

3.1 TheModd

We assume a normal-inverse-Wishart and an inverse-Gampe-pyiors for(u,) ando?, re-
spectively.

p(Olto) = p(p, E) x p(o?) = N (p; o, T/ko) IV (300, o) x IG(0% a0, B0). (2)

These distributions are the conjugate priors for multa@riGaussian distributiopgw,,, |, 3) and

PRy |Wim,0?) = N(H <I>,anm, a%P), respectively. This leads to the following generative node
for the data{D,,}. Fig. 1(b) shows the graphical representation of this model. The ldegéithe
model can be found in Section 8.

Single-ClassModel: Given the hyper-parameters = (u, ko, v, 20, @0, 50),

1. The parameterg = (u, X, o) are sampled once from the hyper-prior as in E2),
2. For each taskM,,, (value functiorV;,), the weight vector is sampled as,, ~ N (u, X),

3. Given{(zmn,2,,,)}_,, we haveR,, = H® ' w,, + £, where ~ N (0,0%P), m =
1 M.

goeeey

3.2 Inference

This model can be learned by optimizing the penalized ladidp ({ R, }H{(zmn, 20n) }, 0)p(0)

w.r.t. the parameter$ = (u, X, 0?) using an EM algorithm. In the rest of the paper, we refer to
this algorithm assCMTL, for single-class multi-task learning.

E-step: Since the posterior distribution of the latent variablg§w,,}|{D,.},0) is a prod-
uct of M Gaussian posterior distributiopgw,, | Dy, 0) = N (uy,,,, 30,,,). for each taskn, we
compute the mean and covariance as

-1

1 1
AN YA {—2{>mHTP1Rm + 214 . B = [_2<1>mHTP1H<I>L +x!
g g

M-step: We optimizef to maximize the penalized expected log-likelihood of costpldata
log p({Dn. }, {wm}|0) over the posterior distribution estimated in the E-step abigin the new
parameters

M
1
Hnew = M+ ko <kOHo + Z HE)m) J

m=1

M
_ 1 T ’ / T /
Snew = Mtotdre {RO(H — Ho) (B — o) + X0+ Z [(Hom =) (Ko, — 1) + EOm} })

m=1

M
2 1 ST, T T —1 T \"
Onew — m {2ﬂ0 + Z |:tr (P H@mzo,mémH) + (Rm - H(Pm“'()m) P (R'm - H(Pm“'om) :| } .

m=1

4 Multi-class M ulti-task Learning

In this section, we consider the case where the tasks betbag undefined number of classes.
Tasks in the same clags\,,,| ¢, = ¢} share the same distribution over their value functions
W, ~ N(p,.,E.), and the same observation noise We use a nonparametric HBM for this
problem. In the HBM proposed in this paper, the common peatrawn from a Dirichlet process
(DP). As addressed in the statistics literature (see, [&.4])), DP is powerful enough to model the
parameters of individual classes, to fit them well without assumption about the functional form
of the prior, and to automatically learn the number of unded classes.

4.1 TheMod€

We place a DPr, G) prior over the class assignment and the class parametegscofitentration
parameterr and the base distributiof, can be considered as priors over the number of classes
and the class parametefts = (u., ., 02), respectively. Gy is specified as the product of a
d-dimensional normal-inverse-Wishart andladimensional inverse-Gamma distributions, with
parametergy = (g, ko, Vo, X0, 0o, Bo), (See Eq. 2). We employ the stick-breaking representation
of the DP prior [7], and define a task-to-class assignmenmabl(c,,1, . . ., ¢moo) fOr each taskn,
whose elements are all zero except thatdireelement is equal to one if task belongs to class.
Given the above, the da{&,,,} can be seen as drawn from the following generative modelseho
graphical representation is shown in Figc)L

Multi-Class Model: Given the hyper-paramete(s, v),

1. Stick-breaking view: Draw v, from the Beta distributionBe(1,7), computer, =
ve [15Z; (1 — v;), and independently dradi,. ~ Gy, ¢=1,...,00,

2. Task-to-class assignmeribraw the indicator(c,,1, . . . , ¢meo) from a multinomial distri-
bution M (1;7m1,...,70), m=1,..., M,

3. The weight vector is sampledas, ~ N (p,. ,Xc,,), m=1,..., M,

4. Given{(zn, ¥, }N_, we haveR,, = H®, w,,, + &, where€ ~ N'(0,02 P), m =
1

geeey

4.2 Inference

We are interested in the posterior distribution of the lateariablesz = {{wm}, {cm},{0c}}
given the observed data and the hyper-parameterand v, i.e., p(Z{Dm}, 7,%0)
p({Dm}| Z,7,%0)p(Z|7,40). In the following we outline the main steps of the algorithsed to
solve this inference problem, which we refer toM&MTL, for multi-class multi-task learning (see
Fig. 2). MCMTL combines thesCMTL algorithm of Sec. 3.2 for class parameters estimation, with
a Gibbs sampling algorithm for learning the class assignsndr2]. The main advantage of such
combination is that at each iteration, given the currernirege of the weights, we take advantage of
the conjugate priors to derive an efficient Gibbs sampliragedure.

More formally, given an arbitrary initial class assignmént, }, a distinct EM algorithm is run

on each class = 1,...,C (with C the current estimate of the number of classes) and returns
M distributions\ (uy,,,, X6,,)- Given the weights estimated at the previous step, = py,,,

the Gibbs sampling solves the DP inference by drawing sasripten the posterior distribution
p({emY{Bm}, {Wm}, 7, ¢0). In particular, the state of the Markov chain simulated ie @ibbs
sampling is the class assignm€nt,, }, i.e., the vector of the classes each task belongs to. At each
iteration, each componeay, of the state is updated by sampling from the following disttion

Mfm,c
M—-14T1

/ PR, 10 |0)p(6]160) 6, 3

If ¢ = cprym’ # m: p(cm =cl{em }s Rmy Wim, T, wg) =0 /p(Rm,vAvm|96)p(96|{cm/},wg)dﬁc,

. T
else:p(c’m # Cm/, ml 7é ml{c'm’}7 R"’“ Wi, T, 1/}0) - bm

MCMTL ({Rm}, 7, %0)
Initialize {c }
repeat
forc=1,...,Cdo
Initialize 6.
repeat
for m: ¢, = cdo
P(Wm|Rm,0c) = N (1o, Zo,,) (E-step)
end for
Optimizeé. (M-step)
until convergence
end for
SetWm = py,,, m=1,...,.M
p{em{Fm o { R}, 7, 00)
until convergence
return {w,,} and{cm }

Figure 2: The inference algorithm for the multi-class mtdsk learning {CMTL) scenario.

whereM_,, . is the number of tasks in clasgxcept taskn, andb is a normalizing constant. While
the first term in Eq. (3) is the probability of task to belong to an existing clagsthe second term
returns the probability of assigning taskto a new class. Thanks to the conjugate base distribution
G, the integrals in Eq. (3) can be solved analytically. In fact

p(Rma ®m|9)p(9|1/10) = p(lewma UQ)p(wmlp’a E) X P(Na 2'”01 kOa o, EO)p(02|a07 ﬁo)
oc N (s oy, B/ ko) IW (5 v, Tpy) x IG (0% g, By), (4)
whereyy, = (uy, ki, v, g, o, B) are the posterior parameters@f given the weightw,,, and

the rewardsR,,, (see Section 8 for their definition). Using the posteriordryparameters, the second
integral in Eq. (3) can be written as

ko)% S|z T (%)

R, Wi |0)p(0]50)dO = :
/p(w |)p(WJO) <7Tk6 |26|V0/2F(V62_d)

In the first integral of Eq. (3), the density functipfd.|{c..- },¥o) is the posterior probability over
the class parametefs given the data from all the tasks belongingetp according to the current
class assignmert,, }. Similar to Eq. (4), we compute the posterior hyper-paranset,. of the
normal-inverse-Wishart and inverse-Gamma distributiginen {w.,,-} and{R,,-}, with m’# m
andc,,» = ¢,,,. Finally, the integral can be analytically calculated a& (5), where the hyper-
parameterg, and the posterior hyper-parametgfsare replaced by, andi,, respectively.

4.3 Symmetricvs. Asymmetric Learning

The MCMTL algorithm returns both the distribution over the weightsdach task and the learned
hierarchical model (task-class assignments). While thenéo can be used to evaluate the learn-
ing performance in the symmetric case, the latter providpsa for learning a new task in the
asymmetric scenario.

Symmetric Learning. According to the generative model in Section 4.1, the taskmie are dis-
tributed according to the normal distributio¥i (s, , 3,), Wherepg, —andXj, —are the pos-
terior mean and covariance of the weight veaigy, returned by theMCMTL algorithm. Since

Vin(z) = ¢(:17)Twm, the value ofV/,, at a test state. is distributed as

P(Vin (@), s Tt) = N(0(@) " 1 b() ", b)),

If MCMTL successfully clusters the task, we expect the value fumptiediction to be more accurate
than learning each task independently.

Asymmetric Learning. In the asymmetric setting the class of the new task is not kriowadvance.
The inference problem is formalized ag$w ;11| Rar+1, Yo, {cm }oi—1), Wherew 1 andRag 41
are the weight vector and rewards of the new tAgk, ., respectively. Similar to Section 4.2, this
inference problem cannot be solved in closed form, thus, wst@pply theMCMTL algorithm to
the new task. The main difference with the symmetric leaérthat the class assignmeits,, }
and weightgw,, } for all the previous tasks are kept fixed, and are used as aquén the new task
learned by theiCMTL algorithm. As a result, the Gibbs sampling reduces to a teesampling
process assigning the new task either to one of the existagses or to a new class. M/,
belongs to a new class, then the inference problem becpmes; 1| Rar+1,%0), that is exactly
the same as iBTL. On the other hand, i ;1 belongs to class, the rewards and weigh{s?,,. },
{w,, } of the tasks in class can be used to compute the posterior hyper-parameferas in Eq.
(4), and to solve the inference problefw ;11| Rar+1, ¥o.)-

5 Reated Work

In RL, the approach of this paper is mainly related to [15thAlugh we both use a DP-based HBM
to model the distribution over the common structure of tlekdain [15] the tasks share structure
in their dynamics and reward function, while we considerdase that the similarity is in the value
function. There are scenarios in which significantly diéier MDPs and policies may lead to very
similar value functions. In such scenarios, the method @sed in this paper would still be able to
leverage on the commonality of the value functions, thufopering better than single-task learning.
Moreoverin [15], the setting is incremental, i.e., the taake observed as a sequence, and there is no
restriction on the number of samples generated by eachTagkfocus is not on joint learning with
finite number of samples, it is on using the information gdifrem the previous tasks to facilitate
learning in a new one. This setting is similar to the asymimé&arning considered in our work.

In supervised learning, our work is related to [17] and [16].17], the authors present a single-class
HBM for learning multiple related functions using GPs. Oungde-class model of Section 3 is an
adaptation of this work for RL using GPTD. Besides, our maliiss model of Section 4 extends
this method to the case with an undefined number of classg46]na DP-based HBM is used to
learn the extent of similarity between classification peoi$. The problem considered in our paper
is regression, the multi-class model of Section 4 is moregierthan the one used in [16], and the
inference algorithms of Section 4 are based on Gibbs samplihere a variational method is used
for inference in [16].

6 Experiments

In this section, we report empirical results applying they&aan multi-task learninggMTL) al-
gorithms presented in this paper to a regression problemaamehchmark RL problem, inverted
pendulum. We compare the performance of single-task legi{siTL) with single-class multi-task
learning ECMTL), i.e., all tasks are assumed to belong to the same classualtietlass multi-task
learning MCMTL), i.e., tasks belong to a number of classes not known in advaBy STL, we
refer to running the EM algorithm of Section 3.2 for each tasgarately. The reason to use the
regression problem in our experiments is that it allows usviuate ouBMTL algorithms when
the tasks are generated exactly according to the genenatidels of Sections 3 and 4.

6.1 A Regression Problem

In this problem, tasks are functions in the linear space mparby a feature spacg(z) =
(1,z,2% 2% 2*,2°)" on the domaint = [-1,1]. The weights for the tasks are drawn from four
different classes, i.e., fo-dim multivariate Gaussian distributions, with the paréengshown in
Fig. 3(a). The noise covariance matr&= diag(c?) for all the algorithms. We evaluate the perfor-
mance of eacBMTL algorithm by computing its relative mean squared error (Mi&tprovement
overSTL: (MSEst.— MSEgut.)/MSEst.. The MSEs are computed ovsf = 1000 test samples.
All the reported results are averaged o¥e0 independent runs.

B o; °°
a1 (50 10 5 0 0 0) 7.0 o7
c2 | (000 0.5 0.10.05) 3.0 Min Max "
ca | (020 0-0.50-0.05) | 5.0 "o TITRTIE L1 9 | 64.78% £ 0. £ a
o | (0050210 1 75 Ny | 20.86%+09 | 67.64% +0. s
o [d@g20.0 100 5.0 0.0 0.0 0.0) || 8 | 66:69% £0.8 | 91.81% £0.0 3 s
co | diag0.0 0.0 0.0 0.5 0.1 0.05) | ¢ca | 56.47% £ 1.2 | 75.78% £ 0.: .
cs | diag(0.0 5.0 0.0 0.5 0.0 0.01)
ca | diag(20.0 0.0 5.0 0.0 0.1 0.0) - u,.

30 40 60
Number of Samples

(@) (b) (c)

Figure 3:(a) class parametergh) minimum and maximum improvement SCMTL over STL in
each class(c) relative MSE improvement dsCMTL over STL when all the tasks are drawn from
classcs.

In the first experiment, we draw all the tasks from class Fig. 3(c) shows the performance of
SCMTL for different number of tasks\() and samples per task/). SCMTL achieves an improve-
ment overSTL that varies fron29.86% + 0.9 for N = 100 and20 tasks t067.64% =+ 0.8 for 100
tasks with only20 samples each. The results indicate th@MTL successfully takes advantage of
the samples coming from all the tasks to build a more accyéte than the one obtained by con-
sidering each task separately asinL. However, the advantage 8SCMTL overSTL declines agV

is increased. In fact, a&TL convergesSCMTL cannot make further improvement. We repeated the
same experiment for the other classes. The minimum and nuaxiperformance c6CMTL for all

the classes (all obtained for = 100, M = 20 and N = 20, M = 100, respectively) are summarized

in Fig. 3(b).

In the second experiment, we draw the tasks randomly frorfotlieclasses. We first app§CMTL

to this problem. Fig. éa) shows thesCMTL's performance. As it can be seen, the results are worse
than those in the first experiment (Figc}, varying from30.15% =+ 4.8 to 54.05% + 1.2. By
clustering all the tasks togeth&CMTL takes advantage of all the available samples, thus, pesform
better thanSTL. However, when the tasks are drawn from significantly déferdistributions, it
learns a very general prior which does not allow a significaprovement oves TL. We then apply
MCMTL to this problem.MCMTL’s performance (Fig. @)) is significantly better thasCMTL's
(Fig. 4(a)), and it varies fromt5.64% 4 5.6 to 77.65% 4 0.8. In order to evaluate how wellCMTL
classifies the tasks, we also compare its performance tostgomenf MCMTL in which each task

is assigned to the right class in advance. The differencedsst the two algorithms is statistically
significant only forN = 20 (with the maximum 0%.08% for M = 20), in which the noise on the
samples makes it more difficult to discriminate between fls&idutions generating the tasks, and
thus, to classify them correctly.

Finally, we compare the performance®EMTL andMCMTL in the asymmetric setting. At the end
of each run of the symmetric problem, we draef new test tasks at random from the same four
classes used to generate the training tasks. We run the astyimadgorithm described in Section 4.3
on each of the test tasks separately. Fig)4hows the performance &CMTL andMCMTL for
different number of training tasks and fixed to 20. The results indicate thatCMTL performs
relatively better thaisCMTL as the number of training tasks increases.

6.2 Inverted Pendulum

The experiments of Section 6.1 indicate that when the tagkgenerated exactly according to the
generative models of Sections 3 and 4, BMTL methods can significantly improve the perfor-
mance of a regression problem w.STL. As discussed in Section 2, the policy evaluation step of
policy iteration can be casted as a regression problem, sim#ar improvement can be expected.
In this section, we compare o®MTL algorithms withSTL in the problem of learning a control
policy for balancing an inverted pendulum. Dynamics, relfanction, and basis functions are the
same as in [8]. Each task is generated by drawing the paresrdtthe dynamics (pole mass, pole
length, cart mass, and noise on the actions) from Gaussstiibdtions with means and variances
summarized in Fig. @). The distribution over the two classes is uniform. It is vaanbting that,
unlike the regression experiments, here we have no guartirgethe weights of the value functions

08 0.8 07,
20 065
07 07 @
& o 1113
7] .-
0 P e B
% 0.6 2 % 0.6 = 059 - }
2 & g o -
= = £ e
° 05 S 4of 05 9 0.45] I
k] g g 1
S 04 1
E 0.4 £ 0.4 £ ’ I
z Z 0 W 035| . I
4] B
03 0.3 2 03 ; I
< h
100 100 o2st ! SCMTL
. -=-MCMTL
20 30 40 60 100 02 02 0%y 8 12 16 20 24 28 2
Number of Samples Number of Samples Number of Training Tasks

Figure 4: Results for the case that the tasks are drawn rdgdomm the four classes(a) relative
MSE improvement oBCMTL over STL, (b) relative MSE improvement diCMTL overSTL, (c)
asymmetric performance MCMTL andSCMTL for N = 20.

2000

===MCMTL|

100

200 300
Number of Samples

400 500

1

0.4
4

C1 C2 § '.‘{’_—’_ I 0.9 ’Al___-:[""l-_-'l-/{...
pole mass| 1.0,0.2 | 3.0,0.0 | &0 JRe gos l
pole length| 0.5,0.0 | 2.0,0.2 |Z P -0 I O S 0
cartmass | 6.0,0.5 | 10.0,0.5 |32 . < {
. £ ’ 1’
noise 12,0.1 12,0.1 |2 0 s osf :ﬁ%mt

10 12 14 16 18 20
Number of Tasks

6 8

@ (©

Figure 5: Results for the inverted pendulum problefa) distributions of the parameters of the
dynamics{b) comparing the performance 8fTL, SCMTL, andMCMTL in terms of the number of
balanced steps fav/ = 10, (c) comparing the performance 8€MTL andMCMTL in terms of the
area ratio on the firgt00 samples.

will follow the generative models assumed by tBRITL methods. We use policy iteration with
10 iterations and the noise correlation matéx' = &,, " (®,,®,. ") '®,, for all the algorithms.
In STL, each policy evaluation step is solved using the EM algoriti Section 3.2 for each task
separately, where iBMTL, it is solved by runningsCMTL or MCMTL over all the tasks. All the
results are averaged ovEj0 independent runs.

Fig. 5(b) shows the performance of the policy learned3®L, SCMTL, andMCMTL for M = 10
tasks and different (up to 500) number of samples per taske MatSTL converges at abod00
samples per task with an average performanc2i@8 + 61.9 balanced steps. As it can be seen,
bothBMTL methods outperforr8TL, andMCMTL achieves a better performance tHe@MTL as
the number of samples is increased. SiB@MTL forces all the tasks to have weights generated
from a common distribution, it learns a very general prioxd dhus, it cannot approximate the
value functions as accurate I€MTL, which is able to correctly discriminate between the tasks i
classeg; andcs. In order to show how the performance changes with diffenentber of tasks, we
compute the area ratio [14] on the first 500 samplessas. = w whereAst. (AsmtL)

is the area under the learning curve3fL (BMTL) from 100 to 500 samples. Fig(& shows that
MCMTL has significantly better area ratio thagMTL for all values ofM except very small ones.

7 Conclusions

We presented hierarchical Bayesian models (HBMs) andenfar algorithms for multi-task rein-
forcement learning (RL) where the tasks share structuredim value functions. To the best of our
knowledge, this is the first work that models value functionilarity using HBMs. In particular,
we considered two cases, where all the value functions gdlmthe same class, and where they
belong to an undefined number of classes. In these cases, delletbthe distribution over the
value functions using a parametric HBM and a Dirichlet psscDP) based non-parametric HBM,

1This is the noise correlation matrix of LSTD(0) in the paranieceGPTD form (see Section 8.4).

respectively. For each case, we derived inference algosifior learning the value functions jointly
and to transfer the knowledge acquired in the joint learminighprove the performance of learning
the value function of a new task.

We first applied our proposed Bayesian multi-task learnB¥gTL) algorithms to a regression prob-
lem, in which the tasks are drawn from the generative modsdsl by theBMTL methods. The
results indicate thaBMTL algorithms achieve significant improvement over singtiearning
(STL) in both symmetric and asymmetric settings. We then apmi@dBMTL algorithms to a
benchmark RL problem, inverted pendulum. Although thedaske no longer generated according
to the models used by tlEMTL algorithms, they still outperforr8TL. In our DP-based model we
used Gibbs sampling, the most common simulation tool foreBan inference. We plan to look
into variational techniques for Bayesian inference as tanrative approach.

8 Appendix

8.1 Detailsof the Single-class M ulti-task Model
o R,

P(Ron|Win, 0) = p(Ryn|Win, 02) = N(H®, w,,,0°P)
° W,,

P(Win|0) = p(Win|p, X) = N(""v Y= (27T)7d/2|2|71/2 exp <_%(Wm - /J’)Tzil(wm - H))

e 0

p(0]o) = p(p, s o, kos 0, Bo) % p(a”; o, Bo)
= N (3 po, B/ko) IW(Z; 19, 30) x IG(0%; a0, Bo)

k
= (27 /ko) 2|22 exp <—70(M — o) B (- Ho)) (normal)
1 . .
X B| X |"0/? ||~ o+d+ /2 oxp <—§tr (2021)) (inverse-Wishart)
o 1 aot+l .
F(ZO) <;> exp <—%> (inverse-Gamma)

where

d .
_ _ +1—7
B-1 — 9wd/2,d(d—1)/4 T Yo _
™ 11 5

J=1

8.2 Posterior Distribution of the Parameter swith the Nor mal-Inver se-Wishart x
Inverses-Gamma Prior

Taking advantage of the conjugate prior the posterioritistion overd = (u, X, o2) given obser-
vations{(w,, Rn)}, and hyperpriot} is

m=1

P(1, Z, 0% Wi, Riny o) = N (s o, B/ k) IW(E; v, 5) x ZG(0; g, Bp) (6)

where the posterior hyper-parametefs= (u, ki, 14, 2, o, 55) are

M kONo
I
IJ’O - ko—FMW ko—FM) (7)
Ky = ko+M, (8)
vy = vo+ M, (9)
koM _ _ T
B, = EO‘FQO‘Fm(W—HO)(W—NO)) (10)
NM
CY6 = Qp + T 5 (11)
1 M T
By = Bty > (H®) Wy — Rpy) PTHH®, Wy — Riy) (12)
m=1

wherew = Z%:l Wi, Qo = Z%Zl(wm —w) (W, — W

8.3 Gibbs Sampling

In this section, we report the equations used in the Gibbpbagndescribed in Section 4.2 of the

paper. At each iteration of the MCMTL algorithm of Figure Zfire paper, the Gibbs sampling is fed
with observation${w,, }, { R }), wherew,, = pj, .. In particular, we use the the Gibbs sampling
with conjugate-priors (Algorithm 3 in [12]).

We begin with the probability of task belonging to a new class. Given observatién,,, R,,) and
hyper-priorig, the non-normalized probability can be written as

—N/2 5" Tla)
F(Oéo) Béaé)

x (27| P))

)

oy e (8

DB 0| 0)p(0]10)d6 = (KA
/) BT ()

where hyper-parameters, = (1w, ko, 14, X0, &, 8) are computed as in Section 8.2 for observa-
tion (R, Wi).

Similarly, letm’ : ¢, = ¢,m’ # m, then the posterior over parameters for class
P(Nca Eca Ug|{6\Vm’}, {Rm’}a 1/]0) = N(Hc; Hoca Ec/kO)IW(Ecy Woc, EOC) X IQ(Ug, Q¢ /BOC) (13)

with the following posterior hyper-parameters (which pllag role of prior hyper-parameters for the
class)

M—m c _ kOHO
_ : 14
Hoc kO + Mfm.,cw + kO +]\47“17C ’ ()
kOc = kO + M—m,c) (15)
Ve = W+ M—m,c) (16)
kOM—m,c _ _ T
Yo = Yo+ Qo+ m(w = o) (W — pg) (17)
NM_p,.c
Qoe = Qo+ T) (18)
1 N _ ~
boc = Bo+5 D (H® W — Rn) PYH® W, — Ry) | (19)

whereM_,, . is the number of tasks belonging to classxcept taskn, w = 17 LS Wi, and

—m,c

Qo =, (Wp — W) (W — v’v)T. As a result, the integral for the probability of taskbelong
to classc becomes

/ P(Ron; Win|0) p(Ol{ o }, 00)d = / P(Ron, Win|0)p(0]thoc) dO

- (o)l (%)

/ / I]2 ’_
7TkOc |20c|UOC/ I (—UOCQ d)

“ny2 Boe Tlege)

F(OLQC) ﬁgyéc

x (27 P|)

)

whereyy, is computed as in Equations (2)-(7) but usiig as prior instead of.

8.4 NoiseCorrelation Models

We analyze the equations far,,, for two different noise correlation models. In particulae show
that depending on the covariance matrix, both GPTD and BMA_ e seen as extensions of either
Bellman residual minimization (BRM) or LSTD.

We first analyze the general formulation wih= 2P be the covariance matrix of the noise.

Letd = (u, X, 0?%) be the model parameters. The expected value of the weigBirL is written
as

-1

- 1 B _ 1 _ _

Wi = |=®nH P 'H®, + 3 1} [—2<I>WHTP 'R + X7 1], (20)
g g

whereS = ¢2P is the noise covariance matrix modeling the correlatiorhef noise at different
states. We cal? andP the noise variance and the noise correlation matrix, reisghe

In casep = 0 andX = I, we obtain a general form for the posterior mean of the wsighthe
parametric form of GPTD (Equation (4.4.41) in [5])

-1
Wi = {‘PWHTP”H‘PL +0’I| ®,H'P'R,,. (21)

The (parametric) GPTD of [5; 6] is obtained by settiRg= HH ' in Equation (21). As it was
shown in Section 4.5 of [5], by setting — 0 andP~! = &,, ' G®,, in Equation (21), wher€& is
an arbitraryd x d symmetric positive-definite matrix, we can derive a new $&BTD algorithms
that are based on the LSTD(0) algorithm. As it was discuss&ection 4.5.3 of [5], a reasonable

choice forG is G = (@m«@mT) 71.

8.5 Experiment Setups

In the following we list all the details about the setup usethe experiments of the paper. We report
the hyper-prior parametefs, 1)) and the parameters used in the inference algorithm. Incodati
egm 1S the threshold used in the stopping condition of the EM @digm, nycurL 1S the maximum
number of iterations of the outer loop BICMTL, andngps iS the number of steps of the Gibbs
sampling. In none of the experiments the parameters havedyséematically optimized.

8.5.1 TheRegression Problem

In Figure 6 we report examples of the functions (tasks) aadjgnerated samples for each of the four
different classes used in the experiments of Section 6 Heopaper. The parameters used in the ex-
periments are reported in Tables 1. As it can be noticed fbeipmot very informative and it has not
been optimized for this specific problem. Since the fours#asare quite well separated, the value of
the concentration is not critical for the success of thiéCMTL algorithm. Finally, the length of the
Gibbs sampling changes with the number of tasks, so that wigy tasks are involved, a longer
MCMC simulation is performed and a more accurate estimafori{{c,, }{{Wm }, {Rm}, 7, %o) iS
computed.

Figure 6: Examples of functions and samples drawn from eattied classesy = 100, M = 4).

[Hyper-prior | Value |
000000

‘]:8 t 1.0] [Inference | Value |
Yo 6 EEM 0.0001
3o 101 TUMCMTL 10

ﬁo 1.0 NGibbs 100x M
(7)) 2.0

T 30

Table 1: Hyper-prior parameters and parameters of thedntar algorithm in the regression prob-
lem.

8.5.2 Inverted Pendulum

In the inverted pendulum the state space R? is a 2-dimensional space with variab(@sé), the
vertical angle and the angular velocity, respectively. @hton space isA = {—50, 0,50}, where
a = 50 means that a right force &0 Newtons is applied to the cart. Each action is perturbed
by a uniform noise iM—n», n] (as reported in the paper for each tasls drawn from a Gaussian
distribution\'(12,0.1)). The discount factor is = 0.9. At each step of policy iteratior)(s, a)

is approximated in a linear space spanned by 10 RBF featarem€h action as in [8]. The critical
parameters controlling the nonlinear dynamics of the sysieem the mass of the pendulum/
the mass of the cart, aridhe length of the pendulum. To illustrate the impact of thesemeters
on the optimal value function and the corresponding optipadicy, we show the value functions
and the policies for two sample tasks drawn from classesdcs in Figure 7. As it can be noticed
different values forn, M, and{, induce significantly different value functions and pdai The
parameters used in the experiments are reported in Tables 2.

0
4

Figure 7: Examples of value functions and correspondingciesl for two tasks with parameters
my = 1.03, My = 5.64,1; = 0.5, 71 = 12.09 andms = 3.0, My = 10.04, I3 = 2.01, o = 11.91,
drawn from classes, andcs, respectively. The tasks are solved usBi. with N = 2, 500. In the
policy plots blue, green, and red colors correspond to astid0, 0, and50, respectively.

[Hyper-prior [Value |
Ho 0€R™

ko 1.0 [Inference | Value |
Vo 30 €EEM 0.0001
o 301 TMCMTL 10

Bo 0.75 NGibbs 20x M
@ 1.1

T 20

Table 2: Hyper-prior parameters and parameters of theanteralgorithm in the inverted-pendulum
problem.

Atiterationk = 1 of policy iteration, the training se®') = {xp, an, o, mr(2!))}N_; is built by
following a fully random policyr for each taskM,,,. At iterationk = 2,3, ..., all the samples in

the training seD¥) have the same,,, a,, x,, components, while the fourth componentis changed
according tor,_1(2],). At the end of policy iteration, the performance of the lempolicy is
evaluated by taking the average over 30 episodes with a nuawiof 3,000 steps each.

References

[1] J. Baxter. A model of inductive bias learnindournal of Artificial Intelligence Research?:
149-198, 2000.

[2] D. Bertsekas and J. Tsitsiklidleuro-Dynamic ProgrammingAthena Scientific, 1996.

[3] E. Bonilla, K. Chai, and C. Williams. Multi-task Gaussigrocess prediction. IRroceedings
of NIPS 20 pages 153-160, 2008.

[4] R. Caruana. Multitask learningdachine Learning28(1):41-75, 1997.

[5] V. Engel. Algorithms and Representations for Reinforcement LegtniPhD thesis, The He-
brew University of Jerusalem, Israel, 2005.

[6] Y. Engel, S. Mannor, and R. Meir. Reinforcement learnivith Gaussian processes. Pmo-
ceedings of ICML 22pages 201-208, 2005.

[7] H. Ishwaran and L. James. Gibbs sampling methods fok-$tfeaking priors.Journal of the
American Statistical Associatiof6:161-173, 2001.

[8] M. Lagoudakis and R. Parr. Least-squares policy iteratIMLR, 4:1107-1149, 2003.

[9] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of sphas in batch reinforcement learning.
In Proceedings of ICML 25ages 544-551, 2008.

[10] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Tienm variable-reward hierarchical
reinforcement learningMachine Learning73(3):289-312, 2008.

[11] S. Mukhopadhyay and A. Gelfand. Dirichlet process rdigeneralized linear modeldournal
of the American Statistical Associati®®?(438):633-639, 1997.

[12] R. Neal. Markov chain sampling methods for Dirichlebpess mixture modelsJournal of
Computational and Graphical Statistic®(2):249-265, 2000.

[13] R. Sutton and A. BartoAn Introduction to Reinforcement LearningliT Press, 1998.

[14] M. Taylor, P. Stone, and Y. Liu. Transfer learning vigeinrtask mappings for temporal differ-
ence learningJMLR, 8:2125-2167, 2007.

[15] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-taglinforcement learning: A hierarchical
Bayesian approach. Rroceedings of ICML 24pages 1015-1022, 2007.

[16] VY. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multigla learning for classication with
dirichlet process priorsIMLR, 8:35-63, 2007.

[17] K. Yu, V. Tresp, and A. Schwaighofer. Learning Gausgiaocesses from multiple tasks. In
Proceedings of ICML 22%ages 1012-1019, 2005.

