
Analysis of a Classification-based Policy Iteration Algorithm

Alessandro Lazaric alessandro.lazaric@inria.fr

Mohammad Ghavamzadeh mohammad.ghavamzadeh@inria.fr

Rémi Munos remi.munos@inria.fr

SequeL Project, INRIA Lille-Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France

Abstract

We present a classification-based policy itera-
tion algorithm, called Direct Policy Iteration,
and provide its finite-sample analysis. Our
results state a performance bound in terms
of the number of policy improvement steps,
the number of rollouts used in each iteration,
the capacity of the considered policy space,
and a new capacity measure which indicates
how well the policy space can approximate
policies that are greedy w.r.t. any of its mem-
bers. The analysis reveals a tradeoff between
the estimation and approximation errors in
this classification-based policy iteration set-
ting. We also study the consistency of the
method when there exists a sequence of pol-
icy spaces with increasing capacity.

1. Introduction

Policy iteration (Howard, 1960) is a method of com-
puting an optimal policy for any given Markov deci-
sion process (MDP). It is an iterative procedure that
discovers a deterministic optimal policy by generating
a sequence of monotonically improving policies. Each
iteration k of this algorithm consists of two phases:
policy evaluation in which the action-value function
Qπk of the current policy πk is computed, and pol-

icy improvement in which the new (improved) policy
πk+1 is generated as the greedy policy w.r.t. Qπk ,
i.e., πk+1(x) = argmaxa∈A Qπk(x, a). Unfortunately,
in MDPs with large (or continuous) state and action
spaces, the policy evaluation problem cannot be solved
exactly and approximation techniques are required. In
approximate policy iteration (API), a function approx-
imation scheme is usually employed in the policy eval-
uation phase. The most common approach is to find
a good approximation of the value function of πk in a
real-valued function space (see e.g., Bradtke & Barto

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1996; Lagoudakis & Parr 2003a). The main drawbacks
of this approach are: 1) the action-value function,
Qπk , is not known in advance and its high quality sam-
ples are often very expensive to obtain, if this option
is possible at all, 2) it is often difficult to find a func-
tion space rich enough to represent the action-value
function accurately, and thus, careful hand-tuning is
needed to achieve satisfactory results, 3) for the suc-
cess of policy iteration, it is not necessary to estimate
Qπk accurately at every state-action pair, what is im-
portant is to have a performance similar to the greedy
policy, and 4) this method may not be the right choice
in domains where good policies are easier to represent
and learn than the corresponding value functions.

To address the above issues, mainly 3 and 4,1 variants
of API have been proposed that replace the usual value
function learning step (approximating the action-value
function over the entire state-action space) with a
learning step in a policy space (Lagoudakis & Parr,
2003b; Fern et al., 2004). The main idea is to cast the
policy improvement step as a classification problem.
The training set is generated using rollout estimates
of Qπ over a finite number of states D = {xi}Ni=1,
called the rollout set, and for any action a ∈ A.2 For
each x ∈ D, if the estimated value Q̂π(x, a∗) is greater
than the estimated value of all other actions with high

confidence, the state-action pair (x, a∗) is added to the
training set with a positive label. In this case, (x, a) for
the rest of the actions are labeled negative and added
to the training set. The policy improvement step thus
reduces to solving a classification problem to find a
policy in a given hypothesis space that best predicts
the greedy action at every state. Although whether
selecting a suitable policy space is any easier than a
value function space is highly debatable, we can argue
that the classification-based API methods can be ad-
vantageous in problems where good policies are easier

1The first drawback is shared by all reinforcement learn-
ing algorithms and the second one is common to all prac-
tical applications of machine learning methods.

2It is worth stressing that Qπ is estimated just on states
in D and not over the entire state-action space.

Analysis of a Classification-based Policy Iteration Algorithm

to represent and learn than their value functions.

The classification-based API algorithms can be viewed
as a type of reduction from reinforcement learning
(RL) to classification, i.e., solving a MDP by gener-
ating and solving a series of classification problems.
There have been other proposals for reducing RL to
classification. Bagnell et al. (2003) introduced an al-
gorithm for learning non-stationary policies in RL. For
a specified horizon h, their approach learns a sequence
of h policies. At each iteration, all policies are fixed ex-
cept for one, which is optimized by forming a classifica-
tion problem via policy rollout. Langford & Zadrozny
(2005) provided a formal reduction from RL to classi-
fication, showing that ǫ-accurate classification implies
near optimal RL. This approach uses an optimistic
variant of sparse sampling to generate h classification
problems, one for each horizon time step. The main
limitation of this work is that it does not provide a
practical method for generating training examples for
these classification problems.

Although the classification-based API algorithms
have been successfully applied to benchmark prob-
lems (Lagoudakis & Parr, 2003b; Fern et al., 2004)
and have been modified to become more computa-
tionally efficient (Dimitrakakis & Lagoudakis, 2008b),
a full theoretical understanding of them is still lacking.
Fern et al. (2006) and Dimitrakakis & Lagoudakis
(2008a) provide a preliminary theoretical analysis of
their algorithm. In particular, they both bound the
difference in performance at each iteration between
the learned policy and the true greedy policy. Their
analysis is limited to one step policy update (they do
not show how the error in the policy update is prop-
agated through the iterations of the API algorithm)
and either to finite class of policies (in Fern et al.
(2006)) or to a specific architecture (a uniform grid
in Dimitrakakis & Lagoudakis (2008a)). Moreover,
the bound reported in (Fern et al., 2006) depends in-
versely on the minimum Q-value gap between a greedy
and a sub-greedy action over the state space. In some
classes of MDPs this gap can be arbitrarily small so
that the learned policy can be arbitrarily worse than
the greedy policy. In order to deal with this prob-
lem Dimitrakakis & Lagoudakis (2008a) assume the
action-value functions to be smooth and the proba-
bility of states with a small Q-value gap to be small.

In this paper, we derive a full finite-sample analysis
of a classification-based API algorithm (called direct

policy iteration (DPI)) based on a cost-sensitive loss
function weighing each classification error by its actual
regret, i.e., the difference between the action-value of
the greedy action and the action chosen by DPI. Using

this loss, we are able to derive a performance bound
with no dependency on the Q-value gaps and no as-
sumption on the probability of small-gap states. Our
analysis further extends the one in Fern et al. (2006)
and Dimitrakakis & Lagoudakis (2008a) by consider-
ing arbitrary policy spaces. We also analyze the con-
sistency of DPI when there exists a sequence of policy
spaces with increasing capacity. We first use a coun-
terexample and show that it is not consistent in gen-
eral, and then prove that its consistency for the class
of Lipschitz MDPs. We conclude the paper with a dis-
cussion on different theoretical and practical aspects
of DPI.

2. Preliminaries

In this section we set the notation used throughout the
paper. A discounted Markov Decision Process (MDP)
M is a tuple 〈X ,A, r, p, γ〉, where the state space X
is a bounded closed subset of a Euclidean space R

d,
the set of actions A is finite (|A| < ∞), the reward
function r : X×A → R is uniformly bounded by Rmax,
the transition model p(·|x, a) is a distribution over X ,
and γ ∈ (0, 1) is a discount factor. Let BV (X ;Vmax)
and BQ(X×A;Qmax) be the space of Borel measurable
value functions and action-value functions bounded by
Vmax and Qmax (Vmax = Qmax = Rmax

1−γ), respectively.

We also use Bπ(X) to denote the space of deterministic
policies π : X → A. The value function of a policy π,
V π, is the unique fixed-point of the Bellman operator
T π : BV (X ;Vmax) → BV (X ;Vmax) defined by

(T π
V)(x) = r

(
x, π(x)

)
+ γ

∫

X

p
(
dy|x, π(x)

)
V (y).

The action-value function Qπ is defined as

Q
π(x, a) = r(x, a) + γ

∫

X

p(dy|x, a)V π(y).

Similarly, the optimal value function, V ∗, is the
unique fixed-point of the optimal Bellman operator
T : BV (X ;Vmax) → BV (X ;Vmax) defined as

(T V)(x) = max
a∈A

[
r(x, a) + γ

∫

X

p(dy|x, a)V (y)

]
,

and the optimal action-value function Q∗ is defined by

Q
∗(x, a) = r(x, a) + γ

∫

X

p(dy|x, a)V ∗(y).

We say that a deterministic policy π ∈ Bπ(X) is
greedy w.r.t an action-value function Q, if π(x) ∈
argmaxa∈A Q(x, a), ∀x ∈ X . Greedy policies are im-
portant because any greedy policy w.r.t. Q∗ is op-
timal. We define the greedy policy operator G :
Bπ(X) → Bπ(X) as3

3In Eq. 1, the tie among the actions maximizing
Qπ(x, a) is broken in an arbitrary but consistent manner.

Analysis of a Classification-based Policy Iteration Algorithm

Input: policy space Π ⊆ Bπ(X), state distribution ρ
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set D = {xi}
N
i=1, xi

iid
∼ ρ

for all states xi ∈ D and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and
return R

πk
j (xi, a) = r(xi, a)+

∑
t≥1 γtr

(
xt, πk(x

t)
)
,

xt ∼ p
(
· |xt−1, πk(x

t−1)
)
and x1 ∼ p(·|xi, a)

end for
Q̂πk(xi, a) =

1
M

∑M

j=1 R
πk
j (xi, a)

end for
πk+1 = argminπ∈Π ‖ℓ̂πk

(π)‖1,ρ̂ (classifier)
end for

Figure 1. The Direct Policy Iteration (DPI) algorithm.

(Gπ)(x) = argmax
a∈A

Q
π(x, a). (1)

In the analysis of this paper, G plays a role similar
to the one played by the optimal Bellman operator,
T , in the analysis of the fitted value iteration algo-
rithm (Munos & Szepesvári 2008, Section 5).

3. The DPI Algorithm

In this section, we outline the Direct Policy Itera-
tion (DPI) algorithm. DPI shares the same structure
as Lagoudakis & Parr (2003b) and Fern et al. (2004).
Although the algorithm can benefit from improve-
ments in 1) selecting states for the rollout set D, 2) the
criteria used to add a sample to the training set, and 3)
the rollout strategy, as discussed in Lagoudakis & Parr
(2003b) and Dimitrakakis & Lagoudakis (2008b), here
we consider its basic form in order to ease the analysis.

In DPI, at each iteration k, a new policy πk+1 is com-
puted from πk as the best approximation of Gπk, by
solving a cost-sensitive classification problem. More
formally, DPI is based on the following loss function.

Definition 1. The loss function at iteration k for a

policy π is denoted by ℓπk
(·;π) and is defined as

ℓπk
(x;π) = max

a∈A
Q

πk(x, a)−Q
πk

(
x, π(x)

)
, ∀x ∈ X .

Given a distribution ρ over X , we define the expected

error as the L1,ρ-norm of the loss function ℓπk
(·;π),

||ℓπk
(π)||1,ρ =

∫

X

(
max
a∈A

Q
πk(x, a)−Q

πk
(
x, π(x)

))
ρ(dx).

(2)

While in Lagoudakis & Parr (2003b) the goal is to
minimize the number of misclassifications (i.e., they
use 0/1 loss function), DPI learns a policy which aims
at minimizing the loss ℓπk

. Similar to other algorithms
in classification-based RL (Fern et al., 2004; Li et al.,
2007; Langford & Zadrozny, 2005), DPI does not fo-
cus on finding a uniformly accurate approximation of

the actions taken by the greedy policy, but rather on
finding actions leading to a similar performance. This
is consistent with the final objective of policy iteration,
which is to obtain a policy with similar performance
to an optimal policy and not taking similar actions. 4

As illustrated in Figure 1, for each state xi ∈ D and
for each action a ∈ A, an estimate of the action-value
function of the current policy is computed through M
independent rollouts. Given the outcome of the roll-
outs, the empirical loss is defined as

Definition 2. For any x ∈ D, the empirical loss func-

tion at iteration k for a policy π is

ℓ̂πk
(x;π) = max

a∈A
Q̂

πk (x, a)− Q̂
πk

(
x, π(x)

)
,

where Q̂πk(x, a) is a rollout estimation of the Q-value

of πk in (x, a) as defined in Figure 1.5 Similar to Def-

inition 1, the empirical error is defined as the L1,ρ̂-

norm of the empirical loss function

‖ℓ̂πk
(π)‖1,ρ̂ =

1

N

N∑

i=1

[
max
a∈A

Q̂
πk (xi, a)− Q̂

πk
(
xi, π(xi)

)]
,

where ‖·‖1,ρ̂ denotes the L1-norm weighted by the em-

pirical distribution ρ̂ induced by the samples in D.

Finally, DPI makes use of a classifier which returns a
policy that minimizes the empirical error ‖ℓ̂πk

(π)‖1,ρ̂
over the policy space Π.

4. Finite-sample analysis of DPI

In this section, we first provide a finite-sample analysis
of the error incurred at each iteration of DPI in The-
orem 1, and then show how this error is propagated
through the iterations of the algorithm in Theorem 2.
In the analysis, we explicitly assume that the action
space contains only two actions, i.e., A = {a1, a2} and
|A| = 2. We will discuss this assumption and other
theoretical and practical aspects of DPI in Section 6.

4.1. Error Bound at Each Iteration

Here we study the error incurred at each iteration k of
the DPI algorithm. Before stating the main result, we
define the inherent greedy error of a policy space Π.

Definition 3. We define the inherent greedy error of

a policy space Π ⊆ Bπ(X) as

d(Π,GΠ) = sup
π∈Π

inf
π′∈Π

||ℓπ(π
′)||1,ρ.

4Refer to (Li et al., 2007) for a simple example in which
an accurate polices might have a very poor performance
w.r.t. the greedy policy.

5Here we consider rollouts in which policy π is followed
for an infinite number of steps or until a terminal state is
reached. In practice, a finite horizon H is defined for the
rollout, and thus, an additional term γHQmax (vanishing
with H) appears in the final bound.

Analysis of a Classification-based Policy Iteration Algorithm

In other words, the inherent greedy error is the worst
expected error that a loss-minimizing policy π′ ∈ Π
can incur in approximating the greedy policy Gπ, π ∈
Π. This measures how well Π is able to approximate
policies that are greedy w.r.t. any policy in Π.

Lemma 1. Let Π be a policy space with finite VC-

dimension h = V C(Π) < ∞, and Fk be the space of

the loss functions at iteration k induced by the poli-

cies in Π, i.e., Fk = {ℓπk
(·;π); π ∈ Π}. Note that all

functions ℓπk
∈ Fk are uniformly bounded by Qmax.

Let N > 0 be the number of states in the rollout set,

D, drawn i.i.d. from the state distribution ρ, then

P

[

sup
ℓπk

∈Fk

∣∣∣‖ℓπk
‖1,ρ̂ − ||ℓπk

||1,ρ

∣∣∣ > ǫ

]

≤ δ ,

with ǫ = 2

√
2
hQmax log 2eN

h
+log 2

δ

N .

Proof. (sketch) First we rewrite the loss function as
ℓπk

(x;π) = I {(Gπk)(x) 6= π(x)}∆πk(x), where

∆πk(x) = max
a∈A

Q
πk(x, a)− min

a′∈A
Q

πk(x, a′) (3)

is the gap between the two actions (the regret of choos-
ing the wrong action). Since the loss function depends
on the policy π only through the indicator function, we
can directly relate the complexity of Fk to the com-
plexity of Π. In particular, let

Fx1:xN
k =

{(
ℓk(x1;π), . . . , ℓk(xN ; π)

)
, π ∈ Π

}

be the set of possible values of the loss function on
the rollout set, D = {xi}Ni=1, for the policies in Π.
Then, the corresponding growth function, SFk

(N), is
strictly related to the VC-dimension of Π. Indeed,
the cardinality of Fx1:xN

k depends only on SΠ(N), the
number of combinations of the indicator function that
can be induced by the policies in Π,

SFk
(N) = sup

x1,...,xN

|Fx1:xN
k | ≤ SΠ(N) ≤

(
eN

h

)h

.

The rest of the proof follows the same usual steps as
in Vapnik & Chervonenkis (1971).

We are now ready to prove the main result of this
section. We show a high probability bound on the
expected error at each iteration k of DPI.

Theorem 1. Let Π be a policy space with finite VC-

dimension h = V C(Π) < ∞ and ρ be a distribu-

tion over the state space X . Let N be the number

of states in D drawn i.i.d. from ρ, and M be the

number of rollouts per state-action used in the esti-

mation of the action-value functions. Let πk+1 =

argminπ∈Π ‖ℓ̂πk
(π)‖1,ρ̂ be the policy computed at the

kth iteration of DPI . Then, for any δ > 0, we have

||ℓπk
(πk+1)||1,ρ ≤ d(Π,GΠ) + 2(ǫ1 + ǫ2), (4)

with probability 1− δ, where

ǫ1 = 2

√

2
hQmax log

2eN
h

+ log 8
δ

N
, ǫ2 =

√
2Qmax

MN
log

4

δ
.

Remarks: The bound in Eq. 4 can be decomposed
into an approximation error d(Π,GΠ) and an estima-
tion error consisted of two terms ǫ1 and ǫ2. This is sim-
ilar to generalization bounds in classification, where
the approximation error is the distance between the
target function (here the greedy policy w.r.t. πk) and
the function space Π. Here d(Π,GΠ) represents the
worst possible such distances. The first estimation
term, ǫ1, grows with the capacity of Π, measured by
its VC-dimension h, and decreases with the number
of sampled states N . Thus in order to avoid overfit-
ting, we should have N ≫ h. The second estimation
term, ǫ2, comes from the error in the estimation of the
action-values due to the finite number of rollouts M .
It is important to note the nice rate of 1/

√
MN in-

stead of 1/
√
M . This is due to the fact that we do not

need a uniformly good estimation of the action-value
function at all sampled states, but only an averaged
estimation of those values at the sampled points. An
important consequence of this is that the algorithm
works perfectly well if we consider only M = 1 rollout
per state-action. Therefore, given a fixed budget of
rollouts per iteration, the best allocation of M and N
would be to choose M = 1 and sample as many states
as possible, thus, reducing the risk of overfitting.

Proof. Let a∗(·) = argmaxa∈A Qπk(·, a) be the greedy
action.6 We prove the following series of inequalities:

||ℓπk
(πk+1)||1,ρ

(a)

≤ ‖ℓπk
(πk+1)‖1,ρ̂ + ǫ1 w.p. 1 − δ

′

=
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Qπk
(
xi, πk+1(xi)

))
+ ǫ1

(b)

≤
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Q̂πk
(
xi, πk+1(xi)

))
+ ǫ1 + ǫ2 w.p. 1 − 2δ′

(c)

≤
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Q̂πk
(
xi, π

∗(xi)
))

+ ǫ1 + ǫ2

(d)

≤
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Qπk
(
xi, π

∗(xi)
))

+ ǫ1 + 2ǫ2 w.p. 1 − 3δ′

= ‖ℓπk
(π∗)‖1,ρ̂ + ǫ1 + 2ǫ2

(e)

≤ ||ℓπk
(π∗)||1,ρ + 2(ǫ1 + ǫ2) w.p. 1 − 4δ′

= inf
π′∈Π

||ℓπk
(π′)||1,ρ + 2(ǫ1 + ǫ2)

(f)

≤ d(Π,GΠ) + 2(ǫ1 + ǫ2).

The statement of the theorem is obtained by δ′ = δ/4.

6To simplify the notation, we remove the dependency of
a∗ on states and use a∗ instead of a∗(xi) in the following.

Analysis of a Classification-based Policy Iteration Algorithm

(a) It is an immediate application of Lemma 1, bound-
ing the difference between ||ℓπk

||1,ρ and ‖ℓπk
‖1,ρ̂ .

(b) Here we introduce the estimated action-value func-

tion Q̂πk by bounding

1

N

N∑

i=1

Q̂
πk(xi, a)−

1

N

N∑

i=1

Q
πk(xi, a),

the difference between the true action-value function
and its rollout estimates averaged over the states in
the rollout set D = {xi}Ni=1. In particular, by using
the Chernoff-Hoeffding inequality and by recalling the
definition of Q̂πk

(
xi, πk+1(xi)

)
as the average of M

rollouts, we obtain

1

MN

N∑

i=1

M∑

j=1

R
πk
j (xi, a)−

1

MN

N∑

i=1

M∑

j=1

Qπk (xi, a) ≤

√
2Qmax

MN
log

1

δ′
,

with probability 1− δ′.
(c) From the definition of πk+1 in the DPI algorithm
(see Figure 1), we have

πk+1 = argmin
π∈Π

‖ℓ̂πk
(π)‖1,ρ̂ = argmax

π∈Π

1

N

N∑

i=1

Q̂πk
(
xi, π(xi)

)
,

thus, −1/N
∑N

i=1 Q̂πk
(
xi, πk+1(xi)

)
can be maximized by

replacing πk+1 with any other policy, particularly with

π∗ = arg inf
π′∈Π

∫

X

(
max
a∈A

Qπk (x, a) − Qπk
(
x, π′(x)

))
ρ(dx).

(d)-(f) The final result follows by using Definition 3
and by applying the Chernoff-Hoeffding inequality and
the regression generalization bound.

4.2. Error Propagation

In this section, we first show how the expected er-
ror is propagated through the iterations of DPI. We
then analyze the error between the value function of
the policy obtained by DPI after K iterations and the
optimal value function in µ-norm, where µ is a distri-
bution over the states which might be different from
the sampling distribution ρ. Let P π be the transi-
tion kernel for policy π, i.e., P π(dy|x) = p

(
dy|x, π(x)

)
.

It defines two related operators: a right-linear op-
erator, P π·, which maps any V ∈ BV (X ;Vmax) to
(P πV)(x) =

∫
V (y)P π(dy|x), and a left-linear oper-

ator, ·P π, that returns (µP π)(dy) =
∫
P π(dy|x)µ(dx)

for any distribution µ over X .

From the definitions of ℓπk
, T π, and T , we have

ℓπk
(πk+1) = T V πk − T πk+1V πk . We deduce the fol-

lowing pointwise inequalities:

V
πk − V

πk+1

= T πkV
πk − T πk+1V

πk + T πk+1V
πk − T πk+1V

πk+1

≤ ℓπk
(πk+1) + γP

πk+1(V πk − V
πk+1),

which gives us V πk − V πk+1 ≤ (I − γP πk+1)−1ℓπk
(πk+1).

We also have

V
∗ − V

πk+1 = T V
∗ − T V

πk + T V
πk

− T πk+1V
πk + T πk+1V

πk − T πk+1V
πk+1

≤ γP
∗(V ∗ − V

πk) + ℓπk
(πk+1) + γP

πk+1(V πk − V
πk+1),

which yields

V
∗ − V

πk+1 ≤ γP
∗(V ∗ − V

πk)

+
[
γP

πk+1(I − γP
πk+1)−1 + I

]
ℓπk

(πk+1)

= γP
∗(V ∗ − V

πk) + (I − γP
πk+1)−1

ℓπk
(πk+1).

Finally, by defining the operator Ek = (I−γP πk+1)−1,
which is well defined since P πk+1 is a stochastic kernel
and γ < 1, and by induction, we obtain

V
∗ − V

πK (5)

≤ (γP ∗)K(V ∗ − V
π0) +

K−1∑

k=0

(γP ∗)K−k−1
Ekℓπk

(πk+1).

Eq. 5 shows how the error at each iteration k of DPI,
ℓπk

(πk+1), is propagated through the iterations and
appears in the final error of the algorithm, V ∗ − V πK .
Since we are interested in bounding the final error in
µ-norm, which might be different than the sampling
distribution ρ, we use one of the following assumptions:

Assumption 1. For any policy π ∈ Π and any

non-negative integers s and t, there exists a constant

Cµ,ρ(s, t) < ∞ such that µ(P ∗)s(P π)t ≤ Cµ,ρ(s, t)ρ.
We define Cµ,ρ = 1−γ

2

∑∞
s=0

∑∞
t=0 γ

s+tCµ,ρ(s, t).

Assumption 2. For any x ∈ X and any a ∈ A, there

exist a constant Cρ < ∞ such that p(·|x, a) ≤ Cρρ(·).

Note that concentrability coefficients similar to Cµ,ρ

and Cρ were previously used in the Lp-analysis of fitted
value iteration (Munos, 2007; Munos & Szepesvári,
2008) and approximate policy iteration (Antos et al.,
2008). We now state our main result.

Theorem 2. Let Π be a policy space with finite VC-

dimension h and πK be the policy generated by DPI

after K iterations. Let M be the number of rollouts

per state-action and N be the number of samples drawn

i.i.d. from a distribution ρ over X at each iteration of

DPI. Then, for any δ > 0, we have

||V ∗ − V
πK ||1,µ ≤

2

1− γ

[
Cµ,ρ

(
d(Π,GΠ) + 2(ǫ1 + ǫ2)

)

+ γ
K
Rmax

]
, under Assumption 1

||V ∗ − V
πK ||∞ ≤

2

1− γ

[
Cρ

(
d(Π,GΠ) + 2(ǫ1 + ǫ2)

)

+ γ
K
Rmax

]
, under Assumption 2

with probability 1− δ, where

Analysis of a Classification-based Policy Iteration Algorithm

ǫ1 = 2

√

2
hQmax log

2eN
h

+ log 8K
δ

N
, ǫ2 =

√
2Qmax

MN
log

4K

δ
.

Proof. We have Cµ,ρ ≤ Cρ for any µ. Thus, if the
L1-bound holds for any µ, choosing µ to be a Dirac
at each state implies that the L∞-bound holds as well.
Hence, we only need to prove the L1-bound. By taking
the absolute value point-wise in Eq. 5 we obtain

|V ∗ − V
πK | ≤ (γP ∗)K |V ∗ − V

π0 |

+
K−1∑

k=0

(γP ∗)K−k−1(I − γP
πk+1)−1|ℓπk

(πk+1)|.

From the fact that |V ∗ − V π0 | ≤ 2
1−γRmax1, and by

integrating both sides w.r.t. µ, and using Assumption 1
we have

||V ∗ − V
πK ||1,µ ≤ γ

K 2

1− γ
Rmax

+

K−1∑

k=0

γ
K−k−1

∞∑

t=0

γ
t
Cµ,ρ(K − k − 1, t)||ℓπk

(πk+1)||1,ρ.

The claim follows from the definition of Cµ,ρ and
by bounding ||ℓπk

(πk+1)||1,ρ using Theorem 1 with a
union bound argument over the K iterations.

5. Approximation Error

In Section 4.1, we derived a bound for the expected
error at each iteration k of DPI, ||ℓπk

(πk+1)||1,ρ. The
approximation error term in this bound is the inherent
greedy error of Definition 3, d(Π,GΠ), which depends
on the MDP and the richness of the hypothesis space
Π (see the Remarks of Theorem 1). The main question
in this section is whether this approximation error can
be made small by increasing the capacity of the policy
space Π. The answer is not obvious because when the
space of policies, Π, grows, it can better approximate
any greedy policy w.r.t. a policy in Π, however, the
number of such greedy policies grows as well. We start
our analysis of this approximation error by introducing
the notion of universal family of policy spaces.

Definition 4. Let {βn} be a sequence of real values

such that βn
n→∞−→ 0. A sequence of policy spaces {Πn}

is a universal family of policy spaces if for any n > 0
there exists a partition Pn = {Xi}Sn

i=1 of X such that

maximaxx,y∈Xi
||x − y|| = βn and ∀b1, . . . , bSn

, bi ∈
{0, 1}, ∃π ∈ Πn such that π(x) = bi, ∀i, ∀x ∈ Xi.

In other words, this definition requires Πn to be the
space of policies induced by a partition Pn such that
the largest diameter among the components of the par-
tition shrinks to zero and for any assignment of ac-
tions to the components there exists a policy π ∈ Πn

matching those actions. The main property of such a
sequence of spaces is that any fixed policy π can be
approximately arbitrary well as n increases. Although
other definitions of universality could be used, Defini-
tion 4 seems natural and it is satisfied by widely-used
classifiers such as k-nearest neighbor, uniform grids,
and histograms.

In Section 7, we show that universal spaces are not a
sufficient condition to guarantee that d(Πn,GΠn) con-
verges to zero in any MDP. On the other hand, in the
next section we show that if the MDP is Lipschitz then
d(Πn,GΠn) converges to zero for any universal family
of policy spaces.

5.1. Lipschitz MDPs

In this section, we prove that for Lipschitz MDPs,
d(Πn,GΠn) goes to zero when {Πn} is a universal fam-
ily of classifiers. We start by defining a Lipschitz MDP.

Definition 5. A MDP is Lipschitz if both its tran-

sition probability and reward functions are Lipschitz,

i.e., ∀(B, x, x′, a) ∈ B(X)×X × X ×A

|r(x, a)− r(x′
, a)| ≤ Lr‖x− x

′‖,

|p(B|x, a)− p(B|x′
, a)| ≤ Lp‖x− x

′‖,

with Lr and Lp being the Lipschitz constants of the

transitions and the reward, respectively.

An important property of Lipschitz MDPs is that
for any function Q ∈ BQ(X × A;Qmax), the func-
tion obtained by applying the Bellman operator T π to
Q, (T πQ)(·, a), is a Lipschitz function with constant
L = (Lr + γQmaxLp) for any action a.

Theorem 3. Let |A| = 2 and {Πn} be a universal

family of policy spaces. Let M be a Lipschitz MDP.

Then limn→∞ d(Πn,GΠn) = 0.

Proof.

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

∫

X

ℓπ(x;π
′)ρ(dx)

(a)
= sup

π∈Πn

inf
π′∈Πn

∫

X

I
{
(Gπ)(x) 6= π′(x)

}
∆π(x)ρ(dx)

(b)

≤ sup
π∈Πn

inf
π′∈Πn

Sn∑

i=1

∫

Xi

I
{
(Gπ)(x) 6= π′(x)

}
∆π(x)ρ(dx)

(c)
= sup

π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a}∆π(x)ρ(dx)

(d)

≤ sup
π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a} 2L inf
y:∆π(y)=0

‖x − y‖ρ(dx)

(e)

≤ 2L sup
π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a}βnρ(dx)

(f)

≤ 2Lβn

Sn∑

i=1

∫

Xi

ρ(dx) = Lβn.

Analysis of a Classification-based Policy Iteration Algorithm

(a) We rewrite Definition 3, where ∆π is the regret of
choosing the wrong action defined by Eq. 3.
(b) Since Πn contains piecewise constants policies in-
duced by the partition Pn = {Xi}, we split the integral
as the sum over the regions.
(c) Since the policies in Πn can take any action in each
possible region, the policy π′ minimizing the loss is the
one which takes the best action in each region.
(d) Since M is Lipschitz, both maxa∈A Qπ(·, a) and
mina′∈A Qπ(·, a′) are Lipschitz and so ∆π(·) is 2L-
Lipschitz. Furthermore, ∆π is zero in all the states
in which the policy Gπ changes (see Figure 2). Thus,
for any state x the value ∆π(x) can be bounded using
the Lipschitz property by taking y as the closest state
to x in which ∆π(y) = 0.
(e) We notice that if π′ makes a mistake in a state
x ∈ Xi then the state y in which Gπ changes must be
in Xi, otherwise if Gπ is constant in the whole region
Xi, there exists an action a such that no mistake is
done in the region. Thus, we can replace ||x − y|| by
the diameter of the region which is bounded by βn by
definition of universal family of spaces.
(f) We simply take I {(Gπ)(x) 6= a} = 1 in each region.
Finally, by definition of universal family of spaces the
statement follows.

a2

Qπ(x, a2)

Qπ(x, a1)

0 0.2 0.4 0.6 0.8 1

∆π(x)

a1

(Gπ)(x)

Figure 2. This figure is used as an illustrative example in
the proof of Theorem 3. It shows the action-value function
of a Lipschitz MDP for a policy π, Qπ(·, a1) and Qπ(·, a2)
(top) and the corresponding greedy policy Gπ (middle) and
regret of selecting the wrong action, ∆π, (bottom).

Theorem 3 together with the counter-example in Sec-
tion 7.1 show that the assumption on the policy space
is not enough to guarantee a small approximation er-
ror and additional assumptions on the smoothness of
the MDP (e.g., Lipschitz condition) must be satisfied.

5.2. Consistency of DPI

A highly desirable property of any learning algorithm
is to be consistent, i.e., as the number of samples grows
to infinity, the error of the algorithm converges to

zero. It can be seen that as the number of samples
N grows in Theorem 1, ǫ1 and ǫ2 become arbitrarily
small, and thus, the expected error at each iteration,
||ℓπk

(πk+1)||1,ρ, converges to the inherent greedy error
d(Π,GΠ). We can conclude from the results of this
section that DPI is not consistent in general, but it
is consistent for the class of Lipschitz MDPs, when a
universal family of policy spaces is used. However, it is
important to note that as we increase the index n also
the capacity of the policy space Π, its VC-dimension
h, might grow as well, and thus, when the number of
samples N goes to infinity, in order to keep the estima-
tion error (ǫ1 in Theorem 1) zero, we should guarantee
that N grows faster than V C(Π). More formally,

Corollary 1. Let M be a Lipschitz MDP, {Πn} be a

universal family of policy spaces, h(n) = V C(Πn), and

limn,N→∞
h(n)
N = 0. Then DPI is consistent

lim
n,N→∞

||ℓπk
(πk+1)||1,ρ = 0, w.p. 1.

Finally, we notice that if n and N tend to infinity at
each iteration, we have V πK → V ∗ almost surely when
K tends to infinity.
6. Discussion and Extensions

In this paper, we presented a new classification-based
approximate policy iteration (API) algorithm called
direct policy iteration (DPI) and provided its finite-
sample performance bounds. To the best of our knowl-
edge, this is the first complete finite-sample analysis
for this class of API algorithms. The main difference
of DPI with the existing classification-based API algo-
rithms (Lagoudakis & Parr, 2003b; Fern et al., 2004)
is weighing each classification error by its actual re-
gret, i.e., the difference between the action values
of the greedy action and the action chosen by DPI.
Our results extend the only theoretical analysis of a
classification-based API algorithm (Fern et al., 2006)
by 1) having a full bound instead of being limited
to one step policy update, 2) considering any policy
space instead of finite class of policies, and 3) deriving
a bound which does not depend on the Q-advantage,
i.e., the minimum Q-value gap between a greedy and
a sub-greedy action over the state space, which can be
arbitrarily small in a large class of MDPs. Note that
the final bound in Fern et al. (2006) depends inversely
on the Q-advantage. We also analyzed the consistency
of DPI and showed that although it is not consistent
in general, it is consistent for the class of Lipschitz
MDPs. This is similar to the consistency results for
fitted value iteration in Munos & Szepesvári (2008).

One of the main motivations of this work is to have
a better understanding of how the classification-based
API methods can be compared with their widely-used

Analysis of a Classification-based Policy Iteration Algorithm

regression-based counterparts. It is interesting to note
that the bound of Eq. 4 shares the same structure as
the error bounds for the API algorithm in Antos et al.
(2008) and fitted value iteration (Munos & Szepesvári,
2008). The error at each iteration can be decomposed
into an approximation error, which depends on the
MDP and the richness of the hypothesis space – the in-
herent greedy error in Eq. 4 and the inherent Bellman
error in Antos et al. (2008) and Munos & Szepesvári
(2008), and an estimation error which mainly depends
on the number of samples and rollouts. The differ-
ence between the approximation error of the two ap-
proaches depends mainly on how well the hypothesis
space fits the MDP at hand. This confirms the intu-
ition that whenever the policies generated by policy
iteration are easier to represent and learn than their
value functions, a classification-based approach can be
preferable to regression-based methods.

Extension to more than 2 actions In the case
that there are only two possible actions, |A| = 2, the
expected error in Eq. 2 can be written as ||ℓπk

(π)||1,ρ =∫
X I {(Gπk)(x) 6= π(x)}∆πk(x)ρ(dx), where ∆πk is de-
fined by Eq. 3. Thus, the policy improvement step in
DPI can be formulated as a weighted binary classifi-
cation problem in which each state x ∈ D is weighted
by ∆πk(x). DPI can be extended to multiple actions
by writing the expected error as

||ℓπk
(π)||1,ρ =

1

|A|

∑

a∈A

∫

X

I {(Gπk)(x, a) 6= π(x, a)}

×

(
max
a′∈A

Q
πk(x, a′)−Q

πk(x, a)

)
ρ(dx),

where (Gπk)(x, a) is 1 if a is the greedy action in x
and 0 otherwise. As it can be noticed, the policy im-
provement step of DPI still remains a weighted binary
classification problem in which each (x, a) ∈ D × A
is weighted by maxa′∈A Qπk(x, a′) − Qπk(x, a). This
can be solved by any weighted binary classification al-
gorithm as long as it guarantees to return 1 for only
one action at each state x ∈ X . In this case, all the
theoretical analysis presented in the paper can be ex-
tended to multiple actions. However, as there are still
many open theoretical and practical issues to be ad-
dressed in multi-label classification, extending DPI or
any other classification-based API method to multi-
ple actions calls for additional work both in terms of
implementation and theoretical analysis.

7. Appendix

7.1. Counterexample

In this section, we illustrate a simple example in which
d(Πn,GΠn) does not go to zero, even when {Πn} is a

universal family of classifiers. We consider a MDP
with state space X = [0, 1], action space A = {0, 1},
and the following transitions and rewards

xt+1 =

{
min(xt + 0.5, 1) if a = 1,

xt otherwise,

r(x, a) =






0 if x = 1,

R1 else if a = 1,

R0 otherwise,

and (1− γ2)R1 < R0 < R1 . (6)

We consider the policy space Πn of piecewise con-
stant policies obtained by uniformly partitioning the
state space X into n intervals. This family of policy
spaces is universal. The inherent greedy error of Πn,
d(Πn,GΠn), can be decomposed into the sum of the
expected errors at each interval

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

n∑

i=1

||ℓ(i)π (π′)||1,ρ ,

where ||ℓ(i)π (π′)||1,ρ is the same as ||ℓπ(π′)||1,ρ, only the
integral is over the i-th interval instead of the whole
X . In the following we show that for the MDP and
the universal class of policies, Πn, considered here,
d(Πn,GΠn) does not converge to zero when n grows.

1 − 1

n
0 1

n

3

n

2

n

n+1

2n

n−1

2n

0.5 1

Figure 3. The policy used in the counterexample. It is one
in odd and zero in even intervals. Note that the number of
intervals, n, is assumed to be odd.

Let n be odd and π ∈ Πn be one in odd and zero in
even intervals (see Figure 3). For any x > 0.5, the
agent either stays in the same state forever by taking
action 0, or goes out of bound in one step by taking
action 1. Thus, given the assumption of Eq. 6, it can be
shown that for any x belonging to the intervals i ≥ n+1

2
(the interval containing 0.5 and above), Gπ(x) = 0.
This means that there exists a policy π′ ∈ Πn such

that ||ℓ(i)π (π′)||1,ρ = 0 for all the intervals i ≥ n+1
2 .

However, Gπ does not remain constant in the intervals
i ≤ n−1

2 , and changes its value in the middle of the
interval. Using Eq. 6, we can show that

inf
π′∈Πn

n∑

i=1

||ℓ(i)π (π′)||1,ρ = C(1+
1

1− γ
)
n− 1

8n
≥

C

16
(1+

1

1− γ
),

where C = min{(1 − γ)(R1 − R0), R0 − (1 − γ2)R1}.
This means that for any odd n, it is always possible
to find a policy π ∈ Πn such that the limit n → ∞ of
d(Πn,GΠn) does not converge to zero.

Analysis of a Classification-based Policy Iteration Algorithm

7.2. Extension to multiple actions

We first redefine a policy as π : X × A → {0, 1} such
that for any state x there exists only one action a such
that π(x, a) = 1 and it is 0 for all the other actions.
Thus, the policy space Π becomes:

Π = {π : X ×A → {0, 1}, ∀x ∈ X , ∃!a ∈ A π(x, a) = 1}
(7)

We now redefine the loss and error functions.

Definition 6. The loss function at iteration k for a

policy π is denoted by ℓπk
(·;π) and in a state-action

pair (x, a) it is defined as

ℓπk
(x, a;π) = π(x, a)

(
max
a′∈A

Q
πk(x, a′)−Q

πk
(
x, a

))
.

Given a distribution ρ over X , we define the expected

error as

||ℓπk
(π)||1,ρ =

∫

X

∑

a∈A

ℓπk
(x, a;π)ρ(dx). (8)

Note that according to the definition of the policy
space in Equation (7) only one term in the summa-
tion over action is non-zero.

Definition 7. For any x ∈ D and a ∈ A, the empiri-

cal loss function at iteration k for a policy π is

ℓ̂πk
(x, a;π) = π(x, a)

(
max
a′∈A

Q̂
πk(x, a′)− Q̂

πk
(
x, a

))
,

where Q̂πk(x, a) is a rollout estimation of the Q-value

of πk in (x, a). Similar to Definition 1, the empirical

error is defined as

‖ℓ̂πk
(π)‖1,ρ̂ =

1

N

N∑

i=1

∑

a∈A

ℓ̂πk
(x, a;π),

where ‖·‖1,ρ̂ denotes the L1-norm weighted by the em-

pirical distribution ρ̂ induced by the samples in D.

We now we report the new lemmas and theorems ob-
tained using these new definitions.

Lemma 2. Let Π be a policy space with finite VC-

dimension h = V C(Π) < ∞, and Fk be the space of

the loss functions at iteration k induced by the poli-

cies in Π, i.e., Fk = {ℓπk
(·;π); π ∈ Π}. Note that all

functions ℓπk
∈ Fk are uniformly bounded by Qmax.

Let N > 0 be the number of states in the rollout set,

D, drawn i.i.d. from the state distribution ρ, then

P

[
sup

ℓπk
∈Fk

∣∣∣‖ℓπk
‖1,ρ̂ − ||ℓπk

||1,ρ

∣∣∣ > ǫ

]
≤ δ ,

with ǫ = 2

√
2
hQmax log 2eN

h
+log 2|A|

δ

N .

Proof. From Lemma 1 and the definition of ρ we know
that for any fixed a ∈ A and any policy π ∈ Π

∣∣∣ 1
N

N∑

i=1

ℓπk
(xi, a;π)−

∫

X

ℓπk
(x, a;π)ρ(dx)

∣∣∣

≤ 2

√

2
hQmax log

2eN
h + log 2

δ′

N

with probability 1 − δ′. In order to obtain the state-
ment of the theorem we simply take a union bound
over all the actions a ∈ A and we set δ = |A|δ′.

We now move to the proof of the main theorem.

Theorem 4. Let Π be a policy space with finite VC-

dimension h = V C(Π) < ∞ and ρ be a distribu-

tion over the state space X . Let N be the number

of states in D drawn i.i.d. from ρ, and M be the

number of rollouts per state-action used in the esti-

mation of the action-value functions. Let πk+1 =

argminπ∈Π ‖ℓ̂πk
(π)‖1,ρ̂ be the policy computed at the

kth iteration of DPI . Then, for any δ > 0, we have

||ℓπk
(πk+1)||1,ρ ≤ d(Π,GΠ) + 2(ǫ1 + ǫ2), (9)

with probability 1− δ, where

ǫ1 = 2

√

2
hQmax log

2eN
h

+ log 8|A|
δ

N
, ǫ2 =

√
2Qmax

MN
log

4

δ
.

Proof. Let a∗(·) = argmaxa∈A Qπk(·, a) be the greedy
action.7 We prove the following series of inequalities:

||ℓπk
(πk+1)||1,ρ

(a)

≤ ‖ℓπk
(πk+1)‖1,ρ̂ + ǫ1 w.p. 1 − δ′

=
1

N

N∑

i=1

∑

a∈A

πk+1(xi, a)
(
Qπk (xi, a

∗) − Qπk
(
xi, a

))
+ ǫ1

(b)
=

1

N

N∑

i=1

[(
Qπk (xi, a

∗) −
∑

a∈A

πk+1(xi, a)Q
πk

(
xi, a

))]
+ ǫ1

(c)
=

1

N

N∑

i=1

[(
Qπk (xi, a

∗) −
∑

a∈A

πk+1(xi, a)Q̂
πk

(
xi, a

))]
+ ǫ1 + ǫ2

(d)
=

1

N

N∑

i=1

[(
Qπk (xi, a

∗) −
∑

a∈A

π∗(xi, a)Q̂
πk

(
xi, a

))]
+ ǫ1 + ǫ2

(e)
=

1

N

N∑

i=1

[(
Qπk (xi, a

∗) −
∑

a∈A

π∗(xi, a)Q
πk

(
xi, a

))]
+ ǫ1 + 2ǫ2

= ‖ℓπk
(π

∗
)‖1,ρ̂ + ǫ1 + 2ǫ2

(f)

≤ ||ℓπk
(π

∗
)||1,ρ + 2(ǫ1 + ǫ2) w.p. 1 − 4δ

′

= inf
π′∈Π

||ℓπk
(π′)||1,ρ + 2(ǫ1 + ǫ2)

(g)

≤ d(Π,GΠ) + 2(ǫ1 + ǫ2).

7To simplify the notation, we remove the dependency of
a∗ on states and use a∗ instead of a∗(xi) in the following.

Analysis of a Classification-based Policy Iteration Algorithm

(a) It is an immediate application of Lemma 2, bound-
ing the difference between ||ℓπk

||1,ρ and ‖ℓπk
‖1,ρ̂ with

probability 1− δ′.
(b) By definition of π(x, a),

∑
a∈A π(x, a) = 1 in each

state x.
(c) We use the Chernoff-Hoeffding inequality obtain-
ing that

1

MN

N∑

i=1

∑

a∈A

M∑

j=1

π(xi, a)R
πk
j (xi, a)

−
1

MN

N∑

i=1

∑

a∈A

M∑

j=1

π(xi, a)Q
πk (xi, a) ≤

√
2Qmax

MN
log

1

δ′
,

with probability 1− δ′.
(d) From the definition of πk+1 in the DPI algorithm
(see Figure 1), we have

πk+1 =argmin
π∈Π

‖ℓ̂πk
(π)‖1,ρ̂

arg min
π∈Π

1

N

N∑

i=1

[(
Q̂πk (xi, a

∗) −
∑

a∈A

πk+1(xi, a)Q̂
πk

(
xi, a

))]

= argmax
π∈Π

1

N

N∑

i=1

∑

a∈A

πk+1(xi, a)Q̂
πk

(
xi, a

)
,

thus, (d) can be maximized by replacing πk+1 with
any other policy, particularly with

π∗ = arg inf
π′∈Π

||ℓπk
(π′)||1,ρ.

(e)-(g) The final result follows by using Definition 3,
by applying the Chernoff-Hoeffding inequality and the
regression generalization bound, and setting δ′ = δ/4.

Acknowledgments This work was supported by
French National Research Agency (ANR) (project
EXPLO-RA n◦ ANR-08-COSI-004).

References

Antos, A., Szepesvári, Cs., and Munos, R. Learning
near-optimal policies with Bellman-residual minimiza-
tion based fitted policy iteration and a single sample
path. Machine Learning Journal, 71:89–129, 2008.

Bagnell, J., Kakade, S., Ng, A., and Schneider, J. Pol-
icy search by dynamic programming. In Proceedings of
Advances in Neural Information Processing Systems 16.
MIT Press, 2003.

Bradtke, S. and Barto, A. Linear least-squares algorithms
for temporal difference learning. Journal of Machine
Learning, 22:33–57, 1996.

Dimitrakakis, C. and Lagoudakis, M. Algorithms and
bounds for sampling-based approximate policy iteration.
In Recent Advances in Reinforcement Learning (EWRL-
2008). Springer, 2008a.

Dimitrakakis, C. and Lagoudakis, M. Rollout sampling ap-
proximate policy iteration. Machine Learning Journal,
72(3):157–171, 2008b.

Fern, A., Yoon, S., and Givan, R. Approximate policy
iteration with a policy language bias. In Proceedings of
Advances in Neural Information Processing Systems 16,
2004.

Fern, A., Yoon, S., and Givan, R. Approximate policy it-
eration with a policy language bias: Solving relational
Markov decision processes. Journal of Artificial Intelli-
gence Research, 25:85–118, 2006.

Howard, R. A. Dynamic Programming and Markov Pro-
cesses. The MIT Press, Cambridge, MA, 1960.

Lagoudakis, M. and Parr, R. Least-squares policy itera-
tion. Journal of Machine Learning Research, 4:1107–
1149, 2003a.

Lagoudakis, M. and Parr, R. Reinforcement learning as
classification: Leveraging modern classifiers. In Pro-
ceedings of the Twentieth International Conference on
Machine Learning, pp. 424–431, 2003b.

Langford, J. and Zadrozny, B. Relating reinforcement
learning performance to classification performance. In
Proceedings of the Twenty-Second international confer-
ence on Machine learning, pp. 473–480, 2005.

Li, L., Bulitko, V., and Greiner, R. Focus of attention in
reinforcement learning. Journal of Universal Computer
Science, 13(9):1246–1269, 2007.

Munos, R. Performance bounds in Lp norm for approxi-
mate value iteration. SIAM Journal of Control and Op-
timization, 2007.

Munos, R. and Szepesvári, Cs. Finite time bounds for fitted
value iteration. Journal of Machine Learning Research,
9:815–857, 2008.

Vapnik, V. and Chervonenkis, A. On the uniform con-
vergence of relative frequencies of events to their prob-
abilities. Theory of Probability and its Applications, 16:
264–280, 1971.

