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Abstract

In this paper, we study the effect of adding
a value function approximation component
(critic) to rollout classification-based policy
iteration (RCPI) algorithms. The idea is to
use the critic to approximate the return af-
ter we truncate the rollout trajectories. This
allows us to control the bias and variance of
the rollout estimates of the action-value func-
tion. Therefore, the introduction of a critic
can improve the accuracy of the rollout esti-
mates, and as a result, enhance the perfor-
mance of the RCPI algorithm. We present a
new RCPT algorithm, called direct policy iter-
ation with critic (DPI-Critic), and provide its
finite-sample analysis when the critic is based
on LSTD and BRM methods. We empirically
evaluate the performance of DPI-Critic and
compare it with DPI and LSPI in two bench-
mark reinforcement learning problems.

1. Introduction

Policy iteration is a method of computing an opti-
mal policy for any given Markov deci- sion process
(MDP). It is an iterative procedure that discovers
a deterministic optimal policy by generating a se-
quence of monotonically improving policies. Each it-
eration k£ of this algorithm consists of two phases:
policy evaluation in which the action-value function
Q™ of the current policy 7 is computed, and pol-
icy improvement in which the new (improved) pol-
icy mi41 is generated as the greedy policy w.r.t. Q™*,
ie., mpr1(x) = argmax,c 4 Q™ (z,a). Unfortunately,
in MDPs with large (or continuous) state and/or ac-
tion spaces, the policy evaluation problem cannot be
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solved exactly and approximation techniques are re-
quired. There have been two main approaches to deal
with this issue in the literature. The most common ap-
proach is to find a good approximation of the action-
value function of 7, in a real-valued function space
(see e.g., Lagoudakis & Parr 2003a). The second ap-
proach 1) replaces the policy evaluation step (approxi-
mating the action-value function over the entire state-
action space) with computing rollout estimates of Q™
over a finite number of states D = {x;}Y,, called
the rollout set, and the entire action space, and 2)
casts the policy improvement step as a classification
problem to find a policy in a given hypothesis space
that best predicts the greedy action at every state
(see e.g., Lagoudakis & Parr 2003b; Fern et al. 2004;
Lazaric et al. 2010b). Although whether selecting a
suitable policy space is any easier than a value func-
tion space is highly debatable, it may be argued that
classification-based API methods can be advantageous
in problems where good policies are easier to represent
and learn than their value functions.

As it is suggested by both theoretical and empirical
analysis, the performance of the classification-based
API algorithms is closely related to the accuracy in es-
timating the greedy action at each state of the rollout
set, which itself depends on the accuracy of the rollout
estimates of the action-values. Thus, it is quite im-
portant to balance the bias and variance of the rollout
estimates, Q™’s, that both depend on the length H of
the rollout trajectories. While the bias in ™, i.e., the
difference between Q™ and the actual Q™, decreases as
H becomes larger, its variance (due to stochastic MDP
transitions and rewards) increases with the value of H.
Although the bias and variance of @’T estimates may be
optimized by the value of H, when the budget, i.e., the
number of calls to the generative model, is limited, it
may not be possible to find an H that guarantees an
accurate enough training set.
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A possible approach to address this problem is to in-
troduce a critic that provides an approximation of the
value function. In this approach, we define each Q™
estimate as the average of the values returned by H-
horizon rollouts plus the critic’s prediction of the re-
turn from the time step H on. This allows us to use
small values of H, thus having a small estimation vari-
ance, and at the same time, to rely on the value func-
tion approximation provided by the critic to control
the bias. The idea is similar to actor-critic meth-
ods (Barto et al., 1983) in which the variance of the
gradient estimates in the actor is reduced using the
critic’s prediction of the value function.

In this paper, we introduce a new classification-
based API algorithm, called DPI-Critic, obtained by
adding a critic to the direct policy iteration (DPI)
algorithm (Lazaric et al., 2010b). We provide finite-
sample analysis for DPI-Critic when the critic approx-
imates the value function using least-squares temporal-
difference (LSTD) learning (Bradtke & Barto, 1996).
The finite-sample analysis of DPI-Critic with Bell-
man residual minimization is available in sec-
tion 7.1. We empirically evaluate the perfor-
mance of DPI-Critic and compare it with DPI and
LSPIT (Lagoudakis & Parr, 2003a) on two benchmark
reinforcement learning (RL) problems: mountain car
and inverted pendulum. The results indicate that
DPI-Critic can take advantage of both its components
and improve over DPI and LSPI.

2. Preliminaries

In this section we set the notation used throughout the
paper. For a measurable space with domain X, we let
S(X) and B(X; L) denote the set of probability mea-
sures over X, and the space of bounded measurable
functions with domain X and bound 0 < L < oo, re-
spectively. For a measure p € S(X') and a measurable
function f : X — R, we define the ¢,(p)-norm of f as
IfII2, = [ |f(x)]Pp(dx). We consider the standard RL
framework (Sutton & Barto, 1998) in which a learn-
ing agent interacts with a stochastic environment and
this interaction is modeled as a discrete-time MDP.
A discounted MDP is a tuple M = (X, A, rp,7),
where the state space X is a subset of a Euclidean
space RY, the set of actions A is finite (JA| < o0),
the reward function r : X x A — R is uniformly
bounded by Rmax, the transition model p(-|z,a) is
a distribution over X, and v € (0,1) is a discount
factor. We define deterministic policies as the map-
ping 7 : X — A. The value function of a policy T,
V7, is the unique fixed-point of the Bellman operator
T™ 2 B(X; Vinax = 222) = B(X; Vinax) defined by

(T"V) (@) = (2, 7(2)) +7 /X p(dylz, m(@)) V()

Input: policy space II, state distribution p
Initialize: Let mg € II be an arbitrary policy
for k=0,1,2,... do
Construct the rollout set Dy =
e Critic:
Construct the set Sy of n samples (e.g., by following
a trajectory or by using the generative model)
V™ + VF-APPROX(S\)
o Rollout:
for all states x; € Dy and actions a € A do
for j =1to M do
Perform a rollout and return R;(z;,a)

id
{xl}z 1, Ti 1"1\’ P

(critic)

end for u
Q™ (zi,a) = 37 X2)2, Rj(wi,a)
end for R
Thq1 = arg min, oy Lr, (0 ) (classifier)
end for

Figure 1. The pseudo-code of the DPI-Critic algorithm.

while the action-value function Q7 is defined as
Q" (@.0) = rlwa) 7 [ pldsle,a)V" ().
X

Since the rewards are bounded by Ry,ax, all values and
action-values are bounded by ¢ = R“‘a". A policy 7
is greedy w.r.t. an action-value functlon Q, if m(x) €
argmax,c 4 Q(z,a), Vo € X.

To approximate value functions, we use a linear ap-
proximation architecture with parameters a € R% and
basis functions ¢; € B(X;L), j=1,...,d. We denote

by ¢: X = R o) = (¢1(), ... ,wd(-))T the feature
vector, and by F the linear function space spanned by
the features ¢, i.e., F = {fa(-) = ¢(-)Ta : @ € R4}
Finally, we define the Gram matrix G € R?™? w.r.t. a
distribution p € S(X) as

Gij = /%(x)w(ﬂv)p(dx), i,j=1,...,d.

3. The DPI-Critic Algorithm

In this section, we outline the algorithm we propose in
this paper, called Direct Policy Iteration with Critic
(DPI-Critic), which is an extension of the DPT algo-
rithm (Lazaric et al., 2010b) by adding a critic. As
illustrated in Fig. 1, DPI-Critic starts with an arbi-
trary initial policy mg € II. At each iteration k, we
build a set of n samples Sk, called the critic training
set. The critic uses Sy in order to compute V™ an ap-
proximation of the value function of the current policy
7. Then, a new policy 741 is computed from 7y, as
the best approximation of the greedy policy w.r.t. Q™*,
by solving a cost-sensitive classification problem. Sim-
ilar to DPI, DPI-Critic is based on the following loss
function and expected error :

lry, (z;m) = max Q™" (z,a) — Q" (x,w(x)), Vwe X,

acA
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acA

Looim) = [ [ max @ (@.0) = Q7 (w7(a)  olao).

In order to minimize this loss, a rollout set Dy is built
by sampling N states i.i.d. from a distribution p. For
each state x; € Dy and each action a € A, M indepen-
dent estimates {R}* (zi,a)}}L, are computed, where
R7*(wi,a) = R7 " (w,0) 4"V @) (1)
in which R;T’“H(:vi, a) is the outcome of an H-horizon
rollout, i.e.,
H-1
R (21,0) = r(wna) + 3 (@l maly) . (2)
t=1
and V7 (¢fT) is the critic’s estimate of the value func-
tion at state =/, n Eq. 2, (24,2} j, 27 5, ..., xf") is the
trajectory induced by taking action a at state z; and
following the policy 7 afterwards, i.e., x}] ~ p(-|zi, a)
and xf] ~ p( . |xf;1, ﬂ'k(x:;l)) for t > 2. An estimate
of the action-value function of the policy mj is then
obtained by averaging the M estimates as

~ 1 M
Q‘rrk (:Ei, a) = i Z R;’rk (xi, a) . (3)

Given the action-value function estimates, the empir-
ical loss and empirical error are defined as

lry (@;7) = max Q™ (z,a) — Q™ (z,7(z)), VzeX,

ac

~

N
LonPim) = ¢ O [mag @7, @)~ Qs m(an))]. (4)

Finally, DPI-Critic makes use of a classifier which
solves a multi-class cost-sensitive classification prob-
lem and returns a policy that minimizes the empirical
error L, (p; ™) over the policy space II.

As it can be seen from Eq. 1, the main difference be-
tween DPI-Critic and DPI is that after H steps DPI
rollouts are truncated and the return thereafter is im-
plicitly set to 0, while in DPI-Critic an approximation
of the value function learned by the critic is used to
predict this return. Hence, with a fixed horizon H,
even if the critic is a rough approximation of the value
function, whenever its accuracy is higher than the im-
plicit prediction of 0 in DPI, the rollouts in DPI-Critic
are expected to be more accurate than those in DPI.
Similarly, we expect DPI-Critic to obtain the same ac-
curacy as DPI with a shorter horizon, and as a result,
a smaller number of interactions with the generative
model. In fact, while in DPI decreasing H leads to a
smaller variance and a larger bias, in DPI-Critic the
increase in the bias is controlled by the critic. Finally,
it is worth noting that DPI-Critic still benefits from
the advantages of the classification-based approach to
policy iteration compared to value-function-based API

algorithms such as LSPI. This is due to the fact that
DPI-Critic still relies on approximating the policy im-
provement step, and thus similar to DPI, whenever
approximating good policies is easier than their value
functions, DPI-Critic is expected to perform better
than its value-function-based counterparts. Further-
more, while DPI-Critic only needs a rough approxi-
mation of the value function at certain states, value-
function-based API methods, like LSPI, need an accu-
rate approximation of the action-value function over
the entire state-action space, and thus they usually
require more samples than the critic in DPI-Critic.

4. Theoretical analysis

In this section, we provide a finite-sample analysis of
the error incurred at each iteration of DPI-Critic. The
full analysis of the propagation is reported in section
7.3.

In order to use the existing finite-sample bounds for
pathwise-LSTD (Lazaric et al., 2010c), we introduce
the following assumptions.

Assumption 1. At each iteration k of DPI-Critic,
the critic uses a linear function space F spanned by
d bounded basis functions (see Section 2). A data-set
Sk = {(Xi, R;) Yy is built, where X;’s are obtained by
following a single trajectory generated by a stationary
B-mixing process with parameters B,b, K, and a sta-
tionary distribution o equal to the stationary distri-
bution of the Markov chain induced by policy 7y, and
Ri = T‘(Xi, Wk(Xi)).

Assumption 2. The rollout set sampling distribution
p is such that for any policy m € Il and any action
a €A, p=pPYP")H"1 < Co, where C < 00 is a
constant and o is the stationary distribution of w. The
distribution p is the distribution induced by starting
at a state sampled from p, taking action a, and then
following policy m for H — 1 steps.

Before stating the main results of this section,
Lemma 1 and Theorem 1, we report the performance
bound for pathwise-LSTD as in Lazaric et al. (2010c).
Since all the following statements are true for any it-
eration k, in order to simplify the notation, we drop
the dependency of all the variables on k.

Proposition 1 (Thm. 5 in Lazaric et al. 2010c). Let
n be the number of samples collected as in Assumption
1 and V'™ be the approzimation of the value function of
policy m returned by pathwise-LSTD truncated in the
range [—q, q]. Then for any § > 0, we have

[|[VT — ‘7Tr||2,o < e€rstp =

2

Vot

(2\/§flrelff||V — fllz.0 + &2)
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2 /8d , [8log(32]A|ld/5) | 1
+1_7(7qL w( n +n))+51

with probability 1 — & (w.r.t. the samples in S ), where

1) & _ 24q 2/\1(”77:1,5/4) max{ Al(m:ﬁ/‘l) 1Mk,
in which Ai(n,d,0) = 2(d + 1)logn + log$ +
log* (max{18(6¢)***V), 5}),

(2) &2 = 12(q + Lija|[) /22200 o A2(d/8) 13/
in which Az(n,6) = log$ + log(max{6, nB}) and
" = argmingcga ||V — far|l2,0,

(3) w > 0 is the smallest strictly positive eigenvalue of the

Gram matriz w.r.t. the distribution o.

In the following lemma, we derive a bound for the
difference between the actual action-value function of
policy 7 and its estimate computed by DPI-Critic.

Lemma 1. Let Assumptions 8 and 4 hold and D =
{x:}Y be the rollout set with x; X . Let QT be
the true action-value function of policy m and @” be

its estimate computed by DPI-Critic using M rollouts
with horizon H (Egs. 1-3). Then for any § >0

N
1 s Aﬂ'
?Ea}‘ﬁ ;:1 [Q"(zi,a) — Q (mua)H <e+e+es+ e,

with probability 1 — & (w.r.t. the rollout estimates and
the samples in the critic training set S), where

2log(4[A]/3 2log(4[A]/3
el=(1—’yH)q\/7Og§4|N|/ ), =7Hq\/7og]§4|]\[|/ ),

2A(N,d, 2
s €4 = 2’7H\/6 €ELSTD ,

: )
5 = 247Hq 1AM

with A(N,d, ) = log (%(12]\[6)2(’1"'1)),

Proof. We prove the following series of inequalities:

~

|23 @7 (1,0) ~ (1,0

o 1 N M
e [Q (xha)_R (:EZ,CL)]
MN ;::13':1 J ‘
®, ] MM )
< ‘W ;jzl [QH(:E“CL) Rij(xi:a)H
’YH SAELAIS H
+ i 2 77l — Been VT @]
=1 j=1
© 7H Al T H w H
<61+’—NZ [V (xij) =V (xw)]’
i=1 j=1
A N M
™ H T /
+(W;j§::l[v (@) = By, [V (x)]]( wp. 1-8
@) H M .
< el+52+7ﬁ§:||v#—vr||1,ﬁj wp. 1— 20

Jj=1

(e) fyH M ~

™ us !
< e —&—ez—i—ﬁZHV = V72,5, w.p. 1 —2¢

j=1

) H T T /
<eatet+e+297||[VT =Vl w.p. 1 =30
(g) ~
< e +e2+e3+ 2’YH\/6||V7r V|20
(h)
< e +62+€3—|—2’YH\/6 €LSTD w.p. 1— 468

The statement of the lemma is obtained by setting
§’ = §/4 and taking a union bound over actions.

(a) We use Eq. 3 to replace Q™ (z;,a).

(b) We replace R7(z;,a) from Eq. 1 and use the fact
that Q™ (zi,a) = Q% (z:,a) + Y E4y, [V™(2)], where
QF(zi,a) = Efr(zi,a) + 2i (2t w(2l))] and
v; = 6(z;)P*(P™)H~1 is the distribution over states
induced by starting at state x;, taking action a, and
then following the policy 7 for H — 1 steps. We split
the sum using the triangle inequality.

(¢) Using the Chernoff-Hoeffding inequality, with
probability 1 — ¢’ (w.r.t. the samples used to build
the rollout estimates), we have

] oM
‘W ZZ [QTIF{(xiva) - R;’H(l’i,a)}’ <e
i=1j=1

2log(1/0")
MN '

(d) Using the Chernoff-Hoeflding inequality, with

probability 1 — ¢’ (w.r.t. the last state reached by the

rollout trajectories), we have
N M

H
‘ﬁ Z Z [Vw(xfj) — BEar, [V”(:c)]]‘ < e

i=1 j=1

=(1-7")q

u_ [2log(1/d")
NTuN

We also use the definition of empirical £;-norm and re-

place the second term with ||[V™ =V 7|, 5., where fi; is

the empirical distribution corresponding to the distri-

bution p = pP*(P™)H =1, In fact for any 1 < j < M,

samples leJ are i.i.d. from p.

(e) We move from ¢;-norm to f3-norm using the

Cauchy-Schwarz inequality.

(f) Note that V is a random variable independent from

the samples used to build the rollout estimates. Using

Corollary 12 in (Lazaric et al., 2010c), we have

VT = Vloa; <20V = V72 +ea(8”)

with probability 1 — ¢” (w.r.t. the samples in 7i;) for

2A(N,d,8")
—

any j, and e3(0") = 24q By taking a

union bound over all j’s and setting 6” = §'/M, we
obtain the definition of €3 in the final statement.

(g) Using Assumption 4, we have ||[V™ — IA/||27M <
VOV Vo
(h) We replace ||[V™ — V|2, using Proposition 1. O
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Using the result of Lemma 1, we now prove a perfor-
mance bound for a single iteration of DPI-Critic.

Theorem 1. Let II be a policy space with finite VC-
dimension h = VC(II) < oo and p be a distribution
over the state space X. Let N be the number of states
in Dy drawn i.i.d. from p, H be the horizon of the
rollouts, M be the number of rollouts per state-action
pair, and V™ be the estimation of the value function
returned by the critic. Let Assumptions 3 and 4 hold
and Tp41 = argmin . Lr, (p; ) be the policy com-
puted at the k’th iteration of DPI-Critic. Then, for
any § > 0, we have

Loy (pimiet1) < inf Lo (o3 ) +2(c0te1+e2+ea+ea), (5)
with probability 1 — &, where

€ = 16q\/% (hlog % + log 3752> .

The proof is reported in section 7.2.

Remark 1. The terms in the bound of Theorem 1 are
related to the performance at each iteration of DPI-
Critic. The first term, infrer Lr, (p; ), is the approx-
imation error of the policy space II, i.e., the best ap-
proximation of the greedy policy in II. Since the clas-
sifier relies on a finite number of samples in its training
set, it is not able to recover the optimal approximation
and incurs an additional estimation error ¢y which de-
creases as O(N~1/2). Furthermore, the training set
of the classifier is built according to action-value es-
timates, whose accuracy is bounded by the remaining
terms. The term e; accounts for the variance of the
rollout estimates due to the limited number of rollouts
for each state in the rollout set. While it decreases as
M and N increase, it increases with H, because longer
rollouts have a larger variance due to the stochasticity
in the MDP dynamics. The terms €9, €3, and €4 are
related to the bias induced by truncating the rollouts.
They all share a factor v decaying exponentially with
H and are strictly related to the critic’s prediction of
the return from H on. While €3 depends on the specific
function approximation algorithm used by the critic
(LSTD in our analysis) just through the dimension d
of the function space F, ¢4 is strictly related to LSTD’s
performance, which depends on the size n of its train-
ing set and the accuracy of its function space, i.e., the
approximation error inf re 7 ||V™ — fl|2.0-

Remark 2. We now compare the result of Theorem 1
with the corresponding result for DPI in Lazaric et al.
(2010b), which bounds the performance as

Ly (pi 1) < inf Loy (p57) +2(e0 + €1 +9"0). (6)

While the approximation error inf e Lr, (p;7) and
the estimation errors ¢y and ¢; are the same in Egs. 5

and 6, the difference in the way that these algorithms
handle the rollouts after H steps leads to the term
~H g in DPI and the terms es, €3, and €, in DPI-Critic.
The terms es, €3, and €, have the term v ¢ multiplied
by a factor which decreases with the number of roll-
out states IV, the number of rollouts M, and the size
of the critic training set n. For large enough values
of N and n, this multiplicative factor is smaller than
1, thus making es + €3 + €4 smaller than v ¢ in DPL
Furthermore, since these € values upper bound the dif-
ference between quantities bounded in [—q,¢q], their
values cannot exceed v ¢. This comparison supports
the idea that introducing a critic improves the accu-
racy of the truncated rollout estimates by reducing the
bias with no increase in the variance.

Remark 3. Although Theorem 1 reveals the potential
advantage of DPI-Critic w.r.t. DPI, the comparison in
Remark 2 does not take into consideration that DPI-
Critic uses n samples more than DPI, thus making
the comparison potentially unfair. We now analyze
the case when the total budget (number of calls to the
generative model) of DPI-Critic is fixed to B. The
total budget is split in two parts: 1) Bg = B(1 — p)
the budget available for the rollout estimates and 2)
Bc = Bp=n the number of samples used by the critic,
where p € (0,1) is the critic ratio of the total budget.
By substituting Br and B¢ in the bound of Theo-
rem 1 and setting M = 1, we note that for a fixed H,
while increasing p increases the estimation error terms
€0, €1, €2, and e (the rollout set becomes smaller), it
decreases the estimation error of LSTD €4 (the critic’s
training set becomes larger). This trade-off (later re-
ferred to as the critic trade-off) is optimized by a spe-
cific value p = p* which minimizes the expected error
of DPI-Critic. By comparing the bounds of DPI and
DPI-Critic, we first note that for any fixed p, DPI
benefits from a larger number of samples to build the
rollout estimates, thus has smaller estimation errors
€0 and €; w.r.t. DPI-Critic. However, as pointed out
in Remark 2, the bias term v”¢ in the DPI bound
is always worse than the corresponding term in the
DPI-Critic bound. As a result, whenever the advan-
tage obtained by relying on the critic is larger than
the loss in having a smaller number of rollouts, we
expect DPI-Critic to outperform DPI. Whether this is
the case depends on a number of factors such as the di-
mensionality and the approximation error of the space
F, the horizon H, and the size N of the rollout set.

Remark 4. According to Assumption 1 the samples
in the critic’s training set are completely independent
from those used in building the rollout estimates. A
more data-efficient version of the algorithm can be de-
vised as follows: We first simulate all the trajectories
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used in the computation of the rollouts and use the
last few transitions of each to build the critic’s train-
ing set Sk. Then, after the critic (LSTD) computes
an estimate of the value function using the samples in
Sk, the action-values of the states in the rollout set
Dy, are estimated as in Egs. 1-3. This way the func-
tion approximation step does not change the total bud-
get. We call this version of the algorithm Combined
DPI-Critic (CDPI-Critic). From a theoretical point of
view, the main problem is that the samples in Si are
no longer drawn from the stationary distribution oy of
the policy under evaluation 7. However, the samples
in Sy are collected at the end of the rollout trajectories
of length H obtained by following 7, and thus, they
are drawn from the distribution p = pP¢(P™)H-1
that approaches o as H increases. Depending on the
mixing rate of the Markov chain induced by 7, the
difference between p and oy, could be relatively small,
thus supporting the conjecture that CDPI-Critic may
achieve a similar performance to DPI-Critic without
the overhead of n independent samples. While we
leave a detailed theoretical analysis of CDPI-Critic as
future work, we use it in the experiments of Section 5.

5. Experimental Results

In this section, we report the empirical evaluation of
DPI-Critic with LSTD and compare it to DPT (built
on truncated rollouts) and LSPI (built on value func-
tion approximation). In the experiments we show that
DPI-Critic, by combining truncated rollouts and func-
tion approximation, can improve over DPI and LSPI.

5.1. Setting

We consider two standard goal-based RL prob-
lems:  mountain car (MC) and inverted pen-
dulum (IP). We wuse the formulation of MC
in Dimitrakakis & Lagoudakis (2008) with action
noise bounded in [—1, 1] and v = 0.99. The value func-
tion is approximated using a linear space spanned by a
set of radial basis functions (RBFs) evenly distributed
over the state space. The critic training set is built us-
ing one-step transitions from states drawn from a uni-
form distribution over the state space, while LSPI is
trained off-policy using samples from a random policy.
In IP, we use the same implementation, features, and
critic’s training set as in Lagoudakis & Parr (2003a)
with v = 0.95. In both domains, the function space
to approximate the action-value function in LSPI is
obtained by replicating the state-features for each ac-
tion as suggested in Lagoudakis & Parr (2003a). Sim-
ilar to Dimitrakakis & Lagoudakis (2008), the policy
space II (classifier) is defined by a multi-layer percep-
tron with 10 hidden units, and is trained using stochas-
tic gradient descent with a learning rate of 0.5 for 400
iterations. In the experiments, instead of directly solv-

ing the cost-sensitive multi-class classification step as
in Fig. 1, we minimize the classification error. In fact,
the classification error is an upper-bound on the em-
pirical error defined by Eq. 4. Finally, the rollout set
is sampled uniformly over the state spaces.

Each DPI-based algorithm is run with the same fixed
budget B per iteration. As discussed in Remark 3,
DPI-Critic splits the budget into a rollout budget
Br = B(1 — p) and a critic budget Bo = Bp, where
p € (0,1) is the critic ratio. The rollout budget is
divided into M rollouts of length H for each action
in A and each state in the rollout set D, i.e., B =
HMN)|A|. In CDPI-Critic the critic training set Sy
is built using all transitions in the rollout trajectories
except the first one. LSPI is run off-policy (i.e., sam-
ples are collected once and reused through iterations)
and, in order to have a fair comparison, it is run with a
total number of samples equal to B times the number
of iterations (5 in the following experiments).

In Fig. 2 and 3, we report the performance of DPI,
DPI-Critic, CDPI-Critic, and LSPI. In MC, the per-
formance is evaluated as number of steps-to-go with a
maximum of 300. In IP, the performance is the num-
ber of balancing steps with a maximum of 3000 steps.
The performance of each run is computed as the best
performance over 5 iterations of policy iteration. The
results are averaged over 1000 runs. Although in the
graphs we report the performance of DPI and LSPI
at p = 0 and p = 1, respectively, DPI-Critic does not
necessarily tend to the same performance as DPI and
LSPI when p approaches 0 or 1. In fact, values of p
close to 0 correspond to building a critic with very few
samples (thus affecting the performance of the critic),
while values of p close to 1 correspond to a very small
rollout set (thus affecting the performance of the clas-
sifier). We tested the performance of DPI and DPI-
Critic on a wide range of parameters (H, M, N) but we
only report the performance of the best combination
for DPI, and show the performance of DPI-Critic for
the best choice of M (M = 1 was the best choice in
all the experiments) and different values of H.

5.2. Experiments

In both MC and IP, the reward function is constant
everywhere except at the terminal state. Thus, roll-
outs are informative only if their trajectories reach the
terminal state. Although this would suggest to have
large values for the horizon H, the size of the rollout
set would correspondingly decrease as N = O(B/H),
thus decreasing the accuracy of the classifier (see ¢p in
Thm. 1). This leads to a trade-off (referred to as the
rollout trade-off ) between long rollouts (which increase
the chance of observing informative rewards) and the
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Figure 2. Performance of the learned policies in mountain car with a 3 x 3 RBF grid (left) and a 2 x 2 RBF grid (right).
The total budget B is set to 200. The objective is to minimize the number of steps to the goal.

number of states in the rollout set. The solution to
this trade-off strictly depends on the accuracy of the
estimate of the return after a rollout is truncated. As
discussed in Sec. 3, while in DPI this return is im-
plicitly set to 0, in DPI-Critic it is set to the value
returned by the critic. In this case, a very accurate
critic would lead to solve the trade-off for small values
of H, because the lack of informative rollouts is com-
pensated by the critic. On the other hand, when the
critic is inaccurate, H should be selected in a way to
guarantee a sufficient number of informative rollouts,
and at the same time, a large enough rollout set.

Fig. 2 shows the learning results in MC with budget
B = 200. In the left panel, the function space for the
critic consists of 9 RBF's distributed over a uniform
grid. Such a space is rich enough for LSPI to learn
nearly-optimal policies (about 80 steps to reach the
goal). On the other hand, DPT achieves a poor perfor-
mance of about 150 steps, which is obtained by solving
the rollout trade-off at H = 12 and N = 5. We also re-
port the performance of DPI-Critic for different values
of H and p. We note that, as discussed in Remark 3,
for a fixed H, there exists an optimal value p* which
optimizes the critic trade-off. For very small values of
p, the critic has a very small training set and is likely
to return a very poor approximation of the return. In
this case, DPI-Critic performs similar to DPI and the
rollout trade-off is achieved by H = 12, which limits
the effect of potentially inaccurate predictions without
reducing too much the size of the rollout set. On the
other hand, as p increases the accuracy of the critic
improves as well, and the best choice for H rapidly
reduces to 1, which corresponds to rollouts built al-
most entirely on the basis of the values returned by
the critic. For H = 1 and p = 0.8, DPI-Critic achieves
a slightly better performance than LSPI. Finally, the

horizontal line represents the performance of CDPI-
Critic (for the best choice of H) which improves over
DPI without matching the performance of LSPI.

Although this experiment shows that the introduction
of a critic in DPI compensates for the truncation of
the rollouts and improves their accuracy, most of this
advantage is due to the quality of F in approximating
value functions (LSPI itself is nearly-optimal). In this
case, the results would suggest the use of LSPI rather
than any DPI-based algorithm. In the next experi-
ment, we show that DPI-Critic is able to improve over
both DPI and LSPI even if F has a lower accuracy. We
define a new space F spanned by 4 RBFs distributed
over a uniform grid. The results are reported in the
right panel of Fig. 2. The performance of LSPI now
worsens to 180 steps. Since the quality of the critic
returned by LSTD in DPI-Critic is worse than in the
case of 9 RBFs, H =1 is no longer the best choice for
the rollout trade-off. However, as soon as p > 0.1, the
accuracy of the critic is still higher than the 0 predic-
tion used in DPI, thus leading to the best horizon at
H = 6 (instead of 12 as in DPI), which guarantees a
large enough number of informative rollouts. At the
same time, other effects might influence the choice of
the best horizon H. As it can be noticed, for H = 6
and p =~ 0.5, DPI-Critic successfully takes advantage
of the critic to improve over DPI, and at the same
time, it achieves a better performance than LSPI. Un-
like LSPI, DPI-Critic computes its action-value esti-
mates by combining informative rollouts and the critic
value function, thus obtaining estimates which cannot
be represented by the action-value function space used
by LSPI. Additionally, similar to DPI, DPI-Critic per-
forms a policy approximation step which could lead to
better policies w.r.t. those obtained by LSPI.
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Figure 3. Performance of the learned policies in inverted
pendulum. The budget is B = 1000. The goal is to keep
the pendulum balanced with a maximum of 3000 steps.

Finally, Fig. 3 displays the results of similar experi-
ments in IP with B = 1000. In this case, although
the function space is not accurate enough for LSPI to
learn good policies, it is helpful in improving the accu-
racy of the rollouts w.r.t. DPI. When p > 0.05, H =1
is the horizon which optimizes the rollout trade-off. In
fact, since by following a random policy the pendulum
falls after very few steps, rollouts of length one still
allow to collect samples from the terminal state when-
ever the starting state is close enough to the horizontal
line. Hence, with H =1 action-values are estimated as
a mix of both informative rollouts and the critic’s pre-
diction, and at the same time, the classifier is trained
on a relatively large training set. Finally, it is interest-
ing to note that in this case CDPI-Critic obtains the
same nearly-optimal performance as DPI-Critic.

6. Conclusions

DPI-Critic adds value function approximation to the
classification-based approach to policy iteration. The
motivation behind DPI-Critic is two-fold. 1) In some
settings (e.g., those with delayed reward), DPI action-
value estimates suffer from either high variance or
high bias (depending on H). Introducing critic to
the computation of the rollouts may significantly re-
duce the bias, which in turn allows for shorter hori-
zon and thus lower variance. 2) In value-based ap-
proaches (e.g., LSPI), it is often difficult to design a
function space which accurately approximates action-
value functions. In this case, integrating rough approx-
imation of the value function returned by the critic
with the rollouts obtained by direct simulation of the
generative model may improve the accuracy of the
function approximation and lead to better policies.

In Sec. 4, we theoretically analyzed the performance of
DPI-Critic and showed that depending on several fac-
tors (notably the function approximation error), DPI-
Critic may achieve a better performance than DPI.
This analysis is also supported by the experimental
results of Sec. 5, which confirm the capability of DPI-
Critic to take advantage of both rollouts and critic, and
improve over both DPT and LSPI. Although further in-
vestigation of the performance of DPI-Critic in more
challenging domains is needed and in some settings
either DPI or LSPI might still be the better choice,
DPI-Critic seems to be a promising alternative that
introduces additional flexibility in the design of the al-
gorithm. Possible directions for future work include
complete theoretical analysis of CDPI-Critic, a more
detailed comparison of DPI-Critic and LSPI, and find-
ing optimal or good rollout allocation strategies.
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7. Appendix

7.1. DPI-Critic with Bellman Residual
Minimization
In this section we bound the performance of each iter-

ation of DPI-Critic when Bellman Residual Minimiza-
tion (BRM) is used to train the critic.

Assumption 3. At each iteration k of DPI-Critic,
the critic uses a linear function space spanned by
d bounded basis functions (see Section 2). A data-
set S = {(Xi,Ri,Yi,Yi’)}?zl is built, where X; ~
T, R = T(Xi,ﬂ'k(Xi)), and Y; and Y] are two inde-
pendent states drawn from P (-|X;). Note that here
in BRM (unlike LSTD) the sampling distribution T
can be any distribution over the state space.

Assumption 4. The rollout set sampling distribution
p is such that for any policy m € Il and any action
a €A, p=pPY(P")H=1 < Cy7, where Cy < ¢ is a
constant. The distribution p is a distribution induced
by starting at a state sampled from p, taking action a,
and then following policy m for H — 1 steps.

We first report the performance bound for BRM.

Proposition 2. (Thm. 7 in Maillard et al. 2010) Let
n samples be collected as in Assumption 1 and V™ be
the approrimation returned by BRM using the linear
function space F as defined in Section 2. Then for any
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6 > 0, we have
V™=V||2,r < €rM = (7)

Ty —1 ™ . ™
(I —~P7) ||T<(I+’Y||P Il i (V" = fllar

n

N C(Qd log(2) + 6log(64].A/5) ) 1/4>

with probability 1 — &, where

(1) e=12[2(1 +7)°L*
(2) & = ==
(3) w > 0 is the smallest strictly positive eigenvalue of the
Gram matriz w.r.t. the distribution 7.

+ 1]R1nax 3

In the following lemma, we bound the difference be-
tween the actual action-value function and the one es-
timated by DPI-Critic.

Lemma 2. Let Assumptions 3 and 4 hold and {x;} ¥,

be the rollout set with x; u p- Let QT be the true
action-value function of policy m and Q™ be ils esti-
mation computed by DPI-Critic using M rollouts with
horizon H. Then for any § > 0, we have

N
max‘ E (x4, a
acA —

with pmbabzhty 1 =9 (w.r.t. the random rollout esti-
mates and the random samples in the critic’s training
set Sy ), where

(mua)H <1+ e +es+oey,

e3 =129"B M’ e2 = 297VC epru,

with

A(N,d,8) = 2(d + 1) log(N) + log g + log (9(126)2@+D)Y,
B q(l L 20= 72)L2||(i— 7P”k)*1||3)‘

Proof. We prove the following series of inequalities:

<NZ[Q zi,a) = Q" (wi, a))|

Mng (w1, ) — B} (1, 0)]
ﬁﬂﬁiimm W)~ B a0
oo
e S [Pl - B V@]
Las gy B et - vt

N M
‘]\Z[—ZZ V7( m” —Es, [V (z )]H wp. 1 =4
(d) H M
< 0 VTV 126
= 61+E2+ﬁ || - ||1,u,] p. 1—
Jj=1
(e) fyH M ,
§51+62+MZ||V — V™ l2,3, w.p. 1—2§
Jj=1
(f) ~
<€ +62+€3—|—2’y ||VW—VW||27# w.p. 1—3¢
(2) ~
<€1+€2+63+27H\/_||V = V™2,
(h)
< €1 +e+e3+2y \/EEBRM W.p. 1— 446

The statement of the lemma is obtained by setting
0" = 6/4, by taking the union bound over actions.

(a) We use Eq. 3 to replace Q™ (z;,a).

(b) We replace R} (z;,a) from Eq. 1 and use the fact
that Q™ (z;,a) = Q% (zi,a) + ’yHEzN,, [V™(z)], where
QF (zi,a) = Elr(z;,a) + Zt 1 Ty br(al, m(2))] and
vi = §(z;)P(P™)H~1 is the distribution over states
induced by starting at state x;, taking action a, and
then following the policy 7 for H — 1 steps. We split
the sum using the triangle inequality.

(¢) Using the Chernoff-Hoeffding inequality, with
probability 1 — ¢" (w.r.t. the random samples used to
build the rollout estimates), we have

N M
‘MN ;;[QH Ti, ) — ;'H(CCQQ)]‘ S €1
=(1—7")4q %.

(d) Using the Chernoff-Hoeffding inequality, with
probability 1 — 6’ (w.r.t. the last state achieved by the
rollouts trajectories), we have

H N M
‘hzz_: [V( m” —E.o, [V (2 )]H <€

u_ [2log(1/6")

N ~"uN
We also use the definition of empirical ¢1-norm and
replace the second term with |[V™ — V7| 5., where
f; is the empirical distribution corresponding to the
distribution pu = pPa(P”)H’l. In fact for any 1 < j <
M, the samples :1:”- are i.i.d. from p.
(e) We move from ¢;-norm to fo-norm: for any x € R",
using the Cauchy-Schwarz inequality, we obtain

i=1 i=1

=z = —ZI@%I < \jz \jz Jaif? = [[ella s
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(f) We note that V is a random variable independent
from the samples used to build the rollout estimates.
Thus, applying Corollary 12 in Lazaric et al. (2010c),
for any j we have

VT = Vloa; <20V = V7o +ea(8”)

with probability 1 — 6" (w.r.t. the samples in fi;) and

e3(0”) = 12B,/ %. Using the upper bound on
the solutions returned by BRM, when the number of
samples n is large enough, then with high probability
(see Corollary 5 in Maillard et al. 2010 for details)

21 — ) L2||( — VP”)”II?)
— :

B:q<1+

Finally, by taking a union bound over all j’s and set-
ting ¢ = ¢’ /M, we obtain the definition of €5 in the
final statement.

(g) Using Assumption 4, we have [V — V|2, <
VCIIVT = V|a.x R

(h) Here, we simply replace ||[V™ — V||, with the
bound in Proposition 2. |

7.2. Proof of Theorem 1

Since the proof of Theorem 1 does not depend on the
specific critic employed in DPI-Critic, we report its
proof in the general form where the € terms depend on
the specific Lemma (Lemma 1 for LSTD or Lemma 2
for BRM) used in the proof.

Proof. The proof follows the same steps as in Thm. 1
in Lazaric et al. (2010a). We prove the following series
of inequalities:

(a)

Loy (p;Tht1) < Ly, (P Tht1) + €0 w.p. 1 =0
X
=5 [Q7F (wi,a") = Q™ (i, Tri1(2:)) ] + €0
i—1
N R .
< N; [Q™ (i, a™) — Q™ (i, Thp1 (1)) ]
+egter+ et e3tes W.p.1—25'
() 1 al T * AT *
<N [Q7* (zi,a™) — Q™ (24, 7" (2:))]
i—1
+ €0+ €1+ €2+ €3+ €a
(4 1 al T * T *
<N [Q7*(zi,a™) — Q™ (i, " (24))]
i—1
+eo+2(e1+ €2+ €3+ €q) w.p. 1 -3¢

=L, (ﬁ%ﬂ'*) +eo+2(e1 + €2 + €3 + €4)

(2 Lo, (p;7°) 4+ 2(e0 + €1 + €2 + €3 + €4) w.p. 1 —4¢
The statement of the theorem follows by 6" = §/4.

(a) Tt is an immediate application of Lemma 1

in Lazaric et al. (2010a).

(b) This is the result of Lemma 2 (for BRM).

(c) From the definition of 741 in the DPI-Critic al-

gorithm we have

N
Tht1 = ar§ennlin L, (p;7) = arﬁéllljax % ; Q™ (wi, m(x:)),
thus, —= Zil Qr+ (zi,m(z;)) can be maximized by
replacing 7,41 with any other policy particularly with
m* =argmin_ cpq Ly, (p; ).

(d)-(e) These steps follow from Lemma 2 and
Lemma 1 in Lazaric et al. (2010a). O

7.3. Error Propagation

In this section, we first show how the expected error is
propagated through the iterations of DPI-Critic. We
then analyze the error between the value function of
the policy obtained by DPI-Critic after K iterations
and the optimal value function in 7-norm, where 7
is a distribution over the states which might be dif-
ferent from the sampling distribution p. Let P™ be
the transition kernel for policy 7, ie., P™(dylz) =
p(dy|z,7(x)). It defines two related operators: a right-
linear operator, P™-, which maps any V € BY (X;q) to
(P™V)(z) = [ V(y)P™(dy|z), and a left-linear opera-
tor, -P7, that returns (nP7™)(dy) = [ P™(dy|z)n(dz)
for any distribution n over X.

From the definitions of ¢r,, 77, and 7, we have
U (Ty1) = TV™ — TV 7 We deduce the fol-
lowing pointwise inequalities:

VT _ TR+
= TRy Th _ TTRAIY TR L T TRy TR TR Thet L
<y () £y P (VT VTR,

which gives us V7 —
We also have

VL < (I =y PR " oy (Thg).

VE VTR = TV TV 4 TV
_ ’7""k:+1 V’Tk _|_ TTrk+1 V’Tk _ ’7""k:+1 V"rk+1
SAP (VT = V) 4 by (Thgr) +y PRV — VTR,

which yields

V* _ Vwk+1 S "}/P*(V* _ VT\'k)
+ [YPTE I = AP T ]y ()
=P (V* = V™) 4 (I = yP™ ) "y (mh41).
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Finally, by defining the operator Ey, = (I —yP™+1)~!
which is well defined since P™*+! is a stochastic kernel
and v < 1, and by induction, we obtain

x

V*_V‘rrK S (’YP*)K(V*—VTFO)—F

™
Il

0

(8)
Eq. 8 shows how the error at each iteration k£ of DPI-
Critic, £, (mr+1), is propagated through the iterations
and appears in the final error of the algorithm, V* —
V™K Since we are interested in bounding the final
error in n-norm, which might be different than the
sampling distribution p, we use one of the following
assumptions:

Assumption 5. For any policy m € Il and any
non-negative integers s and t, there exists a constant
Chp(s,t) < o0 such that n(P*)® (P’T)t < Cyp(s,t)p.
We define Cy, , = _7 D oc0 2ote0 VT C (s, 1).

Assumption 6. For any x € X and any a € A, there
exist a constant C, < oo such that p(-|z,a) < C,p(-).

Note that concentrability coefficients similar to Cp ,
and C, were previously used in the £,-analysis of fitted
value iteration (Munos, 2007; Munos & Szepesvari,
2008) and approximate policy iteration (Antos et al.,
2008). We now state our main result.

Theorem 2. Let Il be a policy space with finite VC-
dimension h and mg be the policy generated by DPI-
Critic after K iterations. Let M be the number of
rollouts per state-action and N be the number of sam-
ples drawn i.i.d. from a distribution p over X at each
iteration of DPI-Critic. Then, for any § > 0, we have

* s 2 .
V" = V"l < 5= [ O (sup int La(pi)
+2(eo+ €1 +e2+ ez + 64))

+ 'YKRmax:l7 under Assumption 1

IV = V|0 < &[C (sup 1nf Lr(p;7)

ren ™€

+2(e0 + €1 + €2 +€3+€4))

+ ’yKRmax]7 under Assumption 2
with probability 1 — &, where €4 = ergrp when LSTD
s used to approximate the critic and €4 = € gry when

BRM is used.

Proof. We have C), , < C, for any 7. Thus, if the ;-
bound holds for any 7, choosing 7 to be a Dirac at each
state implies that the /..-bound holds as well. Hence,
we only need to prove the ¢;-bound. By taking the
absolute value point-wise in Eq. 8 we obtain

(VP ) Byl (rg1).
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Figure 4. The accuracy of training set in the inverted pen-
dulum problem.

V" = V] < (PR - V)
K-—1
+ 30 (PRI = P T L ()
k=0

From the fact that |[V* — V7| < 2 Rm&xl and by
integrating both sides w.r.t. n, and usmg Assumption 5
we have

V5=V, <95

. Rmax
Y

1—

K—1 oo
+ 3 AT Cup (K — k= 1)y (i)

k=0 t=0
The claim follows from the definition of C, , and by
bounding L, (p; Tx+1) using Theorem 1 with a union
bound argument over the K iterations. O

7.4. Accuracy of the Training Set

Figure 4 shows the accuracy of the training set of DPI-
Critic w.r.t. p for different values of H. At p = 0 we
report the performance of the DPI algorithm. The ac-
curacy acc is computed as the percentage of the states
in the rollout set at which the true greedy action is
correctly identified. Let 7 be a fixed policy. With a
rollout set containing IV states acc is computed as:

N*

N
acc—NZ

argmax,c 4 Q7 (i, a)
arg max,c 4 @ (x;, a) are the actual greedy action and

where af = and a; =
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the greedy action estimated by the algorithm at state
x; € D, respectively.

The budget B is set to 2000, N is set to 20, and the
values of M are computed as

1-p

M(p,H) T

TN

where the first term is a constant and the second one
indicates that M decreases linearly with p with a co-
efficient inversely proportional to H. The results are
averaged over 1000 runs. The policy 7 is fixed as fol-
lows:

random action,
left, if 5% > ¢,

/2
right, otherwise .

with probability 0.2,
7(0,60) = { with probability 0.8,

This policy has an average performance of 20 steps to
balance the pendulum.

For H =1 and p = 0, the horizon is not long enough
to collect any informative reward (i.e., reaching a ter-
minal state). Therefore, the accuracy of the training
set is almost the same as for a training set in which
the greedy action is selected at random (33% as the
domain contains 3 actions). For positive values of p,
DPI-Critic adds an approximation of the value func-
tion to the rollout estimates. The benefit obtained
by using the critic increases with the quality of the
approximation (i.e., when p increases). At the same
time, when p increases, the number of rollouts M for
each rollout state decreases, thus increasing the vari-
ance of rollout estimates. For H = 1, this reduction
has no effect on the accuracy of the training set except
when M is forced to be 0 for the values of p close to
1. In fact, when H = 1, the variance is limited to the
variance introduced by the noise in one single transi-
tion and even a very small number of rollouts would
be enough to obtain accurate estimates of the action
values.

The accuracy of DPI (p = 0) improves with horizon
H =4 and H = 6. For p close to 0, the critic has
a poor performance which causes the rollouts to be
less accurate than in DPI. On the other hand, when
p increases, the value function approximation is suffi-
ciently accurate to make DPI-Critic improve over the
accuracy of DPI. However for p > 0.5, the accuracy
of the training set starts decreasing. Indeed, as H is
large, the variance of Q7 estimates is bigger than in
the case when H = 1. Moreover, for large values of H,
M is small. Therefore, with high variance and a small

number of rollouts M, the @’T estimates are likely to
be inaccurate.

These results show that the introduction of a critic
improves the accuracy of the training set for a value
of p which balances between having a sufficiently ac-
curate approximation of the critic (p large leads to an
accurate critic) and having sufficiently many rollouts
M (p small leads to rollouts with less variance). This
still does not account for the complete critic trade-off
since the parameter N is fixed. Indeed, in order to
return a good approximation of the greedy policy, it
is essential for the classifier to both have an accurate
training set and a large number of states in the train-
ing set. The impact of the number of states in the
training set and the propagation through iterations of
the benefit obtained from the use of critic are studied
in the Experiments section.
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